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Abstract : In a previous article [1], we have found that associated Stirling numbers of first and
second kind can be compacted, at any order and using a linear transformation, in a structure
of arithmetical triangle. We show then a strong link between the congruence of such numbers
and this common geometrical layout. It leads to non-trivial combinatorial and modular properties
which would be much more difficult to find and to prove without such a structure. Amongst other
things, the binomial coefficient reveals a new surprising ability to build modular areas, angles
and rotations, geared to the order r and independent of their homonyms in terms of classical
space transformations. Probably for the first time in arithmetic science, two rotations of deeply
different natures, one geometrical and the other modular, are highlighted for the same Stirling
numbers and their associated.
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1 Introduction

We will prove new modular results concerning the associated Stirling numbers of both kinds
through the prism of what we call the arithmetical triangle’s structure. Usually, in arithmetical
triangles like the so-called Pascal’s triangle, the main modular properties are located on the hori-
zontal lines [2][3][4][5]. Yet, surprisingly, this is no longer the case in associated Stirling numbers
arithmetical triangles at order r : modular properties (excepted for r = 1 which corresponds to
classical Stirling numbers) are concentrated on the oblique lines of the triangles, with slopes
depending on r...

In the following, one will provide the plan with an orthonormal reference mark and trigono-
metrical direction. Let’s remember [1] that an integer sequence t(i, j) is said to have a structure
of arithmetical, or more simply is an arithmetical triangle, if and only if all its terms t(i, j) are
calculable starting from initial data and of a relation of recurrence of the type :

t(i, j) = g(i, j)t(i− 1, j − 1) + h(i, j)t(i− 1, j)

where g et h are integer functions of discrete variables i, j.

2 Geometrical rotations of the associated Stirling numbers

One is interested initially in the associated Stirling numbers of first kind at order r > 1, noted
dr(n, k) in the literature : as a reminder, dr(n, k) is defined as the number of permutations of a
set of n elements having exactly k cycles, all length > r.

These numbers check the relation of following recurrence (see for example [2]) :

dr(n, k) = (n− 1)dr(n− 1, k) + (n− 1)r−1dr(n− r, k − 1)

where (n)k indicates the downward factorial, as well as the initial conditions :

dr(n, k) = 0 ∀n 6 kr − 1

dr(n, 1) = (n− 1)!

The following theorem in our previous article [1] gathers in only one structure, at any order,
the various representations of the dr(n, k) :

For all r > 1, the {dr(n, k)}n≥1,k≥1 has a structure of arithmetical triangle : the latter will
be noted σr and its terms {Dr(m, k)}m≥1,k≥1.

To prove it, we used R, a linear application in the space of numerical sequences s with two
integer variables n et k defined by :
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R : s(n, k) 7→ R(s(n, k)) = s(n+ k − 1, k)

With s ≡ dr and after setting down : m = n− (r − 1)(k − 1), the application of Rr−1 to the
recurrence relation of dr gave :

Rr−1(dr)(m, k) = (m+ (r − 1)(k − 1)− 1)Rr−1(dr)(m− 1, k)+

(m+ (r − 1)(k − 1)− 1)r−1R
r−1(dr)(m− 1, k − 1)

thus :

Dr(m, k) = (m+ (r − 1)(k − 1)− 1)Dr(m− 1, k)+

(m+ (r − 1)(k − 1)− 1)r−1Dr(m− 1, k − 1)

with

Dr = Rr−1(dr)

The new sequenceDr(m, k) has an arithmetical triangle’s structure. The latter, which puts our
terms to the "immediate vicinity" from each other, will make it possible to show their modular
properties step by step and in various directions.

Abusing the language, for any fixed n0 and p0 > 1, the linear transformation R is a plane
geometrical rotation, of centre s(n0, 1) and angle (Dn0,p0 ,Dn0,p0−1), of Dn0,p0 , where Dn′,p′ is
a general line of elements s(n, k) starting from s(n′, 1) (invariant of R) and passing through
s(p′, 2). Geometrically speaking, the subscripts of its elements (n, k) check the following discrete
equation [1] :

(k − 1)(n′ − p′) + (n− n′) = 0 ∀n, k > 1

We can represent R in the following way :

k →

n ↓

s(1,1) ... ... ...
s(2,1) ... ... ...
s(3,1) s(3,2) ... s(n,k)
s(4,1) s(4,2) ... ...

... s(5,2) s(5,3) ...

... ... s(6,3) ...

... ... ... s(7,4)
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7→ R 	 7→

s(1,1) ... ... ...
s(2,1) s(3,2) ... ...
s(3,1) s(4,2) s(5,3) ...
s(4,1) s(5,2) s(6,3) s(7,4)

... ... ... ...

