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Summary 

The discoveries of gravitational waves linked to binary black holes coalescence have multiplied since 

11 February2016. The formation of a resulting black hole from this cataclysmic event, concentrating 

in the final stage in a very small radius a colossal mass (50 solar masses and more), is sufficiently 

energetic to deform the space-time which then propagates without any attenuation during Billions of 

years, the associated gravitational waves. These were predicted by Einstein in his theory of general 

relativity a century ago. Their measurements, which are characterized by an infinitesimal L / L 

deformation (10-21 , or 10-18  at the kilometer size of the interferometers), corresponds to the 

billionth of the size of an atom, today. The smallness of its deformations is the character trait of an 

extraordinarily great rigidity of space-time. We will show in this paper that the constant of 

proportionality κ between the curvature tensor Gμv and the stress energy tensor Tμv is a 

characterization of this very high rigidity. To do this we will make an analogy with the strength of 

materials via the theory of the beams to show it. 
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1rst part) – Relation between curvature, energy and rigidity of a beam – case of the strength of material  

1.1) General case of a beam on 2 supports  
Considering a beam of width b (m) of height h (m), on 2 simple supports, of span L (m), carried out with 

a material of young modulus E (MPa),with an inertia (m4) and with an area S (m²), that have a mass by 

unit of length (m =  S) in kg/m (cf. figure 1). 

The beam has a deflection during the time 𝑦(𝑥,𝑡) : 

 

           

      

      

 

 

 

                      

Figure 1 – Beam on 2 supports under its self-weight – 

 

In static (deflection 𝑦(𝑥) independent of the time), the fundamental relation connecting the 

curvature (1/R) at the bending moment 𝑀(𝑥)and at the second derivative of the deflection 𝑦(𝑥) can 

be written as following: 

𝑑2𝑦(𝑥)

𝑑𝑥2
= −

𝑀(𝑥)

𝐸𝐼
=

1

𝑅 
     (1) 

In this expression, 𝑀(𝑥) is the bending moment (N.m), and R the curvature radius (m). 

 

The exact expression of the curvature is given in the expression (2). The term in cube root can be 

neglected here. 

1

𝑅
=

𝑑²𝑦
𝑑𝑥²

(√1 + (
𝑑𝑦
𝑑𝑥

)
2

)

3  (2) 

 

In addition, the elastic bending energy can be written as following: 

𝑈 =
1

2
∫

𝑀(𝑥)
2

𝐸𝐼
𝑑𝑥     (3)

𝐿

0

 

 

𝑥 

𝑀, 𝐸, 𝐼 

𝑦(𝑥,𝑡) 

𝑦 

𝐿 
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1.2) Case of a beam on two simple supports under two equal bending moments C  

To simplify, we are considering now a beam solicited by a bending moment at each extremity (cf. figure 2). 

By convention, the bending moment is positive when it turns in the in the clockwise direction. 

 

 

           

      

      

 

 

 

 

Figure 2 – Beam solicited by a moment of intensity C at each extremity – 

As the reaction on the support are null, the bending equation is written as following: 

𝑀(𝑥) = 𝐶      (4) 

Based on the equation (1) we obtain: 

𝑑2𝑦

𝑑𝑥2
= −

𝐶

𝐸𝐼
=

1

𝑅 
     (5) 

𝑀(𝑥) = 𝐶 = −
𝐸𝐼

𝑅
     (6) 

Introducing the expression (6) in the bending energy (3): 

𝑈 =
1

2
∫

(𝐸𝐼)2

𝑅2𝐸𝐼
𝑑𝑥  (7)   

𝐿

0

 

As the curvature is constant, we obtain so: 

𝑈 =
1

2

𝐸𝐼𝐿

𝑅2
   (8) 

Or in another way in the case of the pure bending, we obtain: 
 

1

𝑅2
=

2

𝐸𝐼
(

𝑈

𝐿
)  (9) 

We obtain so, a relation connecting the curvature at the strain energy density U/L of the beam. 
 
