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OPTIMIZATION BY GRADIENT BOOSTING

Gérard Biau∗ and Benoît Cadre†

ABSTRACT. Gradient boosting is a state-of-the-art prediction technique that sequentially
produces a model in the form of linear combinations of simple predictors—typically deci-
sion trees—by solving an infinite-dimensional convex optimization problem. We provide
in the present paper a thorough analysis of two widespread versions of gradient boosting,
and introduce a general framework for studying these algorithms from the point of view of
functional optimization. We prove their convergence as the number of iterations tends to
infinity and highlight the importance of having a strongly convex risk functional to min-
imize. We also present a reasonable statistical context ensuring consistency properties of
the boosting predictors as the sample size grows. In our approach, the optimization proce-
dures are run forever (that is, without resorting to an early stopping strategy), and statistical
regularization is basically achieved via an appropriate L2 penalization of the loss and strong
convexity arguments.

1 Introduction

More than twenty years after the pioneering articles of Freund and Schapire (Schapire,
1990; Freund, 1995; Freund and Schapire, 1996, 1997), boosting is still one of the most
powerful ideas introduced in statistics and machine learning. Freund and Schapire’s Ad-
aBoost algorithm and its numerous descendants have proven to be competitive in a variety
of applications, and are still able to provide state-of-the-art decisions in difficult real-life
problems. In addition, boosting procedures are computationally fast and comfortable with
both regression and classification problems. For surveys of various aspects of boosting
algorithms and related approaches, we refer to Meir and Rätsch (2003), Bühlmann and
Hothorn (2007), and to the monographs by Hastie et al. (2009) and Bühlmann and van de
Geer (2011).

In a nutshell, the basic idea of boosting is to combine the outputs of many “simple” predic-
tors, in order to produce a powerful committee with performances improved over the single
members. Historically, the first formulations of Freund and Schapire considered boosting
as an iterative classification algorithm that is run for a fixed number of iterations, and, at
each iteration, selects one of the base classifiers, assigns a weight to it, and outputs the
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weighted majority vote of the chosen classifiers. Later on, Breiman (1997, 1998, 1999,
2000, 2004) made in a series of papers and technical reports the breakthrough observation
that AdaBoost is in fact a gradient-descent-type algorithm in a function space, thereby iden-
tifying boosting at the frontier of numerical optimization and statistical estimation. This
connection was further emphasized by Friedman et al. (2000), who rederived AdaBoost
as a method for fitting an additive model in a forward stagewise manner. Following this,
Friedman (2001, 2002) developed a general statistical framework (both for regression and
classification) that (i) yields a direct interpretation of boosting methods from the perspec-
tive of numerical optimization in a function space, and (ii) generalizes them by allowing
optimization of an arbitrary loss function. The term “gradient boosting” was coined by the
author, who paid a special attention to the case where the individual additive components
are decision trees. At the same time, Mason et al. (1999, 2000) embraced a more mathe-
matical approach, revealing boosting as a principle to optimize a convex risk in a function
space, by iteratively choosing a weak learner that approximately points in the negative
gradient direction.

This functional view of boosting has led to the development of algorithms in many areas of
machine learning and computational statistics, beyond regression and classification. The
history of boosting goes on today with algorithms such as XGBoost (Extreme Gradient
Boosting, Chen and Guestrin, 2016), a tree boosting system widely recognized for its out-
standing results in numerous data challenges. (An overview of its successes is given in the
introductive section of the paper by Chen and Guestrin, 2016.) From a general point of
view, XGBoost is but a scalable implementation of gradient boosting that contains various
systems and algorithmic optimizations. Its mathematical principle is to perform a func-
tional gradient-type descent in a space of decision trees, while regularizing the objective to
avoid overfitting.

However, despite a long list of successes, much work remains to be done to clarify the
mathematical forces driving gradient boosting algorithms. Many influential articles regard
boosting with a statistical eye and study the somewhat idealized problem of empirical risk
minimization with a convex loss (e.g., Blanchard et al., 2003; Lugosi and Vayatis, 2004).
These papers essentially concentrate on the statistical properties of the approach (that is,
consistency and rates of convergence as the sample size grows) and often ignore the un-
derlying optimization aspects. Other important articles, such as Bühlmann and Yu (2003);
Mannor et al. (2003); Zhang and Yu (2005); Bickel et al. (2006); Bartlett and Traskin (2007)
take advantage of the iterative principle of boosting, but essentially focus on regularization
via early stopping (that is, stopping the boosting iterations at some point), without paying
too much attention to the optimization aspects. Notable exceptions are the pioneering notes
of Breiman cited above, and the original paper by Mason et al. (2000), who envision gradi-
ent boosting as an infinite-dimensional numerical optimization problem and pave the way
for a more abstract analysis. All in all, there is to date no sound theory of gradient boosting
in terms of numerical optimization. This state of affairs is a bit paradoxical, since opti-
mization is certainly the most natural mathematical environment for gradient-descent-type
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algorithms.

In line with the above, our main objective in this article is to provide a thorough analysis
of two widespread models of gradient boosting, due to Friedman (2001) and Mason et al.
(2000). We introduce in Section 2 a general framework for studying the algorithms from
the point of view of functional optimization in an L2 space, and prove in Section 3 their
convergence as the number of iterations tends to infinity. Our results allow for a large choice
of convex losses in the optimization problem (differentiable or not), while highlighting
the importance of having a strongly convex risk functional to minimize. This point is
interesting, since it provides some theoretical justification for adding a penalty term to the
objective, as advocated for example in the XGBoost system of Chen and Guestrin, 2016.
Thus, the main message of Section 3 is that, under appropriate conditions, the sequence
of boosted iterates converges towards the minimizer of the empirical risk functional over
the set of linear combinations of weak learners. However, this does not guarantee that the
output of the algorithms (i.e., the boosting predictor) enjoys good statistical properties, as
overfitting may kick in. For this reason, we present in Section 4 a reasonable framework
ensuring consistency properties of the boosting predictors as the sample size grows. In our
approach, the optimization procedures are run forever (that is, without resorting to an early
stopping strategy), and statistical regularization is basically achieved via an appropriate L2

penalization of the loss and strong convexity arguments.

Before embarking on the analysis, we would like to stress that the present paper is theo-
retical in nature and that its main goal is to clarify/solidify some of the optimization ideas
that are behind gradient boosting. In particular, we do not report experimental results,
and refer to the specialized literature on (extreme) gradient boosting for discussions on the
computational aspects and experiments with real-world data.

2 Gradient boosting

The purpose of this section is to describe the gradient boosting procedures that we analyze
in the paper.

2.1 Mathematical context

We assume to be given a sample Dn = {(X1,Y1), . . . ,(Xn,Yn)} of i.i.d. observations, where
each pair (Xi,Yi) takes values in X ×Y . Throughout, X is a Borel subset of Rd , and
Y ⊂ R is either a finite set of labels (for classification) or a subset of R (for regression).
The vector space Rd is endowed with the Euclidean norm ‖ · ‖.
Our goal is to construct a predictor F : X → R that assigns a response to each possible
value of an independent random observation distributed as X1. In the context of gradient
boosting, this general problem is addressed by considering a class F of functions f : X →
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R (called the weak or base learners) and minimizing some empirical risk functional

Cn(F) =
1
n

n

∑
i=1

ψ(F(Xi),Yi)

over the linear combinations of functions in F . The function ψ :R×Y →R+, called the
loss, is convex in its first argument and measures the cost incurred by predicting F(Xi) when
the answer is Yi. For example, in the least squares regression problem, ψ(x,y) = (y− x)2

and

Cn(F) =
1
n

n

∑
i=1

(Yi−F(Xi))
2.

However, many other examples are possible, as we will see below. Let δz denote the Dirac
measure at z, and let µn = (1/n)∑

n
i=1 δ(Xi,Yi) be the empirical measure associated with the

sample Dn. Clearly,
Cn(F) = Eψ(F(X),Y ),

where (X ,Y ) denotes a random pair with distribution µn and the symbol E denotes the
expectation with respect to µn. Naturally, the theoretical (i.e., population) version of Cn is

C(F) = Eψ(F(X1),Y1),

where now the expectation is taken with respect to the distribution of (X1,Y1). It turns
out that most of our subsequent developments are independent of the context, whether
empirical or theoretical. Therefore, to unify the notation, we let throughout (X ,Y ) be a
generic pair of random variables with distribution µX ,Y , keeping in mind that µX ,Y may be
the distribution of (X1,Y1) (theoretical risk), the standard empirical measure µn (empirical
risk), or any smoothed version of µn.

