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CONVERGENCE ANALYSIS OF ADAPTIVE BIASING POTENTIAL

METHODS FOR DIFFUSION PROCESSES

MICHEL BENAÏM AND CHARLES-EDOUARD BRÉHIER

Abstract. This article is concerned with the mathematical analysis of a family of adaptive impor-
tance sampling algorithms applied to diffusion processes. These methods, referred to as Adaptive
Biasing Potential methods, are designed to efficiently sample the invariant distribution of the dif-
fusion process, thanks to the approximation of the associated free energy function (relative to a
reaction coordinate). The bias which is introduced in the dynamics is computed adaptively; it
depends on the past of the trajectory of the process through some time-averages.

We give a detailed and general construction of such methods. We prove the consistency of the
approach (almost sure convergence of well-chosen weighted empirical probability distribution). We
justify the efficiency thanks to several qualitative and quantitative additional arguments. To prove
these results , we revisit and extend tools from stochastic approximation applied to self-interacting
diffusions, in an original context.

1. Introduction

In many applications in physics, biology, chemistry, etc... there is a huge interest in the two
following problems. First, in sampling probability distributions (denoted by µ), i.e. in constructing
families of independent random variables with distribution µ. Second, in computing averages

∫

ϕdµ
of real-valued functions ϕ. These questions lead to challenging computational issues, when the
dimension of the support of µ is large (possibly infinite) – for instance, when µ is the equilibrium
distribution of a large system of particles, which is the typical situation in the field of molecular
dynamics. The scientific literature contains many examples, as well as many approaches to construct
efficient approximation procedures. We do not intend to provide an extensive review; some relevant
examples, which are connected to the methodology studied in this article, will be provided below.

Many methods are based on a Markov Chain Monte Carlo (MCMC) strategy, i.e. on sampling
a stochastic process which is ergodic with respect to µ. The standard example is given by the
overdamped Langevin dynamics on Rd,

dxt = −∇V (xt)dt+
√

2β−1dWt,

associated – under appropriate growth and regularity assumptions on the function V – with the
Boltzmann-Gibbs probability distribution

µ(dx) = µβ(dx) =
e−βV (x)

Z(β)
dx.

The choice of ergodic processes associated with a probability distribution µ is not unique. In this
article, we will only focus on diffusion processes, in continuous time. These processes are in most
cases solutions of Stochastic Differential Equations (SDEs), in finite dimension. We will also study
the case of Stochastic Partial Differential Equations (SPDEs), in infinite dimension. For a practical
implementation of the methods, an additional time discretization of the continous-time dynamics is
required. However, in this article, we do not discuss this question, and we only perform the analysis
at the continuous-time level.

Key words and phrases. adaptive biasing, self-interacting diffusions, free energy computation.
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For the class of problems we are interested in, one of the limitations of standard MCMC ap-
proaches is the multimodality of µ: in this situation, the support of µ contains several disjoint
regions which all have large measure, and are separated by regions with low probability. When µ
is multimodal, the associated ergodic dynamics are metastable. A direct simulation is not able to
efficiently and accurately sample the rare transitions between metastable states, hence the need for
advanced Monte-Carlo methods.

Many strategies have been proposed, analyzed and applied, to overcome the issues raised above.
The associated variance reduction approaches may be divided into two main families. On the one
hand, Importance Sampling strategies are based on changing the reference probability measure. The
realization of the rare events limiting standard approaches is enhanced by appropriate reweighting
of µ. In our context, such strategies require to simulate modified processes, which are constructed
by biasing the dynamics. On the other hand, Splitting strategies use interacting replicas, with
mutation and selection procedures, without modifying the process dynamics.

The methods studied in this article are an example of Adaptive Biasing methods. They are based
on the Importance Sampling strategy and the use of the so-called Free Energy function (which
will be introduced below). When going into the details of the schemes and of the applications,
there are many different versions; they all aim at flattening the free energy landscape, and to make
free energy barriers disappear. We refer to the monograph [33] for an extensive review of such
methods, and to [34, Section 4] for a survey on mathematical techniques. To name a few of the
versions, we mention the following examples of adaptive biasing methods: the adaptive biasing
force [18], [26] [15]; the Wang-Landau algorithm [37], [38]; metadynamics [30], [1]; the self-healing
umbrella sampling method [36]. For related mathematical results, see for instance [14], [27], [31], [32]
(adaptive biasing force); [23], [24] (Wang-Landau), [25] (self-healing umbrella sampling). This list
is not exhaustive. We also refer to the recent survey paper [20] (and to references therein) for
discussions and comparison of these methods.

Our aim in this article is to give a mathematical analysis of a family of methods, independently
of a comparison with the other methods mentioned above: the Adaptive Biasing Potential methods,
related to [19]. We emphasize on one feature of the method studied here: the process dynamics is
modified with quantities computed as time-averages over a single realization of the dynamics.

Let us mention the type of mathematical properties such algorithms are required to satisfy (ex-
actly or in an approximate sense) concerning estimators of averages

∫

ϕdµ. On the one hand, the
consistency is the long-time convergence to the average, in a strong sense (almost sure or Lp), or in
a weak sense (convergence of expected value). On the other hand, the efficiency is generally studied
in terms of the asymptotic mean-square error; as we will also see in this article, it may also be
considered from the point of view of the long-time behavior of occupation measures of the process.

A preliminary analysis of the Adaptive Biasing Potential methods considered in this article, is
provided in [3], in a simplified framework. We go beyond in this present article, and give detailed
arguments and substantial generalizations. Below we first present the methods in a simplified
framework, see Section 1.1, following [3]: we explain the strategy and the type of results. We then
present the general framework of the article, and the associated results, in Sections 1.2 and 1.3.

1.1. Adaptive Biasing Potential method in a simplified framework. We introduce the pur-
pose and results of the present article in a simplified framework, following [3]. This section is
pedagogical: the ideas are introduced independently of the abstract notation which will allow us to
consider many examples of diffusion processes. We are interested in sampling probability distribu-

tions on the flat d-dimensional torus Td =
(

R/Z
)d

, of the following form:

µ(dx) = µβ(dx) =
exp

(

−βV (x)
)

Z(β)
,
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where V : Td → R is a smooth potential energy function, and β ∈ (0,∞) is referred to as the

inverse temperature. Finally, dx is the Lebesgue measure on Td, and Z(β) =
∫

Td e
−βV (x)dx is the

normalizing constant.
A natural choice of associated ergodic process is given by the overdamped Langevin dynamics

(or Brownian dynamics)

(1) dX0
t = −∇V (X0

t )dt+
√

2β−1dWt, X0
0 = x0,

where
(

Wt

)

t≥0
is a standard Wiener process on Td.

It is a standard result that the empirical distribution µ0
t =

1
t

∫ t

0 δX0
r
dr converges (in distribution),

almost surely, towards µβ, when time t goes to infinity. However, the convergence may be slow due
to the metastability of the process X0.

To accelerate convergence to equilibrium, other stochastic processes need to be used. In this
article, the modification of the dynamics is an adaptive change of the potential energy function: the
function V is replaced with a time-dependent function Vt – hence the terminology Adaptive Biasing
Potential (ABP) method:

dXt = −∇Vt(Xt)dt+
√

2β−1dWt.

Compared with other methods mentioned above, one of the specificities of the method considered
in this article, is the structure of the time-dependent potential energy function Vt: it is constructed
as Vt = V − At ◦ ξ, where ξ : (x1, . . . , xd) ∈ Td 7→ (x1, . . . , xm) ∈ Tm is an auxiliary function,
referred to as the reaction coordinate, and At : T

m → R is an approximation (in the regime t → ∞)
of the so-called Free Energy function. In general, one assumes m ∈ {1, . . . , d− 1}; however, in
applications, the dimension m is chosen much smaller than d, and typically m ∈ {1, 2, 3}. In other
words, the difference Vt − V only depends on m < d components of the process. It thus remains to
explain how the function At is constructed adaptively: it is done in terms of the values

(

Xr

)

0≤r<t

of the process X up to time t.
Precisely, the dynamics of the ABP method, in the simplified framework considered in the current

section (for the generalized version, see Equation (10)), is given by the following system:

(2)



















dXt = −∇
(

V −At ◦ ξ
)

(Xt)dt+
√

2β−1dW (t)

µt =
µ0+

∫ t
0 exp

(

−βAr◦ξ(Xr)
)

δXrdr

1+
∫ t
0 exp

(

−βAr◦ξ(Xr)
)

dr

exp
(

−βAt(z)
)

=
∫

Td K
(

z, ξ(x)
)

µt(dx), ∀z ∈ Tm,

where a smooth kernel function K : Tm × Tm → (0,+∞), such that
∫

Tm K(z, ζ)dz = 1,∀ζ ∈ Tm,
is introduced. It serves to define a smooth real-valued function At defined on Tm, in terms of the
probability distribution µt on Td.

The unknows in (2) are the stochastic processes t 7→ Xt ∈ Td, t 7→ µt ∈ P(Td) (the set of Borel
probability distributions on Td, endowed with the usual topology of weak convergence of probability
distributions), and t 7→ At ∈ C∞(Tm) (the set of infinitely differentiable functions on Tm). Initial
conditions Xt=0 = x0 and µt=0 = µ0 are prescribed.

We emphasize on a key observation. The third equation in (2) introduces a coupling between
the evolutions of the diffusion process Xt and of the probability distribution µt. Thus the system
defines a type of self-interacting diffusion process. However, a comparison with [4] and subsequent
articles [5], [6] and [7], reveals a different form of coupling. The aim of this article is to study the
new arguments which are required for the study of the system (2).

The most important quantity in (2) is the random, time-dependent, probability distribution
µt. Observe that its construction uses two successive operations: first, a weighted occupation

measure µt = µ0 +
∫ t

0 exp
(

−βAr ◦ ξ(Xr)
)

δXrdr is computed; second, this measure is normalized as
3



a probability distribution, µt =
µt∫

x∈Td
µt(dx)

. The weights exp
(

−βAr ◦ ξ(Xr)
)

in the definition of µt

are chosen so as to obtain the following consistency result.

Theorem 1.1. Almost surely, µt →
t→∞

µβ, in P(Td).

Moreover, define the function A∞, such that exp
(

−βA∞(·)
)

=
∫

K(·, ξ(x))µβ(dx). Then, almost

surely, At →
t→+∞

A∞, in Ck(Tm), ∀ k ∈ N.

The proof of this result is described in our previous work [3]. In the present article, in a more
general context, we provide the technical details.

Let us briefly explain the role played by the weights in this result. On the one hand, their presence
ensures the convergence of µt to µβ, i.e. the consistency. This observation is not surprising, indeed
it is a standard feature of importance sampling approaches. On the other hand, the convergence of
At to A∞ comes from the way the evolutions of Xt and µt are coupled, in the third equation of (2).
The convergence of At reveals the efficiency of the method: indeed, A∞ is an approximation of the
so-called Free Energy function A⋆, defined by

exp
(

−βA⋆(z)
)

=

∫

Td−m

exp
(

−βV (z, xm+1, . . . , xd)
)

Z(β)
dxm+1 . . . dxd.

Note that, by construction, exp
(

−βA⋆(z)
)

dz is a probability distribution on Tm, which is the image
of µβ by the reaction coordinate ξ. The Free Energy function depends in general on the temperature
parameter β, but to simplify notation we simply write A⋆(z). As will be explained below, biasing the
dynamics (in a non-adaptive way) using the function A⋆ (which is not known in practice) would be
optimal. The adaptive method can thus naturally be seen as a stochastic approximation algorithm,
with the optimal parameter being learned on-the-fly. See [2],[8],[21],[29] for standard references.

The observations made above, concerning the system (2) and the consistency result, Theorem 1.1,
are not specific to the simple example considered in this section; they will also hold true in the general
framework which is described next, in Section 1.2.

1.2. General framework. We now describe the framework considered in this article, and how the
content of Section 1.1 can be generalized in various directions.

First, contrary to (1), the state space of the dynamics is not necessarily compact; in addition, it
may be infinite dimensional.

The main generalization then concerns the type of diffusion processes which are considered:
instead of the overdamped Langevin dynamics (1), the framework will encompass the following
examples: (hypoelliptic) Langevin dynamics – the unknowns being positions and momenta, instead
of positions only; extended dynamics – where an auxiliary variable is associated with the mapping
ξ, see [35]; Stochastic Partial Differential Equations (SPDEs) – which are infinite dimensional
diffusion processes. Considering diffusions on smooth manifolds could also be possible in the abstract
framework developed below; however to simplify the presentation we do not treat such examples.

Abstract notation and analysis allows us to treat jointly these cases; however the SPDE example
is in fact presented separately, in Section 7, to simplify the exposition. Indeed several arguments
need to be adapted, whereas it is simple to consider the other examples in the same framework.

Another generalization concerns the function ξ, referred to as the reaction coordinate mapping. It
is allowed to have more complicated structure than in the simplified example above. The definition
of the associated free energy is made precise in terms of a Radon-Nikodym derivative of the image
of the invariant distribution µβ by ξ, with respect to a reference measure. The key properties which
are required are that ξ takes values in a compact set, and that ξ is smooth.

Note that the general framework and the associated abstract notation are constructed to em-
phasize on the main assumptions on the models and on the algorithm, which are required for the
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well-posedness and the consistency of the approach. The list of examples we propose and treat is
not intended to be exhaustive.

1.3. Organization of the paper. In Section 2, the abstract framework is introduced, with empha-
sis on the following objects: the diffusion process dynamics, Section 2.1 – with examples provided
in Section 2.2 – the invariant probability distribution µ, Section 2.3, and the free energy function,
Section 2.4.

The construction of generalized versions of the Adaptive Biasing Potential method, given by (2),
is provided in Section 3. In particular, well-posedness results and important estimates are stated
precisely there.

Section 4 contains the main results of this article, in finite dimensional cases, concerning the
long-time behavior of the method. On the one hand, the consistency of the approach, i.e. the
almost sure convergence (in distribution) of µt to µ, is given in Theorem 4.1 and Corollary 4.2. On
the other hand, the efficiency is analyzed first in terms of the convergence of the approximation At

of the free energy function, Corollary 4.3, and of occupation measures, Corollary 4.4; second, in
terms of the asymptotic mean-square error, Proposition 4.5.

The proof of consistency (Theorem 4.1) is detailed in Section 5. We first describe (see Section 5.1)
how to obtain a system which is similar to the self-interacting diffusion processes studied in [4], as
explained in [3]. This system is obtained thanks to a (random) change of time variable, such that
the weights in the definition of µt (second line in (2)) are eliminated. We then explain how the
consistency of the approach may be seen as a straightforward consequence of the ODE method from
stochastic approximation (see [2], [8], [21], [29]), thanks to an asymptotic time scale separation into
slow (occupation measure) and fast (diffusion process) evolutions. We do not provide all the details
for this approach; indeed, a direct analysis, without the change of variable, is possible. The analysis
is performed, with details, in Section 5.2. From a technical point of view, the main specific task for
the present article is the study of a related Poisson equation.

Section 6 is devoted to the analysis of the asymptotic mean-square error. We recover in our par-
ticular framework a rather standard fact in stochastic approximation: asymptotically the adaptive
system variance is the same as for a non-adaptive system where the bias is chosen as the limit of
the adaptive bias At.

Finally, Section 7 is devoted to an analysis in infinite dimension, where the diffusion processes
are solutions of some SPDEs. The abstract framework encompasses this situation. However the
analysis is presented separately: indeed several arguments need substantial modifications.

2. Framework

2.1. Dynamics and abstract notation. The discussion in the present section is general. Exam-
ples are provided in Section 2.2.

