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Convergence to consensus of the general finite-dimensional

Cucker-Smale model with time-varying delays

Cristina Pignotti∗ Emmanuel Trélat †

Abstract

We consider the celebrated Cucker-Smale model in finite dimension, modelling interact-
ing collective dynamics and their possible evolution to consensus. The objective of this paper
is to study the effect of time delays in the general model. By a Lyapunov functional ap-
proach, we provide convergence results to consensus for symmetric as well as nonsymmetric
communication weights under some structural conditions.

1 Introduction

The study of collective behavior of autonomous agents has recently attracted great interest in
various scientific applicative areas, such as biology, sociology, robotics, economics (see [2, 3, 5,
7, 11, 15, 28, 29, 31, 32, 39, 40, 42]). The main motivation is to model and explain the possible
emergence of self-organization or global pattern formation in a large group of agents having
mutual interactions, where individual agents may interact either globally or even only at the
local scale.

The well known Cucker-Smale model has been proposed and studied in [19, 20] as a paradig-
matic model for flocking, namely for modelling the evolution of dynamics where autonomous
agents reach a consensus based on limited environmental information. Consider N ∈ N agents
and let (xi(t), vi(t)) ∈ IR2d, i = 1, . . . , N, be their phase-space coordinates. One can think of
xi(t) ∈ IRd by standing for the position of the ith agent and vi(t) ∈ IRd for its velocity, but for
instance in social sciences these variables may stand for other notions such as opinions. The
general finite-dimensional Cucker-Smale model is the following:

ẋi(t) = vi(t),

v̇i(t) =
λ

N

N∑
j=1

ψij(t)(vj(t)− vi(t)), i = 1, . . . , N,
(1.1)

where the parameter λ is a nonnegative coupling strength and the communication ψij(t) are of
the form

ψij(t) = ψ(|xi(t)− xj(t)|).
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The function ψ is called the potential. Here and throughout, the notation | · | stands for the
Euclidean norm in IRd. Along any solution of (1.1), we define the (position and velocity)
variances

X(t) =
1

2N2

N∑
i,j=1

|xi(t)− xj(t)|2

and

V (t) =
1

2N2

N∑
i,j=1

|vi(t)− vj(t)|2. (1.2)

Definition 1.1. We say that a solution of (1.1) converges to consensus (or flocking) if

sup
t>0

X(t) < +∞ and lim
t→+∞

V (t) = 0.

The potential initially considered by Cucker and Smale in [19, 20] is the function ψ(s) =
1

(1+s2)β
with β > 0. They proved that there is unconditional convergence to flocking whenever

β < 1
2 . If β > 1/2, there is convergence to flocking under appropriate assumptions on the values

of the initial variances on positions and speeds (see [23]). Their analysis relies on a Lyapunov
approach with quadratic functionals, which we will refer to in the sequel as an L2 analysis. This
approach allows to treat symmetric communication rates. An extension of the flocking result to
the case of nonsymmetric communication rates has been proposed by Motsch and Tadmor [36],
with a different approach that we will refer to in the sequel as an L∞ analysis, which we will
describe further.

From the mathematical point of view, there have been a number of generalizations and of
results on convergence to consensus for variants of Cucker-Smale models, involving more general
potentials (friction, attraction-repulsion), cone-vision constraints, leadership (see [13, 17, 26,
35, 37, 44, 46]), clustering emergence (see [30, 36]), social networks (see [4]), pedestrian crowds
(see [16, 33]), stochastic or noisy models (see [18, 24]), kinetic models in infinite dimension (see
[1, 4, 8, 12, 21, 27, 43]), and the control of such models (see [6, 9, 10, 41, 45]).

Cucker-Smale with time-varying delays. In the present paper, we introduce time-delays
in the Cucker-Smale model and we perform an asymptotic analysis of the resulting model. Time-
delays reflect the fact that, for a given individual agent, information from other agents does not
always propagate at infinite speed and is received after a certain time-delay, of reflect the fact
that the agent needs time to elaborate its reaction to incoming stimuli.

