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Abstract

The role of simulation keeps increasing for the sensitivity analysis and the
uncertainty quantification of complex systems. Such numerical procedures
are generally based on the processing of a huge amount of code evaluations.
When the computational cost associated with one particular evaluation of the
code is high, such direct approaches based on the computer code only, are not
affordable. Surrogate models have therefore to be introduced to interpolate
the information given by a fixed set of code evaluations to the whole input
space. When confronted to deterministic mappings, the Gaussian process
regression (GPR), or kriging, presents a good compromise between complex-
ity, efficiency and error control. Such a method considers the quantity of
interest of the system as a particular realization of a Gaussian stochastic
process, whose mean and covariance functions have to be identified from the
available code evaluations. In this context, this work proposes an innovative
parametrization of this mean function, which is based on the composition of
two polynomials. This approach is particularly relevant for the approxima-
tion of strongly non linear quantities of interest from very little information.
After presenting the theoretical basis of this method, this work compares its
efficiency to alternative approaches on a series of examples.
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1. Introduction

The numerical cost of many codes to simulate complex physical systems
is still very high. To perform sensitivity analyses, uncertainty quantification
or reliability studies, these computer models have therefore to be replaced
by surrogate models, that is to say by fast and inexpensive mathematical
functions. Within the computational science community, when the maximal
available information is a finite set of code evaluations, the most widely
used surrogate models are the generalized polynomial chaos expansion (PCE)
[11, 10, 32, 7, 21, 1, 27] and the Gaussian process regression (GPR), or kriging
(see [30, 24, 34]).

On the one hand, the main idea of PCE is to expand the code output,
which is denoted by g in the following, onto an appropriate basis made of
orthonormal multivariate polynomials, which are related to the distribution
of the code input variables. As the number of unknown expansion coefficients
usually grows exponentially with the number of input parameters, the rele-
vance of these approaches strongly depends on their ability to select the most
relevant basis functions. To this end, several penalization techniques, such as
the ℓ1-minimization [33, 15] and the least Angle Regression (LAR) methods
[14, 9, 5], have been introduced to select polynomial basis sets that lead to
more accurate PCE than would have been obtained if the basis is a priori
fixed. Taking advantage of the tensor-product structure of the multivariate
polynomial basis, separated representations, such as low-rank approxima-
tions [23, 19], have alternatively been proposed to develop surrogate models
with polynomial functions in highly-compressed formats.

On the other hand, the GPR is based on the assumption that the code
output is a particular realization of a Gaussian stochastic process, Y . This
hypothesis, which was first introduced in time series analysis [26] and in op-
timization [20], is widely used as it allows dealing with the conditional prob-
ability and expectation, while leading to very interesting results in terms of
computer code prediction. Hence, contrary to the PCE, the GPR is not as-
sociated with an a priori projection basis, but requires the introduction of
the mean and the covariance functions of Y . In practice, we observe that the
role of the mean function of Y on the prediction decreases when the num-
ber of code evaluations increases. This explains that in applications where
many code evaluations are available, good GPR-based surrogate models can
be obtained using constant or linear trends for the mean function. On the
contrary, when the number of code evaluations is low compared to the com-
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plexity of g, it can be very useful to optimize it. In that case, searching the
mean function of Y as a well-chosen sum of polynomial functions can indeed
strongly improve the relevance of the associated GPR. In particular, the au-
thors refer to [16] and [18] for an illustration of the interest of using variable
selection techniques to optimize this polynomial representation of the mean
function of Y .

Following on these works, the idea of this paper is to propose an alterna-
tive parametrization of the mean function of Y , which is particularly adapted
to the case when the number of code evaluations is small compared to the
complexity of g. Instead of searching sparse polynomial approximations, we
look for high dimensional polynomial approximations that are characterized
by a small number of parameters. In other words, if we want to model a
complex code response with a very limited number of code evaluations, we
believe that it can be more efficient to use complex but approximated mod-
els than simple but fully optimized models. We thus propose to consider
the composition of two polynomials for the mean function of Y . Indeed, the
composition of two polynomial functions is still a polynomial function, but
of much higher order. In particular, such a formalism can be used to model
separately a transformation of each code input and the dependence structure
between them.

The main difficulty concerning this specific representation is the iden-
tification of the parameters of the two combined polynomials. Indeed, by
composing two polynomial functions that are linear with respect to their pa-
rameters, we get a strongly non-linear representation, which is likely to be
very sensitive to small changes in the parameters values. In addition, dis-
tinct values for these parameters can lead to the same nested representation,
which does not help for the identification. To avoid such redundancies, min-
imal nested parametrizations are introduced, and we show to what extent
integrating this nested structure in the Gaussian process formalism can in-
crease the robustness of the results, make easier the error control, and limit
as much as possible over-fitting.