2.1.1. Unbiased dynamics. The unbiased (or original) dynamics is a diffusion process
(

X0
t

)

t≥0
, with

values on a state space denoted by S. The process is solution of a Stochastic Differential Equation
(SDE), when the dimension of S is finite; or of a Stochastic Partial Differential Equation (SPDE),
when the dimension of S is infinite. The SDE or the SPDE is written in the following form

(3) dX0
t = D(V )(X0

t )dt+
√

2β−1ΣdWt , X0
0 = x0,

where
(

Wt

)

t∈R+ is a standard Wiener process on S, and Σ is a linear mapping which is specified in
each example below.

In (3), the initial condition x0 ∈ S is arbitrary, and is assumed to be deterministic for simplicity.
The convergence results may be extended to a random initial condition (independent of the Wiener
noise) by a standard conditioning argument. The value of x0 plays no role in the analysis below.
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The drift coefficient D(V ) in (3) depends on the potential energy function V : Ed → R, defined
on a set Ed, where Ed = Td (periodic, compact case) or Ed = Rd (non compact case). Note that
in general S 6= Ed. The functions V and D(V ) are assumed of class C∞; in the non compact case
Ed = Rd, growth conditions are required, they will be described for each example.

Finally, β ∈ (0,∞) is a positive, fixed, parameter, referred to as the inverse temperature.

Remark 2.1. Instead of assuming that V is of class C∞, we may assume that V is of class Cn

for some sufficiently large integer n (at least n ≥ 2). The results stated in this article remain valid
(if properly adapted) in this setting. To simplify the analysis and avoid arguments and statements
depending on the parameter n, we have chosen to deal with C∞ regularity.

2.1.2. Non-adaptively biased dynamics. Having introduced the unbiased dynamics (3), we now de-
scribe the family of biased dynamics which we consider in this article, first in a non-adaptive context.
The drift coefficient D(V ) in (3) is modified, being replaced by D(V,A); more precisely, the function
A depends only on a small number of degrees of freedom of the system. In the current section, the
bias is non-adaptive: the function A is deterministic and does not depend on time.

We now make precise how D(V,A) is defined: it depends on the mapping A ◦ ξ, where

• ξ : Ed → Mm is a fixed smooth function, where Mm is a m-dimensional smooth, compact,
manifold, and m ∈ {1, . . . , d− 1}.

• A : Mm → R is a smooth function.

The mapping ξ is called the reaction coordinate; variables z = ξ(x) are often called collective
variables. The name “reaction coordinate” comes from molecular dynamics applications, where
methods such as the one studied in this article are popular computational approaches. The functions
ξ and A ◦ ξ are defined on Ed, like the potential energy function V .

Finally, an extension

ξS : S → R

of the reaction coordinate ξ, is also defined on the state space S – the procedure depends on the
example of diffusion process.

In the non-compact case Ed = Rd, all the derivatives of ξ are assumed to be bounded.
As explained in the introduction, in practice one chooses m much smaller than d, and typically

for concrete applications m ∈ {1, 2, 3}
Note that the compactness assumption on Mm is crucial in this article. In particular, it allows

us to establish some stability estimates and the well-posedness of the ABP system. In some cases,
it might be possible to remove this restriction (and consider for instance Mm = Rm), by proving
appropriate estimates; we leave this non trivial technical issue for future works. The assumption
that Mm is a smooth manifold is requested to define potential energy functions V −A ◦ ξ with nice
regularity properties.

To simplify the discussion, from now on Mm = Tm is the flat m-dimensional torus. However, we
use the abstract notation and conditions to suggest possible straightforward generalizations.

We are now in position to define the biased dynamics
(

XA
t

)

t≥0
, for any given A : Mm → R of

class C∞:

(4) dXA
t = D(V,A)(XA

t )dt+
√

2β−1ΣdWt , XA
0 = x0.

Consistently, we will have D(V, 0) = D(V ): in the absence of bias, the biased dynamics (4) is
simply the unbiased dynamics (3).
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2.2. Examples of diffusions processes. In this section, we now make explicit what are the main
examples of diffusion processes we study in this article. First, we consider (elliptic) Brownian
dynamics and (hypoelliptic) Langevin dynamics. The third example is popular for applications; it
is called the extended dynamics, since an additional variable is considered.

We postpone the study of a fourth example, given by infinite dimensional diffusion processes
(SPDE), to Section 7. Indeed, several arguments need to be modified.

From now on, except in Section 7, the state space S is finite dimensional.

2.2.1. Brownian dynamics.

• State space: S = Ed.
• Reaction coordinate: ξS = ξ.
• Drift coefficient: D(V,A) = D(V −A◦ξ) = −∇

(

V −A◦ξ
)

. Diffusion operator: Σ = I,
where I denotes the identity matrix.

In the Brownian case, the dynamics (4) is written as

dxAt = −∇
(

V −A ◦ ξ
)

(xAt )dt+
√

2β−1dWt.

In the non compact case, Ed = Rd, the following assumption on the potential energy function V
is granted.

Assumption 2.2. When Ed = Rd, assume that there exist αV ∈ (0,∞) and CV ∈ R, such that for
all x ∈ Ed,

〈x,∇V (x)〉 ≥ αV |x|2 −CV .

Assumption 2.2 is satisfied for instance for smooth potential functions V which behave like | · |k
at infinity, for some k ≥ 2.

Remark 2.3. Assume Ed = Rd. Let J be a d × d skew-symmetric matrix. The results of this
article also apply when choosing D(V,A) = −(I + J)∇

(

V − A ◦ ξ
)

. When J 6= 0, this corresponds
to non-reversible dynamics (with respect to the associated invariant distribution). In our study, the
reversibility plays no role, however, the knowledge of a bijective mapping µβ 7→ D(V ) is crucial.

2.2.2. Langevin dynamics.

• State space: S = Ed × Rd. Elements of S are denoted by (q, p).
• Reaction coordinate: ξS(q, p) = ξ(q).

• Drift coefficient: D(V,A)(q, p) =

(

p
−∇

(

V −A ◦ ξ
)

(q)− γp

)

. Diffusion operator: Σ =

√
γ

(

0 0
0 I

)

, for γ ∈ (0,∞) a damping parameter.

Observe that in this example, the state space S is never compact, even if Ed is.

In the Langevin case, the dynamics (4) is written
{

dqAt = pAt dt , qA0 = q0,

dpAt = −∇
(

V −A ◦ ξ
)

(qAt )dt− γpAt dt+
√

2β−1γdW̃t , pA0 = p0,

where
(

W̃t

)

t≥0
is a standard Wiener process on Rd. In applications, the variable q represents

positions of particles, whereas the variable p represents their momenta.
The value of the damping parameter γ plays no role in the analysis below. We recall that in

the limit γ → ∞, one recovers (up to a rescaling of the time variable) the Brownian dynamics of
Section 2.2.1, which is thus often referred to as the overdamped Langevin dynamics. Recall also
the analysis of these two cases is different, since the Langevin diffusion is hypoelliptic, whereas the
Brownian dynamics is elliptic.
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In the non-compact case, Ed = Rd, the following assumption on the potential energy function V
is granted.

Assumption 2.4. When Ed = Rd, assume that V is bounded from below: there exists V− ∈ R such
that V (q) ≥ V− for all q ∈ Rd.

Moreover, assume that there exist AV , BV ∈ (0,∞) and CV ∈ R such that for all q ∈ Rd

〈q,∇V (q)〉 ≥ AV V (q) +BV |q|2 + CV .

2.2.3. Extended dynamics. This example is a modification of the Brownian dynamics from Sec-
tion 2.2.1. It is also straightforward to propose a similar modification of the Langevin dynamics of
Section 2.2.2; the details are left to the reader.

• State space: S = Ed ×Mm. Elements of S are denoted by (x, z).
• Reaction coordinate: ξS(x, z) = z.

• Drift coefficient: D(V,A)(x, z) =

(

−∇xUA(x, z)
−∇zUA(x, z)

)

where UA(x, z) = U(x, z) − A(z),

U(x, z) = V (x) + 1
2ǫVext

(

ξ(x), z
)

is the extended potential energy function. It depends on a
smooth function Vext : Mm ×Mm → R, and on ǫ ∈ (0,∞). Diffusion operator: Σ is the
identity.

In the case Mm = Tm considered here, one may choose Vext

(

ξ(x), z
)

=
(

ξ(x)− z
)2

. Then, in the
(Brownian) extended case, the dynamics (4) is written as

{

dXA
t = −∇V (XA

t )dt− 1
ǫ
〈∇ξ(XA

t ), ξ(X
A
t )− ZA

t 〉dt+
√

2β−1dW x
t , XA

0 = x0,

dZA
t = −1

ǫ

(

ZA
t − ξ(XA

t )
)

dt+∇A(ZA
t )dt+

√

2β−1dW z
t , ZA

0 = z0,

for some arbitrary initial condition z0 ∈ Mm, and where
(

W x
t

)

t≥0
and

(

W z
t

)

t≥0
are independent

standard Wiener processes, on Ed and on Mm respectively. The dynamics is thus obtained by
considering the Brownian dynamics on Ed ×Mm, with potential energy function U .

Observe that in this case D(V,A) is not a function of V −A ◦ ξ, contrary to the other examples.
Indeed, in the extended dynamics, the variable z = ξS(x, z) is considered as an additional, non-
physical, variable; in addition, A is a function of z only, not of ξ(x).

We will explain below why the extended dynamics is relevant, in the limit ǫ → 0, for the problem
of sampling the initial distribution, and thus why it may be sufficient to deal with the extended dy-
namics case. Since ξS(x, z) = z in this example, it is not restrictive to consider reaction coordinates
of the form ξ(x1, . . . , xd) = (x1, . . . , xm), up to considering the extended dynamics.

In the non compact case, Ed = Rd, it is assumed that V satisfies Assumption 2.2 (or Assump-
tion 2.4 if one starts from the Langevin dynamics). Then the extended potential energy function U
also satisfies a similar condition (recall that Mm is compact) on the extended state space Ed ×Mm.

2.3. Invariant probability distributions of the diffusion processes. In all the examples pre-
sented above in Section 2.2, the diffusion processes,

(

X0
t

)

t≥0
and

(

XA
t

)

t≥0
, given by (3) and (4),

are ergodic. The associated unique invariant distributions, defined on S (equipped with the Borel
σ-field), are denoted by µ0

β and µA
β . Since the notation is consistent when A = 0, we only deal with

µA
β , with arbitrary A, in the remainder of this section.
The ergodicity in our context is understood in the following sense:

• there exists a unique invariant probability distribution for the Markov process XA defined
by (4), which is equal to µA

β ;
8



• for any initial condition x0 ∈ S, almost surely,

1

t

∫ t

0
δXA

τ
dτ →

t→∞
µA
β ,

where the convergence is interpreted in the sense of convergence of probability distributions
on S.

The invariant distribution µA
β is expressed explictly in terms of the following tools:

• a reference Borel, σ-finite, measure λ on S, which does not depend on V and A;
• a Total Energy function E(V,A) : S → R.

The expression of µA
β is then provided by:

(5) µA
β (dx) =

exp
(

−βE(V,A)(x)
)

ZA(β)
λ(dx),

where ZA(β) =
∫

S exp
(

−βE(V,A)(x)
)

λ(dx) is a normalizing constant.

Even if the expression is explicit, in general computing averages µA
β (ϕ) =

∫

S ϕdµA
β is challenging,

for instance in large dimensional spaces; and especially when A = 0 and µ0
β is multimodal, which

is the main concern in this article. This is why non-adaptive or adaptive importance sampling
strategies are useful: they propose choices of A which reduce the computational cost of the sampling.

Let us make precise the reference measure λ and the mapping (V,A) 7→ E(V,A) for the diffusion
processes of Section 2.2. First, the total energy function satisfies the important equality

(6) E(V,A) = E(V, 0) −A ◦ ξS .
Note that this condition depends on the extended reaction coordinate ξS : S → Mm, not directly
on ξ : Ed → Mm.

It thus remains to specify E(V ) = E(V, 0).
• Brownian dynamics. The reference measure λ is the Lebesgue measure on S. The total

energy function is E(V ) = V .
• Langevin dynamics. The reference measure λ is the Lebesgue measure on S. The total

energy function is the Hamiltonian function, E(V )(q, p) = H(q, p) = V (q) + |p|2

2 . The total
energy is thus the sum of potential and kinetic energies.

• Extended dynamics. The reference measure λ is the Lebesgue measure on S – more precisely,
the product of Lebesgue measures on Ed and Mm = Tm. The total energy function is

E(V )(x, z) = U(x, z) = V (x) + 1
2ǫ

(

ξ(x)− z
)2

.

The fact that, in all the examples, the dynamics (3) is ergodic with respect to µ0
β is a well-known

result (with Assumptions 2.2 and 2.4 granted when necessary). Then, the fact that the dynamics (4)
is ergodic with respect to µA

β is straightforward. Indeed, for the Brownian and Langevin dynamics
examples, note that V − A ◦ ξ satisfies Assumption 2.2 or 2.4 when V does – recall that Mm is
compact, and that the derivatives of ξ are assumed to be bounded. In the case of the extended
dynamics, similar arguments, concerning the extended potential energy function UA, are sufficient
to prove the ergodicity. More generally, note the following property, which will be used later in the
adaptive context. The notation ∂k represents the derivative of order k.

Property 2.5. Let m,M,M (1),M (2), . . . ∈ R denote real numbers, and

A ⊂
{

A ∈ C∞(Mm,R) ; minA ≥ m,maxA ≤ M,max |∂kA| ≤ M (k),∀k ≥ 1
}

.

Then
9



• if V satisfies Assumption 2.2, there exists αV,A ∈ (0,∞) and CV,A ∈ (0,∞) such that for

every A ∈ A and every x ∈ Ed = Rd,

〈x,∇
(

V −A ◦ ξ
)

(x)〉 ≥ αV,A|x|2 − CV,A.

• if V satisfies Assumption 2.4, there exists AV,A, BV,A ∈ (0,∞) and CV,A ∈ (0,∞) such that

for every A ∈ A and every q ∈ Ed = Rd,

〈q,∇
(

V −A ◦ ξ
)

(q)〉 ≥ AV,AV (q) +BV,A|q|2 + CV,A.

• For every p ≥ 1,

(7) sup
A∈A

∫

S
|x|pµA

β (dx) < ∞.

The distribution of interest, in practice, is µβ = µ0
β; however, sampling the process XA provides

an approximation of µA
β . The following expression provides a way to compute an average µβ(ϕ) =

∫

S ϕ(x)µβ(dx) in terms of averages with respect to µA
β : for bounded and continuous functions

ϕ : S → R,

(8) µβ(ϕ) =
µA
β

(

ϕ exp(−βA ◦ ξS)
)

µA
β

(

exp(−βA ◦ ξS)
) .

Using (6), averages with respect to µβ may therefore be computed using ergodic averages along the
biased dynamics (4): indeed,

(9) µA
t (ϕ) =

1 +
∫ t

0 e
−βA(ξS(X

A
r ))ϕ(XA

r )dr

1 +
∫ t

0 e
−βA(ξS (XA

r ))dr
→

t→+∞

µA
β

(

ϕ exp(−βA ◦ ξS)
)

µA
β

(

exp(−βA ◦ ξS)
) = µβ(ϕ).

This expression serves as the guideline for the construction of the Adaptive Biasing Potential meth-
ods (2), and (10) in the general case: the empirical distributions µt are weighted, to ensure consis-
tency. For well chosen functions A, the convergence is expected to be faster than when A = 0. In
Section 2.4 below, we identify such a function A, the so-called Free Energy function.

2.4. The Free Energy function. In this section, we introduce one of the key quantities in our
study: the Free Energy function A⋆ : Mm → R. Note that in general this function depends on the
parameter β; however, in this article, we consider β as a fixed parameter and do not give any result
which depends on the value of β. Therefore, to simplify notation, we do not explicitly mention the
dependence with respet to β of the Free Energy function.