We let µX be the distribution of X , L2(µX) the vector space of all measurable functions
f : X → R such that

∫
| f |2dµX < ∞, and denote by 〈·, ·〉µX and ‖ · ‖µX the corresponding

norm and scalar product. Thus, for now, our problem is to minimize the quantity

C(F) = Eψ(F(X),Y )

over the linear combinations of functions in a given subset F of L2(µX). A typical ex-
ample for F is the collection of all binary decision trees in Rd using axis parallel cuts
with k terminal nodes. In this case, each f ∈ F takes the form f = ∑

k
j=1 β j1A j , where

(β1, . . . ,βk) ∈ Rk and A1, . . . ,Ak is a tree-structured partition of Rd (Devroye et al., 1996,
Chapter 20).

As noted earlier, we assume that, for each y ∈ Y , the function ψ(·,y) is convex. In the
framework we have in mind, the function ψ may take a variety of different forms, ranging
from standard (regression or classification) losses to more involved penalized objectives.
It may also be differentiable or not. Before discussing some examples in detail, we list
assumptions that will be needed at some point. Throughout, we let ξ (·,y) be a subgradient
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of the convex function ψ(·,y), and recall that ξ (x,y) ∈ [∂−x ψ(x,y);∂+
x ψ(x,y)] (left and

right partial derivatives). In particular, for all (x1,x2) ∈R2,

ψ(x1,y)≥ ψ(x2,y)+ξ (x2,y)(x1− x2). (1)

Assumption A1

A1 One has Eψ(0,Y )< ∞. In addition, for all F ∈ L2(µX), there exists δ > 0 such that

sup
G∈L2(µX ):‖G−F‖µX≤δ

(
E|∂−x ψ(G(X),Y )|2 +E|∂+

x ψ(G(X),Y )|2
)
< ∞.

This assumption ensures that the convex functional C is locally bounded (in particular,
C(F) < ∞ for all F ∈ L2(µX), and C is continuous). Indeed, by inequality (1), for all
G ∈ L2(µX),

ψ(G(x),y)≤ ψ(0,y)+ξ (G(x),y)G(x).

Therefore, using

|ξ (G(X),Y )| ≤ |∂−x ψ(G(X),Y )|+ |∂+
x ψ(G(X),Y )|,

we have, by Assumption A1 and the Cauchy-Schwarz inequality,

Eψ(G(X),Y )≤ Eψ(0,Y )+
(
Eξ (G(X),Y )2EG(X)2)1/2

,

so that C is locally bounded. Naturally, Assumption A1 is automatically satisfied for the
choice µX ,Y = µn.

Assumption A2

A2 There exists α > 0 such that, for all y∈Y , the function ψ(·,y) is α-strongly convex,
i.e., for all (x1,x2) ∈R2 and t ∈ [0,1],

ψ(tx1 +(1− t)x2,y)≤ tψ(x1,y)+(1− t)ψ(x2,y)−
α

2
t(1− t)(x1− x2)

2.

This assumption will be used in most, but not all, results. Strong convexity will play
an essential role in the statistical Section 4. We note that, under Assumption A2, for all
(x1,x2) ∈R2,

ψ(x1,y)≥ ψ(x2,y)+ξ (x2,y)(x1− x2)+
α

2
(x1− x2)

2, (2)

which is of course an inequality tighter than (1). Furthermore, the α-strong convexity of
ψ(·,y) implies the α-strong convexity of the risk functional C over L2(µX).

In addition to Assumptions A1 and A2, we require the following:
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A3 There exists a positive constant L such that, for all (x1,x2) ∈R2,

|E(ξ (x1,Y )−ξ (x2,Y ) |X)| ≤ L|x1− x2|.

However esoteric this assumption may seem, it is in fact mild and provide a framework that
encompasses a large variety of familiar situations. In particular, Assumption A3 admits a
stronger version A′3, which is useful as soon as the function ψ is continuously differentiable
with respect to its first variable:

A′3 For all y ∈ Y , the function ψ(·,y) is continuously differentiable, and there exists a
positive constant L such that, for all (x1,x2,y) ∈R2×Y ,

|∂xψ(x1,y)−∂xψ(x2,y)| ≤ L|x1− x2|.

Assumption A′3 implies A3, but the converse is not true. To see this, just note that, in the
smooth situation A′3, we have ξ (x,y) = ∂xψ(x,y). Therefore,

E(ξ (x1,Y ) |X) =
∫

∂xψ(x1,Y )µY |X(dy),

where µY |X is the conditional distribution of Y given X . We also note that, in the context of
A′3 , the functional C is differentiable at any F ∈ L2(µX) in the direction G ∈ L2(µX), with
differential

dC(F ;G) = 〈∇C(F),G〉µX ,

where ∇C(F)(x) :=
∫

∂xψ(F(x),y)µY |X=x(dy) is the gradient of C at F . However, Assump-
tion A3 allows to deal with a larger variety of losses, including non-differentiable ones, as
shown in the examples below.

2.2 Some examples

• A first canonical example, in the regression setting, is to let ψ(x,y) = (y−x)2 (squa-
red error loss), which is 2-strongly convex in its first argument (Assumption A2) and
satisfies Assumption A1 as soon as EY 2 < ∞. It also satisfies A′3, with ∂xψ(x,y) =
2(x− y) and L = 2.

• Another example in regression is the loss ψ(x,y)= |y−x| (absolute error loss), which
is convex but not strongly convex in its first argument. Whenever strong convexity
of the loss is required, a possible strategy is to regularize the objective via an L2-type
penalty, and take

ψ(x,y) = |y− x|+ γx2,

where γ is a positive parameter (possibly function of the sample size n in the empiri-
cal setting). This loss is (2γ)-strongly convex in x and satisfies A1 and A2 whenever
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E|Y |< ∞, with ξ (x,y) = sgn(x− y)+2γx (with sgn(u) = 21[u>0]−1 for u 6= 0 and
sgn(0) = 0). On the other hand, the function ψ(·,y) is not differentiable at y, so that
the smoothness Assumption A′3 is not satisfied. However,

E(ξ (x1,Y )−ξ (x2,Y ) |X) =
∫
(sgn(x1− y)− sgn(x2− y))µY |X(dy)+2γ(x1− x2)

= µY |X((−∞,x1))−µY |X((−∞,x2))+2γ(x1− x2)

−µY |X((x1,∞))+µY |X((x2,∞)).

Thus, if we assume for example that µY |X has a density (with respect to the Lebesgue
measure) bounded by B, then

|E(ξ (x1,Y )−ξ (x2,Y ) |X)| ≤ 2(B+ γ)|x1− x2|,

and Assumption A3 is therefore satisfied. Of course, in the empirical setting, assum-
ing that µY |X has a density precludes the use of the empirical measure µn for µX ,Y .
A safe and simple alternative is to consider a smoothed version µ̃n of µn (based, for
example, on a kernel estimate; see Devroye and Györfi, 1985), and to minimize the
functional

Cn(F) =
∫
|y−F(x)|µ̃n(dx,dy)+ γ

∫
F(x)2

µ̃n(dx)

over the linear combinations of functions in F .

• In the ±1-classification problem, the final classification rule is +1 if F(x) > 0 and
−1 otherwise. Often, the function ψ(x,y) has the form φ(yx), where φ :R→R+ is
convex. Classical losses include the choices φ(u) = ln2(1+e−u) (logit loss), φ(u) =
e−u (exponential loss), and φ(u) = max(1−u,0) (hinge loss). None of these losses is
strongly convex, but here again, this can be repaired whenever needed by regularizing
the problem via

ψ(x,y) = φ(yx)+ γx2, (3)

where γ > 0. It is for example easy to see that ψ(x,y) = ln2(1+ e−yx)+ γx2 satis-
fies Assumptions A1, A2, and A′3. This is also true for the penalized sigmoid loss
ψ(x,y) = (1− tanh(βyx))+γx2, where β is a positive parameter. In this case, ψ(·,y)
is 2(γ−β 2)-strongly convex as soon as β <

√
γ . Another interesting example in the

classification setting is the loss ψ(x,y) = φ(xy)+ γx2, where

φ(u) =
{
−u+1 if u≤ 0
e−u if u > 0.

We leave it as an easy exercise to prove that Assumptions A1, A2, and A′3 are satisfied.
Examples could be multiplied endlessly, but the point we wish to make is that our
assumptions are mild and allow to consider a large variety of learning problems. We
also emphasize that regularized objectives of the form (3) are typically in action in
the Extreme Gradient Boosting system of Chen and Guestrin (2016).
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2.3 Two algorithms

Let lin(F ) be the set of all linear combinations of functions in F , our collection of
base predictors in L2(µX). So, each F ∈ lin(F ) has the form F = ∑

J
j=1 β j f j, where

(β1, . . . ,βJ) ∈RJ and f1, . . . , fJ are elements of F . Finding the infimum of the functional
C over lin(F ) is a challenging infinite-dimensional optimization problem, which requires
an algorithm. The core idea of the gradient boosting approach is to greedily locate the
infimum by producing a combination of base predictors via a gradient-descent-type algo-
rithm in L2(µX). Focusing on the basics, this can be achieved by two related yet different
strategies, which we examine in greater mathematical details below. Algorithm 1 appears
in Mason et al. (2000), whereas Algorithm 2 is essentially due to Friedman (2001).