The outline of this work is as follows. First, Section 2 presents the theo-
retical framework for the definition of a Gaussian-process regression with a
linear polynomial trend. Then, the nested polynomial trends we propose are
detailed in Section 3. At last, the efficiency of the method is illustrated on a
series of analytic examples in Section 4.
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2. Gaussian process predictors

2.1. General framework

For d ≥ 1, let L2(Dd,R) be the space of square integrable functions on
any compact subset Dd of R

d, with values in R, equipped with the inner
product (·, ·)L2 , and the associated norm ‖·‖L2 , such that for all u and v in
L2(Dd,R),

(u, v)L2 :=

∫

Dd

u(x)v(x)dx, ‖u‖2L2 := (u, u)L2 . (1)

Let S be a physical system, whose response depends on a d-dimensional
input vector x = (x1, . . . , xd), and whose performance can be evaluated from
the computation of a quantity of interest, g(x). Function g is a deterministic
mapping that is assumed to be an element of L2(Dd,R). In this work, it is
supposed that the maximal available information about g is a set of N code
evaluations at the points

{
x(1), . . . ,x(N)

}
in Dd. Given this information, we

are interested in the identification of the best predictor g⋆ of g, in the sense
that:

∀ ĝ ∈ L2(Dd,R), ‖g − g⋆‖2L2 ≤ ‖g − ĝ‖2L2 . (2)

In that context, the Gaussian process regression (GPR), or kriging, plays
a major role [30, 24, 31, 34]. It is indeed able to provide a prediction of
g(x), which is optimal in the class of the linear predictors of g, and whose
precision can be a posteriori quantified. Such a method considers function
g as a sample path of a real-valued Gaussian stochastic process Y , which is
defined on the probability space (Ω, T ,P). Let µ and C be respectively the
mean and the covariance functions of Y :

Y ∼ GP(µ, C). (3)

We can introduce FN the σ-algebra generated by the available information
about g,

y =
(
y(1) = g(x(1)), . . . , y(N) = g(x(N))

)
, (4)

such that P( · | FN) and E[ · | FN ] denote the conditional probability and
conditional mathematical expectation respectively.
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Therefore, gathering in the vector µ and in the matrix C the evaluations
of µ and C at the available points, such that:

{
µ :=

(
µ(x(1)), . . . , µ(x(N))

)
,

Cij := C(x(i),x(j)), 1 ≤ i, j ≤ N,
(5)

it can be shown [25] that if matrix C is invertible, then:

Y | FN ∼ GP(µN , CN), (6)

where, for all x,x′ in Dd:





µN(x) := µ(x) + r(x)TC−1 (y − µ) ,

CN(x,x
′) := C(x,x′)− r(x)TC−1r(x′),

r(x) :=
(
C(x,x(1)), . . . , C(x,x(N))

)
.

(7)

Under this formalism, the best prediction of g in an unobserved point x is
given by the mean value of (Y (x) | FN), µN(x), whereas CN(x,x) quantifies
the trust we can put in that prediction.

In practice, it appears that C may not be invertible due to numerical
reasons. This can generally be overcome by adding a small nugget to the
covariance matrix and optimizing with respect to it too (see [12]).

2.2. Choice of the covariance function

Without information about the regularity of g, function C is generally
chosen in general parametric families. In this work, function C is supposed
to be an element of the Matern-5/2 class, such that for all x,x′ in Dd:

C(x,x′) := σ2
d∏

i=1

(1 +
√
5hi + 5h2

i /3) exp(−
√
5hi), hi = |xi − x′

i|/ℓi. (8)

Hence, covariance function C is characterized by a vector of hyper-parameters,
Θ := (σ, ℓ1, . . . , ℓd), whose values also have to be conditioned by FN . More
details about other usual parametric expressions for C can be found in [31].
A full Bayesian approach would then require the introduction of a prior
distribution for this vector, and the use of sampling techniques (such as
Monte Carlo Markov Chains [29]) to approximate the posterior distribution
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of (Y | FN) [13, 17, 4]. In this work, we will adopt an alternative approach,
which consists in conditioning all the results by the maximum likelihood es-
timate of the covariance parameters. This method, which is generally called
plug-in approach, has been used in many previous papers for the definition of
Gaussian process-based predictors, as it presents a good compromise between
complexity, efficiency, and errors control [3, 2]. In that case, explicit formula
can be derived to evaluate the relevance of the GPR-based metamodel from
a cross validation procedure [8].

2.3. Choice of the mean function

In the same manner than for the covariance function, the mean function
of Y is supposed to be parametrized by a M-dimensional vector β. In the
general case, the computation of E[Y (x) | FN)] is not direct, but if:

• covariance function C is known,

• µ is linear with respect to β, that is to say it exists a M−dimensional
vector-valued function f such that µ(x) = 〈f (x),β〉, where 〈·, ·〉 is the
inner product in R

M ,

• β is uniformly distributed on R
M (improper prior distribution),

then (see [31] for further details):

Y | FN ∼ GP(µUK, CUK), (9)





µUK(x) := 〈f (x),β⋆〉+ r(x)TC−1 (y − Fβ⋆) ,

CUK(x,x
′) := CN(x,x

′) + u(x)T (F TC−1F )−1u(x′),

β⋆ := (F TC−1F )−1F TC−1y,

u(x) := F TC−1r(x)− f (x),

F nm := fm(x
(n)), 1 ≤ m ≤ M, 1 ≤ n ≤ N,

(10)

where "UK" stands for Universal Kriging, and corresponds to the former
plug-in approach, and where the term u(x)T (F TC−1F )−1u(x′) can be in-
terpreted as the prediction uncertainty that is due to the estimation of β.
Under these assumptions, the best prediction of g(x) is now given by µUK.
The last thing that can be done to minimize ‖g − µUK‖L2 is working on the
choice of f .
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Without information about g, polynomials are generally chosen for f .
Indeed, the set

{
mα, α ∈ N

d
}
, with

mα(x) := xα1

1 × · · · × xαd

d , x ∈ Dd, (11)

defines a basis of L2(Dd,R). For a given value of M , characterizing f amounts
at identifying the best M-dimensional subset of

{
mα, α ∈ N

d
}

to minimize
‖g − µUK‖L2 .