We explain why this function is a quantity of interest for the computational problem we are
interested in, and why it is expected than choosing A = A⋆ in the biased dynamics (4) leads to
efficient sampling. This property is indeed the guideline of the Adaptive Biasing Potential approach
of this article: we construct an adaptive version which is both consistent and designed such that At

converges to an approximation A∞ of A⋆ when t → ∞.

The definition of the Free Energy function depends on the choice of a reference probability
distribution π on Mm. In this article, since Mm = Tm, it is natural to choose the Lebesgue
measure, but abstract notation suggests other possible choices, see Remark 2.7 below.

For every β ∈ (0,∞), and every smooth A : Mm → R, let πA
β denote the image by ξS : S → Mm

of the probability distribution µA
β on S: recall that this means that for any bounded, continuous

function φ : Mm → R,
∫

Mm

φ(z)πA
β (dz) =

∫

S
φ
(

ξS(x)
)

µA
β (dx).

The following assumption is required.
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Assumption 2.6. Assume that π0
β and π are equivalent: π0

β (resp. π) is absolutely continuous with

respect to π (resp. π0
β).

When Assumption 2.6 holds true, then πA
β is equivalent to π, for all smooth functions A : Mm →

R. Thanks to the smoothness conditions on ξ, and to growth conditions on V , Assumption 2.6 is
satisfied in all the examples presented above, when π is the Lebesgue measure on Mm = Tm.

Remark 2.7. Another natural choice, in the periodic case Ed = Td, for finite dimensional dynamics,
is as follows: π is defined as the image by ξ : Ed → Mm of the Lebesgue measure on Ed. With this
definition, π depends on ξ. In the non-compact case, for instance one may define (for instance) π
as the image by ξ of the standard Gaussian distribution on Rd.

With these examples, Assumption 2.6 is satisfied by construction of π.

We are now in position to define the free energy function A⋆.

Definition 2.8. The free energy function A⋆ : Mm → R is defined by the following property:
exp

(

−βA⋆(·)
)

is the Radon-Nikodym derivative of π0
β with respect to π.

This means that for every bounded measurable function φ : Mm → R,
∫

Mm

φ(z)e−βA⋆(z)π(dz) =

∫

S
φ
(

ξS(x)
)

µβ(dx).

Observe that, thanks to Assumption 2.6, A⋆ takes values in (−∞,∞). Moreover, e−βA⋆(z)π(dz)
is by construction a probability distribution on Mm, thus no normalizing constant appears on the
left-hand side.

It is then straightforward to check that the Radon-Nikodym derivative of πA
β with respect to π

is equal to exp
(

−β(A⋆ −A)
)

, thanks to the condition (6).

The function A⋆ may be interpreted as an effective potential energy function, for the unbiased
dynamics, depending on the variable z = ξS(x) only. Indeed, note that for any sufficiently smooth,
bounded, function φ : Mm → R, by ergodicity of the unbiased dynamics (3), with respect to µβ,
almost surely

1

t

∫ t

0
φ
(

ξS(X
0
t )
)

dt →
t→∞

∫

S
φ ◦ ξSdµ0

β =

∫

Mm

φdπ0
β =

∫

Mm

φ(z)e−βA⋆(z)dπ(z).

Similarly, when considering the biased dynamics,

1

t

∫ t

0
φ
(

ξS(X
A
t )

)

dt →
t→∞

∫

Mm

φ(z)e−β(A⋆(z)−A(z))dπ(z).

We now give an interpretation of the qualitative properties of the free energy function A⋆. Assume
that π is the Lebesgue measure on Mm, and that A⋆ admits several local minima: then the distri-
bution π0

β is multimodal, and the convergence to equilibrium, when using the unbiased dynamics,
is slow. Indeed, the process must visit regions near all the local minima of A⋆, and hopping events
between these metastable states are rare. Thus A⋆ encodes the metastability of the dynamics with
respect to the variable z = ξ(z) ∈ Mm.

On the contrary, if the biased dynamics with A = A⋆ is used, the associated ergodicity result
indicates that convergence is expected to be faster – at least if the convergence in the other variables
is not slow due to metastability. Indeed, the repartition of the values of ξS(X

A
t ) tends to be uniform

when t → ∞; this is the flat-histogram property which is the guideline of advanced Monte Carlo
strategy mentioned in Section 1.
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Note also that, in many applications (for instance in molecular dynamics), computing free energy
differences, i.e. A⋆(z1)−A⋆(z2), may be the ultimate goal of the simulation, instead of computing
averages

∫

ϕdµβ . The Adaptive Biasing Potential methods of this article can also be seen as efficient
Free Energy computation algorithms.

Since in general the free energy function is not known, the associated biased dynamics with
A = A⋆ cannot be simulated in practice; the guideline of the adaptive version proposed and analyzed
below is to (approximately) reproduce the nice flat-histogram property for variable z = ξ(x) in the
asymptotic regime t → ∞, without a priori knowing the free energy function A⋆; in fact it is also
estimated in this procedure.

3. ABP: construction and well-posedness

In this section, the construction of the Adaptive Biasing Potential (ABP) system is performed in
the general framework of Section 2. The rigorous construction of the process, and the statement of
appropriate assumptions, is one of the contributions of this paper. The ABP system is built starting
from the unbiased dynamics (3), with an adaptive bias A = At (random and depending on time t)
introduced in the biased dynamics (4). The construction is a generalization of (2), considered in
Section 1.1 in a simplified setting.

In an abstract framework, the coupling of the evolutions of the diffusion process Xt and of the bias
At requires the introduction of two auxiliary tools, which are used to define mappings µ 7→ K

(

µ
)

(·)
(see (11)) and F 7→ F below:

• a kernel function K : Mm ×Mm → (0,∞);
• a normalization operator N : C0(Mm, (0,∞)) → C0(Mm, (0,∞)), on the set of continuous

functions on Mm with values in (0,∞).

The ABP system in its general formulation is written as follows:

(10)























dXt = D
(

V,At

)

(Xt)dt+
√

2β−1ΣdWt,

µt =
µ0+

∫ t

0
Fτ (ξS(Xτ ))δXτ dτ

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

,

Ft = N
(

K(µt)
)

,

At = − 1
β
log

(

F t

)

,

where there are four unknown processes:
(

Xt

)

t≥0
(with values in S),

(

µt

)

t≥0
(with values in P(S)

the set of probability distributions on S),
(

Ft

)

t≥0
(with values in C0(Mm, (0,∞))), and

(

At

)

t≥0

(with values in C∞(Mm)). Note that the initial conditions F0 = N
(

K(µ0)
)

and A0 = − 1
β
log(F 0)

are prescribed by the initial condition µ0; we also set X0 = x0.

Observe that it is not necessary to consider the four unknowns in (10). Indeed, as will be
explained below, Ft and F t = exp(−βAt) only differ by a multiplicative constant (depending on
t), which is determined only by the choice of the normalization operator N . Moreover, it would
be possible to consider only the processes

(

Xt

)

t≥0
and

(

At

)

t≥0
to define the dynamics of the ABP

system; however, we wish to emphasize on the role of the probability distribution µt, this is why it
is included explictly in (10).

Important observations concerning the system (10) are in order.
The diffusion process is biased, following (4), and the bias At at time t is defined in terms of

the values
(

Xr

)

0≤r≤t
of the diffusion process up to time t. As a consequence, the diffusion process

in (10) can be considered as a self-interacting diffusion on S. However, the standard framework
of self-interacting processes does not encompass the system (10), and we thus need to adapt and
generalize the arguments concerning well-posedness and convergence in our setting.
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The function At is constructed in order to be an approximation, in the regime t → ∞, of the
Free Energy function A⋆, introduced in Section 2.4; indeed, knowing A⋆ would lead to an optimal
non-adaptive biased dynamics. The adaptive system is designed to approximate both adaptively
and efficiently A⋆.

As already mentioned in the introduction (see Theorem 1.1), the central object in the analysis
is the probability distribution µt. Indeed, we will prove that it converges almost surely to µβ, see
Theorem 4.1. Note that µt is defined as a weighted empirical distribution, with weights Fτ

(

ξS(Xτ )
)

;
this choice is motivated by (8) (in the non-adaptive setting).

Below, we state assumptions on the kernel and on the normalization operator, which play a key
role first for the well-posedness of the algorithms, second for the analysis of its asymptotic behavior.
Assumptions on the model, from Section 2, are granted in the sequel.

3.1. Kernel. The kernel function K : (z, ζ) ∈ Mm × Mm 7→ K(z, ζ) ∈ (0,+∞) is a continuous,
positive, smooth function. In the following, this function is often referred to as the regularization
kernel. Precisely, the following assumption is granted.

Assumption 3.1. Assume that K is positive, of class C∞ on Mm×Mm, and that
∫

Mm
K(z, ζ)π(dz) =

1 for every ζ ∈ Mm.

Since Mm is compact, one has m(K) = minz,ζ∈Mm
K(z, ζ) > 0, and, for r ∈ {0, 1, . . .}, M (r)(K) =

supz,ζ∈Mm
|∂r

zK(z, ζ)| < +∞. Moreover, supz∈Mm
supζ1,ζ2

K(z,ζ1)−K(z,ζ2)
d(ζ1,ζ2)

< +∞ (Lipschitz continu-

ity in the second variable, uniformly in the first variable).

The mapping K : µ ∈ P(S) 7→ K(µ) ∈ C∞(Mm), is then defined as follows:

(11) K(µ)(z) =

∫

S
K
(

z, ξS(x)
)

µ(dx).

Note that
∫

S K(µ)(z)π(dz) = 1, and that the mapping K(µ) is of class C∞, thanks to Assumption 3.1.
Note also that (11) also makes sense if the probability distribution µ is replaced with a positive,

finite, measure µ.
The role played by the kernel K in the adaptive dynamics (10) is to define a smooth function At

depending on the probability distribution µt, to be used as a bias in the dynamics like in (4).

One may consider the following example of kernel K, in the case Mm = Tm. Let k : Rm → (0,∞)
be an even function of class C∞, with bounded derivatives, such that

∫

Mm
k(z)π(dz) = 1. For

ǫ ∈ (0, 1), let K(z, ζ) = 1
ǫ
k
(

z−ζ
ǫ

)

. In the regime ǫ → 0, such kernels K = Kǫ are smooth mollifiers.
If the function k is chosen with compact support, the positivity condition on K is satisfied by
choosing K(z, ζ) = α

ǫ
k
(

z−ζ
ǫ

)

+ 1− α, with α ∈ (0, 1).
It may also be useful to consider kernel functions which are not homogeneous, i.e. K(z, ζ) does not

depend only on z − ζ. For instance, set K(z, ζ) =
∑N

n=1Kn(z, ζ)θn(ζ), where N ∈ N, K1, . . . ,KN

are kernel functions satisfying Assumption 3.1, and θ1, . . . , θN are smooth functions Mm → (0,∞),

such that
∑N

n=1 θn(ζ) = 1 for all ζ ∈ Mm. Such examples are useful to build a bias which takes into
account local properties.

Note that a symmetry assumption for the kernel – K(z, ζ) = K(ζ, z) – is not required to prove

the consistency of the approach. For instance, assume that K(z, ζ) = K̃(z) does not depend on

ζ; in this case, one checks that K(µt) = K(µ0) = K̃(·) does not depend on t, and thus At = A0:
the adaptive system (10) reduces for this choice of kernel to the non-adaptive biased dynamics (4).
Based on this observation, it is clear that the kernel K is the object which governs the coupling
of the evolutions of X and A in the adaptive dynamics (10), and that its choice may be crucial
in practice to define an efficient algorithm. In the sequel, we consider that a kernel function K,
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satisfying Assumption 3.1, is given, and do not study quantitatively the dependence with respect
to K of the asymptotic results.

3.2. Normalization. The aim of this section is to introduce normalization operators, denoted by
N : C0(Mm, (0,∞)) → C0(Mm, (0,∞)) on the set of continuous functions from Mm to (0,∞).
The compactness of Mm plays a crucial role again. We provide below several natural families
of normalization operators. However, the presentation remains abstract to emphasize on the key
assumptions which will lead to the stability estimates provided below.

We will use the following convention: f denotes an arbitrary element in C0(Mm, (0,∞)), whereas
F = N (f) (capital letter) denotes its normalized version.

The most important example, for which a specific notation is introduced, is when normalization
is meant to construct probability distributions fdπ which are equivalent to the reference measure
π on Mm:

f(z) =
f(z)

∫

Mm
f(ζ)π(dζ)

.

In the ABP system (10), exp
(

−βAt

)

is thus the density (with respect to π) of a probability distri-
bution on Mm, for every t ≥ 0.

More generally, the normalization operator N is defined by

N (f) =
f

n(f)
,

where n : C0(Mm, (0,∞)) → (0,∞) is a function which satisfies the technical (but easy to check in
practice) conditions presented below.

Assumption 3.2. Assume that n : C0(Mm, (0,∞)) → (0,∞) satisfies the following conditions.

• There exists a sequence
(

n(k)
)

k∈N
, such that, for every k ∈ N, n(k) : C0(Mm, (0,∞)) → (0,∞)

is continuously differentiable, and for every f ∈ C0(Mm, (0,∞)),

n(k)(f) →
k→∞

n(f);

moreover the convergence is assumed to be uniform on sets of the form
{

f ∈ C0(Mm, (0,∞)) ; min f ≥ m, max f ≤ M
}

,

for every 0 < m ≤ M < ∞.
• There exists γn ∈ (0,∞) such that for all f ∈ C0(Mm, (0,∞)) and k ∈ N∗

1

γn
min f ≤ n(k)(f) ≤ γnmax f.

• For all f ∈ C0(Mm, (0,∞)), α ∈ (0,∞) and k ∈ N∗

n(k)(αf) = αn(k)(f).

• There exists Cn ∈ (0,∞) such that for all f1, f2 ∈ C0(Mm, (0,∞)) and k ∈ N∗

∣

∣n(k)(f1)− n(k)(f2)
∣

∣ ≤ Cnmax |f1 − f2|.
Only the continuous differentiability condition is relaxed when considering the limit k → ∞: n is

not required to satisfy this condition. The three other conditions are satisfied when n(k) is replaced
with n.

Let us provide some important consequences of the definition of N in terms of an operator n
satisfying Assumption 3.2. First, note that N ◦N = N : the normalization operator is a projection.
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Moreover, F = N (f) and f are equal up to a multiplicative constant; more generally, for two
different normalization operators N1 and N2, and any function f , the normalized versions F1 =
N1(f) and F2 = N2(f) are equal up to a multiplicative constant. In particular, F = N (F ), and thus
in the ABP system (10), the weights Fτ

(

ξS(Xτ )
)

are not necessarily equal to exp
(

−βAτ (ξS(Xτ ))
)

like in (2) from the introduction; however it is important to have a fixed normalization operator,
since by the second condition in Assumption 3.2 the ratio between these quantities remains bounded
from below and from above by positive constants.

We conclude this section with additional examples of normalization operators.

• Let q ∈ [1,∞), and define

nq(f) =
(

∫

Mm

f(z)qπ(dz)
)

1
q .

In the case q = 1, we recover the example introduced above: N1(f) =
f

n1(f)
= f .

• Let z0 ∈ Mm, then define

nz0(f) = f(z0) =

∫

Mm

f(z)δz0(dz).

• Let also

nmin(f) = min
z∈Mm

f(z) , nmax(f) = max
z∈Mm

f(z).

For these examples, the relaxation of the continuous differentiability condition in Assump-
tion 3.2 is essential: continuously differentiable approximations are given by

nmin(f) = lim
q→+∞

1

nq(1/f)
, nmax(f) = lim

q→+∞
nq(f).