It is implicitly assumed throughout this paragraph that Assumption A1 is satisfied. We
recall that under this assumption, the convex functional C is locally bounded and therefore
continuous. Thus, in particular,

inf
F∈lin(F )

C(F) = inf
F∈lin(F )

C(F),

where lin(F ) is the closure of lin(F ) in L2(µX). Loosely speaking, looking for the infi-
mum of C over lin(F ) is the same as looking for the infimum of C over all (finite) linear
combinations of “small” functions in F . We note in addition that if Assumption A2 is sat-
isfied, then there exists a unique function F̄ ∈ lin(F ) (which we call the boosting predictor)
such that

C(F̄) = inf
F∈lin(F )

C(F). (4)

Algorithm 1. In this approach, we consider a class F of functions f : X →R such that
0 ∈F , f ∈F ⇔− f ∈F , and ‖ f‖µX = 1 for f 6= 0. An example is the collection F of
all ±1-binary trees in Rd using axis parallel cuts with k terminal nodes (plus zero). Each
nonzero f ∈ F takes the form f = ∑

k
j=1 β j1A j , where |β j| = 1 and A1, . . . ,Ak is a tree-

structured partition ofRd (Devroye et al., 1996, Chapter 20). The parameter k is a measure
of the tree complexity. For example, trees with k = d + 1 are such that lin(F ) = L2(µX)
(Breiman, 2000). Thus, in this case,

inf
F∈lin(F )

C(F) = inf
F∈L2(µX )

C(F).

Although interesting from the point of view of numerical optimization, this situation is
however of little interest for statistical learning, as we will see in Section 4.

Suppose now that we have a function F ∈ lin(F ) and wish to find a new f ∈F to add to F
so that the risk C(F+w f ) decreases at most, for some small value of w. Viewed in function
space terms, we are looking for the direction f ∈ F such that C(F +w f ) most rapidly
decreases. Assume for the moment, to simplify, that ψ is continuously differentiable in its
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first argument. Then the knee-jerk reaction is to take the opposite of the gradient of C at F ,
but since we are restricted to choosing our new function in F , this will in general not be a
possible choice. Thus, instead, we start from the approximate identity

C(F)−C(F +w f )≈−w〈∇C(F), f 〉µX (5)

and choose f ∈F that maximizes −〈∇C(F), f 〉µX . For an arbitrary (i.e., not necessarily
differentiable) ψ , we simply replace the gradient by a subgradient and choose f ∈F that
maximizes −Eξ (F(X),Y ) f (X). This motivates the following iterative algorithm:

Gradient Boosting Algorithm 1
1: Require (wt)t a sequence of positive real numbers.
2: Set t = 0 and start with F0 ∈F .
3: Compute

ft+1 ∈ argmax f∈F −Eξ (Ft(X),Y ) f (X) (6)

and let Ft+1 = Ft +wt+1 ft+1.
4: Take t← t +1 and go to step 3.

We emphasize that the method performs a gradient-type descent in the function space
L2(µX), by choosing at each iteration a base predictor to include in the combination so
as to maximally reduce the value of the risk functional. However, the main difference
with a standard gradient descent is that Algorithm 1 forces the descent direction to belong
to F . To understand the rationale behind this principle, assume that ψ is continuously
differentiable in its first argument. As we have seen earlier, in this case,

−Eξ (Ft(X),Y ) f (X) =−〈∇C(Ft), f 〉µX ,

and, for ∇C(Ft) 6= 0,

−∇C(Ft)

‖∇C(Ft)‖µX

= argmaxF∈L2(µX ):‖F‖µX =1−〈∇C(Ft),F〉µX .

Thus, at each step, Algorithm 1 mimics the computation of the negative gradient by re-
stricting the search of the supremum to the class F , i.e., by taking

ft+1 ∈ argmax f∈F −〈∇C(Ft), f 〉µX ,

which is exactly (6). In the empirical case (i.e., µX ,Y = µn) this descent step takes the form

ft+1 ∈ argmax f∈F −
1
n

n

∑
i=1

∇C(Ft)(Xi) · f (Xi).

Finding this optimum is a non-trivial computational problem, which necessitates a strat-
egy. For example, in the spirit of the CART algorithm of Breiman et al. (1984), Chen and
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Guestrin (2016) use in the XGBoost package a greedy approach that starts from a single
leaf and iteratively adds branches to the tree.

The sequence (wt)t is the sequence of step sizes, which are allowed to change at every
iteration and should be carefully chosen for convergence guarantees. It is also stressed that
the algorithm is assumed to be run forever, i.e., stopping or not the iterations is not an issue
at this stage of the analysis. As we will see in the next section, the algorithm is convergent
under our assumptions (with an appropriate choice of the sequence (wt)t), in the sense that

lim
t→∞

C(Ft) = inf
F∈lin(F )

C(F).

Of course, in the empirical case, the statistical properties as n→ ∞ of the limit deserve a
special treatment, connected with possible overfitting issues. This important discussion is
postponed to Section 4.

Algorithm 2. The principle we used so far rests upon the simple Taylor-like identity (5),
which encourages us to imitate the definition of the negative gradient in the class F . Still
starting from (5), there is however another strategy, maybe more natural, which consists in
choosing ft+1 by a least squares approximation of −ξ (Ft(X),Y ). To follow this route, we
modify a bit the collection of weak learners, and consider a class P ⊂ L2(µX) of functions
f : X →R such that f ∈P⇔− f ∈P , and a f ∈P for all (a, f )∈R×P (in particular,
0 ∈P , which is thus a cone of L2(µX)). Binary trees in Rd using axis parallel cuts with
k terminal nodes are a good example of a possible class P . These base learners are of the
form f = ∑

k
j=1 β j1A j , where this time (β1, . . . ,βk) ∈Rk, without any normative constraint.

Given Ft , the idea of Algorithm 2 is to choose ft+1 ∈P that minimizes the squared norm
between −ξ (Ft(X),Y ) and ft+1(X), i.e., to let

ft+1 ∈ argmin f∈PE(−ξ (Ft(X),Y )− f (X))2,

or, equivalently,

ft+1 ∈ argmin f∈P
(
2Eξ (Ft(X),Y ) f (X)+‖ f‖2

µX

)
.

A more algorithmic format is shown below. We note that, contrary to Algorithm 1, the step
size ν is kept fixed during the iterations. We will see in the next section that choosing a
small enough ν (depending in particular on the Lipschitz constant of Assumption A3) is
sufficient to ensure the convergence of the algorithm. In the empirical setting, assuming
that ψ is continuously differentiable in its first argument, the optimization step (7) reads

ft+1 ∈ argmax f∈P
1
n

n

∑
i=1

(−∇C(Ft)(Xi)− f (Xi))
2.

Therefore, in this context, the gradient boosting algorithm fits ft+1 to the negative gradient
instances −∇C(Ft)(Xi) via a least squares minimization. When ψ(x,y) = (y− x)2/2, then
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Gradient Boosting Algorithm 2
1: Require ν a positive real number.
2: Set t = 0 and start with F0 ∈P .
3: Compute

ft+1 ∈ argmin f∈P
(
2Eξ (Ft(X),Y ) f (X)+‖ f‖2

µX

)
(7)

and let Ft+1 = Ft +ν ft+1.
4: Take t← t +1 and go to step 3.

−∇C(Ft)(Xi) = Yi−Ft(Xi), and the algorithm simply fits ft+1 to the residuals Yi−Ft(Xi)
at step t, in the spirit of original boosting procedures. This observation is at the source of
gradient boosting, which Algorithm 2 generalizes to a much larger variety of loss functions
and to more abstract measures.

3 Convergence of the algorithms

This section is devoted to analyzing the convergence of the gradient boosting Algorithm 1
and Algorithm 2 as the number of iterations t tends to infinity. Despite its importance, no
results (or only partial answers) have been reported so far on this question.

3.1 Algorithm 1

The convergence of this algorithm rests upon the choice of the step size sequence (wt)t ,
which needs to be carefully specified. We take w0 > 0 arbitrarily and set

wt+1 = min
(
wt ,−(2L)−1Eξ (Ft(X),Y ) ft+1(X)

)
, t ≥ 0, (8)

where L is the Lipschitz constant of Assumption A3. Clearly, the sequence (wt)t is nonin-
creasing. It is also nonnegative. To see this, just note that, by definition,

ft+1 ∈ argmax f∈F −Eξ (Ft(X),Y ) f (X),

and thus, since 0 ∈ F , −Eξ (Ft(X),Y ) ft+1(X) ≥ 0. The main result of this section is
encapsulated in the following theorem.