We assume throughout that the delay τ(t) > 0 is time-varying. This models the fact that
the amplitude of the delay may exhibit some seasonal effects or that it depends on the age of
the agents for instance. Our model is the following:

ẋi(t) = vi(t),

v̇i(t) =
λ

N

N∑
j=1

j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vi(t)), i = 1, . . . , N, (1.3)

with initial conditions

xi(t) = fi(t), vi(t) = gi(t), t ∈ [−τ(0), 0],
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where fi, gi : [−τ(0), 0] → IR are given functions and ψij(t), i, j = 1, . . . , N, are suitable com-
munication rates. In the symmetric case, we have

ψij(t) = ψ(|xi(t)− xj(t)|), i, j ∈ {1, . . . , N}. (1.4)

The time-delay function is assumed to be bounded: we assume that there exists τ > 0 such that

0 6 τ(t) 6 τ , ∀ t > 0. (1.5)

We assume moreover that the function t 7→ τ(t) is almost everywhere differentiable, and that
there exists c > 0 such that

|τ ′(t)| 6 c < 1, ∀ t > 0. (1.6)

The potential function ψ : [0,+∞)→ (0,+∞) in (1.4) is assumed to be continuous and bounded.
Without loss of generality (if necessary, do a time reparametrization), we assume that

ψij(t) 6 1, ∀t ∈ [−τ(0),+∞), ∀i, j ∈ {1, . . . , N}. (1.7)

Note that, in the model (1.3) above, not only the delay is time-varying but also, more
importantly, there is no delay in vi in the equation for velocity vi. This assumption in our model
is realistic because one expects that every agent receives information coming from the other
agents with a certain delay while its own velocity is known exactly at every time t, but this
makes the analysis considerably more complex, as we explain below.

State of the art. Simpler delay Cucker-Smale models have been considered in several contri-
butions, with a constant delay τ > 0.

Firstly, a time-delayed model has been introduced and studied in [22], where the equation
for velocities (which actually also involves noise terms in that paper) is

v̇i(t) =
λ

N

N∑
j=1

ψij(t− τ)(vj(t− τ)− vi(t− τ)),

with a constant delay τ . Considering vi(t − τ) instead of vi(t) in the equation for vi(·) is less
natural because one can suppose that only the information on the velocities of the other agents
is known with a delay τ . However, this assumption in the model makes the analysis much easier
because it allows to keep one of the most important features of the standard Cucker-Smale
system (1.1), namely the fact that the mean velocity v̄(t) = 1

N

∑N
i=1 vi(t) remains constant,

i.e., ˙̄v(t) = 0, as in the undelayed Cucker-Smale model. This fact significantly simplifies the
arguments in the asymptotic analysis. In contrast, the mean velocity is not constant for our
model (1.3), which makes the problem much more difficult to address.

Secondly, in [34] the authors consider as equation for the velocities

v̇i(t) = α

N∑
j=1

aij(t− τ)(vj(t− τ)− vi(t)), (1.8)

where α > 0 and the coupling coefficients aij are such that
∑N

j=1 aij = 1, i = 1, . . . , N . Com-
pared with (1.3), the sum is running over all indices, including i, and thus (1.8) involves, with
respect to (1.3), the additional term aii(t− τ)(vi(t− τ)− vi(t)) at the right-hand side. But on
the one part, this term has no physical meaning. On the other part, the authors of [34] claim
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to study (1.3) but their claim is actually erroneous and their result (unconditional flocking for
all delays) actually only applies to (1.8) (cf [34, Eq. (7)]). Note that (1.8) can be rewritten as

v̇i(t) = α
N∑
j=1

aij(t− τ)vj(t− τ)− αvi(t), (1.9)

with a negative coefficient, independent of the time t, for the undelayed velocity vi(t) of the ith

agent. This allows to obtain a strong stability result: unconditional flocking for all time delays.
Thirdly, in the recent paper [14], the authors analyze a Cucker-Smale model with delay and

normalized communication weights Φij given by

Φij(x, τ) =


ψ(|xj(t− τ)− xi(t)|)∑
k 6=i ψ(|xk(t− τ)− xi(t)|)

if j 6= i,

0 if j = i,

(1.10)

where the influence function ψ is assumed to be bounded, nonincreasing, Lipschitz continuous
on [0,+∞), with ψ(0) = 1. Thus, in practice, due to the assumption