3.3. Well-posedness. The aims of this section are, first, to provide a well-posedness statement
for the ABP system (10); second, to provide important stability properties for the processes X =
(

Xt

)

t≥0
and F =

(

Ft

)

t≥0
. We only provide a sketch of the proof of the existence-uniqueness of the

solution, since it follows from a standard application of the Picard iteration scheme. One of the key
arguments is Lemma 3.5 below.

Theorem 3.3 (Well-posedness of (10)). Grant assumptions of Section 2 concerning the model, and
assumptions of Section 3 concerning the algorithm.

• There exists a unique process t ∈ [0,∞) 7→ (Xt, µt, Ft, At), taking values in the space

C
(

R+,S × P(S) × C0(Mm, (0,∞))2
)

, which is solution of the ABP system (10).

• For all n ≥ 2, sup
t≥0

E|Xt|n < +∞.

• There exist m ∈ (0,∞) and
(

M (r)
)

r∈{0,1,··· }
∈ (0,∞) such that for all t ∈ R+ Ft ∈ F and

At ∈ A, almost surely, where

(12)

{

F =
{

F ∈ C∞(Mm);minF ≥ m,max |∂kF | ≤ M (k), k ≥ 0
}

,

A =
{

A = −1
β

log(F ); F ∈ F
}

.

The parameters m and M (k) are not random; they depend only on the kernel K, on the normal-
ization operator n, and on the initial condition µ0. The notation ∂k represents the derivative of
order k.

Theorem 3.3 is a justification that the problem we are considering is well-posed. The asymptotic
regime t → ∞ is studied later on. In particular, ergodicity properties of the unbiased and biased
dynamics are not required.
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Remark 3.4. In the proof of Theorem 3.3, the way the drift coefficient D(V,A) depends on A,
needs to be taken into account. We refrain from stating a general result, instead we consider only
the examples of Section 2.2 – where D(V,A) depends on the gradient ∇A of A.

The proof of the third part of Theorem 3.3 (stability estimates) is based on the following result.

Lemma 3.5. Let m =
min

(

minh0,m(K)
)

γn max
(

maxh0,M (0)(K)
) and M (k) =

max
(

maxh0,m
(k)(K)

)

γn

max
(

minh0,m(K)
) , for k ∈ {0, 1, . . .},

where h0 = K(µ0), m(K), M (k)(K) are given by Assumption 3.1, and γn is given by Assumption 3.2
Let τ 7→ xτ ∈ S and τ 7→ Fτ ∈ C0(Mm, (0,∞)) be continuous mappings, such that n(Fτ ) = 1 for

all τ ∈ R+. Define

µt = µ0 +

∫ t

0
Fτ

(

ξS(xτ )
)

δxτ dτ , ht = K(µt) , Ht = N
(

ht
)

.

Then, for all t ∈ R+, k ∈ N, z ∈ Mm,

m ≤ Ht(z) ≤ M (0) , |∂kHt(z)| ≤ M (k).

The Assumptions 3.1 and 3.2 are used explicitly in the proof; moreover, the compactness of Mm

is also a crucial property. The proof of Lemma 3.5 is elementary, however we provide some details
since it is important in the sequel.

Proof. We only prove the estimates on minHt and maxHt, since the proof of the estimates on the
derivatives is similar. Note that

ht(z) = h0(z) +

∫ t

0
K
(

z, ξS(xτ )
)

Fτ

(

ξ(xτ )
)

dτ,

where h0 = K(µ0), resp. K, are positive and continuous on Mm, resp. Mm × Mm. Thus for all
t ∈ R+

min
z∈Mm

ht(z) ≥ min
(

minh0,m(K)
)(

1 +

∫ t

0
Fτ

(

ξS(xτ )
)

dτ
)

max
z∈Mm

ht(z) ≤ max
(

max h0,M
(0)(K)

)(

1 +

∫ t

0
Fτ

(

ξS(xτ )
)

dτ
)

.

Then the claim follows since Ht =
ht

n(ht)
, and using the second condition in Assumption 3.2. �

We are now in position to define the Picard iteration scheme, which gives existence and uniqueness
of the solution of the system (10). First, note that only the variables Xt and Ft are considered in (10),
and that it is not necessary to deal explicitly with the other ones. The choice of considering Xt and
Ft is motivated by Lemma 3.5.

We are able to treat arbitrary time intervals [0, T ], by an appropriate choice of norm to construct
a contraction. For an arbitrary T ∈ (0,∞), define the mapping ΨT as follows: let (X,F ) ∈
L2

(

Ω, C([0, T ],S)
)

× L2
(

Ω, C([0, T ],F)
)

, and define ΨT (X,F ) = (Z,H) with

Zt = x+
√

2β−1Wt +

∫ t

0
D
(

V,Aτ

)

(Xτ )dτ, Aτ = − 1

β
log(F τ ),

µt = µ0 +

∫ t

0
Fτ

(

ξS(Xτ )
)

δXτdτ , Ht = N
(

K(ht)
)

.

Thanks to Lemma 3.5, Ht ∈ F for all t ∈ [0, T ], more precisely H ∈ L2
(

Ω, C([0, T ],F)
)

; the

property Z ∈ L2
(

Ω, C([0, T ],S)
)

comes from the uniform estimates over A ∈ A, from Property 2.5

in non compact cases Ed = Rd, and from standard computations.
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For α ∈ [0,∞), introduce the distance dα,T on L2
(

Ω, C([0, T ],S)
)

×L2
(

Ω, C([0, T ],F)
)

as follows:

dα,T
(

(x1, f1), (x2, f2)
)

=
∥

∥ sup
0≤t≤T

e−αtdS(x
1
t , x

2
t )
∥

∥

L2(Ω)
+

∥

∥ sup
0≤t≤T

e−αtdF (f
1
t , f

2
t )
∥

∥

L2(Ω)
,

where dS (resp. dF ) is the natural distance on S (resp. F , induced by the usual distance on
C∞(Mm,R)). Note that the distances dα,T and d0,T are equivalent, for all α ∈ (0,∞).

Standard computations then yield the following result. The proof is omitted.

Proposition 3.6. There exists Csol ∈ (0,∞), such that for all α ∈ (0,∞), for all T ∈ (0,∞), the
mapping ΨT is Lipschitz continuous, with respect to the distance dα,T , with Lipschitz constant less

than Csol
α

:

dα,T
(

ΨT (X1, F 1),ΨT (X2, F 2)
)

≤ Csol

α
dα,T

(

(X1, F 1), (X2, F 2)
)

.

Choosing α > Csol gives a contraction in the Banach space L2
(

Ω, C([0, T ],S)
)

×L2
(

Ω, C([0, T ],F)
)

,
and thus proves the existence of a unique solution to the fixed point equation on [0, T ]. Since
T ∈ (0,∞) is arbitrary, in fact (10) admits a unique global solution, well-defined on R+.

This construction proves the first part of Theorem 3.3, as well as the third part (combined with
Lemma 3.5). The second part is straightforward in the case of Brownian or extended dynamics in
the periodic case Ed = Rd. In other cases, it is necessary to rely on Assumptions 2.2 and 2.4, and

more precisely on Proposition 2.5, since At ∈ A =
{

− 1
β
log(F ) ; F ∈ F

}

thanks to Lemma 3.5.

We omit these standard computations.
These arguments conclude the proof of Theorem 3.3.

4. Convergence results

This section contains the main results of this article, concerning the asymptotic behavior, when
t → ∞, of the solution of the ABP system (10). We first study consistency of the approach, and
then its efficiency. The most important result dealing with consistency is Theorem 4.1: it states
almost sure convergence of averages µt(ϕ) to µβ(ϕ) (where µβ = µ0

β, see (5)).

Section 4.4 is devoted to an interpretation of the ABP system (10) as an Adaptive Biasing Force
method, and to the interpretation of the consistency results presented here in this context.

In the remainder of this section, all the Assumptions from Section 2, on the model, and of Sec-
tion 3, on the algorithm, are granted. In particular, Theorem 3.3 ensures that the ABP system (10)
is well defined. Moreover, the state space S is finite dimensional.

4.1. Consistency of ABP.

4.1.1. Convergence of weighted empirical averages. The main result of this article concerns the
consistency of the approach, for estimating averages µβ(ϕ) using weighted empirical averages µt(ϕ)
(defined by (10)).

Theorem 4.1. Let ϕ ∈ C∞(S,R) be a bounded function, with bounded derivatives of any order.
Then, almost surely,

µt(ϕ) →
t→∞

µβ(ϕ).

This result is a generalization in the adaptive case of (9). The proof of Theorem 4.1 requires the
introduction of auxiliary tools, and is provided in Section 5. Several straightforward consequences
of Theorem 4.1 are stated and proved in the next sections.
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4.1.2. Consequences of Theorem 4.1. The first consequence of Theorem 4.1 is the almost sure con-
vergence of the probability distribution µt to µβ, in the sense of the weak convergence of probability
distributions.

Corollary 4.2. We have the almost sure convergence

µt →
t→∞

µβ.

Precisely, almost surely, µt(ϕ) →
t→∞

µβ(ϕ) for every bounded continuous function ϕ : S → R.

Proof. We first state an auxiliary result: for every ϕ : S → R, bounded and Lipschitz continuous
function, almost surely

µt(ϕ) →
t→∞

µβ(ϕ) , almost surely.

The proof is standard, applying Theorem 4.1 for an approximating sequence ϕǫ = ρǫ ⋆ϕ, defined by
convolution with smooth functions ρǫ(·) = 1

ǫ
ρ1
(

·
ǫ

)

, where ρ is of class C∞, with compact support,
and

∫

S ρdλ = 1. Indeed, S is finite dimensional.
Let BL(S,R) = {ϕ : S → R ; ϕ bounded and Lipschitz continuous}. Then there exists a se-

quence of functions
(

ϕn

)

n≥0
defined from S to R, bounded and Lipschitz continuous, such that

µt →
t→∞

µβ ⇐⇒ d(µt, µβ) →
t→∞

0,

where

d(µ1, µ2) =
∞
∑

n=0

1

2n
min

(

1,
∣

∣

∫

S
ϕndµ

1 −
∫

S
ϕndµ

2
∣

∣

)

.

Thanks to the convergence result above, almost surely, for every n ≥ 0, µt(ϕn) →
t→∞

µβ(ϕ), and

thus d(µt, µβ) →
t→∞

0 almost surely.

This concludes the proof of Corollary 4.2. �

The following result deals with the almost sure convergence of the functions F t and At. Note
that contrary to Theorem 4.1 and Corollary 4.2, the limits F∞ and A∞ depend on the parameters
of the algorithm, precisely on the kernel function K. Note that these almost sure limits are not
random.

The convergence of At to A∞, which is close to the Free Energy function A⋆ for well-chosen kernel
functions, is one of the nice features of the ABP method, in particular when one is interested in
computing free energy differences.

Corollary 4.3. Define, for all z ∈ Mm,
{

F∞(z) = µβ

(

K(z, ·)
)

,

A∞(z) = − 1
β
log(F∞(z)).

Then, almost surely, for every ℓ ∈ {0, 1, . . .}, uniformly on Mm,






∂ℓF t →
t→∞

∂ℓF∞,

∂ℓAt →
t→∞

∂ℓA∞.

Proof. The result is a consequence of the regularity properties of the kernel mapping K, of Ascoli’s
theorem, and of Theorem 4.1.

Let K : P(S) → C∞(Mm) be the mapping defined by (11).
18



Let
(

zn
)

n∈N
denote a dense sequence in Mm, and define, for all µ1, µ2 ∈ P(S),

d∞(µ1, µ2) =
∞
∑

ℓ,n=0

1

2ℓ+n
min

(

1,
∣

∣

∫

S
∂ℓ
zK(zn, ξS(·))dµ1 −

∫

S
∂ℓ
zK(zn, ξS(·))dµ2

∣

∣

)

.

Then for any sequence
(

µk
)

k∈N
and any µ in P(S),

• if µk →
k→∞

µ in P(S), then d∞(µk, µ) →
k→∞

0;

• if d∞(µk, µ) →
k→∞

0, then for every ℓ ∈ {0, 1, . . .},

∂ℓK(µk) →
k→∞

∂ℓK(µ),

uniformly on Mm, thanks to Ascoli’s theorem and the bound ‖∂k+1
z K‖∞ ≤ M (k+1)(K).

Thanks to Theorem 4.1, it is straightforward to conclude that almost surely

d∞(µt, µβ) →
t→∞

0.

These arguments yield the convergence of F t. The convergence of At = − 1
β
log(F t) is then obtained

thanks to the almost sure lower bound from Theorem 3.3,

min
Mm

F t ≥ m > 0.

�

4.2. Applications to the diffusion processes of Section 2.2. The aim of this section is to
specify, for each of the examples of diffusion processes from Section 2.2:

• the convergence result of Theorem 4.1, for well chosen test functions ϕ;
• the expression of the limit F∞ = e−βA∞ , in terms of the kernel K and of the free energy

function A⋆.

We introduce the probability distribution µref
β (dx) = e−βV (x)

∫
Ed

e−βV (y)dy
dx on Ed. Observe that in all

the examples µref
β is the marginal of the distribution µβ with respect to its Ed-valued component

(in the Brownian dynamics case, µref
β = µβ). In fact, in these cases, one is in fact more interested

in µref
β than in µβ.

We also denote by Aref
⋆ the Free Energy function associated with the reaction coordinate ξ and

the probability distribution µref
β : by definition, e−βA⋆ is the Radon-Nikodym derivative of the image

of µref
β by ξ, with respect to the probability distribution π on Mm.

Assume that the kernel K = Kδ depends on δ > 0, and is such that the probability distribution
Kδ(z, ζ)π(dz)π(dζ) converges when δ → 0, to δz(dζ)π(dz). Then, when δ → 0 (and also ǫ → 0, in
the extended dynamics case), the expressions below prove that A∞ is an approximation of Aref

⋆ . We
do not provide quantitative estimates.

4.2.1. Brownian dynamics (Section 2.2.1).

• Computation of averages: for every ϕ ∈ C∞(Ed,R), bounded and with bounded derivatives,
almost surely

∫

ϕdµref
β = lim

t→∞

1 +
∫ t

0 Fτ (ξ(Xτ ))ϕ(Xτ )dτ

1 +
∫ t

0 Fτ (ξ(Xτ ))dτ
.

• Free Energy function:

e−βA∞(·) = F∞(·) =
∫

Ed

Kδ(·, ξ(x))µref
β (dx) =

∫

Mm

Kδ(·, ζ)e−βAref
⋆ (ζ)π(dζ).
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In particular, Theorem 1.1, stated in Section 1.1 and taken from [3], is a consequence of Corol-
laries 4.2 and 4.3, in the simplified context.

4.2.2. Langevin dynamics (Section 2.2.2). We use the notation Xt = (qt, pt).

• Computation of averages: for every ϕ ∈ C∞(Ed,R), bounded and with bounded derivatives,
almost surely

∫

ϕdµref
β = lim

t→∞

1 +
∫ t

0 Fτ (ξ(qτ ))ϕ(qτ )dτ

1 +
∫ t

0 Fτ (ξ(qτ ))dτ
.

• Free Energy function:

e−βA∞(·) = F∞(·) =
∫

Ed

Kδ(·, ξ(q))µref
β (dq) =

∫

Mm

Kδ(·, ζ)e−βAref
⋆ (ζ)π(dζ).

Observe that the free energy function A∞ is the same for the Brownian and the Langevin dy-
namics. This identity is in fact obtained since ξS(q, p) = ξ(q) only depends on q ∈ Ed.