Theorem 3.1. Assume that Assumptions A1 and A3 are satisfied, and let (Ft)t be defined
by Algorithm 1 with (wt)t as in (8). Then

lim
t→∞

C(Ft) = inf
F∈lin(F )

C(F).

Observe that Theorem 3.1 holds without Assumption A2, i.e., there is no need here to
assume that the function ψ(x,y) is strongly convex in x. However, whenever Assumption
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A2 is satisfied, there exists as in (4) a unique boosting predictor F̄ ∈ lin(F ) such that
C(F̄) = infF∈lin(F )C(F), and the theorem guarantees that limt→∞C(Ft) =C(F̄).

The proof of the theorem relies on the following lemma, which states that the sequence
(C(Ft))t is nonincreasing. Since C(F) is nonnegative for all F , we conclude that C(Ft) ↓
infk C(Fk) as t → ∞. This is the key argument to prove the convergence of C(Ft) towards
infF∈lin(F )C(F).

Lemma 3.1. Assume that Assumptions A1 and A3 are satisfied. Then, for each t ≥ 0,

C(Ft)−C(Ft+1)≥ Lw2
t+1.

In particular, C(Ft) ↓ infk C(Fk) as t→ ∞, ∑t≥1 w2
t < ∞, and limt→∞ wt = 0.

Proof. Let t ≥ 0. Recall that Ft+1 =Ft +wt+1 ft+1. If ft+1 = 0, then wt+1 = 0 and Ft+1 =Ft ,
so that there is nothing to prove. Thus, in the remainder of the proof, it is assumed that ft+1
is different from zero and, in turn, that ‖ ft+1‖µX = 1. Applying technical Lemma 5.1, we
may write

C(Ft)≥C(Ft+1)−w2
t+1L−wt+1Eξ (Ft(X),Y ) ft+1(X)

≥C(Ft+1)−w2
t+1L+2Lwt+1 min

(
wt ,−(2L)−1Eξ (Ft(X),Y ) ft+1(X)

)
=C(Ft+1)+Lw2

t+1,

by definition (8) of the sequence (wt)t .

Proof of Theorem 3.1. Assume that, for some t0 ≥ 0, sup f∈F −Eξ (Ft0(X),Y ) f (X) = 0.
Then, by the symmetry of the class F , for all f ∈F ,Eξ (Ft0(X),Y ) f (X) = 0. We conclude
by technical Lemma 5.2 that

C(Ft) = inf
F∈lin(F )

C(F) for all t ≥ t0,

and the result is proved. Thus, in the following, it is assumed that

sup
f∈F
−Eξ (Ft(X),Y ) f (X)> 0 for all t ≥ 0.

Consequently, −Eξ (Ft(X),Y ) ft+1(X)> 0 and wt > 0 for all t. Since wt → 0, there exists
a subsequence (wt ′)t ′ such that

wt ′+1 =−(2L)−1Eξ (Ft ′(X),Y ) ft ′+1(X)

= (2L)−1 sup
f∈F
−Eξ (Ft ′(X),Y ) f (X). (9)

Let ε > 0. For all t ′ large enough and all f ∈F , by the symmetry of F ,

−Eξ (Ft ′(X),Y ) f (X)≤ ε and Eξ (Ft ′(X),Y ) f (X)≤ ε,
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and thus limt ′→∞Eξ (Ft ′(X),Y ) f (X) = 0 for all f ∈ F . We conclude that, for all G ∈
lin(F ),

lim
t ′→∞

Eξ (Ft ′(X),Y )G(X) = 0. (10)

Assume, without loss of generality, that F0 = 0, and observe that Ft = ∑
t
k=1 wk fk. Thus, we

may write

Eξ (Ft ′(X),Y )Ft ′(X) =
t ′

∑
k=1

wkEξ (Ft ′(X),Y ) fk(X)

≤ sup
f∈F

Eξ (Ft ′(X),Y ) f (X)
t ′

∑
k=1

wk

= sup
f∈F
−Eξ (Ft ′(X),Y ) f (X)

t ′

∑
k=1

wk

(by the symmetry of F )

= 2Lwt ′+1

t ′

∑
k=1

wk,

by definition of wt ′+1—see (9). So,

Eξ (Ft ′(X),Y )Ft ′(X)≤ 2Lwt ′
t ′

∑
k=1

wk = 2Lwt ′
t ′

∑
k=1

w−1
k w2

k

(because wt ′+1 ≤ wt ′).

Since ∑k≥1 w2
k < ∞, and since the sequence (wt)t is nonincreasing, positive, and tends to 0

as t→ ∞, Kronecker’s lemma reveals that wt ′∑
t ′
k=1 w−1

k w2
k → 0 as t ′→ ∞. Therefore,

limsup
t ′→∞

Eξ (Ft ′(X),Y )Ft ′(X)≤ 0. (11)

Let ε > 0 and let F?
ε ∈ lin(F ) be such that

inf
F∈lin(F )

C(F)≥C(F?
ε )− ε.

By the convexity of C, we have, for all t ′,

inf
F∈lin(F )

C(F)≥C(F?
ε )− ε

≥C(Ft ′)+Eξ (Ft ′(X),Y )(F?
ε (X)−Ft ′(X))− ε

≥ inf
k

C(Fk)+Eξ (Ft ′(X),Y )F?
ε (X)−Eξ (Ft ′(X),Y )Ft ′(X)− ε.
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Combining (10) and (11), we conclude that infF∈lin(F )C(F)≥ infk C(Fk)−ε for all ε > 0,
so that

lim
t→∞

C(Ft) = inf
k

C(Fk) = inf
F∈lin(F )

C(F),

which is the desired result.

Theorem 3.1 ensures that the risk of the boosting iterates gets closer and closer to the
minimal risk as the number of iterations grows. It turns out that, whenever lin(F ) =
L2(µX), under Assumption A2 and the smooth framework of Assumption A′3, the sequence
(Ft)t itself approaches F̄ = argminF∈L2(µX )

C(F), as shown in Corollary 3.1 below. This
corollary is an easy consequence of Theorem 3.1 and the strong convexity of C.

Corollary 3.1. Assume that lin(F ) = L2(µX). Assume, in addition, that Assumptions A1,
A2, and A′3 are satisfied, and let (Ft)t be defined by Algorithm 1 with (wt)t as in (8). Then

lim
t→∞
‖Ft− F̄‖µX = 0,

where
F̄ = argminF∈L2(µX )

C(F).

Proof. By the α-strong convexity of C,

C(Ft)≥C(F̄)+Eξ (F̄ ,Y )(Ft− F̄)+
α

2
‖Ft− F̄‖2

µX
,

which, under A′3, takes the more familiar form

C(Ft)≥C(F̄)+ 〈∇C(F̄),Ft− F̄〉µX +
α

2
‖Ft− F̄‖2

µX
.

But, since F̄ = argminF∈L2(µX )
C(F), we know that 〈∇C(F̄),Ft− F̄〉µX = 0. Thus,

C(Ft)−C(F̄)≥ α

2
‖Ft− F̄‖2

µX
,

and the conclusion follows from Theorem 3.1.

3.2 Algorithm 2

Recall that, in this context, each iteration picks an ft+1 ∈P that satisfies

2Eξ (Ft(X),Y ) ft+1(X)+‖ ft+1‖2
µX
≤ 2Eξ (Ft(X),Y ) f (X)+‖ f‖2

µX
for all f ∈P.

Theorem 3.2. Assume that Assumptions A1-A3 are satisfied, and let (Ft)t be defined by
Algorithm 2 with 0 < ν < 1/(2L). Then

lim
t→∞

C(Ft) = inf
F∈lin(P)

C(F).
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The architecture of the proof is similar to that of Theorem 3.1. (Note however that this
theorem requires the strong convexity Assumption A2). In particular, we need the following
important lemma, which states that the risk of the iterates decreases at each step of the
algorithm.

Lemma 3.2. Assume that Assumptions A1 and A3 are satisfied, and let 0 < ν < 1/(2L).
Then, for each t ≥ 0,

C(Ft)−C(Ft+1)≥
ν

2
(1−2νL)‖ ft+1‖2

µX
.

In particular, C(Ft) ↓ infk Ck as t→ ∞, ∑t≥1 ‖ ft‖2
µX

< ∞, and limt→∞ ‖ ft‖µX = 0.

Proof. Let t ≥ 0. Applying technical Lemma 5.1, we may write

C(Ft)≥C(Ft+1)−ν
2L‖ ft+1‖2

µX
−νEξ (Ft(X),Y ) ft+1(X)

=C(Ft+1)−ν
2L‖ ft+1‖2

µX
− ν

2
(
2Eξ (Ft(X),Y ) ft+1(X)+‖ ft+1‖2

µX

)
+

ν

2
‖ ft+1‖2

µX
.