In practice, this optimization problem over a very vast space is replaced
by an optimization over a finite dimensional subset of

{
mα, α ∈ N

d
}
. Differ-

ent truncation schemes have been proposed to choose such a relevant subset,
which are mostly based on the assumption that the most influential elements
of
{
mα, α ∈ N

d
}

correspond to the elements of lowest total polynomial or-
der. Denoting by r the maximal polynomial order of the projection basis, we
can introduce:

P(r, d) :=

{
mα | α ∈ N

d,

d∑

i=1

|αi| ≤ r

}
. (12)

By construction, it can be noticed that the cardinal of P(r, d), C(r, d),
increases exponentially with respect to r and d:

C(r, d) = (d+ r)!/(d!× r!). (13)

For M ≤ C(r, d), vector f can finally be searched using a penalization
technique, such as the Least Angle Regression (LAR) method [14, 9, 5], which
allows disregarding insignificant terms. Such an approach will be referred as
"LAR+UK" approach in the following.

3. Nested polynomial trends for Gaussian process predictors

As presented in Introduction, we are interested in identifying the best
predictor of g in any unobserved point x in Dd, when the maximal infor-
mation is a fixed number of code evaluations. Instead of considering sparse
representations for the parametrization of the mean function in the GPR for-
malism, this section proposes to focus on nested polynomial representations.
First, the notations and the motivations for this new parametrization are
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presented. Then, it is explained why and how it is integrated in the GPR
formalism. Finally, a method to a posteriori evaluate the projection error is
introduced.

3.1. Nested polynomial representations

Using the notations given by Eqs. (12) and (13), for p, q, u in N
∗, let m(p,u)

and m(q,d) be the vector-valued functions that gather all the elements of
P(p, u) and P(q, d) respectively, and let C(p, u) and C(q, d) be their respective
dimensions. The elements of these two vectors are supposed to be sorted in
an increasing total polynomial order. In particular, it comes:

m
(p,u)
1 = m

(q,d)
1 = 1. (14)

Hence, for all (u×C(q, d))-dimensional matrix A and all C(p, u)-dimensional
vector b, the mapping

x 7→ Am(q,d)(x) (15)

is a function with values in R
u, and the mapping

x 7→
〈
m(p,u)(Am(q,d)(x)), b

〉
(16)

defines a nested polynomial representation. For d > 1, such a representation
allows us to model separately the dependency structure between the different
input parameters, which is characterized by p and u, and the individual
actions of each input parameter, which are characterized by the polynomial
order q (considering different values of q for each input could eventually be
done to optimize such a two-scale modelling). Hence, analysing the optimal
values of p, u and q can bring information about the structure of g. For
instance, if p = 1 and u = d, then g is just an additive model, up to a
transformation of its input parameters. In the same manner, a value of q
strictly greater than 1 tends to say that the relation between x and g is
multi-scale.

An other interesting property of this nested structure comes from the fact
that, for all x in R

d:
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〈
m(p,u)(Am(q,d)(x)), b

〉
=

∑

0≤|α1|+···+|αu|≤p

b(α1,...,αu) ×
u∏

i=1




C(q,d)∑

k=1

Aikm
(q,d)
k (x)




αi

,

=
∑

0≤|α̃1|+···+|α̃d|≤p×q

xα̃1

1 × · · · × xα̃d

d c̃α̃(A, b; u),

(17)

where c̃α̃(A, b; u) is the projection coefficient of
〈
m(p,u)(Am(q,d)(x)), b

〉
on

xα̃1

1 ×· · ·×xα̃d

d . Hence, function x 7→
〈
m(p,u)(Am(q,d)(x)), b

〉
is in Span {P(p× q, d)},

while being characterized by C(p, u)+u×C(q, d) parameters. Thus, by choos-
ing u such that the ratio (C(p, u)+u×C(q, d))/C(p×q, d) is small, it is possible
to parametrize polynomial families with very high cardinality, with only a
reduced number of parameters. Such a parametrization is however redun-
dant, in the sense that several distinct values of A and b lead to the same
nested representations. From Eq. (17), it can be seen that some of these
redundancies can be avoided by imposing that:





Ai1 = 0,

C(q,d)∑

k=1

A2
ik = 1,

1 ≤ i ≤ u. (18)

For fixed values of p and q, it is clear that ratio (C(p, u)+u×C(q, d))/C(p×
q, d) is minimal when u = 1. However, considering higher values of u
strongly increases the flexibility of the nested representation to approximate
function g. In this work, as a compromise between flexibility and minimal
parametrization, for all 2 ≤ k ≤ C(q, d), we thus propose to fix to zero all the
components of (A1k, . . . ,Auk) but one. This means that each component of
vector m(q,d)(x) is used only once in the construction of Am(q,d)(x), and that
only #Coeff(d, p, q, u) = C(p, u) + (C(q, d)− 1)− u independent parameters
have to be fixed to span a C(p × q, d)-dimensional projection set. As it can
be seen in Table 1 and as it will be shown in Section 4, this assumption is
indeed very attractive in terms of dimension reduction while being particu-
larly interesting for the modelling of complex phenomena with very limited
information.

9



Values of d C(p× q, d) #Coeff(d, p, q, u = 1) #Coeff(d, p, q, u = d)

1 10 6 6
2 55 12 17
5 2002 58 106
10 92378 288 561
20 10015005 1773 3521

Table 1: Comparison between the dimension of the projection set, C(p × q, d), and the
number of independent parameters to characterize the associated projection coefficients in
the proposed nested approach, #Coeff(d, p, q, u) = C(p, u)+(C(q, d)−1)−u, for q = p = 3,
d ∈ {1, 2, 5, 10, 20} and u ∈ {1, d}.

