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Summary

The discoveries of gravitational waves linked to binary black holes coalescence have multiplied since
11 February2016. The formation of a resulting black hole from this cataclysmic event, concentrating
in the final stage in a very small radius a colossal mass (50 solar masses and more), is sufficiently
energetic to deform the space-time which then propagates without any attenuation during Billions of
years, the associated gravitational waves. These were predicted by Einstein in his theory of general
relativity a century ago. Their measurements, which are characterized by an infinitesimal AL/ L
deformation (10%, or 108 at the kilometer size of the interferometers), corresponds to the
billionth of the size of an atom, today. The smallness of its deformations is the character trait of an
extraordinarily great rigidity of space-time. We will show in this paper that the constant of
proportionality k between the curvature tensor Gy, and the stress energy tensor T, is a
characterization of this very high rigidity. To do this we will make an analogy with the strength of
materials via the theory of the beams to show it.



1"t part) — Relation between curvature, energy and rigidity of a beam — case of the strength of material

1.1) General case of a beam on 2 supports
Considering a beam of width b (m) of height h (m), on 2 simple supports, of span L (m), carried out with
a material of young modulus E (MPa),with an inertia (m*) and with an area S (m?3), that have a mass by

unit of length (m = p S) in kg/m (cf. figure 1).

The beam has a deflection during the time y () :
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Figure 1 — Beam on 2 supports under its self-weight -

In static (deflection Y(x) independent of the time), the fundamental relation connecting the
curvature (1/R) at the bending moment Myyand at the second derivative of the deflection y,y can
be written as following:

Py My 1

dx2 ~  EI R (1)

In this expression, My is the bending moment (N.m), and R the curvature radius (m).

The exact expression of the curvature is given in the expression (2). The term in cube root can be
neglected here.

dy 2
1+(a)

In addition, the elastic bending energy can be written as following:

1 (Mg



1.2) Case of a beam on two simple supports under two equal bending moments C
To simplify, we are considering now a beam solicited by a bending moment at each extremity (cf. figure 2).

By convention, the bending moment is positive when it turns in the in the clockwise direction.
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Figure 2 — Beam solicited by a moment of intensity C at each extremity —
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As the reaction on the support are null, the bending equation is written as following:

Mgy =C (%)
Based on the equation (1) we obtain:
d?y c 1
—_— = — 5
dx? ElI R ®)
El
Ma=C=—-% (6

Introducing the expression (6) in the bending energy (3):

1 (L (ED)?
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As the curvature is constant, we obtain so:

1EIL

UV=7%

(8)

Or in another way in the case of the pure bending, we obtain:

7= 5(r) @

We obtain so, a relation connecting the curvature at the strain energy density U/L of the beam.

Note:
By integral two times from x of the expression (5) and considering the deflection must be null on

each support, we obtain the following expression of the deflection:

S e
Yoo = =g % top* (10



And thus we find for the maximum deflection a result well known of the strength of materials:
CL* CcI* CI?
Yarn = ~ggr Y agr ~ ser MY

If we derivate two times the equation (10) we obtain again that the curvature is constant:
Py M C 1
dx2  EI  EI R

In addition the rotation can be written as following:

Ay

By deriving from x the expression (10) we obtain:
dy C N CL 13
P TR TR

We obtain the rotation at each extremity of the beam:

, CL
Y= 2El =0, (14)
And :

, CL
Y =55 = 6 (15)

In addition, it is possible to write a relation between the bending moment C applied, the stiffness of
the beam and the rotation 84 and 8gat each extremity (cf. matrix calculation of a frame):

4E1 2EI
MAB:T9A+T93 (16)
4E1 2E1

MBA:_QB +T9A (17)

L
With:
My The bending moment applied at the node A,

Mg 4 The bending moment applied at the node B.
And with our signs convention Myg = —Mpgy4

Indeed, by using the expressions (14) and (15) in the equation (16) we obtain:

" _4EI(CL>+2EI( CL)_ZC c_c
AB = \2EI L 2EI) — -

By taking into account the expressions (14) and (15) of the rotations at each extremity of the beam:
HA = _93 (18)

The expression (16) can be written:

2EI

Where k is the rigidity (bending stiffness here) of the beam solicited by two equal moments C:
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We can now define the strain energy U of the beam in function of the bending moments applied and
the rotations at the extremity.
The energy, the work of the bending moment is so:




1
AU =5 M46 (21)

In addition, under the bending moment, the beam bent and takes a curvature radius as indicated at

the figure 3:

ds = Ax

Figure 3 — Relation between the radius of curvature R of the beam and its mean fiber —

We have following the figure 3: RAG = ds = Ax (22)

And we have a relation between the curvature 1/R and the deflection w of the beam:

1_d%
R dx?