4.2.3. Extended dynamics (Section 2.2.3). We use the notation (Xt, Zt). Recall that ξS(x, z) = z
in this case.

• Computation of averages: for every ϕ ∈ C∞(Ed,R), bounded and with bounded derivatives,
almost surely

∫

ϕdµref
β = lim

t→∞

1 +
∫ t

0 Fτ (Zτ )ϕ(Xτ )dτ

1 +
∫ t

0 Fτ (Zτ )dτ
.

• Free Energy function:

e−βA∞(·) = F∞(·) =
∫

Ed×Mm

K(·, z)µβ(dxdz)

=

∫

Ed×Mm

K(·, z)Kext
ǫ (z, ξ(x))µref

β (dx)π(dz)

=

∫

Mm

(

∫

Mm

K(·, z)Kext
ǫ (z, ζ)π(dz)

)

e−βAref
⋆ (ζ)π(dζ),

where we have introduced the auxiliary kernel Kext
ǫ : Mm ×Mm → (0,∞), such that µβ(dxdz) =

Kext
ǫ (z, ξ(x))µref

β (dx)π(dz): up to a multiplicative constant, Kext
ǫ (z, ζ) = exp

(

− 1
2ǫ |z − ζ|2

)

. Note
that the expression of A∞ is not the same as in the previous examples, due to the additional term
in the definition of the extended potential energy function on Ed ×Mm. However, when ǫ → 0, A∞

converges to Aref
⋆ (·, β): this observation justifies the use of the extended dynamics in the context of

free energy computations.

4.3. Efficiency. We now state and prove a series of results concerning the efficiency of the approach,
first in a qualitative way, second with a more quantitative approach. Corollary 4.4 deals with the
convergence of the non-weighted empirical distribution ρt, defined by (13); it is a straightforward
consequence of Corollary 4.2. Proposition 4.5 deals with the mean-square error, and identifies an
asymptotic variance. Since the proof of Proposition 4.5 requires tools introduced in Section 5, we
postpone its proof to Section 6.

In terms of the behavior of the occupation measure and of the asymptotic variance, the results
stated below may be interpreted as follows: in the asymptotic regime t → ∞, the Adaptive Biasing
Potential method (10) performs in the same way as the non-adaptive Biasing Potential method (4),
with the bias A = A∞.

Note that these results are asymptotic, when t → ∞; it would also be interesting to study
quantitatively the rates of convergence, with respect to time t, for each of the results. This question
is left for future works.
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4.3.1. Convergence of non-weighted empirical distributions. In this section, we focus on the conver-
gence of non-weighted empirical averages ρt(ϕ), where ρt is the probability distribution on S defined
by

(13) ρt =
µ0 +

∫ t

0 δXτ dτ

1 + t
.

We refer to ρt as the non-weighted empirical distribution, or as the occupation measure, associated
with the diffusion process

(

Xt

)

t≥0
defined by (10). We have the following result.

Corollary 4.4. Let ϕ ∈ C∞(S,R) be a bounded function, with bounded derivatives of any order.
Then

(14) ρt(ϕ) →
t→+∞

µA∞

β (ϕ) , almost surely,

where A∞ = lim
t→∞

At (see Corollary 4.3), and µA∞

β is given by (5).

Moreover, almost surely, ρt →
t→∞

µA∞

β .

The arguments below justify than Corollary 4.4 can be interpreted, qualitatively, as an efficiency
property of the ABP method.

First, observe that considering the biased dynamics
(

XA
t

)

t≥0
given by (4), and setting

ρAt =
µ0 +

∫ t

0 δXA
τ
dτ

1 + t
,

then almost surely ρAt (ϕ) →
t→∞

µA
β (ϕ). The limit in (14), when the adaptive dynamics is used, is the

same as when using the non-adaptive dynamics (4), with A = A∞.
Second, observe that the image by the mapping ξS : S → Mm of the probability distribution µA

β

has density with respect to π proportional to

exp
(

βA− βA⋆(·)
)

.

This density is constant, equal to 1, when A = A⋆: this means that in the asymptotic limit t → ∞,
the values of ξS(X

A⋆
t ) are distributed according to the reference probability distribution π. On the

contrary, when A = 0, the values of ξS(X
0
t ) are distributed according to π0

β = e−βA⋆dπ.
Assume that π is the uniform distribution on Mm = Tm; assume also that all the metastability

of the system is encoded by the reaction coordinate ξ. If A⋆ has several local minima, then π0
β is a

multimodal distribution, and the diffusion process
(

X0
t

)

t≥0
is metastable, and does not efficiently

sample all the state space. Thus the convergence of ρ0t to µ0
β is expected to be slower than the

convergence of ρA⋆
t to µA⋆

β . Indeed, the exploration of the metastable states tends to be uniform,
when t → ∞, when observed through the reaction coordinate mapping.

Since A∞ is an approximation of the Free Energy function A⋆, for well-chosen kernel functions
K, efficiency of the ABP method is justified by the observations above.

We now provide the proof of Corollary 4.4, with elementary arguments. The proof of the almost
sure convergence of the probability distributions is obtained as in the proof of Corollary 4.2, therefore
we only focus on the convergence of averages ρt(ϕ).

Proof of Corollary 4.4. Introduce the auxiliary measure

(15) ρt =
µ0 +

∫ t

0 δXτdτ

1 +
∫ t

0 Fτ ◦ ξS(Xτ )dτ
=

(1 + t)ρt

1 +
∫ t

0 Fτ ◦ ξS(Xτ )dτ
.
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Since the measures ρt and ρt only differ by a multiplicative (normalization) constant, one has the
identity ρt =

ρt
ρt(1)

. Then, note that

ρt(ϕ) =
µ0(ϕ) +

∫ t

0 Fτ ◦ ξS(Xτ )
ϕ(Xτ )

Fτ◦ξS(Xτ )
dτ

1 +
∫ t

0 Fτ ◦ ξS(Xτ )dτ

=
µ0(ϕ) +

∫ t

0 Fτ ◦ ξS(Xτ )
ϕ(Xτ )

F∞◦ξS(Xτ )
dτ

1 +
∫ t

0 Fτ ◦ ξS(Xτ )dτ

+
1

1 +
∫ t

0 Fτ ◦ ξS(Xτ )dτ

∫ t

0
Fτ ◦ ξS(Xτ )ϕ(Xτ )

( 1

Fτ ◦ ξS(Xτ )
− 1

F∞ ◦ ξS(Xτ )

)

dτ

= µt

( ϕ

F∞ ◦ ξS
)

+ o(1),

using Cesaro’s Lemma. Indeed, one has the almost sure lower bound 1+
∫ t

0 Fτ ◦ξS(Xτ )dτ ≥ 1+mt;

moreover thanks to Corollary 4.3, Ft = N (F t) →
t→+∞

F∞ = N (F∞), uniformly on Mm, almost

surely.
Moreover, the function ϕ

F∞◦ξS
is bounded and of class C∞, with bounded derivatives (using

minF∞ ≥ m > 0 thanks to Theorem 3.3). Applying Theorem 4.1, almost surely

ρt(ϕ) =
ρt(ϕ)

ρt(1)
→

t→+∞

µβ

(

ϕ/F∞

(

ξS(·)
)

)

µβ

(

1/F∞

(

ξS(·)
)

) =
µβ

(

ϕ/F∞

(

ξS(·)
)

)

µβ

(

1/F∞

(

ξS(·)
)

)

=

∫

S ϕ(x) exp
(

−β
(

E(V )(x)−A∞(ξS(x))
))

λ(dx)
∫

S exp
(

−β
(

E(V )(x)−A∞(ξS(x))
))

λ(dx)

=

∫

S ϕ(x) exp
(

−β
(

E(V,A∞)(x)
))

λ(dx)
∫

S exp
(

−β
(

E(V,A∞)(x)
))

λ(dx)

= µA∞

β (ϕ),

thanks to the identity (6), and to (5). This concludes the proof. �

4.3.2. Asymptotic mean-square error. This section is devoted to a more quantitative approach,
concerning the behavior when t → ∞ of the mean-square error

E
∣

∣µt(ϕ) − µβ(ϕ)
∣

∣

2
,

for functions ϕ ∈ C∞(S,R), bounded and with bounded derivatives.
In order to compare the performance of the adaptive and non-adaptive versions of the biasing

potential approach, introduce the following quantity

V∞(ϕ,A) = lim sup
t→∞

tE|µA
t (ϕ) − µβ(ϕ)|2 ∈ [0,∞],

where A : Mm → R is fixed, µA
t (ϕ) is the estimator of µβ(ϕ) defined by the left-hand side of (9),

for every t ≥ 0, using the biased dynamics (4).
In Section 6, it will be proved that in fact

V∞(ϕ,A) = lim
t→∞

tE|µA
t (ϕ) − µβ(ϕ)|2 ∈ (0,∞)

is a non-degenerate limit.
The following result, concerning the asymptotic mean-square error of the estimator µt(ϕ) of

µβ(ϕ), constructed using the adaptively biased dynamics (10).
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Proposition 4.5. Let ϕ ∈ C∞(S,R) be a bounded function, with bounded derivatives of any order.
Then

tE|µt(ϕ)− µβ(ϕ)|2 →
t→∞

V∞(ϕ,A∞),

where A∞ = lim
t→∞

At almost surely, see Corollary 4.3.

As already explained, the asymptotic mean-square error for the adaptive version is the same as
for the non-adaptive version, where the bias is chosen as A = A∞. Note that the dependence of
V∞(ϕ,A) with respect to A depends a lot on the choice of the function ϕ; therefore no optimality
result is stated.

The proof of Proposition 4.5 is postponed to Section 6; explicit expressions for V∞(ϕ,A), in
terms of the solutions of Poisson equations, are given there.

4.4. Interpretation as an Adaptive Biasing Force method. The aim of this section is to
describe how the ABP system (10) can be written as Adaptive Biasing Force strategy: instead of
updating a function A : Mm → R, one updates its gradient. We discuss how to write and interpret
the consistency results, in particular Corollary 4.3, in light of this connexion.

To keep notation simple, consider the framework of Section 1.1: the diffusion process is the
Brownian dynamics on Td, and ξ(x1, . . . , xd) = x1 ∈ T, i.e. m = 1. Assume in addition that the
kernel K is symmetric, K(z, ζ) = K(ζ, z).

The Free Energy function A⋆ satisfies the identity

A′
⋆(x1) =

∫

Td−1

(∂x1V (x))e−β(V (x)−A⋆(x1))dx2 . . . dxd = EX∼µβ
[∂x1V (X)

∣

∣X1 = x1],

where in the conditional expectation the random variable X is distributed according to µβ. This
identity is the starting point for constructions of Adaptive Biasing Force (ABF) methods mentioned
in Section 1. The quantity A′

⋆(x1) is often called the equilibrium mean force in direction x1. To write
∂x1At(x1) as a conditional expectation, it is necessary to consider an additional variable (similarly
to the construction of the extended dynamics in Section 2.2.3).

On the one hand, observe that the equilibrium mean force can be written as the conditional
expectation

∂zA⋆(z) = E(X,Z)∼η⋆ [∂x1V (X)
∣

∣Z = z],

where (X,Z) ∼ η⋆(dx, dz) = 1z=x1µβ(dx)dz. On the other hand, for any t ≥ 0,

A′
t(z) = −β−1

∫

Td−1 ∂zK(z, x1)µt(dx)
∫

Td−1 K(z, x1)µt(dx)
= E(X,Z)∼ηt

[

−β−1∂zK(Z, ξ(X))

K(Z, ξ(X))

∣

∣

∣
Z = z

]

,

where (X,Z) ∼ ηt(dx, dz) = K
(

z, ξ(x)
)

µt(dx)dz is a probability distribution on Td × T, which
depends on the kernel function K. Letting t → ∞, thanks to Corollary 4.2, it is straightforward to
check that ηt converges almost surely to η∞(dx, dz) = K

(

z, x1
)

µβ(dx)dz. We thus obtain different
expressions of A′

∞(z):

A′
∞(z) = E(X,Z)∼ηt

[

−β−1∂zK(Z, ξ(X))

K(Z, ξ(X))

∣

∣

∣
Z = z

]

= −β−1

∫

Td−1 ∂zK(z, x1)µβ(dx)
∫

Td−1 K(z, x1)µβ(dx)

=

∫

Td−1 ∂x1V (x)K(z, x1)µβ(dx)
∫

Td−1 K(z, x1)µβ(dx)

= E(X,Z)∼η∞ [∂x1V (X)
∣

∣Z = z],
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thanks to the use of an integration by parts formula. A comparison of the expressions for A′
⋆(z)

and A′
∞(z) reveals that both quantities are written as conditional expectations of the same random

variable ∂x1V (X), conditional on Z = z, but for different distributions for the variables (X,Z),
respectively η⋆ and η∞. Note that the kernel function K plays a key role, and that adding the
variable Z is necessary: indeed, both η⋆ and η∞ have the marginal with respect to x equal to µβ.

The observation above may be the starting point for other types of Adaptive Biasing methods,
based on a single realization of the stochastic process and a self-interaction mechanism using an
empirical distribution.

As already explained, if K = Kδ is constructed as a mollifier, when δ → 0, η∞ converges to η⋆,
and we recover the usual property that good approximation of the Free Energy function is obtained
in the algorithm.

5. Proof of Theorem 4.1

The aim of this section is to provide a detailed proof of Theorem 4.1.
First, in Sections 5.1.1 and 5.1.2, we present the strategy, and in particular we establish a con-

nexion with the analysis of self-interacting diffusions from [4], and more generally of stochastic
algorithms, see [2], [8], [21], [29]. More precisely, Section 5.1.1 presents a (random) change of time
variable, s = θ(t), which transforms the weighted empirical distributions µt associated with the
process Xt, into non-weighted empirical distributions νs associated with a process Ys, with modi-
fied dynamics. In Section 5.1.2, we explain how the so-called ODE method can be exploited: the
asymptotic behavior of νs, when s → ∞, is related to the behavior of a differential equation of the
type ν̇ = −ν+Π(ν). A crucial result, Proposition 5.2, states that Π(ν) = µβ is a constant mapping,
and the dynamics of the differential equation above is extremely simple.

The analysis is thus expected to be much simpler than in [4]. Indeed, in Section 5.2, we directly
prove the almost sure convergence of µt(ϕ) − µβ(ϕ) to 0 when t → ∞. A substantial, technical,
part, is devoted to the detailed analysis of the associated Poisson equation.

Even if it is not explictly used in the technical part of the proof of Theorem 4.1, the description of
the change of time variable strategy is included for pedagogical purpose. Moreover, in our opinion, it
is an elegant way to justify the consistency of the approach. Moreover, it may be a useful strategy in
other similar situations. Readers only interested in the proof of Theorem 4.1 may skip Sections 5.1.1
and 5.1.2 – except for Proposition 5.2 which is used in the sequel.

5.1. Approach from a stochastic approximation perspective.

5.1.1. Change of time variable. In this section, we introduce a random change of time variable, and
describe some of its nice properties. This is only a mathematical tool, and does not need to be
performed in practice when implementing the method. In addition, as explained above, this change
of variable has only a pedagogical role, and will not be used in the technical details of the proof.

Consider the solution of the ABP system (10). Then the mapping t 7→ µt ∈ P(S) is the unique
solution of the following Ordinary Differential Equation (ODE)

(16)
dµt

dt
=

θ′(t)

1 + θ(t)

(

δXt − µt

)

, θ(t) =

∫ t

0
Fτ

(

ξS(Xτ )
)

dτ.

The ODE (16) is intepreted in the following weak sense: for every bounded continuous test
function ϕ : S → R, the real-valued function t 7→ µt(ϕ) =

∫

S ϕdµt ∈ R is the unique solution of the
differential equation

dµt(ϕ)

dt
=

θ′(t)

1 + θ(t)

(

ϕ(Xt)− µt

)

,

with the initial condition µ0(ϕ).
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Define the measure µt = µ0 +
∫ t

0 Fτ

(

ξS(Xτ )
)

δXτdτ . Then observe that θ(t) = µt(1) can be
interpreted as a normalizing constant.