∑N
j=1 Φij = 1, their model

can be written as

v̇i(t) =
N∑
j=1

Φij(x, t− τ)vj(t− τ)− vi(t),

to which the same considerations than for the model (1.9) apply. Moreover, the particular form
of the communication weights Φij allows to apply some convexity arguments in order to obtain
the flocking result for sufficiently small delays. Then, the result strictly relies on the specific form
of the interaction between the agents. Note also that the influence function ψ in the definition
(1.10) of Φij has as arguments |xk(t− τ)− xi(t)|, k = 1, . . . , N, k 6= i, with the state of the ith

agent at the time t and the states of the other agents at time t− τ. This fact does not seem to
have physical meaning, but it allows to easily derive the mean-field limit of the problem at hand
by obtaining a nice and tractable kinetic equation. In contrast, putting the time-delay also in
the state of ith agent is more suitable to describe the physical model but it makes unclear (at
least to us) the passage to mean-field limit (see Section 5).

Framework and structure of the present paper. In Section 2, we consider the model
(1.3) with symmetric interaction weights ψij given by (1.4). In this symmetric case, we perform
a L2 analysis, designing appropriate quadratic Lyapunov functionals adapted to the time-delay
framework. The main result, Theorem 2.1, establishes convergence to consensus for small enough
time-delays.

As in [22], a structural assumption is required on the matrix of communication rates. We
define the N ×N Laplacian matrix L = (Lij) by

Lij = − λ
N
ψij , for i 6= j, Lii =

λ

N

∑
j 6=i

ψij ,

with ψij = ψ(|xi − xj |)). The matrix L is symmetric, diagonally dominant with nonnegative
diagonal entries, has nonnegative eigenvalues, and its smallest eigenvalue is zero. Considering
the matrix L(t) along a trajectory solution of (1.3), we denote by µ(t) its smallest positive
eigenvalue, also called Fiedler number. The structural assumption that we make throughout is
the following:

∃γ > 0 | µ(t) > γ, ∀t > 0. (1.11)
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This is guaranteed for instance if the communication rates are uniformly bounded away from
zero, i.e., if there exists ψ∗ > 0 such that ψij(t) > ψ∗ for all i, j and t > 0 (but in that case of
course there is unconditional convergence to consensus for the undelayed model).

In Section 3, we consider the model (1.3) with possibly nonsymmetric potentials:

ẋi(t) = vi(t),

v̇i(t) =
λ

N

∑
j 6=i

aij(t− τ(t))(vj(t− τ(t))− vi(t)), i = 1, . . . , N,

where the communication rates aij > 0 are arbitrary. They may of course be symmetric as
above, e.g.

aij(t) = ψ(|xi(t)− xj(t)|), (1.12)

or nonsymmetric, for instance

aij(t) =
Nψ(|xi(t)− xj(t)|)∑N
k=1 ψ(|xk(t)− xi(t)|)

, (1.13)

for a suitable bounded function ψ. To analyze such models, we perform a L∞ analysis as in [36],
by considering, instead of Euclidean norms, the time-evolution of the diameters in position and
velocity phase space. The main result, Theorem 3.1, establishes convergence to consensus under
appropriate assumptions.

In Section 5, we provide a conclusion and further comments.

2 Consensus for symmetric potentials: L2 analysis

2.1 The main result

Several notations. Following [19], we set

∆ =
{

(v1, v2, . . . , vN ) ∈ (IRd)N | v1 = · · · = vN

}
=
{

(v, v, . . . , v) | v ∈ IRd
}
.

The set ∆ is the eigenspace of L associated with the zero eigenvalue. Its orthogonal in (IRd)N is

∆⊥ =

{
(v1, v2, . . . , vN ) ∈ (IRd)N |

N∑
i=1

vi = 0

}
.