... ... ... ...

... ... ... ...

7→ R 	 7→

s(1,1) s(3,2) s(5,3) s(7,4)
s(2,1) s(4,2) s(6,3) ...
s(3,1) s(5,2) ... ...
s(4,1) ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

Or, more schematically :

? ... ... ...
♦ ... ... ...
M ♦ ... ...
� M ... ...
... � M ...
... ... � ...
... ... ... �

7→ R 	 7→

? ... ... ...
♦ ♦ ... ...
M M M ...
� � � �

... ... ... ...

... ... ... ...

... ... ... ...

7→ R 	 7→

? ♦ M �

♦ M � ...
M � ... ...
� ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...

As for the associated Stirling numbers of second kind at any order, they check the law of
following recurrence (see for example [2]) :

sr(n, k) = ksr(n− 1, k) +

(
n− 1

r − 1

)
sr(n− r, k − 1)

The terms in sr are of the same form as the dr in their recurrence relation. It was then possible
to define r − 1 rotations of the same type as R and to extend the theorem above to the sr(n, k) :

For all r > 1, the {sr(n, k)}n≥1
k≥1

has a structure of arithmetical triangle, noted πr with

{Sr(m, k)}m≥1
k≥1

its terms.

The lines associated with a natural integer n in πr or σr are the whole of the terms correspon-
ding to sr(n, k) or dr(n, k) for all k. It was said that n divides its associated line if it divides of it
all the terms except the first. For all positive integer r and all integer h, Σh

r and Πh
r were defined as

the arithmetical structures obtained after h iterations of R applied respectively to the arithmetical
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triangles σr and πr.

Those preliminary results will help us to introduce a new kind of plane transformations, di-
rectly related to modular properties of the associated Stirling numbers.

3 Modular rotations of the associated Stirling numbers

Our study will concentrate on πr but, as we will see it, it can easily spread with the other
triangle σr. There is the following theorem :

Theorem

Let the arithmetical triangle πr be, with ρ0r(n) the line in πr associated with a natural integer
n, η0r(n) the horizontal line of πr sharing its non-zero first term with ρ0r(n) and δ0r(n) the line
which forms an angle of −π

4
with η0r(n). Let finally A0

r(n) be the whole of the elements of πr
ranging in the area between δ0r(n) and ρ0r(n), except δ0r(n) (see figure 1).

There is then for all prime numbers n ≥ 2 and for all r ≥ 1 :

A0
r(n) ≡ 0 [n]

Proof :

Let n be a prime number ≥ 2 and r ≥ 1. We consider ρ0r(n) and its intersection C with the
orthogonal line to η0r(n) in B. C will enable us to leave the triangle πr and to avoid thus certain
"effects edge" in our proof (cf. following figure 2).
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figure 1 : r=5, h=0
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figure 3
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Let n be a fixed prime number. One will show by recurrence that all the elements Sr(m, k) of
πr contained in the triangle ABC are such as :

Sr(m, k) ≡ 0 [n]

Let us note Lp the lines of πr located on the p-nth line starting from C and on the right of
ρ0r(n) (cf. figure 3). The Lp are defined until AB excluded. We can show by recurrence on p that
the Lp check the relation above.

- for p = 1 : the line L1 contains only one null term in C, thus divisible by n.

- let us suppose our relation of congruence checked for Lp.

Let the following line Lp+1 be. In the triangle of Pascal, one knows that the congruence of
a line is transmitted to that from under by simple linearity - except the first term of the line. In
the same way here, since all the column BC is zero, one can show using Lp that all the elements
of Lp+1 are divisible by n, except its first term noted Lp+1(1). We will then have two possibilities :

- if Lp+1(1) belongs to ρ0r(n), then Lp+1(1) = Sr(m, k) with by definition :

m = n− (k − 1)(r − 1)

Yet, one can show in a combinatorial way that [2] :

Sr(m, k) = sr(n, k) =
1

k!

∑
α1≥r...αk≥r

α1+α2...+αk=n

n!

α1!α2! . . . αk!
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Given some simple modular properties, this leads to :

Sr(m, k) ≡ 0 [n]

To generalize our theorem to σr, it would be sufficient to have a similar modular property of
the kind :

dr(n, k) ≡ 0 [n]

that we will adapt to σr, like for πr, using Dr(m, k) ≡ Rr−1 [dr(n, k)] with always :

m = n− (k − 1)(r − 1)

- if Lp+1(1) does not belong to ρ0r(n), then we can consider it as equal to one of the terms of
the sequence (for a fixed k) : Sr(m+ 1, k), Sr(m+ 2, k),. . . , Sr(m+ r − 1, k).