(23)

By introducing the expression (23) into the expression (22) we obtain:

Ax dzy(x)
A = — = A 24
R dxz 24
By introducing the expression (24) in the expression (21) the elastic strain energy takes the following
value:
AU = ! MAx 25

M is constant (M = C) and the curvature is constant also, the expression (25) becomes:

AU = ! CAx 26
=505 (26)
So by integral along the length L of the beam each side of the equation (26), we obtain:
1CL
=—— (26
By taking into account of the expression (5):
1EIL
=2 @D

So, we find again the expression (9).
Thus, we can define the total energy of the beam under the two bending moment C as defined in
figure 2 in function of k, M and 8, :




1 1
U=5C0,+5(-0)65 (28)

And by taking into account of the rotation expression given in (14) and (15):
1 1
U==-C0,+=-(—0)0
5V + 2( )0z

With:
QA = _QB

U=C84 (29)
And by taking into account of the expression (19):

2EI

We obtain:

U = k6% (30)

We can find again this expression from the equation (3):

1 (LM?
Uz—j — D (3)
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As in our case, all these terms are constant:

1k202

T

L (32)

By equalizing the expression (32) with the expression of the energy obtain (27):
On obtient :

1k293L_1EIL
2 EI © 2R?

(33)

After simplification:

k%202 1
@ "' Y

By equalizing this expression with the expression (9) we obtain:

12 (U)_ k%62 3
R?2 EI\L) (ED? (35)
So:
k?6F 2 (U)
(ED?  EI\L



k263 =

2
“a- (D

2EI
k%62 = TU (36)

With the expression (20):

2EI
The expression (36) becomes:
k%62 = kU
So:
k6 =U

That is the expression (30) already demonstrated.

By resuming the expression (35) and taking into account of the expression (30) we obtain so:

12 (U) k?6;

r-E\) " En: &Y

1 _ 2 (U) k LI
With the stiffness k:
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We demonstrate so that the factor of proportionality between the energy and the curvature is linked
at the rigidity k of the beam:

1—20 k U (37
R? EIL (ED? (37)

The dimensional equation (if we notice U the energy) is the following:

U U U s? U U U

U
= = X —= N.m X = = 38
N.m3 kgm>< kg xm” m3 mn (N.m»)2 Nm3 kgmx 3( )
2 M

N
— Xxm*xm m3




2" part) Rigidity of the space time - Case of the general relativity
2.1) Expression of the Einstein equation
The Einstein equation is the following:

G = KTy (39)

The developed form of the Einstein equation is the following:

1 8nG
Ruv - EguvR + Aguv = C_4,Tuv (40)

We remind that the components of the stress energy tensor T,,,, have the dimension of an energy
density:
G = 6.6726x10* m3kg1s 1J=1W.s =1 N.m = 1kg.m2.s2 kg

N

8nG Ener 8nG Mass
gy (41)

Curvature = X =
X c*  Volume c? Volume

1m2  (m/s)* (md)

In this equation, the curvature, and the space time energy are connected (cf. figure 3).

Figure 3 — Symbolic view of the curvature of the space time projected in a space plane -
Gy is the Einstein tensor.

T, is the stress energy tensor.



2.2) Factor of proportionnality between curvature and energy — stiffness of the space time.

The factor of proportionality between the curvature and the energy is so:

_ 8nG

K = C_4 (42)

In addition, the dimensional equation of k is the following:

L3’T* T? s?
FEMTE T ML kgm

(43)

And the energy is in fact the energy density in the Einstein equation, so:

G

W=KT

uv

U
A _ Y
We notice: T, = -

We obtain so via the dimensional equation:

U L3T* T2 s2 U
KX => ——=—= x 2
|4 MT?L* ML kgm m3

(44)

We find so again the dimensional equation (38) associated at the equation (37) in the case of a beam
in bending solicited by two equal moments (one at each extremity).

Conclusions

We have so, a perfect analogy between the expressions (37) and (44), one issued of the beam theory
in strength of materials and the other issued of the general relativity in 4 dimensions of the space
time [24]. The curvature of the space time is so well proportional at the energy that is present and
at the stiffness of the fabric of the space time.

1 2 U - k U
R? EIL  (EI?

8rtG
Ruv - EguvR + Aguv = ?Tyv

Thetermk = % is the rigidity of a beam submitted at two bending moments (one at each

extremity).

Theterm k = 8:—46 is linked at the rigidity of the space time by analogy with the formula obtained for

the beam.
Numerical application:
G = 6.6740831x101 m3 kg m?
€ =299792458 m/s
Kk = 2.0765799E %3 s?kg™ -m™!

This extremely small number translate the extreme rigidity (1/flexibility) of the space time.