The presence of the random variable θ(t) in the ODE (16) makes the analysis not trivial at first
sight. However, we can get rid of this quantity by an appropriate change of time variable. As we
will see, this procedure can be interpreted as a way to get rid of the weights in the definition of the
measure µt. The dynamics of the stochastic process Xt will be modified accordingly.

Thanks to Theorem 3.3, there exist two deterministic real numbers 0 < m ≤ M such that almost
surely θ′(t) = Ft

(

ξS(Xt)
)

∈ [m,M ] for all t ≥ 0. Moreover, θ(0) = 0, and θ(t) ≥ mt →
t→∞

∞. As

a consequence, almost surely, θ : [0,∞) → [0,∞) is a C1-diffeomorphism, with inverse denoted by
θ−1.

Define, for every s ≥ 0, W̃ (s) =
∫ θ−1(s)
0

√

θ(t)dW (t). Note that for every s ≥ 0, θ−1(s) =
inf {t ≥ 0 ; θ(t) ≥ s} is a bounded stopping time, associated with the filtration generated by the

Wiener process W . Then, it is straightforward to check that
(

W̃ (s)
)

s≥0
is a standard Wiener process

on S.
We introduce the following system:

(17)























dYs = D
(

V,Bs

)

(Ys)
1

Gs(ξ(Ys))
ds+

√

2β−1

Gs(ξS(Ys))
ΣdW̃s,

νs =
1

1+s

(

µ0 +
∫ s

0 δYσdσ
)

,

Gs = N
(

K(νs)
)

,

Bs = − 1
β
log

(

Gs

)

.

Then we have the following result, which can be proved with elementary computations: almost
surely,

(18)

{

Xt = Yθ(t) , µt = νθ(t) , Ft = Gθ(t) , At = Bθ(t) , ∀ t ≥ 0

Ys = Xθ−1(s) , νs = µθ−1(s) , Gs = Fθ−1(s) , Bs = Aθ−1(s) , ∀ s ≥ 0.

In other words, one may consider the system (17) as the time-changed version of the original
ABP system (10), with the new time variable s = θ(t), and the new unknowns Ys, νs, Gs and Bs,
replacing Xt, µt, Ft and At.

Observe that the weights Ft

(

ξS(Xt)
)

= Gs

(

ξS(Ys)
)

do not appear anymore in the definition of

the measure νs. Instead, the weights appear in the dynamics of the diffusion process
(

Ys

)

s≥0
. In

terms of new variables, the ODE (16) has a simpler formulation:

(19)
dνs
ds

=
1

1 + s

(

δYs − νs
)

.

We are interested in the convergence of µt (or µt(ϕ)) when t → ∞. Since µt = νθ(t), and
θ(t) →

t→∞
∞ almost surely, we now study the asymptotic behavior (s → ∞) of νs. In the remainder

of this section, we work only with the system (17), and consider s as the natural time variable.
From a practical point of view, s is only a fictive time variable, whereas t is the physical one.

Then observe that proving Theorem 4.1 is equivalent to proving that

νs(ϕ) →
s→∞

µβ(ϕ) , almost surely.

Indeed, µt = νθ(t), and almost surely θ(t) →
t→∞

∞. In Section 5.1.2 below, we describe how the

asymptotic behavior of νs, when s → ∞, can be analyzed using the ODE method.
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5.1.2. Consistency via the ODE method. Thanks to the change of time variable s = θ(t) introduced
above, the structure of the system (17) is closer to the formulation of self-interacting diffusions
(see [4] for instance), depending on the normalized occupation measure, than for the initial sys-
tem (17). However, in the specific situation considered in the present article, arguments need to be
modified, in particular the coupling of the evolutions of the diffusion process and of the empirical
distributions does not have the same structure (here it depends on the kernel K).

Thanks to the ODE (19), observe that there is an asymptotic time scale separation (in the limit
s → ∞) between slow variables νs, Gs and Bs, and fast variables Ys. It is reasonable to focus
on the asymptotic behavior of the diffusion process when the other variables are frozen; when its
unique invariant distribution (in general depending on the frozen variables) is introduced in place
of the Dirac mass in (19), a limit ODE is obtained: the rationale behind the ODE method is that
its asymptotic behavior provides information on the asymptotic behavior of the solution of (19), in
some situations.

The ODE method allows us to make rigorous the discussion above, and to identify the appropriate
limit ODE. In this article, one of the main specific properties is that the invariant distribution of
the fast equation with frozen variables is equal to µβ, the target probability distribution, and thus
does not depend on the frozen variables.

Remark 5.1. The asymptotic time scale separation (when t → ∞) between slow variables µt, Ft

and At, and the fast variable Xt, already appears in the original system (2). The change of time
variable s = θ(t) allows us to get rid of the random quantity θ(t), and to easily identify the correct
limit ODE.

Precisely, for every G ∈ C∞(Mm,R) ∩ C0(Mm, (0,∞)), let
(

Y G
s

)

s≥0
denote the diffusion process

which is the unique solution of

(20) dY G
s =

D
(

V,B
)

(Y G
s )

G
(

ξ(Y G
s )

) ds+

√

2β−1

G
(

ξ(Y G
s )

)ΣdW̃s,

where B = − 1
β
log(G). Even if there are three slow variables, ν, G and B, it is sufficient to indicate

only one of them, namely G.

Proposition 5.2. For every G ∈ C∞(Mm,R) ∩ C0(Mm, (0,∞)), the equation (20) admits a unique
invariant probability distribution, equal to µβ.

Proof. First note that G = G

n(G)
= exp(−βB)

n(G)
is equal to exp(−βB) up to a multiplicative constant,

and thus a probability distribution µ is invariant for (20) if and only if it is invariant for

(21) dYB
s =

D
(

V,B
)

(YB
s )

e−βB(ξ(YB
s ))

ds +

√

2β−1

e−βB(ξ(YB
s ))

ΣdW̃s.

Let LB
Y denote the associated infinitesimal generator: then for every function ϕ ∈ C∞(S,R),

(22) LB
Yϕ(y) =

1

e−βB(ξS (y))
LB
Xϕ(y),

where LB
X is the infinitesimal generator of the biased diffusion process XB defined by (4), with

A = B.
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Since the unique invariant probability distribution of (4) with A = B is µB
β , the unique invariant

probability distribution of (20) is proportional to

e−βB(ξS (y))µB
β (dy) = e−βB(ξS (y))

exp
(

−βE(V,B)(y)
)

ZB(β)
λ(dy)

=
exp

(

−βE(V )(y)
)

ZB(β)
λ(dy) =

Z0(β)

ZB(β)
µβ(dy),

using (5) (expression of expression of µB
β ) and (6) (expression of E(V,B)).

Identifying the normalizing constants then concludes the proof of Proposition 5.2. �

The ODE method suggests then to introduce the following ODE:

(23)
dγs
ds

=
1

1 + s

(

Π(γs)− γs
)

=
1

1 + s

(

µβ − γs
)

.

Indeed, thanks to Proposition 5.2, Π(γ) = µβ is the unique invariant distribution of (20), where
G = K(γ). This property justifies the consistency of the approach, i.e. the almost sure convergence
of νs to µβ. Indeed, it is straightforward to check that, for any initial condition γ0 ∈ P(S), one has

γs =
1

1 + s

(

γ0 + sµβ) →
s→∞

µβ.

Moreover, a rigorous connexion between the asymptotic behaviors of νs and of γs may be stated
for instance using the notion of asymptotic pseudo-trajectories (see [2], [4]); or by proving direct
estimates on the Lp norm of the random variable νs(ϕ) − µβ(ϕ).

In Section 5.2 below, instead, we prove directly estimates on the Lp norm of the random variable
µt(ϕ) − µβ(ϕ); indeed, thanks to Proposition 5.2, the situation is rather simple and the error is
analyzed using straightforward computations, combined with a powerful auxiliary tool: the use of
the solutions of associated Poisson equation.

5.2. Analysis of the error and convergence.

5.2.1. The error in terms of the solution of Poisson equations. In order to prove that

µt(ϕ) − µβ(ϕ) =

∫ t

0 Fτ (ξS(Xτ ))
[

ϕ(Xτ )− µβ(ϕ)
]

dτ

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ

converges to 0 when t → ∞, it is standard to introduce a family of Poisson equations depending on
the integrand on the numerator. Let Φ : (s, y) ∈ [1,∞)×S 7→ Φ(s, y) ∈ R be a C1,2 function, i.e. of
class C1 with respect to the variable s and of class C2 with respect to the variable y, with bounded
associated derivatives. The application of Itô’s formula yields the equality

Φ(t,Xt)− Φ(0,X0) =

∫ t

0
LAτ

X (τ,Xτ )dτ +

∫ t

0

∂Φ

∂τ
(τ,Xτ )dτ

+

∫ t

0

√

2β−1〈∇Φ(τ,Xτ ),ΣdW (τ)〉,

where LA
X is the infinitesimal generator of the biased diffusion process XA,see (4).

Assume that the function Φ satisfies, for all t ≥ 0, x ∈ S

(24) LAt

X Φ(t,Xt) = Ft(ξS(x))
[

ϕ(x)− µβ(ϕ)
]

;
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then one obtains

µt(ϕ) − µβ(ϕ) =
Φ(t,Xt)− Φ(0,X0)

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ

−
∫ t

0

√

2β−1〈∇Φ(τ,Xτ ),ΣdW (τ)〉
1 +

∫ t

0 Fτ (ξS(Xτ ))dτ

−
∫ t

0
∂Φ
∂τ

(τ,Xτ )dτ

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ
.

Recall that, 1 +
∫ t

0 Fτ (ξS(Xτ ))dτ ≥ mt, for all t ≥ 0, almost surely, thanks to Theorem 3.3, with
m > 0. Convergence of µt(ϕ) − µβ(ϕ) to 0, in a Lp sense, then follows from appropriate estimates
on the function Φ and its derivatives.

We now focus on the question of existence of the function Φ, and on the analysis of its properties.
The condition (24) can be written as

(25) Φ(t, x) =
1

n(F t)
Ψ(At, x)

where, for any A ∈ A (see (12)), Ψ(A, ·) is solution of the Poisson equation

(26)

{

LA
XΨ(A, ·) = e−βA(ξS(x))

[

ϕ− µβ(ϕ)
]

,
∫

Ψ(A, ·)dµA
β = 0.

The aim of the following section is to study well-posedness and some important estimates con-
cerning the solution Ψ(A, ·) of the Poisson equation (26).

5.2.2. Analysis of the Poisson equations (26). Introduce the set

(27) C = C∞
pol(S,R) =

{

ϕ ∈ C∞(S,R) ; ∀ k ∈ N,∃ pk ∈ N, sup
x∈S

|Dkϕ(x)|
1 + |x|pk < ∞

}

of functions ϕ : S → R, of class C∞, with at most polynomial growth, and all derivatives with
at most polynomial growth. Note that the average µβ(ϕ) is well-defined, since the probability
distribution µβ admits finite moments of any order.

We first state and prove the following well-posedness result.

Proposition 5.3. For every A ∈ A and every ϕ ∈ C, there exists a unique solution Ψ(A, ·) ∈ C of
the Poisson equation (26).

Proof of Proposition 5.3. Define the auxiliary function ϕA = e−A◦ξS
(

ϕ − µβ(ϕ)
)

, and note that

ϕA ∈ C.
Observe that, thanks to (8),

∫

ϕAdµA
β =

∫

[

ϕ− µβ(ϕ)
]

dµ0
β = 0.

Thanks to this centering condition, we are in position to apply standard results concerning Pois-
son equations, either for elliptic – Brownian and extended dynamics – or hypoelliptic – Langevin
dynamic – operators. We obtain that

(28) Ψ(A, x) = −
∫ ∞

0
Ex

[

ϕA(XA
t )

]

dt,

where XA is the biased process given by (4).
This concludes the proof of Proposition 5.3. �
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Remark 5.4. Note that, thanks to the identity (22), the Poisson equation (26) may be rewritten as

LA
YΨ(A, ·) = ϕ− µβ(ϕ).

Thanks to Proposition 5.2, µβ is the unique invariant distribution for the process (21) with infinites-

imal generator LA
Y , for any choice of A ∈ A. This interpretation gives another way of representing

the solution of the Poisson equation:

Ψ(A, x) = −
∫ ∞

0
Ex

[

ϕ(Y A
s )− µβ(ϕ)

]

ds.

If one follows the strategy outlined in Sections 5.1.1 and 5.1.2, this way of writing the Poisson
equation is more natural. By adapting the elements of proof below, using this formulation of the
Poisson equation, it is clear that Proposition 5.2 and the ODE (23) justify the consistency.

We now provide several properties of the solutions Ψ(A, ·) which are required below. We empha-
size on the property that bounds are uniform with respect to the variable A ∈ A, the set defined
by (12).

Proposition 5.5. Let ϕ ∈ C, of class C∞, with at most polynomial growth.
There exist C ∈ (0,∞) and p ∈ N⋆, such that the following results hold true.

(i) For every A ∈ A and every x ∈ S
(29)

∣

∣Ψ(A, x)
∣

∣ ≤ C(1 + |x|p).
(ii) For every A ∈ A and every x ∈ S

(30)
∣

∣∇xΨ(A, x)
∣

∣ ≤ C(1 + |x|p).
(iii) The function (t, x) ∈ [0,∞) × S 7→ Ψ(At, x) is of class C1,2, and for every x ∈ S and every

t ≥ 0, almost surely

(31)
∣

∣

∂Ψ(At, x)

∂t

∣

∣ ≤ C(1 + |x|p)
1 + t

,

where
(

At

)

t≥0
is the A-valued process defined in (10).

In the proof below, we only consider the case of functions ϕ which are bounded and have bounded
derivatives of any order. The case of functions with polynomial growth (when the state space in not
compact) requires the introduction of appropriate weight functions, under Assumptions 2.2 and 2.4.
The proof is technical but standard, and we do not provide details. Note that the weight functions
may be chosen uniformly with respect to A ∈ A, thanks to Property 2.5, hence the estimates in
items (i) and (ii) of Proposition 5.5 are uniform with respect to A ∈ A.
Proof of Proposition 5.5.

(i) Thanks to Property 2.5, and standard techniques, there exist γ ∈ (0,∞), C(ϕ) ∈ (0,∞)
and p ∈ N⋆, such that for every A ∈ A, then for all x ∈ S and t ≥ 0, one has

(32)
∣

∣Ex

[

ϕA(XA
t )

]
∣

∣ ≤ C(ϕ)e−γt
(

1 + |x|p
)

.

Integrating from t = 0 to t = ∞, and using (28), gives (29).
(ii) Let

(

PA
t

)

t≥0
denote the transition semi-group associated with the diffusion process

(

XA
t

)

t≥0
on S.

First, it is straightforward to check that, for t ∈ [0, 1], one has
∣

∣∇xP
A
t ϕA(x)

∣

∣ ≤ C
(

1 + |x|p
)

.
29



Second, for every t ≥ 1,

∇x

(

PA
t ϕA) = ∇x

(

PA
1

(

PA
t−1ϕ

A
)

)

;

then standard arguments, and the exponential convergence estimate (32), yield

∣

∣∇x

(

PA
t ϕA)(x)

∣

∣ ≤ C sup
x̃∈S

∣

∣(PA
t−1ϕ

A(x̃)
∣

∣

1 + |x̃|p
(

1 + |x|p
)

≤ C(ϕ)e−(t−1)
(

1 + |x|p
)

.

Integrating separately from t = 0 to t = 1 and from t = 1 to t = ∞ gives (30).
Again the constants do not depend on A ∈ A, thanks to (32) and Property 2.5.