To simplify the notations of the next sections, these C(q, d)− 1 non-zero
coefficients of A are supposed to be gathered in a vector a, and we introduce
the vector P (q,d)(x) such that for all x ∈ Dd:

P (q,d)(x)a := Am(q,d)(x). (19)

For given values of a and b, we then denote by µ(·;a, b) the following
nested representation:

µ(x;a, b) :=
〈
m(p,u)(P (q,d)(x)a), b

〉
, x ∈ Dd. (20)

Finally, for given values of u, p, q, the most appropriate nested represen-
tation to approximate function g is given by µ(·;a∗, b∗), where (a∗, b∗) is the
solution of the following optimization problem:

(a∗, b∗) := arg min
(a,b)∈S∗

‖g − µ(·;a, b)‖2L2 , (21)

where the admissible searching set, S∗, is a subset of RC(q,d)−1 × R
C(p,u) that

takes into account the constraints on a defined by Eqs. (18) and (19).

There are three main difficulties concerning the optimization problem
defined by Eq. (21). First, as the maximal information about g is a N -
dimensional set of evaluations, for given values of a and b, the norm ‖g − µ(·;a, b)‖2L2

has to be approximated. If the evaluation points
{
x(1), . . . ,x(N)

}
are (more

or less) uniformly distributed on Dd, a (rather) good estimation of this norm
is given by its least squares approximation,
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1

N

N∑

n=1

(
g(x(n))− µ(x(n);a, b)

)2
=

1

N
‖y −M(a)b‖2 , (22)

where ‖·‖ is the classical Euclidean norm, vector y is defined by Eq. (4), and
M(a) is a (N × C(p, u))-dimensional matrix such that:

(M(a))nk = m
(p,u)
k (P (q,d)(x(n))a), 1 ≤ n ≤ N, 1 ≤ k ≤ C(p, u). (23)

Noticing that for all (a, b) in S∗,

∥∥∥y −M(a)
(
M(a)TM (a)

)−1
M(a)Ty

∥∥∥
2

≤ ‖y −M (a)b‖2 , (24)

the solutions, a∗ and b∗, of the minimization problem defined by Eq. (21)
can respectively be approximated by the vectors aLS and bLS(aLS), with:





aLS = arg min
a∈S∗

a

∥∥y −M(a)bLS(a)
∥∥2 ,

bLS(a) =
(
M(a)TM(a)

)−1
M(a)Ty,

(25)

where S∗
a

is a subset of RC(q,d)−1 that also takes into account the constraints
on a defined by Eqs. (18) and (19).

The second difficulty comes from the fact that the minimization of a 7→∥∥y −M (a)bLS(a)
∥∥2 can be complex. This is due to the fact that this map-

ping is strongly non-linear, leading to a strongly non-convex problem. For
high values of p, q and u, even if non-convex optimization algorithms such as
simulated annealing or simplex algorithms [6] are used, there is no guarantee
that the global minimization can be found in a reasonable computational
time.

At last, there is a risk that
∥∥y −M(aLS)bLS(aLS)

∥∥2 /N strongly under-

estimates
∥∥g − µ(·;aLS, bLS(aLS))

∥∥2
L2, as the same information is used twice:

once for the optimization and once for the error estimation. To avoid such an
over-fitting, classical Leave-One-Out (LOO) techniques (see [22, 5, 28]) have

to be introduced to get a relevant approximation of
∥∥g − µ(·;aLS, bLS(aLS))

∥∥2
L2 .
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3.2. Coupling nested representations and Gaussian processes

Once vector aLS has been identified from the solving of Eq. (25), the
notion of confidence intervals for the prediction of g(x) in an unobserved
point x can be found back by assuming that g is a particular realization of
a Gaussian stochastic process, whose statistical properties are given by:

Y ∼ GP(µ(aLS, bLS(aLS)), C(Θ∗)), (26)

where Θ∗ gathers the d+1 parameters of the Matern-5/2 covariance C defined
by Eq. (8), which are solution of the following log-likelihood maximization
problem:

Θ
∗ = arg max

Θ∈]0,+∞[d+1

−1

2

{
N log(2π) + log(det(C(Θ)))

+ (y −M(aLS)bLS(aLS))TC(Θ)−1(y −M(aLS)bLS(aLS))

}
.

(27)
Such a naive coupling is nevertheless sub-optimal, as the values of a and

Θ are optimized separately: the nested structure does not take advantage
of the Bayesian formalism, and reciprocally. Instead of such a two-steps
approach, we propose in this work to directly adopt a Bayesian formalism
for the estimation of a and Θ. In the plug-in formalism, this means that the
statistical properties of Y are now given by:

Y ∼ GP(µ(a∗, b∗)), C(Θ∗)), (28)

where (a∗, b∗,Θ∗) is the solution of the following log-likelihood maximization
problem:

(a⋆, b⋆,Θ⋆) = arg max
(a,b,Θ)∈Sadm

−1

2

{
N log(2π) + log(det(C(Θ)))

+ (y −M(a)b)TC(Θ)−1(y −M(a)b)

}
,

(29)
where the admissible searching set, Sadm, is a subset of RC(q,d)−1 × R

C(p,u) ×
R

d+1 but is not trivial, as it first takes into account the constraints on a de-
fined by Eqs. (18) and (19), but also guarantees that C(Θ) and M(a)TC(Θ)−1M(a)
are invertible.

