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1 New proof of the Wilson’s theorem

Here, we will show the Wilson’s theorem in a combinatorial way, i.e. without going through
the traditional classes of congruences met in the literature. We will use the identity Φ below - a
subtraction between two known combinatorial relations - to make emerge congruences properties
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in a visible way.

Wilson’s theorem : if n+ 1 prime, then n! + 1 ≡ 0 [n+ 1]

Proof :

∀n ≥ 1, we have :

n∑
i=0

(−1)iCi
n(X + i)n = (−1)nn! (∗)

This classical identity is obtained from the n-th finite difference of the polynomial Xn [5].
One starts then from the relation obtained by setting : X = 0 in (∗), that is to say :

n∑
i=0

(−1)iCi
ni
n = (−1)nn! (∗∗)

Then, by deriving k times (∗) for k > 1, we get :

n∑
i=0

(−1)iCi
n(X + i)n−k = 0

Hence, setting X = 0 :

n∑
i=0

(−1)iCi
ni
n−k = 0

In other words, ∀α integer, α < n :

n∑
i=0

(−1)iCi
ni
α = 0 (∆)

Now, let us cut off to (∗∗), member with member, the arithmetic equation :

n∑
i=0

(−1)iCi
n = 0

obtained by posing α = 0 in (∆).

Hence, for n+ 1 an odd prime number ≥ 3 (thus n even) :

n∑
i=1

(−1)iCi
n(in − 1) = n! + 1 (Φ)

Using the little Fermat’s theorem, one sees that :

∀i = 1...n,
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in − 1 ≡ 0 [n+ 1]

From which :

n! + 1 ≡ 0 [n+ 1]

Q.E.D.

Always thanks to Φ, we note that if n + 1 divides the terms in − 1, ∀i varying from 1 to n,
then it divides n! + 1. Thus, according to the equivalence of the Wilson’s theorem, n+ 1 is prime
- this result can also be found by using the theorem of Bézout.

We discovered later another proof of the Wilson’s theorem starting from (∗∗) [2]. But this
proof differs from ours in that it uses initially the formula :

Ci
n+1 = Ci

n + Ci−1
n

and the following result : for all prime number n+ 1 and i = 1...n,

Ci
n+1 ≡ 0 [n+ 1]

Then :

Ci
n + Ci−1

n ≡ 0 [n+ 1]

Ci
n ≡ −Ci−1

n [n+ 1]

Ci
n ≡ (−1)i−1C1

n ≡ (−1)i [n+ 1]

From which :

Ci
n ≡ (−1)i [n+ 1]

(−1)iCi
ni
n ≡ (−1)i(−1)iin ≡ in [n+ 1]

n∑
i=0

(−1)iCi
ni
n ≡

n∑
i=1

in ≡ (−1)nn! = n! [n+ 1]

Then, the little Fermat’s theorem is applied : ∀i = 1...n,

in ≡ 1 [n+ 1]

Finally :

n∑
i=1

in ≡ n ≡ n! ≡ −1 [n+ 1]
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This proof involves two different types of congruences, whereas we only use that of Fermat.
Our method directly makes rise the result in a visual way while revealing the numbers of the form
kn − k for all k = 1...n, and it is systematically as we will proceed thereafter to deduce new
results of congruence.

2 Generalizations of Wilson’s theorem

We have the following result using the Stirling numbers of the second kind.

Theorem S :

Let m+ 1 be a prime. Then, ∀n ≤ m,

(−1)nn!

{
m

n

}
+ 1 ≡ 0 [m+ 1]

where the
{
m
n

}
are the Stirling’s numbers of second kind, giving the number of n-partitions

of a set of m elements.

Proof :

The Stirling numbers of the second kind
{
m
n

}
verify the following classical relation [1] :

n∑
i=0

(−1)iCi
ni
m = (−1)nn!

{
m

n

}
(1)

Applying the same method as in our proof of Wilson’s theorem, (1) can be rewritten for all
m+ 1 prime and n ≤ m :

n∑
i=1

(−1)iCi
n(im − 1) = (−1)nn!

{
m

n

}
+ 1 (2)

As again, ∀i = 1...n, im − 1 ≡ 0 [m+ 1].

Then,

(−1)nn!

{
m

n

}
+ 1 ≡ 0 [m+ 1]

Q.E.D.

One can still push our generalization further using the classical Euler’s totient function ϕ(n)

which, to each integer n, associates the number of integers lower than n and prime with it.

Theorem E :
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Let p, n be two integers such that p > n and ∀i ≤ n, i ∧ p = 1.
We have then :

(−1)nn!

{
ϕ(p)

n

}
+ 1 ≡ 0 [p]

Proof :

Let’s make out first that if ∀i ≤ n, i∧ p = 1, we will have, by definition of ϕ : ϕ(p) ≥ n, then{
ϕ(p)
n

}
is well-defined.

Besides, we know that the Euler’s totient function allows us to generalize the little Fermat’s
theorem in the following way [4] :

∀i, p with i ∧ p = 1

iϕ(p) − 1 ≡ 0 [p]

Let then p be an integer such that : ∀i ≤ n, i ∧ p = 1.