(iii) Since Ft ∈ F for all t ≥ 0, almost surely, thanks to Theorem 3.3, then min
z∈Mm

F t(z) ≥ m for

all t ≥ 0, almost surely, for some m ∈ (0,∞).
Moreover, F t(z) = µt

(

K(z, ·)
)

; thanks to Assumption 3.1 and to the ODE (16), for every

k ∈ {0, 1, . . .}, there exists C(k) ∈ (0,∞) such that

(33) sup
z∈Mm

∣

∣

d
(

∂kAt(z)
)

dt

∣

∣ ≤ C(k)

1 + t
.

For every t > 0, every ǫ ∈ (−t, 1), note that

LAt+ǫ

Y Ψ(At+ǫ, ·)− LAt

Y Ψ(At, ·) = 0,

thanks to (22), see Remark 5.4. Passing to the limit ǫ → 0 yields

LAt

Y

∂Ψ(At, ·)
∂t

= −
(∂LAt

Y

∂t

)

Ψ(At, ·)

=
(

β
dAt ◦ ξS

dt
LAt

Y +
d

dt

(

eβAt◦ξS 〈D(V,At),∇·〉
))

(

Ψ(At, ·)
)

.

Considering each example for the definition of the drift function D(V,Bs), it is straightfor-

ward to check that −
(

dL
At
Y

ds

)

Ψ(At, ·) ∈ C is a function of class C∞ with polynomial growth;

and, moreover, that for every k ∈ {0, 1, . . .}, there exist pk ≥ 0 and C(k) ∈ (0,∞) such that

sup
y∈S

∣

∣Dk
(∂LAt

Y

∂t

)

Ψ(At, ·)(x)
∣

∣ ≤ C(k)(1 + |x|pk)
1 + t

,

thanks to the inequality (33), and the estimate (30) on the gradient ∇xΨ(At, x).
Thanks to Proposition 5.3, one then concludes the proof of (31).

�

5.2.3. Proof of convergence. We have introduced Poisson equations (26) in order to construct an
auxiliary function (t, x) 7→ Φ(t, x) to solve condition (24), using (25).

However, due to the possible low regularity properties of the normalization operator n (see As-
sumption 3.2), we cannot in general define Φ with (25). Instead, we rely on an approximation

procedure, thanks to the sequence
(

n(k)
)

k∈N
introduced in Assumption 3.2. We thus define, for

every k ∈ N

Φ(k)(t, x) =
1

n(k)(F t)
Ψ(At, x).
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Then observe that that

µt(ϕ)− µβ(ϕ) =

∫ t

0 Fτ (ξS(Xτ ))
[

ϕ(Xτ )− µβ(ϕ)
]

dτ

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ

=

∫ t

0
1

n(F τ )
LAτ

X Ψ(Aτ , ·)(Xτ )dτ

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ

= lim
k→∞

∫ t

0
1

n(k)(F τ )
LAτ

X Ψ(k)(Aτ ,Xτ )dτ

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ

= lim
k→∞

∫ t

0 L
Aτ

X Φ(k)(τ,Xτ )dτ

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ
=: lim

k→∞
ǫ
(k)
t (ϕ),

where the limit k → ∞ is understood in an almost sure sense, thanks to Assumption 3.2, and the
fact that F t ∈ F for all t ≥ 0, almost surely, thanks to Theorem 3.3.

Itô’s formula can be used, since (t, x) 7→ Φ(k)(t, x) is of class C1,2 thanks to Proposition 5.5. Then

ǫ
(k)
t (ϕ) =

Φ(k)(t,Xt)− Φ(k)(0,X0)

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ

−
∫ t

0

√

2β−1〈∇Φ(k)(τ,Xτ ),ΣdW (τ)〉
1 +

∫ t

0 Fτ (ξS(Xτ ))dτ

−
∫ t

0
∂Φ(k)

∂τ
(τ,Xτ )dτ

1 +
∫ t

0 Fτ (ξS(Xτ ))dτ

=: ǫ
(k),1
t (ϕ) + ǫ

(k),2
t (ϕ) + ǫ

(k),3
t (ϕ).

We now prove the following result.

Lemma 5.6. Let ϕ ∈ C. There exists C(ϕ) ∈ (0,∞) such that for every t ≥ 0 and k ∈ N

E|ǫ(k)t (ϕ)|2 ≤ C(ϕ)

t
.

Observe that Lemma 5.6 is valid for test functions ϕ in the set C defined by (27). To prove
Theorem 4.1, i.e. an almost sure convergence result, we will only use it with test functions which
are bounded and have bounded derivatives. However, to prove Proposition 4.5, we will need this
Lemma for test functions with polynomial growth.

Proof of Lemma 5.6. The proof of that result consists in using the estimates of Proposition 5.5.

• Thanks to item (i) from Proposition 5.5, for every t ≥ 0, Φ(k)(t, ·) has at most polynomial
growth, and moments of the process X are bounded, see Theorem 3.3. More precisely, the
parameters C and p in the right-hand side of the inequality (29) do not depend on A = Aτ .

Moreover, thanks to Assumption 3.2, for every k ∈ N and τ ≥ 0, one has n(k)(F τ ) ≥ m > 0
almost surely.

It is then straightforward to conclude that

E|ǫ(k),1t (ϕ)|2 ≤ C(ϕ)

t2
.
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• To have an estimate of the stochastic integral, we use Itô’s formula, and we obtain

E|ǫ(k),2t (ϕ)|2 ≤ C
1 +

∫ t

0 |Σ⋆∇xΦ
(k)(τ,Xτ )|2dτ

1 + t2

≤ C(ϕ)

t
,

thanks to (30), and arguments similar to the term above.
• Finally, using (31), and similar arguments, one obtains

E|ǫ(k),3t (ϕ)|2 ≤
C(ϕ)

(

∫ t

0
1

1+τ
dτ

)2

t2
≤ C(ϕ)

(

1 + log(t)
)2

t2
.

Gathering estimates then concludes the proof of Lemma 5.6. �

We are now in position to deduce Theorem 4.1 from Lemma 5.6. First, note that it is straight-
forward to obtain

E|µt(ϕ)− µβ(ϕ)|2 ≤ C(ϕ)

t
.

Indeed, the right-hand side in the estimate of Lemma 5.6 does not depend on k, and taking the
limit k → ∞ in the right-hand side gives the result, thanks to Assumption 3.2 which ensures the
required uniform convergence properties for the application of the bounded convergence theorem.

This estimate ensures the convergence in mean-square sense, and in probability, of µt(ϕ) to µβ(ϕ).
To go further, and obtain the almost sure convergence, we use the following arguments. First, note
that it is sufficient to prove that µexp(t) converges almost surely to µβ(ϕ) when t → ∞. Using the
estimate

E|µexp(t)(ϕ)− µβ(ϕ)|2 ≤ C(ϕ)e−t,

and Borel-Cantelli’s Lemma, then almost surely, for every δ ∈ Q ∩ (0,∞),

µexp(nδ)(ϕ) →
n→∞

µβ(ϕ).

Finally, thanks to the differential equation (16) and boundedness of the function ϕ, the mapping
t 7→ µexp(t)(ϕ) is Lipschitz continuous, with constant smaller than C(ϕ), almost surely, for some

C(ϕ) ∈ (0,∞) depending only on ϕ, and on the parameters appearing in the definition of the set
F , see (12).

It is then straightforward to obtain the almost sure convergence

µexp(t)(ϕ) →
t→∞

µβ(ϕ).

This concludes the proof of Theorem 4.1.

6. Analysis of the mean-square error. Proof of Proposition 4.5

In this section, we give a proof of Proposition 4.5, concerning the asymptotic behavior of the
mean-square error, which is decomposed as the sum of the bias squared and of the variance,

(34) E
∣

∣µt(ϕ)− µβ(ϕ)
∣

∣

2
=

(

Eµt(ϕ)− µβ(ϕ)
)2

+Var
(

µt(ϕ)
)

,

when t → ∞, for functions ϕ ∈ C, of class C∞, with at most polynomial growth.
In Section 6.1, we prove that the bias satisfies

(35) Eµt(ϕ) − µβ(ϕ) = O(
1 + log(t)

t
).

In Section 6.2, we then prove that

(36) tE
∣

∣µt(ϕ)− µβ(ϕ)
∣

∣

2 →
t→∞

V∞(ϕ) ∈ [0,∞).
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In particular, thanks to (35), we may interpret the limit as the asymptotic variance, since

V∞(ϕ) = lim
t→∞

tVar
(

µt(ϕ)
)

.

The asymptotic variance is expressed in terms of the solution of a Poisson equation (26), with
A = A∞ = lim

t→∞
At (defined in Corollary 4.3).

In Section 6.3, we check that V∞(ϕ) = V∞(ϕ,A∞), where V∞(ϕ,A) ∈ [0,∞) is the asymptotic
variance associated with the non-adaptively biasing method, using (4) and (9), with A = A∞.

6.1. Asymptotic behavior of the bias. Let us prove (35). Using the same arguments as in
Section 5.2.3, note that

Eµt(ϕ) − µβ(ϕ) = E
[

lim
k→∞

ǫ
(k)
t (ϕ)

]

= lim
k→∞

E
[

ǫ
(k)
t (ϕ)

]

= lim
k→∞

E
[

ǫ
(k),1
t (ϕ) + ǫ

(k),3
t (ϕ)

]

.

Indeed, using Assumption 3.2 and the property that F t ∈ F , for all t ≥ 0, almost surely, allows us

to use the bounded convergence theorem. Moreover, note that E
[

ǫ
(k),2
t (ϕ)

]

= 0, for all k ∈ N and
t ≥ 0.

It then remains to use Lemma 5.6 to conclude the proof of (35). Note that we have considered
test functions ϕ ∈ C, which are not assumed to be bounded.

6.2. Asymptotic behavior of the mean-square error. Let us now prove (36). Like in Sec-
tions 5.2.3 and 6.1 above, we use the decomposition of µt(ϕ) − µβ(ϕ) in terms of the auxiliary

function Φ(k); we prove error bounds which are uniform with respect to k ∈ N, and pass to the limit
k → ∞, thanks to Assumption 3.2 and Theorem 3.3.

It is straightforward to check that, uniformly in k ∈ N,

tE
∣

∣µt(ϕ) − µβ(ϕ)
∣

∣

2 − tE
∣

∣

∣

∫ t

0

√

2β−1〈∇xΦ
(k)(τ,Xτ ),ΣdW (τ)〉

1 +
∫ t

0 Fτ

(

ξS(XA
τ )

)

dτ

∣

∣

∣

2
= O

(1

t

)

,

thanks to Lemma 5.6, i.e. only the stochastic integral contributes to the asymptotic variance. We
can directly pass to the limit k → ∞ at this stage.

Let R(t) =
1+

∫ t
0 Fτ

(

ξS(X
A
τ )
)

dτ

t
. Then almost surely, thanks to Corollary 4.3 (uniform convergence

of Fτ to F∞ when τ → ∞), Cesaro’s Lemma, and Corollary 4.4,

R(t) →
t→∞

∫

S
F∞ ◦ ξSdµA∞

β =
µA∞

β

(

e−βA∞◦ξS
)

n(F∞)
=

1

µ0
β

(

eβA∞◦ξS
)

n(F∞)
,
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using (8). We then obtain, using standard arguments,

tE
∣

∣

∣

∫ t

0

√
2β−1

n(F τ )
〈∇xΨ(Aτ ,Xτ ),ΣdW (τ)〉

1 +
∫ t

0 Fτ

(

ξS(XA
τ )

)

dτ

∣

∣

∣

2
= E

∣

∣

∫ t

0

√
2β−1

n(F τ )
〈∇xΨ(Aτ ,Xτ ),ΣdW (τ)〉

∣

∣

2

t|R(t)|2

= E

∣

∣

∫ t

0

√
2β−1

n(F τ )
〈∇xΨ(Aτ ,Xτ ),ΣdW (τ)〉

∣

∣

2

t
+ o(1)

=
2β−1

∫ t

0 E
|Σ⋆∇xΨ(Aτ ,Xτ )|2

n(F τ )2
dτ

t
+ o(1)

=

2β−1

n(F∞)2

∫ t

0 E|Σ⋆∇xΨ(A∞,Xτ )|2dτ
t

+ o(1)

= 2β−1Eµt

(

|Σ⋆∇xΨ(A∞, ·)|2
)

+ o(1)

→
t→∞

2β−1µβ

(

|Σ⋆∇xΨ(A∞, ·)|2
)

,

thanks to Lemma 5.6, applied to the function |Σ⋆∇xΨ(A∞, ·)|2 ∈ C, thanks to Proposition 5.3.
Observe that the limit does not depend on the normalization operator n.

We thus obtain (36), more precisely,

tE
∣

∣µt(ϕ)− µβ(ϕ)
∣

∣

2 →
t→∞

V∞(ϕ) = 2β−1µβ

(

|Σ⋆∇xΨ(A∞, ·)|2
)

.

6.3. Comparison with the non-adaptive biasing method. We now prove that the expression
obtained above for the asymptotic variance in the adaptive method, coincides with the expression
of the asymptotic variance in the non-adaptive method, when choosing A = A∞.

Let A ∈ A (see (12)), and ϕ ∈ C. Using (9), and the solution of the Poisson equation (26),

µA
t (ϕ)− µβ(ϕ) =

1 +
∫ t

0 exp
(

−βA ◦ ξS(XA
τ )

)[

ϕ(XA
τ )− µβ(ϕ)

]

dτ

1 +
∫ t

0 exp
(

−βA ◦ ξS(Xτ )
)

dτ

=
1 +

∫ t

0 LA
XΨ(A,XA

τ )dτ

1 +
∫ t

0 exp
(

−βA ◦ ξS(Xτ )
)

dτ

=
Ψ(A,XA

t )−Ψ(A,XA
0 )−

∫ t

0

√

2β−1〈∇xΨ(A,XA
τ ),ΣdW (τ)〉

1 +
∫ t

0 exp
(

−βA ◦ ξS(Xτ )
)

dτ

Since A ∈ A, exp
(

−βA ◦ ξS
)

≥ m > 0, for some m > 0. Then

tE
∣

∣µA
t (ϕ)− µβ(ϕ)

∣

∣

2 − tE
∣

∣

∣

∫ t

0

√

2β−1〈∇xΨ(A,XA
τ ),ΣdW (τ)〉

1 +
∫ t

0 exp
(

−βA ◦ ξS(XA
τ )

)

dτ

∣

∣

∣

2
= O

(1

t

)

.

Let RA(t) =
1+

∫ t
0
exp

(

−βA◦ξS(X
A
τ )
)

dτ

t
. Then almost surely RA(t) →

t→∞
µA
β (e

−βA◦ξS ) = 1
µβ(e

βA◦ξS )
.
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With the same arguments as in Section 6.2 above,

tE
∣

∣

∣

∫ t

0

√

2β−1〈∇xΨ(A,XA
τ ),ΣdW (τ)〉

1 +
∫ t

0 exp
(

−βA ◦ ξS(XA
τ )

)

dτ

∣

∣

∣

2
= E

∣

∣

∫ t

0

√

2β−1〈∇xΨ(A,XA
τ ),ΣdW (τ)〉

∣

∣

2

t|RA(t)|2

= E

∣

∣

∫ t

0

√

2β−1〈∇xΨ(A,XA
τ ),ΣdW (τ)〉

∣

∣

2

t
+ o(1)

=
2β−1

∫ t

0 E|Σ⋆∇xΨ(A,XA
τ )|2dτ

t
+ o(1)

= 2β−1EµA
t

(

|Σ⋆∇xΨ(A, ·)|2
)

+ o(1)

→
t→∞

2β−1µβ

(

|Σ⋆∇xΨ(A, ·)|2
)

.