For all (a, b,Θ) belonging to the admissible set, Sadm, denoting by L the
function such that
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L(a, b,Θ) = log(det(C(Θ))) + (y −M(a)b)TC(Θ)−1(y −M(a)b), (30)

it is interesting to notice that, in the same manner than in Section 3.1,

L(a, bLS(a,Θ),Θ) ≤ L(a, b,Θ), (31)

bLS(a,Θ) :=
(
M (a)TC(Θ)−1M(a)

)−1
M(a)TC(Θ)y. (32)

It comes:





(a⋆,Θ⋆) = arg min
(a,Θ)

L(a,Θ),

b⋆ =
(
M(a⋆)TC(Θ⋆)−1M(a⋆)

)−1
M(a⋆)TC(Θ⋆)y,

(33)

where:

L(a,Θ) := L(a, bLS(a,Θ),Θ). (34)

Function (a,Θ) 7→ L(a,Θ) being strongly non-regular and non-convex,
it is proposed to work iteratively on the values of a and Θ. Two reasons
motivate this separation. First, the actions of a and Θ on L(a,Θ) be-
ing very different, dividing the optimization problem tends to regularize the
mappings on which the minimization is carried out. Second, by reducing
each searching set, each minimization is made easier. Therefore, for a given
convergence tolerance ε, Algorithm 1 is introduced for the minimization of
L. The convergence of such an iterative algorithm to the global minimum
of L is of course not guaranteed, but it appeared on a series of numerical
examples that it allowed us to identify good approximations of (a⋆,Θ⋆) at a
reasonable computational cost. As the minimization problem defined by Eq.
(33) is not convex, better approximations of a⋆ can be obtained by repeating
several times Algorithm 1, with random initialization vectors a0 in S∗

a
.

3.3. Linearisation of the nested polynomial trend

Even for small values of p, q and u, the quantity L(a,Θ) is sensitive
to small changes in the values of a and Θ, which makes the solving of the
optimization problem defined by Eq. (33) difficult. In that context, it can be
interesting to linearise the nested polynomial trend around the solutions given
by Algorithm 1, a⋆ and b⋆, and then work on the compensations (a−a⋆) and
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1 Initialization: L1 = 0, L2 = +∞, a∗ = a0 ∈ S∗
a

;
2 while |L2 − L1| > ε do

3 L1 = L2 ;
4 Θ

∗ = argmaxΘ L(a∗,Θ) ;
5 a∗ = argmaxa L(a,Θ∗) ;
6 L2 = min(L2,L(a∗,Θ∗)) ;

7 end

8 a⋆ ≈ a∗, Θ⋆ ≈ Θ
∗.

Algorithm 1: Iterative minimization of function L.

(b− b⋆) that could make the prediction of function g better. In the vicinity
of a⋆ and b⋆, for all x in Dd, it comes:

µ(x;a, b) ≈
〈(

h(1)(x;a⋆, b⋆),h(2)(x;a⋆)
)
, (a− a⋆, b)

〉
, (35)

h(1)(x;a⋆, b⋆) = P (q,d)(x)TD(P (q,d)(x)a⋆)Tb⋆, (36)

h(2)(x;a⋆) = m(p,u)(P (q,d)(x)a⋆), (37)

(D(z))kj :=
∂m

(p,u)
k

∂zj
(z), 1 ≤ j ≤ u, 1 ≤ k ≤ C(p, u), z ∈ R

u. (38)

Now, let us denote by β := (a − a⋆, b) the new vector of parameters

we need to determine, and by f :=
(
h(1)(·;a⋆, b⋆),h(2)(·;a⋆)

)
the new set

of projection functions. Conditioned by the values of a⋆, b⋆ and Θ
⋆, the

formalism introduced in Section 2.3 is found back:

Y ∼ GP(〈f ,β〉 , C), (39)

such that the distribution of (Y | FN) can be calculated analytically. Its
mean value can directly be used to predict the values of g, and its covari-
ance function can allow us to quantify the confidence we can put in these
predictions.

We underline at least two advantages for the linearisation. First, the
distribution of (Y | FN) will be less dependent on the convergence properties

14



of Algorithm 1, which are not easy to control. Secondly, as the covariance
function of (Y | FN) integrates the uncertainty associated with the least
squares estimation of β, that is to say the uncertainty associated with the
estimation of a and b in the vicinity of a⋆ and b⋆, the confidence intervals
associated with these predictions are expected to be more adapted.

3.4. Error evaluation

According to the previous Sections and to Eq. (10), for given values
of truncation parameters p, q and u, we propose to use the deterministic
function ĝnest(x), such that:

ĝnest(x) = 〈f(x;a⋆,Θ⋆),β⋆(a⋆,Θ⋆)〉
+ r(x;Θ⋆)TC(Θ⋆)−1 (y − F (a⋆,Θ⋆)β⋆(a⋆,Θ⋆)) ,

(40)

β⋆(a⋆,Θ⋆) := (F (a⋆,Θ⋆)TC(Θ⋆)−1F (a⋆,Θ⋆))−1F (a⋆,Θ⋆)TC(Θ⋆)−1y,
(41)

to predict the value of g(x) for all x in Dd, where:

• vectors a⋆ and Θ
⋆ are the solutions of the optimization problem given

by Eq. (33), under the additional condition that the matrix
F (a⋆,Θ⋆)TC(Θ⋆)−1F (a⋆,Θ⋆) is invertible,

• vector y is defined by Eq. (4),

• the function x 7→ f(x;a⋆,Θ⋆) gathers the most influential terms of

the vector-valued function
(
h(1)(·;a⋆, bLS(a⋆,Θ⋆)),h(2)(·;a⋆)