Given any v = (v1, v2, . . . , vN ) ∈ (IRd)N , we denote the mean by v̄ = 1
N

∑N
j=1 vj ∈ IRd, and we

define w = (w1, . . . , wN ) ∈ (IRd)N by

wi = vi − v̄, i = 1, . . . , N,

so that
v = (v̄, . . . , v̄) + w ∈ ∆ + ∆⊥,

and we have Lw = Lv. Moreover,

1

2N2

N∑
i,j=1

|wi − wj |2 =
1

N
‖w‖2, (2.1)
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and

〈Lv,v〉 =
1

2

λ

N

N∑
i,j=1

ψij |vi − vj |2. (2.2)

Theorem 2.1. Under the structural assumption (1.11), setting

τ0 =
γ√
2λ

(
1− c

2λ2 + γ2

)1/2

, (2.3)

if τ ∈ (0, τ0), then every solution of system (1.3) satisfies

V (t) 6 Ce−rt , (2.4)

with

r = γ − 4
λ2

γ

λ2τ2

1− c− 2λ2τ2
, (2.5)

C = V (0) +
λ2τ

γN

1

1− c− 2λ2τ2

∫ 0

−τ(0)

∫ 0

s

N∑
i=1

|v̇i(σ)|2dσ ds.

Remark 2.2. The threshold τ0 (given by (2.3)) on the time-delay depends on the parameter λ
and on the lower bound γ in (1.11) for the Fiedler number.

2.2 Proof of Theorem 2.1

We start with the following lemma.

Lemma 2.3. We consider an arbitrary solution (x(·),v(·)) of (1.3). Setting

Rτ (t) =
1

N

∫ t

t−τ(t)

N∑
i=1

|v̇i(s)|2 ds, (2.6)

we have

1

N

N∑
i=1

|v̇i(t)|2 6 4
λ2

N
‖w(t)‖2 + 2λ2τRτ (t), (2.7)

for every t > 0.

Proof. Using (1.3), we compute

v̇i(t) =
λ

N

∑
j 6=i

ψij(t− τ(t))(wj(t)− wi(t)) +
λ

N

∑
j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vj(t))

=
λ

N

∑
j 6=i

ψij(t− τ(t))(wj(t)− wi(t))−
λ

N

∑
j 6=i

ψij(t− τ(t))

∫ t

t−τ(t)
v̇j(s)ds.

Now, using (1.7), we get that

|v̇i(t)| 6
λ

N

∑
j 6=i
|wj(t)− wi(t)|+

λ

N

∑
j 6=i

∫ t

t−τ(t)
|v̇j(s)| ds.

6



Then,

|v̇i(t)|2 6 2
λ2

N2

 N∑
j=1

|wi(t)− wj(t)|

2

+ 2
λ2

N2

 N∑
j=1

∫ t

t−τ(t)
|v̇j(s)| ds

2

6 2
λ2

N

N∑
j=1

|wj(t)− wi(t)|2 + 2
λ2

N

N∑
j=1

(∫ t

t−τ(t)
|v̇j(s)| ds

)2

.

Using (2.1), the Cauchy-Schwarz inequality and (1.5), we infer that

N∑
i=1

|v̇i(t)|2 6 2
λ2

N

N∑
i,j=1

|wi(t)− wj(t)|2 + 2λ2τ(t)

∫ t

t−τ(t)

N∑
i=1

|v̇i(s)|2 ds

6 4λ2‖w(t)‖2 + 2λ2τ

∫ t

t−τ(t)

N∑
i=1

|v̇i(s)|2 ds,

which gives (2.7).

Remark 2.4. The term Rτ (t) is due to the presence of the time delay. Indeed, we have two
quantities at the right-hand side of the inequality (2.7): the “classical” term ‖w‖2 (coming from
the undelayed model), and the term Rτ (t) caused by the delay effect.

Lemma 2.5. Given any solution (x(·),v(·)) of (1.3), we have

d

dt

(
1

N
‖w(t)‖2

)
6 − γ

N
‖w(t)‖2 +

λ2τ

γ
Rτ (t), (2.8)

for every t > 0.