Note: 
By integral two times from 𝑥 of the expression (5) and considering the deflection must be null on 
each support, we obtain the following expression of the deflection: 

𝑦(𝑥) = −
𝐶

2𝐸𝐼
𝑥2 +

𝐶𝐿

2𝐸𝐼
𝑥   (10) 

𝐸, 𝐼 
R 

𝑥 

𝑦(𝑥,𝑡) 
C 

C 

𝐿 

A B 

𝑦 
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And thus we find for the maximum deflection a result well known of the strength of materials: 

𝑦(𝐿/2) = −
𝐶𝐿2

8𝐸𝐼
+

𝐶𝐿2

4𝐸𝐼
=

𝐶𝐿2

 8𝐸𝐼
   (11) 

 
If we derivate two times the equation (10) we obtain again that the curvature is constant: 

𝑑2𝑦(𝑥)

𝑑𝑥2
= −

𝑀

𝐸𝐼
= −

𝐶

𝐸𝐼
=

1

𝑅 
      

 
In addition the rotation can be written as following: 

𝑑𝑦(𝑥)

𝑑𝑥
= 𝜃(𝑥)    (12) 

 
By deriving from 𝑥 the expression (10) we obtain: 

𝑑𝑦

𝑑𝑥
= −

𝐶

𝐸𝐼
𝑥 +

𝐶𝐿

2𝐸𝐼
   (13) 

 
We obtain the rotation at each extremity of the beam: 

𝑦′(0) =
𝐶𝐿

2𝐸𝐼
= 𝜃𝐴          (14) 

And : 

𝑦′(𝐿) = −
𝐶𝐿

2𝐸𝐼
= 𝜃𝐵      (15) 

 
In addition, it is possible to write a relation between the bending moment C applied, the stiffness of 
the beam and the rotation 𝜃𝐴 and  𝜃𝐵at each extremity (cf. matrix calculation of a frame): 
 

𝑀𝐴𝐵 =
4𝐸𝐼

𝐿
𝜃𝐴 +

2𝐸𝐼

𝐿
𝜃𝐵    (16) 

𝑀𝐵𝐴 =
4𝐸𝐼

𝐿
𝜃𝐵 +

2𝐸𝐼

𝐿
𝜃𝐴    (17) 

With: 
𝑀𝐴𝐵 The bending moment applied at the node A, 
𝑀𝐵𝐴 The bending moment applied at the node B. 
 
And with our signs convention 𝑀𝐴𝐵 = −𝑀𝐵𝐴 
 
Indeed, by using the expressions (14) and (15) in the equation (16) we obtain: 
 

𝑀𝐴𝐵 =
4𝐸𝐼

𝐿
(

𝐶𝐿

2𝐸𝐼
) +

2𝐸𝐼

𝐿
  (−

𝐶𝐿

2𝐸𝐼
)  = 2𝐶 − 𝐶 = 𝐶 

 
By taking into account the expressions (14) and (15) of the rotations at each extremity of the beam: 

𝜃𝐴 = −𝜃𝐵   (18) 
 
The expression (16) can be written: 

𝐶 =
2𝐸𝐼

𝐿
𝜃𝐴 = 𝑘𝜃𝐴    (19) 

Where k is the rigidity (bending stiffness here) of the beam solicited by two equal moments C: 

𝑘 =
2𝐸𝐼

𝐿
      (20) 

We can now define the strain energy U of the beam in function of the bending moments applied and 
the rotations at the extremity. 
The energy, the work of the bending moment is so:  
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𝑈 =
1

2
𝑀𝜃   (21)    

 

In addition, under the bending moment, the beam bent and takes a curvature radius as indicated at 

the figure 3: 

 

 

 

 

 

 

Figure 3 – Relation between the radius of curvature R of the beam and its mean fiber – 

 

We have following the figure 3: 𝑅𝜃 = 𝑑𝑠 ≈ 𝑥   (22) 

And we have a relation between the curvature 1/R and the deflection w of the beam: 

1

𝑅
=  

𝑑2𝑦(𝑥)

𝑑𝑥2
  (23) 

By introducing the expression (23) into the expression (22) we obtain: 

𝜃 =
𝑥

𝑅
=

𝑑2𝑦(𝑥)

𝑑𝑥2
𝑥      (24) 

By introducing the expression (24) in the expression (21) the elastic strain energy takes the following 

value:  

𝑈 =
1

2
𝑀
𝑥

𝑅
     (25) 

M is constant (M = C) and the curvature is constant also, the expression (25) becomes: 
 