)
, which

have been identified from a LAR procedure,

• F (a⋆,Θ⋆) := [f (x(1);a⋆,Θ⋆) · · · f (x(N);a⋆,Θ⋆)] is the matrix that
gathers the evaluations of f (·;a⋆,Θ⋆) at the available code evaluations,

• and for all 1 ≤ n,m ≤ N , C(Θ⋆)nm = C(x(n),x(m)) and rn(x;Θ
⋆) =

C(x,x(n)), with C the Matern-5/2 covariance function of parameters
Θ

⋆.
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In the same manner than in Section 2, as function g is only known through
a limited number of evaluations, classical Leave-One-Out (LOO) techniques
have to be introduced to approximate the relevance of such a predictor:

∥∥g − ĝnest
∥∥2
L2

≈ ǫ2LOO :=
1

N

N∑

n=1

(
g(x(n))− ĝnest

−n (x(n))
)2

, (42)

where, for all 1 ≤ n ≤ N , the function ĝnest
−n has been constructed in the

same manner than ĝnest, but using the N − 1 evaluations of the code in{
x(1), . . . ,x(n−1),x(n+1), . . . ,x(N)

}
only.

In order to reduce the computational cost associated with the evaluation
of ǫ2LOO, it is interesting to notice (see [8] for further details) that for all
1 ≤ n ≤ N :

g(x(n))− ĝnest
−n (x(n)) =

(Ĉ(a⋆,Θ⋆)y)n

Ĉ(a⋆,Θ⋆)nn
, (43)

Ĉ(a⋆,Θ⋆) = C(Θ⋆)−1 −C(Θ⋆)−1F̂ (a⋆,Θ⋆)C(Θ⋆)−1, (44)

F̂ (a⋆,Θ⋆) := F (a⋆,Θ⋆)(F (a⋆,Θ⋆)TC(Θ⋆)−1F (a⋆,Θ⋆))−1F (a⋆,Θ⋆)T .
(45)

LOO error ǫ2LOO can then be approximated by:

ǫ2LOO ≈ ǫ̂2LOO :=
1

N

N∑

n=1

ê2n, ê2n :=

{
(Ĉ(a⋆,Θ⋆)y)n

Ĉ(a⋆,Θ⋆)nn

}2

. (46)

Such an approximation is however conditioned by the values of a⋆ and
Θ

⋆, which are computed using all the code evaluations. In order to be more
precise, it can be noticed that for all a, Θ, 1 ≤ n ≤ N :

L(a,Θ) = L−n(a,Θ) +
(C̃(a,Θ)y)2n

C̃(a,Θ)nn
, (47)

C̃(a,Θ) = C(Θ)−1
{
I −M(a)(M(a)TC(Θ)−1M(a))−1M(a)TC(Θ)−1

}
,

(48)
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where I is the identity matrix and L−n(a,Θ) is the evaluation of function
L(a,Θ) based on the N−1 evaluations of the code in

{
x(1), . . . ,x(n−1),x(n+1), . . . ,x(N)

}

only. Hence, in the optimization process leading us to the identification of a⋆

and Θ
⋆, let {(ai,Θi), 1 ≤ i ≤ Ntest} be the Ntest values of a and Θ, in which

function L has been evaluated. With very limited additional computational
cost, we can then define, for all 1 ≤ n ≤ N , the LOO evaluations of a⋆ and
Θ

⋆, which are denoted by a⋆
−n and Θ

⋆
−n respectively, and which are given

by:

(a⋆
−n,Θ

⋆
−n) = arg min

(a,Θ)∈{(ai,Θi), 1≤i≤Ntest}
L−n(a,Θ). (49)

Finally, we can introduce error ǫ̃LOO, such that:

∥∥g − ĝnest
∥∥2
L2

≈ ǫ̃2LOO :=
1

N

N∑

n=1

ẽ2n, ẽ2n :=

{
(Ĉ(a⋆

−n,Θ
⋆
−n)y)n

Ĉ(a⋆
−n,Θ

⋆
−n)nn

}2

. (50)

3.5. Convergence analysis

All the developments presented in Sections 3.1 and 3.2 are conditioned
by the values of three truncation parameters, p, q and u, which have to be
identified from a convergence analysis. As presented in Section 3.1, we remind
that the roles of p, q and u in the modelling of g are different. Whereas p and
u are associated with the modelling of the dependency structure between the
input parameters, q is associated with the individual transformation of each
input. As a consequence, q is strongly dependent on the dimension of vector
a, which parametrizes these individual transformations. On the contrary,
this dimension of a, which is equal to C(q, d) − 1 − u, does not depend on
p, but depends only linearly on u. Hence, increasing the values of p and u
does not really increase the dimension of the search set for the identification
of a⋆, but makes the relation between a and L(a,Θ) much more complex.

To choose u, p and q, maximal values are a priori chosen, which are
written umax, pmax and qmax respectively. In this work, as we want to reduce
the number of parameters on which the polynomial trend is based, only values
of u that are lower than d are considered: umax = d. Finally, the optimal
value of (u, p, q) is the one that gives the minimum LOO error after having
tested all these combinations of values:

(u⋆, p⋆, q⋆) := arg min
1≤u≤d, 1≤p≤pmax, 1≤q≤qmax

ǫ̃2LOO(u, p, q), (51)
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where error ǫ̃2LOO is defined by Eq. (46).