Upon noting that 2Eξ (Ft(X),Y ) ft+1(X)+‖ ft+1‖2
µX
≤ 0 (since 0 ∈P), we conclude that

C(Ft)≥C(Ft+1)+
ν

2
(1−2νL)‖ ft+1‖2

µX
.

Proof of Theorem 3.2. The first step is to establish that there exists a subsequence (Ft ′)t ′

such that limt ′→∞Eξ (Ft ′(X),Y )G(X)→ 0 for all G ∈ lin(P). We start by observing that
C(Ft)≤C(F0). Thus, by technical Lemma 5.3, supt ‖Ft‖µX ≤ B for some positive constant
B. Now,

|Eξ (Ft(X),Y ) ft+1(X)|= |EE(ξ (Ft(X),Y ) |X) ft+1(X)|
≤ E

∣∣E(ξ (Ft(X),Y )−ξ (0,Y ) |X)
∣∣ · | ft+1(X)|+E|ξ (0,Y ) ft+1(X)|

≤ LE|Ft(X) ft+1(X)|+E|ξ (0,Y ) ft+1(X)|
(by Assumption A3)

≤ L‖Ft‖µX‖ ft+1‖µX +
(
Eξ (0,Y )2)1/2‖ ft+1‖µX

(by the Cauchy-Schwarz inequality)

≤
(
LB+

(
Eξ (0,Y )2)1/2)‖ ft+1‖µX .

Consequently, since limt→∞ ‖ ft+1‖µX = 0,

inf
f∈P

(
2Eξ (Ft(X),Y ) f (X)+‖ f‖2

µX

)
= 2Eξ (Ft(X),Y ) ft+1(X)+‖ ft+1‖2

µX

→ 0 as t→ ∞.
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Accordingly, by the symmetry of P , for all ε > 0 and all t large enough, we have, for all
f ∈P ,

2Eξ (Ft(X),Y ) f (X)+‖ f‖2
µX
≥−ε and−2Eξ (Ft(X),Y ) f (X)+‖ f‖2

µX
≥−ε.

So, for all t large enough and all f ∈P ,

|2Eξ (Ft(X),Y ) f (X)| ≤ ε +‖ f‖2
µX
.

Since ε was arbitrary, we conclude that, for all f ∈P ,

2lim supt→∞|Eξ (Ft(X),Y ) f (X)| ≤ ‖ f‖2
µX
. (12)

On the other hand, by Assumption A3,

|E(ξ (Ft(X),Y ) |X)| ≤ E(|ξ (0,Y )|
∣∣X)+L|Ft(X)|.

Since supt ‖Ft‖µX < ∞, we deduce that

sup
t
‖E(ξ (Ft(X),Y ) |X = ·)‖µX < ∞.

Therefore, recalling that the unit ball of L2(µX) is weakly compact, we see that there exists
a subsequence (Ft ′)t ′ and F̃ ∈ L2(µX) such that, for all G ∈ lin(P),

Eξ (Ft ′(X),Y )G(X) = EE(ξ (Ft ′(X),Y ) |X)G(X)→ EF̃(X)G(X).

Combining this identity with (12) reveals that 2|EF̃(X) f (X)| ≤ ‖ f‖2
µX

for all f ∈P . In
particular, for all ε > 0 and all f ∈P , 2|EF̃(X)ε f (X)| ≤ ε2‖ f‖2

µX
, and thus, letting ε ↓ 0,

we find that EF̃(X) f (X) = 0 for all f ∈P . By a linearity argument, we conclude that
EF̃(X)G(X) = 0 for all G ∈ lin(P). Therefore, for all G ∈ lin(P),

lim
t ′→∞

Eξ (Ft ′(X),Y )G(X) = 0, (13)

which was our first objective.

The next step is to prove that limsupt ′′→∞Eξ (Ft ′′(X),Y )Ft ′′(X) ≤ 0 for some subsequence
(Ft ′′)t ′′ of (Ft ′)t ′ . To simplify the notation, we assume, without loss of generality, that F0 = 0.
Fix ε > 0. Since ∑k≥1 ‖ fk‖2

µX
< ∞, there exists T ≥ 0 such that ∑k≥T+1 ‖ fk‖2

µX
≤ ε . In

addition, for all t > T , Ft = FT +ν ∑
t
k=T+1 fk, so that

Eξ (Ft(X),Y )Ft(X) = Eξ (Ft(X),Y )FT (X)+ν

t

∑
k=T+1

Eξ (Ft(X),Y ) fk(X). (14)

Also, by the very definition of ft+1 and the symmetry of P , we have, for all f ∈P ,

2Eξ (Ft(X),Y ) ft+1(X)+‖ ft+1‖2
µX
≤−2Eξ (Ft(X),Y ) f (X)+‖ f‖2

µX
, (15)
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i.e., for all f ∈P ,

2Eξ (Ft(X),Y ) f (X)≤−2Eξ (Ft(X),Y ) ft+1(X)−‖ ft+1‖2
µX

+‖ f‖2
µX
.

Using (14), this leads to

Eξ (Ft(X),Y )Ft(X)

≤ Eξ (Ft(X),Y )FT (X)+
ν

2

(
t
(
−2Eξ (Ft(X),Y ) ft+1(X)−‖ ft+1‖2

µX

)
+ ∑

k≥T+1
‖ fk‖2

µX

)
≤ εν

2
+Eξ (Ft(X),Y )FT (X)+

νt
2
(
−2Eξ (Ft(X),Y ) ft+1(X)−‖ ft+1‖2

µX

)
. (16)

But, according to inequality (15) applied with f = −2 ft+1 (which belongs to P by as-
sumption),

2Eξ (Ft(X),Y ) ft+1(X)+‖ ft+1‖2
µX
≤ 4Eξ (Ft(X),Y ) ft+1(X)+4‖ ft+1‖2

µX
,

i.e.,
−2Eξ (Ft(X),Y ) ft+1(X)≤ 3‖ ft+1‖2

µX
.

Combining this inequality with (16) shows that

Eξ (Ft(X),Y )Ft(X)≤ εν

2
+Eξ (Ft(X),Y )FT (X)+νt‖ ft+1‖2

µX
.

Since ∑k≥1 ‖ fk‖2
µX

< ∞, one has ∑t ′ ‖ ft ′+1‖2
µX

< ∞, which guarantees the existence of a
subsequence ( ft ′′)t ′′ satisfying t ′′‖ ft ′′+1‖2

µX
→ 0. Besides, since FT ∈ lin(P), we know

from (13) that Eξ (Ft ′′(X),Y )FT (X)→ 0. Therefore, for all ε > 0,

limsupt ′′→∞Eξ (Ft ′′(X),Y )Ft ′′(X)≤ εν

2
.

Since ε is arbitrary, we have just shown that

limsupt ′′→∞Eξ (Ft ′′(X),Y )Ft ′′(X)≤ 0, (17)

as desired.

Let ε > 0 and let F?
ε ∈ lin(P) be such that

inf
F∈lin(P)

C(F)≥C(F?
ε )− ε.

By the convexity of C, along t ′′,

inf
F∈lin(P)

C(F)≥C(F?
ε )− ε

≥ inf
k

C(Fk)+Eξ (Ft ′′(X),Y )F?
ε (X)−Eξ (Ft ′′(X),Y )Ft ′′(X)− ε.

Putting (13) and (17) together, we conclude that

lim
t→∞

C(Ft) = inf
k

C(Fk) = inf
F∈lin(P)

C(F).
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As in Algorithm 1, the sequence (Ft)t approaches F̄ = argminF∈L2(µX )
C(F), provided

lin(P) = L2(µX) and A′3 is satisfied in place of A3. This is summarized in the follow-
ing Corollary. Its proof is similar to the proof of Corollary 3.1 and is therefore omitted.

Corollary 3.2. Assume that lin(P) = L2(µX). Assume, in addition, that Assumptions A1,
A2, and A′3 are satisfied, and let (Ft)t be defined by Algorithm 2 with 0 < ν < 1/(2L). Then

lim
t→∞
‖Ft− F̄‖µX = 0,

where
F̄ = argminF∈L2(µX )

C(F).

Theorem 3.1/Corollary 3.1 and Theorem 3.2/Corollary 3.2 guarantee that, under appropri-
ate assumptions, Algorithm 1 and Algorithm 2 converge towards the infimum of the risk
functional. Given the unusual form of these algorithms, which have the flavor of gradient
descents while being different, these results are all but obvious and cannot be deduced from
general optimization principles. As far as we know, they are novel in the gradient boosting
literature and extend our understanding of the approach.