𝑈 =
1

2
𝐶
𝑥

𝑅
     (26) 

So by integral along the length L of the beam each side of the equation (26), we obtain: 

𝑈 =
1

2

𝐶𝐿

𝑅
     (26) 

By taking into account of the expression (5): 
 

𝑈 =
1

2

𝐸𝐼𝐿

𝑅2
     (27) 

So, we find again the expression (9). 
Thus, we can define the total energy of the beam under the two bending moment C as defined in 
figure 2 in function of k, M and 𝜃𝐴 : 

θ 
R 

𝑑𝑠 ≈ 𝑥 
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𝑈 =
1

2
𝐶𝜃𝐴 +

1

2
(−𝐶)𝜃𝐵      (28) 

 
And by taking into account of the rotation expression given in (14) and (15): 

𝑈 =
1

2
𝐶𝜃𝐴 +

1

2
(−𝐶)𝜃𝐵 

With: 
𝜃𝐴 = −𝜃𝐵    

 
𝑈 = 𝐶𝜃𝐴  (29) 

And by taking into account of the expression (19): 
 

𝐶 =
2𝐸𝐼

𝐿
𝜃𝐴 = 𝑘𝜃𝐴    (19) 

We obtain: 

𝑈 = 𝑘𝜃𝐴
2  (30) 

 
We can find again this expression from the equation (3): 
 

𝑈 =
1

2
∫

𝑀(𝑥)
2

𝐸𝐼
𝑑𝑥     (3)

𝐿

0

 

With:  

𝑀 = 𝐶 = 𝑘𝜃𝐴   
 

𝑈 =
1

2
∫

𝑘2𝜃𝐴
2

𝐸𝐼
𝑑𝑥     (31)

𝐿

0

 

As in our case, all these terms are constant: 

𝑈 =
1

2

𝑘2𝜃𝐴
2

𝐸𝐼
𝐿       (32) 

By equalizing the expression (32) with the expression of the energy obtain (27): 

On obtient : 

1

2

𝑘2𝜃𝐴
2

𝐸𝐼
𝐿 =

1

2

𝐸𝐼𝐿

𝑅2
  (33)  

After simplification: 

𝑘2𝜃𝐴
2

(𝐸𝐼)2
=

1

𝑅2
  (34)  

By equalizing this expression with the expression (9) we obtain: 

1

𝑅2
=

2

𝐸𝐼
(

𝑈

𝐿
) =

𝑘2𝜃𝐴
2

(𝐸𝐼)2
      (35) 

So : 

𝑘2𝜃𝐴
2

(𝐸𝐼)2
=

2

𝐸𝐼
(

𝑈

𝐿
) 
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𝑘2𝜃𝐴
2 =

2(𝐸𝐼)2

𝐸𝐼
(

𝑈

𝐿
) 

𝑘2𝜃𝐴
2 =

2𝐸𝐼

𝐿
𝑈     (36) 

With the expression (20): 

𝑘 =
2𝐸𝐼

𝐿
      (20) 

The expression (36) becomes: 

𝑘2𝜃𝐴
2 = 𝑘𝑈      

So: 

𝑘𝜃𝐴
2 = 𝑈      

That is the expression (30) already demonstrated. 

By resuming the expression (35) and taking into account of the expression (30) we obtain so: 

1

𝑅2
=

2

𝐸𝐼
(

𝑈

𝐿
) =

𝑘2𝜃𝐴
2

(𝐸𝐼)2
      (35) 

 

1

𝑅2
=

2

𝐸𝐼
(

𝑈

𝐿
) =

𝑘

(𝐸𝐼)2
 𝑈   (36) 

With the stiffness k: 

𝑘 =
2𝐸𝐼

𝐿
      (20) 

 

We demonstrate so that the factor of proportionality between the energy and the curvature is linked 

at the rigidity k of the beam: 

𝟏

𝑹𝟐
=

𝟐

𝑬𝑰𝑳
𝑼 =

𝒌

(𝑬𝑰)𝟐
 𝑼 (𝟑𝟕)   

 

The dimensional equation (if we notice U the energy) is the following: 