By setting m = ϕ(p) in (2), we obtain :

n∑
i=0

(−1)iCi
n(iϕ(p) − 1) = (−1)nn!

{
ϕ(p)

n

}
+ 1

Yet, by hypothesis : ∀i ≤ n, i ∧ p = 1

then :

∀i ≤ n, iϕ(p) − 1 ≡ 0 [p]

⇒ (−1)nn!

{
ϕ(p)

n

}
+ 1 ≡ 0 [p]

Q.E.D.

Note : One finds the generalized theorem S, by setting p = m + 1 with m + 1 prime, which
implies that : ϕ(p) = m.

Thus, the generalizations of the theorems of Wilson and Fermat are directly united in one
and the same relation using the Stirling numbers of the second kind. Let us now turn to the
characterization of the Carmichael numbers, on the basis of the same combinatorial relations
again.
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3 Characterizations of Carmichael’s numbers

Definition :

We call Carmichael number every composed and non-negative integer κ verifying the follo-
wing property :

∀a integer,

aκ ≡ a [κ]

The Carmichael numbers are also called absolutely pseudo-prime or "Fermat liars" because
of their behaviour analogy with prime numbers, so much so that they defeat the Fermat primality
test [3]. We will prove here a new very simple criterion for characterizing these numbers.

Criterion C1 :

A composite integer κ is said of Carmichael if and only if :

∀n ≤ κ− 1,

n!

{
κ

n

}
≡ 0 [κ]

Proof :

Let’s proceed in two steps.

Step 1

Let’s prove first that a composite integer κ is of Carmichael if and only if : ∀n,

n!

{
κ

n

}
≡ 0 [κ]

Let us start from the relation (1) already mentioned at any n :

n∑
i=0

(−1)iCi
ni
m = (−1)nn!

{
m

n

}
to which we subtract the relation :

n∑
i=0

(−1)iCi
ni = 0

which is simply proved by setting α = 1 in the ∆ formula demonstrated at the beginning of
our work.
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One gets :

n∑
i=0

(−1)iCi
n(im − i) = (−1)nn!

{
m

n

}
(1′)

sense⇒ :

Let κ be an integer of Carmichael. It verifies by definition : ∀i,

iκ − i ≡ 0 [κ]

Yet, for m = κ, (1′) becomes :

n∑
i=0

(−1)iCi
n(iκ − i) = (−1)nn!

{
κ

n

}
Hence, by linearity of congruence :

(−1)nn!

{
κ

n

}
≡ 0 [κ]

That is to say :

n!

{
κ

n

}
≡ 0 [κ]

sense⇐ :

Let now be a composed integer κ and let’s suppose that : ∀n,

n!

{
κ

n

}
≡ 0 [κ]

Let us show by recurrence on n that : ∀n,

nκ − n ≡ 0 [κ]

– This is verified for n = 0.
– Let’s suppose the hypothesis is true for n− 1.
– We demonstrate it for n.

From :

n∑
i=0

(−1)iCi
n(iκ − i) = (−1)nn!

{
κ

n

}
We deduce :

(−1)n (nκ − n) +
n−1∑
i=0

(−1)iCi
n(iκ − i) = (−1)nn!

{
κ

n

}
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Then, according to our hypothesis :

∀i ≤ n− 1, iκ − i ≡ 0 [κ]

we get :

n−1∑
i=0

(−1)iCi
n(iκ − i) ≡ 0 [κ]

and :

n!

{
κ

n

}
≡ 0 [κ]

Hence :

nκ − n ≡ 0 [κ]

The step 1 is completed. The obtained criterion can yet be simplified as follows.

Step 2

Let us prove that : κ is of Carmichael if and only if : ∀n ≤ κ− 1,

n!

{
κ

n

}
≡ 0 [κ]

By definition of κ, the sense⇒ is immediate. As for the sense⇐, let us suppose that :

∀n ≤ κ− 1, n!

{
κ

n

}
≡ 0 [κ]

We know that : ∀n ≥ κ, n! ≡ 0 (κ).

Then :

∀n ≥ κ, n!

{
κ

n

}
≡ 0 (κ)

⇒ ∀n, n!

{
κ

n

}
≡ 0 (κ)

So, by definition, κ is a Carmichael number.

Q.E.D.

In the general case, let us prove the following result :
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Lemma G :

∀n,m, p integers,

(∀k ∈ [0, n], km − k ≡ 0 [p])⇔
(
∀l ∈ [0, n], l!

{
m

l

}
≡ 0 [p]

)
Proof :

We start again from (1′) :

n∑
i=0

(−1)iCi
n(im − i) = (−1)nn!

{
m

n

}
Let’s set integers n,m, p.

- sense⇒ :

We suppose that :

∀k ∈ [0, n], km − k ≡ 0 [p]

Then, according to (1′) and by linearity of the congruence :

∀l ∈ [0, n],

l∑
i=0

(−1)iCi
l (i

m − i) = (−1)ll!

{
m

l

}
≡ 0 [p]

- sense⇐ :

Let us suppose :

∀l ∈ [0, n], l!