Perhaps the most natural framework of Algorithm 1 and Algorithm 2 is when µX ,Y = µn,
the empirical measure. In this statistical context, both algorithms track the infimum of the
empirical risk functional Cn(F) = 1

n ∑
n
i=1 ψ(F(Xi),Yi) over the linear combinations of weak

learners in F (Algorithm 1) or in P (Algorithm 2). This task is achieved by sequentially
constructing linear combinations of base learners, of the form Ft = F0 +∑

t
k=1 wk fk with

fk ∈F for Algorithm 1, and Ft = F0 +ν ∑
t
k=1 fk with fk ∈P for Algorithm 2. We stress

that, in the empirical case, the boosted iterates Ft and their eventual limit F̄n are measurable
functions of the data set Dn. That being said, Theorem 3.1 and Theorem 3.2 are numerical-
analysis-type results, which do not provide information on the statistical properties of the
boosting predictor F̄n. From this point of view, more or less catastrophic situations can
happen, depending on the “size” of lin(F ) (Algorithm 1) or lin(P) (Algorithm 2), which
should not be neither too small (to catch complex decisions) nor excessively large (to avoid
overfitting).

To be convinced of this, consider for example Algorithm 1 with ψ(x,y) = (y− x)2 (least
squares regression problem) and F = all binary trees with d +1 leaves. Denote by Pn the
empirical measure based on the Xi only, 1≤ i≤ n. Then, by Theorem 3.1, limt→∞Cn(Ft) =
Cn(F̄n), where

F̄n = argminF∈L2(Pn)
Cn(F).

Assume, to simplify, that all Xi are different. It is then easy to see that the boosting pre-
dictor F̄n takes the value Yi at each Xi and is arbitrarily defined elsewhere. Of course, in
general, such a function F̄n does not converge as n→ ∞ towards the regression function
F?(x) = E(Y |X = x), and this is a typical situation where the gradient boosting algorithms
overfit. The overfitting issue of boosting procedures has been recognized for a long time,
and various approaches have been proposed to combat it, in particular via early stopping
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(that is, stopping the iterations before convergence; see, e.g., Bühlmann and Yu, 2003;
Mannor et al., 2003; Zhang and Yu, 2005; Bickel et al., 2006; Bartlett and Traskin, 2007).

Nevertheless, the natural question we would like to answer is whether there exists a reason-
able context in which the boosting predictors enjoy good statistical properties as the sample
size grows, without resorting to any stopping strategy. The next section provides a posi-
tive response. The major constraint we face, imposed by the gradient-descent nature of the
algorithms, is that we are required to perform a minimization over a vector space (lin(F )
for Algorithm 1 and lin(P) for Algorithm 2). In particular, there is no question of impos-
ing constraints on the coefficients of the linear combinations, which, for example, cannot
reasonably be assumed to be bounded. As we will see, the trick is to carefully constraint
the “complexity” of the vector spaces lin(F ) or lin(P) in a manner compatible with the
algorithms. The second message is the importance of having a strongly convex functional
risk to minimize, which, in some way, restrict the norm of the sequence (Ft)t≥0 of boosted
iterates. As we have pointed out several times, if the loss function is not natively strongly
convex in its first argument, then this type of regularization can be achieved by resorting to
an L2-type penalty.

4 Large sample properties

We consider in this section a functional minimization problem whose solution can be com-
puted by gradient boosting and enjoys non-trivial statistical properties. The context and
notation are similar to that of the previous sections, but must be slightly adapted to fit this
new framework.

For simplicity, it will be assumed throughout that X is a compact subset of Rd . We
consider i.i.d. data Dn = {(X1,Y1), . . . ,(Xn,Yn)} taking values in X ×Y , and let Pn be the
empirical measure based on the Xi only, 1≤ i≤ n. We denote by P the common distribution
of the Xi and assume that P has a density g with respect to the Lebesgue measure λ on Rd ,
with

0 < inf
X

g≤ sup
X

g < ∞.

We concentrate on Algorithm 1 and take as weak learners a finite class Fn of simple
functions on X with ±1 values, which may possibly vary with the sample size n. It
is actually easy to verify that all subsequent results are valid for Algorithm 2 by letting
Pn = {λ f : f ∈Fn,λ ∈R}.
The typical example we have in mind for Fn is a finite class of binary trees using axis
parallel cuts with k leaves. Of course, the parameter k has to be carefully chosen as a
function of the sample size to guarantee consistency, as we will see below. The fact that
the class Fn is supposed to be finite should not be too disturbing, since in practice the
optimization step (6) is typically performed over a finite family of functions. This is for
example the case when a CART-style top-down recursive partitioning is used to compute
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the minimum at each iteration of the algorithm. In this approach, the optimal tree in (6) is
greedily searched for by passing from one level of node to the next one with cuts that are
located between two data points. So, even though the collection Fn may be very large, it
is nevertheless fair to assume that its cardinal is finite.

As before, it is assumed that the identically zero function belongs to Fn. So, in this frame-
work, we see that there exists a (large) integer N =N(n)≥ 1 and a partition of X into mea-
surable subsets An

j , 1≤ j ≤ N, such that any F ∈ lin(Fn) takes the form F = ∑
N
j=1 α j1An

j
,

where (α1, . . . ,αN) ∈ RN . To avoid pathological situations, we assume that there exists
a positive sequence (vn)n such that min1≤ j≤N λ (An

j) ≥ vn. Of course, it is supposed that
N→ ∞ as n tends to infinity.

We let φ :R×Y →R+ be a loss function, assumed to be convex in its first argument and
to satisfy φ̄ := supy∈Y φ(0,y)< ∞. In line with the previous sections, we are interested in
minimizing over Fn the empirical risk functional Cn(F) defined by

Cn(F) =
1
n

n

∑
i=1

ψ(F(Xi),Yi),

where ψ(x,y) = φ(x,y) + γnx2 and (γn)n is a sequence of positive parameters such that
limn→∞ γn = 0. (Note that γn depends only on n and is therefore kept fixed during the
iterations of the algorithm.) Put differently,

Cn(F) = An(F)+ γn‖F‖2
Pn
, (18)

where

An(F) =
1
n

n

∑
i=1

φ(F(Xi),Yi).

Assumption A1 is obviously satisfied (with µX ,Y = µn, in the notation of Section 3), and
the same is true for Assumption A2 by the α-strong convexity of the function ψ(·,y) for
each fixed y, with α independent of y.

Remark 4.1. If the function φ(·,y) is natively α-strongly convex with a parameter α in-
dependent of y, then we may consider the simplest problem of minimizing the functional
An(F). Indeed, in this case there is no need to resort to the γn‖F‖2

Pn
penalty term since

Lemma 5.3 allows to bound ‖F‖2
Pn

. As we have seen in Section 2, this is for example the
case in the least squares problem, when φ(x,y) = (y−x)2. However, to keep a sufficient de-
gree of generality, we will consider in the following the more general optimization problem
(18).

Now, let
F̄n = argminF∈lin(Fn)Cn(F).

We have learned in Theorem 3.1 that whenever Assumption A3 is satisfied, the boosted
iterates (Ft)t of Algorithm 1 satisfy limt→∞Cn(Ft) =Cn(F̄n), i.e.,

lim
t→∞

(
An(Ft)+ γn‖Ft‖2

Pn

)
= An(F̄n)+ γn‖F̄n‖2

Pn
.
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For F ∈ L2(P), the population counterpart of An(F) is the convex functional A(F) :=
Eφ(F(X1),Y1), which is assumed to be locally bounded, and thus continuous. Throughout,
we denote by F? a minimizer of A(F) over L2(P), i.e.,

F? ∈ argminF∈L2(P)A(F).

We have for example F?(x) =E(Y |X = x) in the regression problem with φ(x,y) = (y−x)2

and F?(x) = log( η(x)
1−η(x)) in the classification problem with φ(x,y) = log2(1+e−yx), where

η(x) = P(Y = 1|X = x).

Our goal in this section is to investigate the large sample properties of F̄n, i.e., to analyze the
statistical behavior of the boosting predictor F̄n as n→∞. In particular, a sensible objective
is to show that A(F̄n) gets asymptotically close to the minimal risk A(F?) as the sample
size grows. This necessitates a proof, since all we know for now is that

An(F̄n)+ γn‖F̄n‖2
Pn
−A(F?) = inf

F∈lin(Fn)

(
An(F)+ γn‖F‖2

Pn
−A(F?)

)
,

which is our starting point. The following assumption on φ will be needed in the analysis:

A4 For all p≥ 0, there exists a constant ζ (p)> 0 such that, for all (x1,x2,y) ∈R2×Y
with max(|x1|, |x2|)≤ p,

|φ(x1,y)−φ(x2,y)| ≤ ζ (p)|x1− x2|.