𝑈

𝑁
𝑚²

× 𝑚4 × 𝑚
=

𝑈

𝑁. 𝑚3
=

𝑈

𝑘𝑔𝑚
𝑠²

× 𝑚3
=

𝑠²

𝑘𝑔 × 𝑚
×

𝑈

𝑚3
= 𝑁. 𝑚 ×

𝑈

(𝑁. 𝑚²)2
=

𝑈

𝑁𝑚3
=

𝑈

𝑘𝑔𝑚
𝑠²

× 𝑚3
 (38) 
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2nd part) Rigidity of the space time -  Case of the general relativity  

2.1) Expression of the Einstein equation 

The Einstein equation is the following: 

𝐺𝜇𝑣 = 𝜅𝑇𝜇𝑣    (39) 

The developed form of the Einstein equation is the following: 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + 𝛬𝑔𝜇𝜈 =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈      (40) 

We remind that the components of the stress energy tensor 𝑇𝜇𝜈  have the dimension of an energy 

density: 

     G = 6.6726x10-11 m3kg-1s-2  1J = 1W.s = 1 N.m = 1kg.m².s-2                  kg 

 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
8𝜋𝐺

𝑐4
×

𝐸𝑛𝑒𝑟𝑔𝑦

𝑉𝑜𝑙𝑢𝑚𝑒
=

8𝜋𝐺

𝑐2

𝑀𝑎𝑠𝑠

𝑉𝑜𝑙𝑢𝑚𝑒
   (41) 

 

                                     1/m²       (m/s)4     (m3)                     

In this equation, the curvature, and the space time energy are connected (cf. figure 3). 

 

 

 

 

 

 

 

 

Figure 3 – Symbolic view of the curvature of the space time projected in a space plane – 

𝐺𝜇𝑣 is the Einstein tensor. 

𝑇𝜇𝑣 is the stress energy tensor. 

 

 

 

 

 



9 
 

2.2) Factor of proportionnality between curvature and energy – stiffness of the space time. 

The factor of proportionality between the curvature and the energy is so: 

𝜅 =
8𝜋𝐺

𝑐4
    (42) 

In addition, the dimensional equation of κ is the following: 

𝜅 =
𝐿3𝑇4

𝑀𝑇²𝐿4
=

𝑇²

𝑀𝐿
=

𝑠²

𝑘𝑔𝑚
     (43) 

And the energy is in fact the energy density in the Einstein equation, so: 

𝐺𝜇𝑣 = 𝜅𝑇𝜇𝑣     

We notice: 𝑇𝜇𝑣   =
𝑈𝜇𝑣

𝑉
 

We obtain so via the dimensional equation: 

𝜅 ×
𝑈𝜇𝑣

𝑉
=>

𝐿3𝑇4

𝑀𝑇²𝐿4
=

𝑇²

𝑀𝐿
=

𝑠²

𝑘𝑔𝑚
×

𝑈𝜇𝑣

𝑚3
     (44) 

We find so again the dimensional equation (38) associated at the equation (37) in the case of a beam 

in bending solicited by two equal moments (one at each extremity). 

 

Conclusions 

We have so, a perfect analogy between the expressions (37) and (44), one issued of the beam theory 

in strength of materials and the other issued of the general relativity in 4 dimensions of the space 

time [24]. The curvature of the space time is so well proportional at the energy that is present and 

at the stiffness of the fabric of the space time. 

𝟏

𝑹𝟐
=

𝟐

𝑬𝑰𝑳
𝑼 =

𝒌

(𝑬𝑰)𝟐
 𝑼    

𝑹𝝁𝝂 −
𝟏

𝟐
𝒈𝝁𝝂𝑹 + 𝜦𝒈𝝁𝝂 =

𝟖𝝅𝑮

𝒄𝟒
𝑻𝝁𝝂      

The term 𝑘 =
2𝐸𝐼

𝐿
 is the rigidity of a beam submitted at two bending moments (one at each 

extremity). 

The term 𝜅 =
𝟖𝝅𝑮

𝒄𝟒  is linked at the rigidity of the space time by analogy with the formula obtained for 

the beam. 

Numerical application: 

G = 6.6740831x10-11 m3 kg-1 m2 

c = 299792458 m/s 

𝜅 = 2.0765799𝐸−43 s²kg-1 -m-1 

This extremely small number translate the extreme rigidity (1/flexibility) of the space time. 
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