Those terms check the following recurrence relations :

Sr(m+ 1, k) = k.Sr(m, k) +

(
n

r − 1

)
Sr(m, k − 1)

Sr(m+ 2, k) = k.Sr(m+ 1, k) +

(
n+ 1

r − 1

)
Sr(m+ 1, k − 1)

...

Sr(m+ r − 1, k) = k.Sr(m+ r − 2, k) +

(
n+ r − 2

r − 1

)
Sr(m+ r − 2, k − 1)

Since n is prime, then : (
n

r − 1

)
≡ 0 [n](

n+ 1

r − 1

)
≡ 0 [n]

...(
n+ r − 2

r − 1

)
≡ 0 [n]

Thus, according to the first equations of our two systems :

Sr(m, k) ≡ 0 [n]⇒ Sr(m+ 1, k) ≡ 0 [n]

In the same way, according to the second equations :

Sr(m+ 1, k) ≡ 0 [n]⇒ Sr(m+ 2, k) ≡ 0 [n]

Sr(m+ r − 2, k) ≡ 0 [n]⇒ Sr(m+ r − 1, k) ≡ 0 [n]
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Thus, all the first possible terms of Lp+1 are divisible by n, which involves, according to
the assumption on Lp that all the terms of Lp+1 are divisible by n. It is then possible for us to
extend this property to all the set A0

r starting from the same property of "linear transmission of
congruence" mentioned above.

Let us specify an important detail : when Lp = AB, recurrence stops and the element D of
the following line (cf. figure 2) is never divisible by n. Indeed, in D the term Sr(m+ 1, 2) is such
as :

Sr(m+ 1, 2) = 2Sr(m, 2) +

(
n+ r − 1

r − 1

)
Sr(m, 1)

= 2Sr(m, 2) +

(
n+ r − 1

r − 1

)
since A (associated to n) checks m = n− (r − 1)(1− 1) = n and Sr(m, 1) = 1.

However, as Sr(m, 2) belongs to AB, it is divisible by n but
(
n+r−1
r−1

)
are not it, which implies

that Sr(m + 1, 2) is not divisible by n : if this property had not been checked (it was seen that
held only with the coefficient in front of Sr(m, 1) = 1) then δ0r(n) would entirely belong to A0

r

and thus would not be any more one asymptote.

For σr, one would have rather used the following system :

Dr(m+ 1, k) = n.Dr(m, k) + (r − 1)!

(
n

r − 1

)
Dr(m, k − 1)

Dr(m+ 2, k) = (n+ 1).Dr(m+ 1, k) + (r − 1)!

(
n+ 1

r − 1

)
Dr(m+ 1, k − 1)

...

Dr(m+ r − 1, k) = (n+ r − 2).Dr(m+ r − 2, k) + (r − 1)!

(
n+ r − 2

r − 1

)
Dr(m+ r − 2, k − 1)

and, for n prime :

(r − 1)!

(
n

r − 1

)
≡ 0 [n]

(r − 1)!

(
n+ 1

r − 1

)
≡ 0 [n]

...

(r − 1)!

(
n+ r − 2

r − 1

)
≡ 0 [n]

The rest rises exactly from the same manner as for πr : QED.
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Definitions : one will call modular angle associated with a natural integer n the surface
A0
r(n). Its associated geometrical angle is : θ + π

4
, where :

θ = arctan(r − 1)

One will also speak about modular rotation in πr or σr when the parameter r varies. These
definitions are generalizable to any arithmetical triangle.

From the proof of the main theorem on modular rotations above, it appears that the bino-
mial coefficients play an essential role in the construction of the angle θ, which results from the
equation of ρ0r(n) :

m+ (k − 1)(r − 1) = n

with n fixed and ∀k,m.

This angle depends only on the order r which then can be considered as the main parameter
of modular rotations. For this reason, we may underline that a modular rotation is not the result
of any classical geometrical rotation of the plane. Indeed, as we saw above, the arithmetical
triangle structure is "geometrically fixed", whereas only the modular angle varies with r.

4 Conclusion

This work proposed to study some modular properties of the associated Stirling numbers of
both kinds at any order r, after having "compacted" them in the state of arithmetical triangles
πr and σr, according to our previous paper [1]. Then, it appeared that those properties could be
described in terms of angles depending on the "rotatory" parameter r. We introduced then some
"modular" equivalents to classical geometrical concepts such as rotations, areas, angles. Those
different types of plane transformations may be independent from each other : the geometrical
structure of arithmetical triangle is preserved by modular rotation. Such an amazing and direct
link between the two worlds of arithmetic and geometry must be explored. This will be the object
of our future work.
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