Proof. Using (1.3), we compute

ẇi(t) = v̇i(t)−
1

N

N∑
k=1

v̇k(t)

=
λ

N

∑
j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vi(t))−
λ

N2

N∑
k=1

∑
j 6=k

ψkj(t− τ(t))(vj(t− τ(t))− vk(t))

=
λ

N

∑
j 6=i

ψij(t− τ(t))(vj(t)− vi(t)) +
λ

N

∑
j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vj(t))

− λ

N2

N∑
k=1

∑
j 6=k

ψkj(t− τ(t))(vj(t)− vk(t))−
λ

N2

N∑
k=1

∑
j 6=k

ψkj(t− τ(t))(vj(t− τ(t))− vj(t))

=
λ

N

∑
j 6=i

ψij(t− τ(t))(wj(t)− wi(t)) +
λ

N

∑
j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vj(t))

− λ

N2

N∑
k=1

∑
j 6=k

ψkj(t− τ(t))(wj(t)− wk(t))−
λ

N2

N∑
k=1

∑
j 6=k

ψkj(t− τ(t))(vj(t− τ(t))− vj(t)).
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Then,

N∑
i=1

wi(t)ẇi(t) = −1

2

λ

N

N∑
i,j=1

ψij(t−τ(t))|wi−wj |2+
λ

N

N∑
i=1

∑
j 6=i

ψij(t−τ(t))(vj(t−τ(t))−vj(t))wi,

where we have used that
∑

iwi = 0 and∑
j 6=i

ψij(t− τ(t))(wj(t)− wi(t))wi(t)

=
∑
j 6=i

ψij(t− τ(t))(wj(t)− wi(t))(wi(t)− wj(t)) +
∑
j 6=i

ψij(t− τ(t))(wj(t)− wi(t))wj(t)

=− 1

2

∑
j 6=i

ψij(t− τ(t))|wi(t)− wj(t)|2.

Therefore, thanks to (2.2), we infer that

d

dt

(
1

2
‖w(t)‖2

)
= −〈L(t− τ(t))w(t),w(t)〉+

λ

N

∑
i

∑
j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vj(t))wi(t)

= −1

2

λ

N

N∑
i,j=1

ψij(t− τ(t))|wi(t)− wj(t)|2 +
λ

N

∑
i

∑
j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vj(t))wi(t).

The second term at the right-hand side of the above equality is bounded by∣∣∣ λ
N

∑
i

∑
j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vj(t))wi(t)
∣∣∣ 6 λ

N
‖w(t)‖ ‖U(t)‖,

where U(t) = (U1(t), . . . , UN (t)) is defined by

Ui(t) =
∑
j 6=i

ψij(t− τ(t))(vj(t− τ(t))− vj(t)), i = 1, . . . , N,

and is estimated by

‖U(t)‖ 6
N∑
i=1

|Ui(t)| 6
N∑
i=1

∑
j 6=i

ψij(t− τ(t))

∫ t

t−τ(t)
|v̇j(s)| ds 6

∑
ij

ψij(t− τ(t))

∫ t

t−τ(t)
|v̇j(s)| ds.
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Therefore, we get

d

dt

(
1

2
‖w(t)‖2

)
6 −1

2

λ

N

N∑
i,j=1

ψij(t− τ(t))|wi(t)− wj(t)|2

+
λ

N

∑
ij

ψij(t− τ(t))

∫ t

t−τ(t)
|v̇j(s)| ds ‖w(t)‖

6 −1

2

λ

N

N∑
i,j=1

ψij(t− τ(t))|wi(t)− wj(t)|2 + λ
N∑
j=1

∫ t

t−τ(t)
|v̇j(s)| ds ‖w(t)‖

6 −1

2

λ

N

N∑
i,j=1

ψij(t− τ(t))|wi(t)− wj(t)|2 + λ
δ

2
‖w‖2

+
λ

2δ

 N∑
j=1

∫ t

t−τ(t)
|v̇j(s)| ds

2

,

where we have used the Young inequality1 for some arbitrary δ > 0. Choosing δ = γ
λ , where γ

is the constant in the structural assumption (1.11), we infer that

d

dt

(
1

2
‖w(t)‖2

)
6 −〈L(t− τ(t))w(t),w(t)〉+

γ

2
‖w(t)‖2 +

λ2

2γ

 N∑
j=1

∫ t

t−τ(t)
|v̇j(s)| ds

2

6 −γ
2
‖w(t)‖2 +

λ2τ(t)

2γ

N∑
j=1

∫ t

t−τ(t)
|v̇j(s)|2 ds,

(2.9)

which, using (1.5) and the definition (2.6) of Rτ (t), gives (2.8).