It is readily seen that all classical convex losses in regression and classification satisfy this
local Lipschitz assumption. Finally, we let An(x) = An

j whenever x ∈ An
j , and, for E ⊂Rd ,

diam(E) = sup
x,x′∈E

‖x− x′‖.

Recall that φ̄ := supy∈Y φ(0,y)< ∞.

Theorem 4.1. Assume that Assumptions A3 (with ψ(x,y) = φ(x,y) + γnx2) and A4 are
satisfied, and that F? is bounded. Assume, in addition, that diam(An(X))→ 0 in probability
as n→ ∞. Then, provided γn→ 0, N→ ∞, logN

nvn
→ 0, and

1
√

nvnγn
ζ

(√
2φ̄

vnγn infX g

)
→ 0,

we have limn→∞EA(F̄n) = A(F?).

The main message of this theorem is that, under appropriate conditions on the loss and
provided the size of the weak learner classes are judiciously increased, gradient boosting

21



does not overfit. In other words, in this framework, stopping the iterations is not necessary
and the algorithms may be run indefinitely, without worrying about early stopping issues.

In line with Remark 4.1, we leave it as an exercise to prove that if the function φ(·,y) is
already α-strongly convex with a parameter α independent of y, then a similar result holds
with the conditions N→ ∞, logN

nvn
→ 0, and

1
√

nvn
ζ

(√
a

vn infX g

)
→ 0,

where a = 2
α

supy∈Y |ξ (0,y)|+
√

2φ̄/α . In this case, we can take γn = 0 (i.e., no penalty)
and resort to Lemma 5.3 to bound the quantity ‖F‖2

Pn
.

Next, we point out that the conditions of Theorem 4.1 are mild and cover a wide variety of
losses and possible classes of weak learners. As an example, let X = [0,1]d and take for
Fn the set of all binary trees on [0,1]d with kn leaves, where cuts are perpendicular to the
axes and located at the middle of the cells. Although combinatorially rich, this family of
trees is finite (see Figure 1 for an illustration in dimension d = 2).
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Figure 1: Four examples of trees in the class Fn, in dimension d = 2, with kn = 4.
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It is easy to verify that any F ∈ lin(Fn) takes the form F =∑
N
j=1 α j1An

j
, where N = 2dkn and

the An
j , 1 ≤ j ≤ N, form a regular grid over [0,1]d . Thus, clearly, vn = 2−dkn . In addition,

considering for example the loss φ(x,y) = (y− x)2, we see that the conditions of Theorem
4.1 take the simple form

kn→ ∞,
kn2dkn

n
→ 0, and

2dkn

√
n
→ 0.

Let us finally note that in the ±1-classification setting, each F defines a classifier gF in a
natural way, by

gF(x) =
{

1 if F(x)> 0
−1 otherwise,

and the main concern is not the behavior of the theoretical risk A(F) with respect to A(F?),
but rather the proximity between the probability of error L(gF) := P(gF(X) 6= Y ) and the
Bayes risk L? := infg:X→{−1,1}P(g(X) 6=Y ). For most classification losses (Zhang, 2004;
Bartlett et al., 2006), the difference L(gF)− L? is small as long as A(F)−A(F?) is. In
our framework, we conclude that for such well-behaved losses, under the assumptions of
Theorem 4.1,

lim
n→∞

EL(gF̄n
) = L?.

Proof of Theorem 4.1. For β ∈ RN , we let Fβ = ∑
N
j=1 β j1An

j
and notice that F̄n = Fα for

some (data-dependent) α ∈RN . Let the event S be defined by

S =
{
∀ j = 1, . . . ,N : Pn(An

j)≥ P(An
j)/2

}
.

Observe that

‖F̄n‖2
Pn
≤

1
n ∑

n
i=1 φ(0,Yi)

γn
≤ φ̄

γn
,

and, similarly, that

‖F̄n‖2
Pn
=

N

∑
j=1

α
2
j Pn(An

j).

Therefore, on S,
1
2

N

∑
j=1

α
2
j P(An

j)≤
φ̄

γn
,

and so
infX g

2
· vn

N

∑
j=1

α
2
j ≤

φ̄

γn
.

We have just shown that, on the event S, α ∈ T , where

T =
{

β ∈RN :
N

∑
j=1

β
2
j ≤

2φ̄

infX g
· 1

vnγn

}
.
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Now, observe that

ECn(F̄n) = E inf
F∈lin(Fn)

Cn(F)

= E inf
F∈lin(Fn)

Cn(F)1S +E inf
F∈lin(Fn)

Cn(F)1Sc

≤ E inf
F∈lin(Fn)

Cn(F)1S +ECn(0)1Sc

= E inf
β∈T

Cn(Fβ )1S +EAn(0)1Sc

≤ E inf
β∈T

Cn(Fβ )+ φ̄P(Sc).

Define
Dn(F) = A(F)+ γn‖F‖2

Pn
.

Since Cn(F)−Dn(F) = An(F)−A(F), we deduce from Lemma 5.4 and Lemma 5.6 that
whenever

logN
nvn

→ 0 and
1

√
nvnγn

ζ

(√
2φ̄

vnγn infX g

)
→ 0,

we have

limsup
n→∞

ECn(F̄n)≤ limsup
n→∞

E inf
β∈T

Cn(Fβ )

≤ limsup
n→∞

E inf
β∈T

Dn(Fβ )+ limsup
n→∞

(
E sup

β∈T
|An(Fβ )−A(Fβ )|

)
= limsup

n→∞

E inf
β∈T

Dn(Fβ ). (19)

Let ε > 0. By Lemma 5.5, there exists (β ε
1 , . . . ,β

ε
N) ∈ T such that∥∥F?−

N

∑
j=1

β
ε
j 1An

j

∥∥
P ≤ ε.

Define F?
ε = ∑

N
j=1 β ε

j 1An
j
. Then, according to (19),

limsup
n→∞

ECn(F̄n)≤ limsup
n→∞

(
A(F?

ε )+ γnE‖F?
ε ‖2

Pn

)
= limsup

n→∞

(
A(F?

ε )+ γn‖F?
ε ‖2

P
)

≤ A(F?
ε ). (20)

Since A is continuous, we conclude that limsupn→∞ECn(F̄n)≤ A(F?).

On the other hand, Cn(F̄n)≥ An(F̄n), and, by Lemma 5.4 and Lemma 5.6,

E|An(F̄n)−A(F̄n)| ≤ E sup
β∈T
|An(Fβ )−A(Fβ )|+ φ̄P(Sc)

→ 0 as n→ ∞.
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Therefore,
limsup

n→∞

EA(F̄n)≤ limsup
n→∞

Cn(F̄n).

So, with (20),
limsup

n→∞

EA(F̄n)≤ A(F?),

which is the desired result.

5 Some technical lemmas

Lemma 5.1. Assume that Assumptions A1 and A3 are satisfied. Then, for all a > 0 and all
F,G ∈ L2(µX),

C(F)−C(F +aG)≥−a2L‖G‖2
µX
−aEξ (F(X),Y )G(X).

Proof. By inequality (1),

C(F)≥C(F +aG)−aEξ (F(X)+aG(X),Y )G(X)

=C(F +aG)−aE(ξ (F(X)+aG(X),Y )−ξ (F(X),Y ))G(X)

−aEξ (F(X),Y )G(X)

=C(F +aG)−aEE(ξ (F(X)+aG(X),Y )−ξ (F(X),Y ) |X)G(X)

−aEξ (F(X),Y )G(X)

≥C(F +aG)−a
(
EE2(ξ (F(X)+aG(X),Y )−ξ (F(X),Y ) |X)

)1/2‖G‖µX

−aEξ (F(X),Y )G(X)

(by the Cauchy-Schwarz inequality).

Thus, by Assumption A3,

C(F)≥C(F +aG)−a2L‖G‖2
µX
−aEξ (F(X),Y )G(X).

Lemma 5.2. Assume that Assumption A1 is satisfied, and let (Ft)t be defined by Algorithm
1 with (wt)t as in (8). If, for some t0 ≥ 0,

Eξ (Ft0(X),Y ) f (X) = 0 for all f ∈F ,

then C(Ft0) = infF∈lin(F )C(F).

Proof. Fix t0 ≥ 0 and assume that Eξ (Ft0(X),Y ) f (X) = 0 for all f ∈ F . By linearity,
Eξ (Ft0(X),Y )G(X) = 0 for all G ∈ lin(F ). Let ε > 0 and let F?

ε ∈ lin(F ) be such that

inf
F∈lin(F )

C(F)≥C(F?
ε )− ε.
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By the convexity inequality (1),

C(F?
ε )≥C(F0)+Eξ (Ft0(X),Y )(F?

ε (X)−Ft0(X)) =C(Ft0).

Thus,
inf

F∈lin(F )
C(F)≥C(Ft0)− ε.

Since ε is arbitrary, the result follows.