Bibliographic references

For the strength of material and frame mechanics:

[1] S. Timoshenko,(1949) « Résistance des matériaux Traduit de I'anglais sur
la 2e édition par Ch. Laffitte »
[2] D. I1zabel (2007) « Formulaire de résistance des matériaux tome 1a5 »

Sebtp

[3] S. Timoshenko, (1951) « Théorie des plaques et des coques, Traduit de
I'anglais par L. Vial Reliure inconnue » (1951) p 46 chap 12 and p37 chap 10

[4] Ménad CHENAF Jean-Vivien HECKCSTB Guide PPRT (2007)
Compléments technique relatif a I'effet de surpression
Recommandations et précautions en vue de réduire les risques — rapport
d’étude

For the general relativity:

[5] T.G. Tenev M.F. Horstemeyer (2016) « The Mechanics of Spacetime { A
Solid Mechanics Perspective on the Theory of General» Foundations of
Physics manuscript arXiv:1603.07655v3 » p 24

[6] M. R. Beau (2014) « Théorie des champs des contraintes et des
déformations en relativité générale et expansion cosmologique ». -
Foundations of Physics manuscript arXiv:1209.0611v2 p4 and Annales de la
Fondation Louis de Broglie, Volume 40, 2015

[7] T. Damour (2006) — « La Relativité Générale aujourd'hui »

Institut des Hautes Etudes Scientifiques Bures-sur-Yvette, France - Séminaire
Poincaré 1-40 p

[8] T. Damour (2005) « Einstein et la physique du vingtieme siécle » Membre
de I'Académie des sciences p 4

[9] M. R. Beau (2014) « Sur I'hnypothése concernant I'existence d'un champ de
gravité de type vectoriel couplant avec l'accélération des masses » Hal archive
ouvertes 00683021v2 point ¢ p13

[10] Collective (2016) Observation of Gravitational Waves from a Binary Black
Hole Merger physical review letter

[11] Cours de physique « tenseur energie impulsion »
http://physique.coursgratuits.net/relativite-generale/tenseur-d-energie-impulsion.php

[12] Cours en ligne de richard Taillet univ grenoble— initiation a la relativité
générale et restreinte

For the quantum mechanics:

[13] C. De Beule (2016) “Graphical interpretation of the Schrodinger equation”
university antwerpen

10


https://www.amazon.fr/R%C3%A9sistance-mat%C3%A9riaux-d%C3%A9velopp%C3%A9e-probl%C3%A8mes-Timoshenko/dp/B0017ZJNUA/ref=sr_1_1?s=books&ie=UTF8&qid=1474538549&sr=1-1
https://www.amazon.fr/R%C3%A9sistance-mat%C3%A9riaux-d%C3%A9velopp%C3%A9e-probl%C3%A8mes-Timoshenko/dp/B0017ZJNUA/ref=sr_1_1?s=books&ie=UTF8&qid=1474538549&sr=1-1
http://physique.coursgratuits.net/relativite-generale/tenseur-d-energie-impulsion.php

[14] Michael Fowler (2007) “Schrodinger’s Equation in 1-D: Some Examples
Curvature of Wave Functions”

[15] Steven Errede (2016) UIUC Physics 406 Acoustical Physics of Music,
Department of Physics, University of lllinois at Urbana-Champaign, IL,

[16] Xinzhong Wu (2015) Probability and Curvature in Physics School of
History and Culture of Science, Shanghai Jiaotong University, Shanghai,
China Journal of Modern Physics, 2015, 6, 2191-2197

[17] Dalibard : Cour en ligne de mécanique quantique X polytechnique

[18] Cours en ligne : calcul variational et relativité restreinte X polytechnique

For all the topics :

[19] Feynman (1963) The Feynman Lectures on Physics, Addison-Wesley 1963,
vol.ll, p.38-10.

[20] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W.H. Freeman 1973;
x17.5, pp.426-428

[21] Paty Michel (2005) HAL L’espace-temps de la théorie de la relativité

[22] Bernard Guy (2016) Relier la mécanique et la relativité générale ?
Réflexions et propositions

[23] Calculs matriciels des structures. Cours INSA Rennes JL Aribert

For the Hal publications:

[24] hal-01535955v1David Izabel. Peut-on comprendre les fondamentaux de
la relativité générale et de la mécanique quantique a partir des concepts de la
résistance des matériaux ?Juin 2017

11


https://hal.archives-ouvertes.fr/hal-01535955v1
https://hal.archives-ouvertes.fr/hal-01535955v1
https://hal.archives-ouvertes.fr/hal-01535955
https://hal.archives-ouvertes.fr/hal-01535955
https://hal.archives-ouvertes.fr/hal-01535955