4. Applications

To illustrate the advantages of the nested structure presented in Section
3 for the modelling of quantity of interest g, this section introduces a series
of analytic examples, which are sorted with respect to the input set dimen-
sion, d. In each case, the proposed approach is compared to the "LAR+UK"
approach, which has been described in Section 2. For each function g, let
ĝnest and ĝLAR+UK be the best approximations of g we can get from the avail-
able information, when considering a nested polynomial trend and a simple
polynomial trend, respectively. Let ε2NEST and ε2LAR+UK be the associated
normalized errors, such that:

ε2NEST =
∥∥g − ĝnest

∥∥2
L2 / ‖g‖2L2 , (52)

ε2LAR+UK =
∥∥g − ĝLAR+UK

∥∥2
L2

/ ‖g‖2L2 . (53)

When dealing with a simple polynomial trend, it is reminded that the
only truncation parameter that needs to be identified is the maximal total
polynomial order, which will be denoted in the following by pLAR+UK for the
sake of clarity. On the contrary, three truncation parameters have to be
identified for the nested polynomial trends: p, u and q. As a consequence,
the required computational time to identify ĝnest can be much higher than
the one to identify ĝLAR+UK.

4.1. d=1

In this part, we suppose that d = 1, and we fix Dd = [−1, 1]. Three
analytic expressions for g are then proposed:

• case 1: g(x) = P2 ◦ P1(x),

• case 2: g(x) = sin((x+ 1)3),

• case 3: g(x) = sin(20x) cos(2x),

where, for all x in [−1, 1]:
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P1(x) =

5∑

i=1

c
(1)
i xi−1, c(1) =

(0,−0.03, 0.5,−0.4,−0.5)√
0.032 + 0.52 + 0.42 + 0.52

,

P2(x) =
5∑

i=1

c
(2)
i xi−1, c(2) = (−0.1, 0.2, 0.7,−0.2,−0.2).

(54)

For each case, Figure 1 compares the evolution of errors ε2NEST and ε2LAR+UK

with respect to N , the number of available evaluations of g. For each value of
N , convergence analyses have been performed for both methods. The maxi-
mal values for the truncation parameters associated were fixed such that:

0 ≤ pLAR+UK ≤ 20, 0 ≤ p, q ≤ 10, u = 1. (55)

For the three applications, these convergence analyses lead us to relatively
high values for these truncation parameters (p ≥ 4, q ≥ 4). As underlined
in Section 3.1, this can be explained by the ability of the proposed nested
structure to parametrize polynomial families with very high cardinality with
only few parameters. This is particularly efficient when N is small compared
to the number of oscillations of g.

In addition, Figure 2 compares the two approaches in term of prediction
for given values of N . In these figures we notice that the proposed method is
particularly adapted to the cases when g presents a nested structure or when
it is oscillating. This is particularly true when N is small compared to the
complexity of g.

4.2. d>1

The idea of this section is to show that the tendencies that were noticed in
the one-dimensional cases are found back when considering multidimensional
input spaces. To this end, let us consider the three following expressions of
g, and the associated maximal values for the convergence analyses:

• Case 1: d = 2, 0 ≤ pLAR+UK ≤ 20, 0 ≤ p ≤ 6, 0 ≤ q ≤ 10, 1 ≤ u ≤ d.

g :

{
[−1, 1]2

x

→
7→

[−1, 1]
g2D(x) = (1− x2

1) cos(7x1)× (1− x2
2) sin(5x2)

.

(56)
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(a) g(x) = P2 ◦ P1(x)
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(b) g(x) = sin((x+ 1)3)

10 15 20 25 30

0.2

0.4

0.6

0.8

1

N

n
or

m
al

iz
ed

er
ro

r

(c) g(x) = sin(20x) cos(2x)

Figure 1: Evolution of the normalized L2 errors with respect to N , the number of code
evaluations. To be more representative, for each value of N , the LAR+UK and the
proposed approaches have been repeated 10 times on randomly chosen learning sets. The
curves correspond to the mean value of the errors associated with these 10 repetitions.
Solid black line: evolution of the error associated with the LAR+UK approach, ε2LAR+UK.
Red dotted line: evolution of the error associated with the proposed approach, ε2NEST.
The vertical bar indicates moreover the value of N on which the results of Figure 2 are
focused.
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(d) Proposed method with (p, u, q) =
(4, 1, 4)
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(f) Proposed method with (p, u, q) =
(6, 1, 7)

Figure 2: Efficiency of the proposed method to predict in an unobserved point the value
of g(x) = P2 ◦ P1(x) with N = 15 (first row), g(x) = sin((x + 1)3) with N = 11 (second
row) and g(x) = sin(20x) cos(2x) with N = 20 (third row). In each figure, the black solid
line is the evolution of the quantity of interest, g, with respect to x, the blue points are the
positions of the available observations of g, the red dotted line is the prediction of g based
on an optimized LAR+UK approach (left column) or based on the proposed approach
associated with optimized values of p, u and q (right column). The grey areas correspond
to the 95% confidence region for the prediction.
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• Case 2 (the Ishigami function): d = 3, 0 ≤ pLAR+UK ≤ 20, 0 ≤ p ≤ 3,
0 ≤ q ≤ 10, 1 ≤ u ≤ d.

g :

{
[−π, π]3

x = (x1, x2, x3)
→
7→

R

g3D(x) = sin(x1) + 7 sin(x2)
2 + 0.1x4

3 sin(x1)
.