Lemma 5.3. Assume that Assumptions A1 and A2 are satisfied. Then, for all F ∈ L2(µX),

‖F‖µX ≤
2
α

(
Eξ (0,Y )2)1/2

+

√
2C(F)

α
.

Proof. By inequality (2) and the Cauchy-Schwarz inequality,

C(F)≥C(0)+Eξ (0,Y )F(X)+
α

2
‖F‖2

µX

≥C(0)−
(
Eξ (0,Y )2)1/2‖F‖µX +

α

2
‖F‖2

µX
.

Let κ = (Eξ (0,Y )2)1/2. Since C(0)≥ 0,

C(F)+κ‖F‖µX −
α

2
‖F‖2

µX
≥ 0.

Therefore,

‖F‖µX ≤
κ +

√
κ2 +2αC(F)

α
≤ 2κ

α
+

√
2C(F)

α
.

Lemma 5.4. Let the event S be defined by

S =
{
∀ j = 1, . . . ,N : Pn(An

j)≥ P(An
j)/2

}
.

If logN
nvn
→ 0, then limn→∞P(Sc) = 0.

Proof. We have

P(Sc) = P
(
∃ j ≤ N : Pn(An

j)< P(An
j)/2

)
= P

(
∃ j ≤ N : Pn(An

j)−P(An
j)<−P(An

j)/2
)

= P
(
∃ j ≤ N :

P(An
j)−Pn(An

j)√
P(An

j)
>
√

P(An
j)/2

)

≤ P
(

max
1≤ j≤N

P(An
j)−Pn(An

j)√
P(An

j)
>
√

vn inf
X

g/2
)

≤ c1Ne−nvn infX g/c2 ,

where c1 and c2 are positive constants. In the last inequality, we used a Vapnik-Chervonen-
kis inequality (Vapnik, 1988) for relative deviations.
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In the sequel, we let

T =
{

β ∈RN :
N

∑
j=1

β
2
j ≤

2φ̄

infX g
· 1

vnγn

}
,

where φ̄ = supY φ(0,y)< ∞. We recall that An(x) := An
j whenever x ∈ An

j .

Lemma 5.5. Assume that diam(An(X))→ 0 in probability and that γn→ 0 as n→ ∞. For
all ε > 0 and all n large enough, there exists (β ε

1 , . . . ,β
ε
N) ∈ T such that

∥∥F?−
N

∑
j=1

β
ε
j 1An

j

∥∥
P ≤ ε.

Proof. Let K be a bounded and uniformly continuous function on Rd , with
∫

Kdλ = 1.
Let, for p > 0,

Kp(x) = pdK
( x

p

)
, x ∈Rd.

With a slight abuse of notation, we consider F? as a function defined on the whole spaceRd

(instead of X ) by implicitly assuming that F? = 0 on X c. We also define F?
p = F? ?Kp,

i.e.,

F?
p (x) =

∫
Rd

Kp(z)F?(x− z)dz, x ∈Rd.

Let (L2(λ ),‖ ·‖λ ) be the vector space of all real-valued square integrable functions on Rd .
For all p large enough, we have

‖F?
p −F?‖λ ≤

ε

2
√

supX g

(see, e.g., Wheeden and Zygmund, 1977, Theorem 9.6). Therefore, for all p large enough,

‖F?
p −F?‖P ≤ ε/2. (21)

In addition, F?
p is uniformly continuous on X (Wheeden and Zygmund, 1977, Theorem

9.4). Thus, there exists η = η(ε, p)> 0 such that, for all (x,x′) ∈X 2 with ‖x− x′‖ ≤ η ,

|F?
p (x)−F?

p (x
′)| ≤ ε/

√
8.
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For each j ∈ {1, . . . ,N}, choose an arbitrary an
j ∈ An

j and set G?
p = ∑

N
j=1 F?

p (a
n
j)1An

j
. Then

‖G?
p−F?

p ‖2
P =

N

∑
j=1
E(G?

p(X)−F?
p (X))21[X∈An

j ,diam(An(X))≤η ]

+
N

∑
j=1
E(G?

p(X)−F?
p (X))21[X∈An

j ,diam(An(X))>η ]

=
N

∑
j=1
E(F?

p (a
n
j)−F?

p (X))21[X∈An
j ,diam(An(X))≤η ]

+
N

∑
j=1
E(G?

p(X)−F?
p (X))21[X∈An

j ,diam(An(X))>η ]

≤ ε2

8

N

∑
j=1
P(X ∈ An

j)+4sup
X

(F?)2
N

∑
j=1
P(X ∈ An

j ,diam(An(X))> η)

(since supX |F?
p | ≤ supX |F?|< ∞ and supX |G?

p| ≤ supX |G?|< ∞)

≤ ε2

8
+4sup

X
(F?)2P(diam(An(X))> η),

because the (An
j)1≤ j≤N form a partition of X . Since diam(An(X))→ 0 in probability, we

see that for all n large enough (depending upon ε and p),

‖G?
p−F?

p ‖P ≤ ε/2.

Letting β ε
j = F?

p (a
n
j), 1≤ j ≤ N, and combining this inequality and (21), we conclude that

for every fixed ε > 0 and all n large enough, there exists (β ε
1 , . . . ,β

ε
N) ∈RN such that

∥∥F?−
N

∑
j=1

β
ε
j 1An

j

∥∥
P ≤ ε.

To complete the proof, it remains to show that (β ε
1 , . . . ,β

ε
N) ∈ T . Observe that

N

∑
j=1

(β ε
j )

2 ≤ sup
X

(F?)2N.

The right-hand side is bounded by 2φ̄

infX g ·
1

vnγn
for all n large enough. To see this, just note

that

Nvn ≤
N

∑
j=1

λ (An
j) = λ (X )< ∞.

Therefore, Nvnγn ≤ λ (X )γn→ 0 as n→ ∞. This concludes the proof of the lemma.

28



Lemma 5.6. For β ∈RN , let Fβ = ∑
N
j=1 β j1An

j
. Assume that Assumption A4 is satisfied. If

1
√

nvnγn
ζ

(√
2φ̄

vnγn infX g

)
→ 0,

then
lim
n→∞

E sup
β∈T
|An(Fβ )−A(Fβ )|= 0.

Proof. Let

sn =

√
2φ̄

vnγn infX g
,

and let ‖β‖∞ = max1≤ j≤N |β j| be the supremum norm of β = (β1, . . . ,βN) ∈RN . By defi-
nition of T , we have, for all β ∈ T ,

sup
X
|Fβ |= sup

X

∣∣ N

∑
j=1

β j1An
j

∣∣≤ ‖β‖∞ ≤ sn.

In addition, according to Assumption A4, we may write, for β1 and β2 ∈ T ,

|φ(Fβ1(x),y)−φ(Fβ2(x),y)| ≤ ζ (sn)|Fβ1(x)−Fβ2(x)| ≤ ζ (sn)‖β1−β2‖∞.

This shows that the process (An(Fβ )−A(Fβ )

ζ (sn)

)
β∈T

is subgaussian (e.g., van Handel, 2016, Chapter 5) for the distance d(β1,β2) =
1√
n‖β1−

β2‖∞. Now, let N(T,d,ε) denote the ε-covering number of T for the distance d. Then, by
Dudley’s inequality (van Handel, 2016, Corollary 5.25), one has

E sup
β∈T

(An(Fβ )−A(Fβ ))≤ 12ζ (sn)
∫

∞

0

√
log
(

N(T,
1√
n
‖ · ‖∞,ε)

)
dε

= 12ζ (sn) ·
1√
n

∫
∞

0

√
log(N(T,‖ · ‖∞,ε))dε.

Let B2(0,1) denote the unit Euclidean ball in (RN ,‖·‖2). Since T = snB2(0,1), we see that

E sup
β∈T

(An(Fβ )−A(Fβ ))≤ 12ζ (sn) ·
sn√

n

∫
∞

0

√
log(B2(0,1),‖ · ‖∞,ε)dε.

29



But ‖ · ‖2 ≤
√

N‖ · ‖∞, and so

E sup
β∈T

(An(Fβ )−A(Fβ ))≤ 12ζ (sn) ·
sn√

n

∫
∞

0

√
log
(

B2(0,1),
1√
N
‖ · ‖2,ε

)
dε

= 12ζ (sn) ·
sn√

n
· 1√

N

∫
∞

0

√
log(3/ε)Ndε

= 12
snζ (sn)√

n

∫
∞

0

√
log(3/ε)dε.

In the last equality, we used the fact that N(B2(0,1),‖ · ‖2,ε) equals 1 for ε ≥ 1 and is not
larger than (3/ε)N for ε < 1 (e.g., van Handel, 2016, Chapter 5). The same conclusion
holds for Esupβ∈T (A(Fβ )−An(Fβ )), and this proves the result.
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