We thus conclude that

tE
∣

∣µA
t (ϕ)− µβ(ϕ)

∣

∣

2 →
t→∞

V∞(ϕ,A) = 2β−1µβ

(

|Σ⋆∇xΨ(A, ·)|2
)

.

The asymptotic variance in the ABP method is thus equal to the asymptotic variance in the non-
adaptive method with A = A∞ = lim

t→∞
At, as expected:

V∞(ϕ) = 2β−1µβ

(

|Σ⋆∇xΨ(A∞, ·)|2
)

= V∞(ϕ,A∞).

7. The SPDE case

The aim of this section is to generalize the approach developed in other sections of this article,
to deal with metastable stochastic processes in infinite dimension. More precisely, we describe an
ABP method designed to compute averages µβ(ϕ), where µβ is a probability distribution defined
on an infinite dimensional (Hilbert) space; the corresponding diffusion processes are given by some
parabolic semilinear Stochastic Partial Differential Equations (SPDEs).

In Section 7.1, we describe the model, and we explain how it fits in the framework of Section 2.
In particular, this description justifies the introduction of the abstract objects in Section 2.

Some arguments and some statements need to be substantially modified, compared with the finite
dimensional situation. We make these modifications precise in Section 7.2 and 7.3. However, we do
not provide the associated detailed proofs.

7.1. The model. In this section, we consider infinite dimensional diffusion processes, which are
solutions of parabolic, semilinear, SPDEs, driven by space-time white noise, in space dimension 1,
which may be written in the following form:

(37) du0(t, x) =
∂2u0(t, x)

∂x2
dt−∇V(u0(t, x))dt +

√

2β−1dW (t, x),

for x ∈ (0, 1), with (for instance) homogeneous Dirichlet boundary conditions.

The function V : R → R is a smooth mapping. With the choice V(x) = x4

4 − x2

2 , one obtains
the Allen-Cahn equation, which is the paradigmatic example of metastable SPDE considered in the
literature: see for instance [9], [10], [11], [22].

In this article, V is assumed to have bounded derivatives, in order to simplify the presentation
and the functional setting. Metastable states are solutions of the stationary PDE

∂2u(x)

∂x2
−∇V(u(tx)) = 0.

Assume that the potential energy function V is even; then x 7→ u0(x) = 0 is one solution. Moreover,
if there exists another solution x 7→ u+(x), x 7→ u−(x) = −u+(x) is also a solution. These solutions
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are critical points of the energy functional

u 7→
∫ 1

0

[1

2

∣

∣

∂u(x)

∂x

∣

∣

2
+ V

(

u(x)
)]

dx,

and may be local minima, saddle points, etc...

It is convenient and standard to write (37) as a Stochastic Evolution Equation in the Hilbert
space H = L2(0, 1), see for instance the monograph [17]:

(38) du0t = Lu0tdt−DV (u0t )dt+
√

2β−1dW (t),

where D denotes the Fréchet derivative, and

•
(

en
)

n∈N∗ is the complete orthonormal system of H given by en(x) =
√
2 sin(nπx);

• the unbounded linear operator L : H → H satisfies Lu = −∑

n∈N∗ π2n2〈u, en〉en;

• V (u) =
∫ 1
0 〈∇V(θu), u〉dθ for all u ∈ H;

•
(

W (t)
)

t≥0
is a cylindrical Wiener process on H, i.e. W (t) =

∑

n∈N∗ βn(t)en for a family

(βn)n∈N∗ of independent, one-dimensional, standard Wiener processes.

Equation (38) admits a unique mild solution (see [17]) with values in H, defined for t ≥ 0, i.e. u0

is the unique process solution satisfying the equation

u0t = etLu0 −
∫ t

0
e(t−s)LDV (u0s)ds +

√

2β−1

∫ t

0
e(t−s)LdW (s),

where
(

etL
)

t∈[0,+∞)
is the semi-group on H generated by L: etLu =

∑

n∈N∗ e−π2n2t〈u, en〉en.

In the context of this section, Assumption 2.2 is rephrased as follows:

(39) sup
x∈R

|V ′′(x)| < π2.

In other words, the Lipschitz constant of the non-linear coefficient u ∈ H 7→ DV (u) ∈ H is bounded
from above by all the eigenvalues of −L. Inequality (39) is a standard sufficient (but not necessary)
condition for ergodicity of the SPDE (38), and for exponential convergence to equilibrium.

We are now in position to explain how the SPDE dynamics fits into the general framework
presented in this article, in Section 2.

7.1.1. Setting. In the SPDE example, one has the following elements, see Section 2.1.

• State space: S = H (infinite dimensional, separable, Hilbert space).
• Reaction coordinate: assume that Mm = T (with m = 1), E1 = R (with d = 1). Then

for instance ξ(u) = ξS(u) =
1
2 + 1

π
arctan

(

1
2

∫ 1
0 u(x)dx

)

.

• Drift coefficient: D(V,A) = Lu−D
(

V −A ◦ ξS
)

. Diffusion operator: Σ is the identity
on S.

Since L is an unbounded linear operator on H, note that the drift is only defined on a do-
main D(L) ⊂ H. This is one of the technical issues which are specific to the infinite dimensional
framework.

Remark 7.1. Note that, in general, there does not exist a function VA : R → R such that the
function V −A ◦ ξ : L2(0, 1) → R satisfies D(V −A ◦ ξ)(u)(x) = ∇VA(u(x)): the bias is a nonlocal

function of u, since it depends on the spatial average
∫ 1
0 u(y)dy, instead of u(x) only.
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The biased version (4) of the SPDE (37) is written as

(40) duA(t) = LuA(t)dt−D
(

V −A ◦ ξS
)

(uA(t))dt +
√

2β−1dW (t),

with mild formulation

uA(t) = etLu0−
∫ t

0
e(t−s)LDV (uA(s))ds+

∫ t

0
e(t−s)LD

(

A◦ξS
)

(uA(s))ds+
√

2β−1

∫ t

0
e(t−s)LdW (s).

7.1.2. Invariant probability distribution. We now construct the Total Energy function, and the ref-
erence measure λ on H.

First, the definition of the mapping V 7→ E(V ) is straightforward: E(V ) = V . The reference
measure λ on S is defined as follows: it is the centered Gaussian probability distribution on H with
covariance operator β−1L−1. This measure can be constructed as follows: let

(

gn
)

n∈N⋆ be a sequence

of independent standard real-valued Gaussian random variables (centered and with variance 1); then

λ is the probability distribution of the H-valued random variable
∑

n∈N⋆

√
β−1

nπ
gnen.

Remark 7.2. One may check that λ defined as above is the distribution of the Brownian Bridge
on (0, 1). This interpretation is specific to the choice of L and plays no role in this article. On the
contrary, the construction above, based on eigenvalues and eigenvectors of L, is general.

It is straightforward to check that λ is the unique invariant distribution of (38) when V = 0.
More generally, for any function A : T → R of class C∞, the probability distribution µA

β on H,
defined by

µA
β (du) =

exp
(

−β(V (u)−A(ξ(u)))
)

ZA(β)
λ(du)

where ZA(β) ∈ (0,∞) thanks to (39), is the unique invariant distribution of the biased SPDE (40),
see for instance [16].

7.1.3. Free Energy function. It remains to discuss how the Free Energy function A⋆ is defined.
The only thing to be careful about is the choice of reference measure π defined on Mm = T, such
that Assumption 2.6 is satisfied. Indeed, the free energy function A⋆ is then obtained, as in finite
dimensional cases, by Definition 2.8.

It is legitimate here to choose π to be the Lebesgue measure on T. Indeed, the image measure

of the Gaussian distribution λ by the linear mapping u 7→
∫ 1
0 u(y)dy is a non-degenerate Gaussian

distribution on R; thus the image of λ by ξS is equivalent to the Lebesgue measure on T. Then π0
β

the image of µ0
β by ξ is equivalent to π.

7.2. ABP dynamics and convergence results. Let us first describe the dynamics of the ABP
method, which generalizes (10) in the case where the diffusion process is governed by a SPDE:

(41)



















du(t) = Lu(t)dt−D
(

V −At ◦ ξS
)

(u(t))dt+
√

2β−1dW (t)

µt =
µ0+

∫ t
0 exp

(

−βAr◦ξ(Xr)
)

δXrdr

1+
∫ t
0 exp

(

−βAr◦ξ(Xr)
)

dr

exp
(

−βAt(z)
)

=
∫

Td K
(

z, ξ(x)
)

µt(dx), ∀z ∈ Tm,

For simplicity, we have chosen the normalization operator N , with n(F ) =
∫

T
F (z)dz. The kernel

function K : T× T → (0,∞) satisfies Assumption 3.1.
As explained in Section 7.1 above, it is convenient to consider the mild formulation for the SPDE

dynamics: the first equation in (41) is understood as

u(t) = etLu0 −
∫ t

0
e(t−s)LD

(

V −As ◦ ξ
)

(u(s))ds +
√

2β−1

∫ t

0
e(t−s)LdW (s).
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Using Lemma 3.5 and standard techniques, the following generalization of Theorem 3.3 is obtained.

Theorem 7.3. Consider the framework of Section 7.1 (in particular assume that (39) is satisfied),
and assume that the kernel function K satisfies Assumption 3.1.

• There exists a unique process t 7→ (u(t), µt, At), taking values in C
(

R+,H × P(H) ×
C0(Mm, (0,∞))

)

, which is solution of the ABP system (41).

• For all n ≥ 2, supt≥0 E‖u(t)‖nH < +∞.

• There exist m ∈ (0,∞) and
(

M (r)
)

r∈{0,1,··· }
∈ (0,∞) such that, almost surely, At ∈ A, for

all t ∈ R+, where

(42)

{

F =
{

F ∈ C∞(Mm);minF ≥ m,max |∂kF | ≤ M (k), k ≥ 0
}

,

A =
{

A = −1
β

log(F ); F ∈ F
}

.

We are able to prove generalizations of Theorem 4.1 and of Corollary 4.3

Theorem 7.4. • Let ϕ ∈ C∞(H,R) be a bounded function, with bounded derivatives of any
order. Then, almost surely,

µt(ϕ) →
t→∞

µβ(ϕ).

• Define, for all z ∈ Mm,

A∞(z) = − 1

β
log(µβ

(

K(z, ·)
)

).

Then, almost surely, for every ℓ ∈ {0, 1, . . .}, uniformly on Mm,

∂ℓAt →
t→∞

∂ℓA∞.

The efficiency results from Section 4.3 may also be generalized: more precisely, the convergence
result (14), and Proposition 4.5 remain valid.

7.3. Some modifications for SPDEs. The first type of modifications, compared with the finite
dimensional situation, is concerned with the statement of the convergence results. Indeed, note
that we have only described the (almost sure) convergence of averages µt(ϕ), not the convergence
of the probability distribution µt. The arguments used in the proof of Corollary 4.2 do not easily
generalize to the infinite dimensional setting.

The second type of modifications, is concerned with the proof of Theorem 7.4, more precisely
of the convergence of µt(ϕ). The strategy of the proof follows the steps developed in Section 5.2;
however care is required when dealing with the Poisson equations (26).

To simplify the discussion, assume first that A = 0. Then the Poisson equation can be written as

〈Lu−DV (u),DΨ(u)〉 + 1

2
Trace

(

D2Ψ(u)
)

= ϕ(u)− µβ(ϕ), ∀u ∈ H,

where the unknown is the function Ψ : H → R, and we use standard identifications, in order to
consider the first order derivative DΨ(x) ∈ H as an element of H, and the second order derivative
D2Ψ(x) ∈ L(H) as a bounded linear operator on H. For a function Ψ of class C2 on H, it is not
true in general that the left-hand side is well-defined, for all u ∈ H, or even when u = u(t) is the
diffusion process evaluated at a time t ≥ 0. Indeed, L is an unbounded operator, so Lu is not an
element of H in general. Moreover, the trace term may be infinite.

In fact, solutions of Poisson equations in infinite dimensions have appropriate regularity prop-
erties, such that all the terms are well-defined. See for instance [13, Chapters 4,5], for smoothing
properties of the transition semi-group. For details concerning the Poisson equation, see, for in-
stance, [12, Proposition 6.1], and [28, Chapter 4, Section 8]. Rigorous properties are often stated for
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spatial Galerkin approximations, with bounds not depending on the dimension. We do not provide
such details here, and directly write the results in the Hilbert space H.

Using arguments from the references mentioned above, and taking care of the dependence with
respect to the function A to obtain uniform bounds on the set A, generalizations of Propositions 5.3
and 5.5 are obtained.

For any α ∈ (0, 1), introduce the unbounded linear operator Lα, such that

Lαu =
∑

n

(−n2π2)α〈u, en〉en.

Proposition 7.5. Let A ∈ A, and ϕ : H → R, of class C∞, bounded and with bounded derivatives
of any order.

There exists a unique solution Ψ(A, ·) of the Poisson equation (26),

〈Lu−D
(

V −A ◦ ξ
)

(u),DΨ(u)〉 + 1

2
Trace

(

D2Ψ(u)
)

= e−βA(ξ(u))[ϕ(u)− µβ(ϕ)], ∀u ∈ H,

with the condition
∫

H
Ψdµβ = 0.

This solution is given by

Ψ(u) = −
∫ ∞

0
Eu

[

ϕA
(

u(t)
)

]dt,

for all u ∈ H, where ϕA(u) = e−βA(ξ(u))[ϕ(u) − µβ(ϕ)].
Moreover, the following properties are satisfied.

• There exists C(ϕ) ∈ (0,∞) such that, for all A ∈ A and u ∈ H,

|Ψ(A, u)| ≤ C(ϕ)(1 + ‖u‖2H).

• For every α ∈ (0, 12), there exists C(α,ϕ) ∈ (0,∞), such that, for all A ∈ A and u ∈ H

(43)

{

‖L2αDuΨ(A, u)‖H ≤ C(α,ϕ)(1 + ‖u‖2H )

‖LαD2
uΨ(A, u)Lα‖L(H) ≤ C(α,ϕ)(1 + ‖u‖2H).

• For every α ∈ (0, 14) and every n ∈ N, there exists C(α, n, ϕ) ∈ (0,∞), such that E‖Lαu(t)‖n ≤
C(α, n, ϕ)

(

1 + ‖u(0)‖H
tα

)n
.

• The function (t, u) ∈ [0,∞)×H 7→ Ψ(At, u) is of class C1,2, and for every u ∈ H and every
t ≥ 0, almost surely

∣

∣

∂Ψ(At, u)

∂t

∣

∣ ≤ C(1 + ‖u‖2)
1 + t

,

where
(

At

)

t≥0
is the A-valued process defined in (41).

We do not provide the details for the proof of Proposition 7.5. We emphasize on the estimates (43).
They are the only results which are specific to the infinite dimensional case. These estimates are
fundamental at two stages: first, to justify the well-posedness of the Poisson equation, second to
control stochastic integral which appears in the analysis of the error µt(ϕ)− µβ(ϕ).

Adapting the strategy of proof of Theorem 4.1, developed in Section 5.2, and using Proposition 7.5
to control the terms, it is then straightforward to prove that

E
∣

∣µt(ϕ)− µβ(ϕ)
∣

∣

2 ≤ C(ϕ)

t
→

t→∞
0.

The proof of the almost sure convergence result is obtained using the boundedness of ϕ, and the
same argument as in the finite dimensional case. This concludes the proof of the first part of
Theorem 7.4.

The second part of Theorem 7.4, concerning the almost sure convergence of At, is proved exactly
as Corollary 4.3.
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Thanks to the general framework developed in Section 2, the application and the analysis of the
ABP method also applies in the infinite dimensional setting, for metastable Stochastic PDEs.
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