(57)

• Case 3: d = 6, 0 ≤ pLAR+UK ≤ 10, 0 ≤ p ≤ 3, 0 ≤ q ≤ 10, 1 ≤ u ≤ d.

g :

{
[−1, 1]6

x

→
7→

R

g6D(x) = g(1) ◦ g(2)(x),
(58)

g(1)(z) = 0.1 cos

(
6∑

i=1

zi

)
+

6∑

i=1

z2i , z ∈ R
6, (59)

g(2)(x) = (cos(πx1 + 1), cos(πx2 + 2), . . . , cos(πx6 + 6)) . (60)

In the same manner than in Section 4.1, Figure 3 compares the evolution
of errors ε2NEST and ε2LAR+UK with respect to N . As for the one-dimensional
cases, it can be noticed in these figures that, for the considered examples,
introducing a nested structure for the polynomial trend can allow us to make
the L2 error decrease by several orders of magnitude, especially when N is
low. Moreover, these figures emphasize the interest of optimizing the values
of truncation parameter u when dealing with multidimensional input spaces.

As explained in Section 3.1, the values of p, q and u that were obtained
from the convergence analyses can give many information about the structure
of the quantity of interest. For the first example, the values p = 2, u = 2
and q > 2 were most of the time chosen, which is coherent with the fact that
g2D(x1, x2) is just the product of two functions that depend on x1 and x2

only. Hence, a particular attention has to be paid to the modelling of each
input, rather than on the modelling of the dependence structure.

In the same manner, for the second example, most of the convergence
analyses lead us to u = 3 and p < q, which also shows that the modelling
of each input seems to be more important than the characterization of the
relation between these modified inputs.
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At last, for the third quantity of interest, which is a highly oscillating
function in dimension d = 6, the convergence analyses seemed to encour-
age the values of p and q that lead to the highest product p × q (before
over-fitting). This means that, for this example, it is interesting to approx-
imate quantity of interest g by a complex polynomial representation that is
characterized by a small number of parameters.

4.3. Relevance of the LOO error

As presented in Section 3, when the maximal information about g is
a set of code evaluations, error ‖g − ĝnest‖L2 can be evaluated by its LOO
approximation, εLOO. In order to reduce the computational cost associated
with the evaluation of εLOO, two alternative estimations of error ‖g − ĝnest‖L2 ,
ε̂LOO and ε̃LOO, have been proposed. In order to underline the relevance of
these two LOO errors, Figure 4 compares these three errors in the case when
N = 100 and g is the Ishigami function, for which expression is given by
Eq. (57) (the same kinds of results would have been obtained for other
values of N and other expressions of g). In this figure, it can thus be noticed
that both approximations ε̂LOO and ε̃LOO are very close to ‖g − ĝnest‖L2 . In
general, approximation ε̃LOO is more conservative, in the sense that there are
less chances that it underestimates ‖g − ĝnest‖L2 . However, as explained in
Section 3, introducing a linearisation around a⋆ reduces the risk of being too
dependent on a⋆, which explains the fact that only small differences can be
noticed between ε̂LOO and ε̃LOO.

5. Conclusions

One of the main objectives of this paper is to propose an alternative
parametrization of the polynomial trends for the Gaussian process regression.
This parametrization, which is based on the composition of two polynomials,
allows us to span high dimensional polynomial spaces with a reduced number
of parameters. Hence, it has been shown on a series of examples that this
approach can be very useful, especially when confronted to the modelling of
complex functions with very little information.

However, identifying relevant values for these parameters is not easy. In
this work, these parameters are identified from a two-steps approach. First,
their maximum-likelihood estimates are searched from the solving of a non-
convex optimization problem. An iterative algorithm has been proposed to
approximate the solutions of this problem. Then, a linearisation around these
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(c) g(x) = g6D(x)

Figure 3: Evolution of the normalized L2 errors with respect to N , the number of code
evaluations. To be more representative, for each value of N , the LAR+UK and the
proposed approaches have been repeated 10 times on randomly chosen learning sets. The
curves correspond to the values of the 25% (thin line), the 50% (thick line) and the 75%
(thin line) quantiles of the errors associated with these 10 repetitions. Solid black line:
evolution of the error associated with the LAR+UK approach, ε2LAR+UK. Blue dotted line:
evolution of the error associated with the proposed approach, ε2NEST, with u = 1. Red
dashed line: evolution of the error associated with the proposed approach, ε2NEST, with
1 ≤ u ≤ d.
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(b) Case 2: ε̃LOO

Figure 4: Comparisons between error ‖g − ĝnest‖
L2 and its LOO approximations ε̂LOO and

ε̃LOO for the modeling of the Ishigami function from N = 100 code evaluations, for u = d,
1 ≤ p ≤ 4 and 1 ≤ q ≤ 5. Red squares: the true values of ‖g − ĝnest‖

L2 . Black circles
: the approximated values. In each case, the box-plots correspond to the distributions of
(ê2n, 1 ≤ n ≤ N) and (ẽ2n, 1 ≤ n ≤ N), whose expressions are given by Eqs. (46) and
(50).
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values is carried out, in order to find back the usual formalism of GPR, and
to minimize the sensitivity of the results to these values.

In spite of all these adaptations, when the input dimension becomes high
(d > 10), and when a lot of code evaluations are available (N > 100d), it
appears that the value of q is often equal to 1. Such a value for q corresponds
to the "LAR+UK" configuration, which would mean that, in that case, the
nested structure is not necessary. This can be due to the fact that the
considered quantity of interest does not present a nested structure, or to the
fact that the numerical complexity of the optimization problems associated
with the nested representation is too high. Increasing the robustness of the
proposed iterative algorithm, as well as proposing more efficient methods to
solve the introduced optimization problems are thus possible extensions of
the present work.

Trying to increase the sparsity of the proposed nested representation could
also be a good idea, especially to enable the proposed method to deal with
systems with higher values of d. Coupling the proposed nested representation
to dedicated penalization techniques seems promising for future work.
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