{
m

l

}
≡ 0 [p]

Here, we remind the classical binomial inversion : given two sequences un and vn, we have

un =
n∑
i=0

Ci
nvi ⇔ vn =

n∑
i=0

(−1)n−iCi
nui

We can apply the binomial inversion to (1′) to get :

∀k,m,
k∑
l=0

C l
kl!

{
m

l

}
= km − k

Then, by hypothesis, ∀k ∈ [0, n] we have :
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∀l ∈ [0, k], l!

{
m

l

}
≡ 0 [p]

Thus, by linearity of congruence :

∀k ∈ [0, n],
k∑
l=0

C l
kl!

{
m

l

}
= km − k ≡ 0 [p]

Q.E.D.

This lemma G highlights that a transfer of arithmetic properties is possible in both directions
between {km − k}k∈N numbers and Stirling numbers of the second kind. It allows us to prove in
another manner this equivalent well-known definition of Carmichael numbers, which limits the
number of congruences they must satisfy [3] :

A composite integer κ is a Carmichael number if and only if :

∀a ≤ κ− 1,

aκ − a ≡ 0 [κ]

Proof :

We just apply lemma G to criterion C1, with κ a Carmichael number and m = κ, n = κ− 1,
p = κ. Q.E.D.

Yet, we have a stronger result :

Criterion C2 :

Let m be a composite square free integer whose largest prime factor is p. Then, m is a Carmi-
chael number if and only if :

∀a ≤ p− 1,

am − a ≡ 0 [m]

or equivalently,

∀a ≤ p− 1,

a!

{
m

a

}
≡ 0 [m]

Proof :
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At first, we note that this criterion is compatible with the properties of Carmichael numbers :
we know that, according to the Korselt’s criterion [3], a Carmichael number is always square free.
Besides, it has at least three prime factors.

Now, we have ∀a ≥ p, a! ≡ 0 [m] : indeed, since by hypothesis m is square free and its
largest prime factor is p, all its prime factors are smaller than a and of exponent 1. Thus, their
product m divides a! and, a fortiori, a!

{
m
a

}
. So, thanks to criterion C2, there is no need to use

congruences :

a!

{
m

a

}
≡ 0 [m]

for all a ≥ p.

According to lemma G, this result is equivalent to : ∀a ≤ p− 1,

am − a ≡ 0 [m]

At the end of the day, we can state an even stronger result.

Criterion C3 :

Let m be a composite square free integer such that :

m = p1.p2.p3...pk

Then, the following propositions are equivalent :

1. m is a Carmichael number.

2. ∀j ∈ [1, k], ∀a ≤ pj − 1,
am − a ≡ 0 [pj]

3. ∀j ∈ [1, k], ∀a ≤ pj − 1,

a!

{
m

a

}
≡ 0 [pj]

4. ∀j ∈ [1, k], ∀a ≤ pj − 1, {
m

a

}
≡ 0 [pj]

Proof :

Again, it is easier to consider first the a!
{
m
a

}
numbers because of the factorial’s properties.

For each prime factor pj of m, we have indeed :
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∀a ≤ pj − 1, a!

{
m

a

}
≡ 0 [pj]⇔ ∀a ∈ N, a!

{
m

a

}
≡ 0 [pj]

given that ∀a ≥ pj , a! ≡ 0 [pj].

Besides :

∀j ∈ [1, k],∀a ∈ N, a!

{
m

a

}
≡ 0 [pj]⇔ ∀a ∈ N, a!

{
m

a

}
≡ 0 [m]

since m is square free with : m = p1.p2.p3...pk. According to criterion C1, the last member of
the equivalence above characterizes the Carmichael numbers.

Then, m is a Carmichael number if and only if ∀j ∈ [1, k], we have : ∀a ≤ pj − 1,

a!

{
m

a

}
≡ 0 [pj]

This proves (1)⇔ (3). Besides, according to lemma G, proposition (3) is equivalent to (2).

At last, ∀j ∈ [1, k], pj is a prime number then, if a < pj , a! and pj are relatively prime, which
implies that pj divides a!

{
m
a

}
if and only if pj divides

{
m
a

}
: we have proved that (3)⇔ (4).

Q.E.D.

Applications :

- The smallest Carmichael number with seven prime factors is [3] : m = 5394826801 =

7× 13× 17× 23× 31× 67× 73. Then, according to criterion C2, m is a Carmichael number if
and only if m divides all the am− a for a = 1, ..., a = p, where p = 73 is the largest prime factor
of m. No need in theory to check the congruences from a = 1 to a = 5394826801.

- In the same way,m = 1436697831295441 = 11×13×19×29×31×37×41×43×71×127

is the smallest Carmichael number with ten prime factors. Then, congruence checks should be
performed only up to a = 127 instead of a = 1436697831295441.

4 Conclusion

We started from the same combinatorial relation :

n∑
i=0

(−1)iCi
ni
n = (−1)nn!

that we slightly transformed to prove directly and generalize the Wilson’s theorem, then to
propose several simplified characterizations of the Carmichael numbers.
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