We are now in a position to prove Theorem 2.1. Let β > 0 be a positive constant to be
chosen later. We consider the Lyapunov functional along solutions of (1.3), defined by

L(t) =
1

2N
‖w(t)‖2 +

β

N

∫ t

t−τ(t)

∫ t

s

N∑
i=1

|v̇i(σ)|2 dσds, (2.10)

Using (2.9) and Lemma 2.3, we have

L̇(t) 6 − γ

2N
‖w(t)‖2 +

λ2τ

2γ
Rτ (t) +

βτ(t)

N

N∑
i=1

|v̇i(t)|2 −
β

N
(1− τ ′(t))

∫ t

t−τ(t)

N∑
i=1

|v̇j(s)|2 ds

6 − 1

N

(γ
2
− 4λ2βτ

)
‖w(t)‖2 −

(
β(1− c)− λ2τ

2γ
− 2βλ2τ2

)
Rτ (t),

where we have used (1.5)–(1.6). Convergence to consensus will then be ensured if

γ

2
− 4βλ2τ > 0, β(1− c)− λ2τ

2γ
− 2βλ2τ2 > 0. (2.11)

1This inequality states that, given any positive real numbers a, b and δ, we have ab 6 a2

2δ
+ δb2

2
.
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The second inequality of (2.11) yields a first restriction on the size of the delay, namely, that

τ <
√

1−c
2

1
λ . Let us now choose the constant β > 0 in the definition (2.10) of L(·) so that both

conditions in (2.11) are satisfied:

λ2τ

2γ

1

1− c− 2λ2τ2
6 β <

γ

8λ2τ
.

This is possible only if
λ2τ2

1− c− 2λ2τ2
<

γ2

4λ2
,

which is equivalent to
τ < τ0,

with τ0 defined by (2.3). We conclude that, if τ < τ0, then we can choose β such that

dL
dt

(t) 6 − r

2N
‖w(t)‖2, (2.12)

for a suitable positive constant r. In particular, in order to obtain the best decay rate with our
procedure, we fix β = λ2τ

2γ
1

1−c−2λ2τ2 obtaining (2.12) with r as in (2.5).
To conclude, it suffices to write that

1

N
‖w(t)‖2 6 2L(t) 6 2L(0) + 2

∫ t

0

dL
dt

(s)ds 6 2L(0)− r

N

∫ t

0
‖w(s)‖2ds,

and then we infer from the Gronwall lemma that 1
N ‖w(t)‖2 6 2L(0)e−rt. Then (2.4) follows

from the latter inequality, (1.2) and (2.1) with C = L(0) as in the statement.

3 Consensus for nonsymmetric potentials: L∞ analysis

3.1 The main result

In this section, we consider nonsymmetric potentials, and we perform a L∞ analysis as in [36].
We consider the Cucker-Smale system

ẋi(t) = vi(t),

v̇i(t) =
λ

N

∑
j 6=i

aij(t− τ(t))(vj(t− τ(t))− vi(t)), i = 1, . . . , N,
(3.1)

with initial conditions, for i = 1, . . . , N,

xi(t) = fi(t), vi(t) = gi(t), t ∈ [−τ(0), 0],

where fi, gi : [−τ(0), 0]→ IR are given functions and aij > 0 quantifies the pairwise influence of
jth agent on the alignment of ith agent. By rescaling λ if necessary (or by time reparametriza-
tion), we assume that

1

N

∑
j 6=i

aij < 1. (3.2)

10



This includes for instance the case considered in previous section, that is

aij(t) = ψ(|xi(t)− xj(t)|),

with ψ : [0,+∞) → [0,+∞) satisfying ψ(r) < 1 for every r > 0, but we can consider a
nonsymmetric interaction, for instance like in (1.13),

aij(t) =
Nψ(|xi(t)− xj(t)|)∑N
k=1 ψ(|xk(t)− xi(t)|)

,

for a suitable bounded function ψ.
As said before, an analogous delay model has been also investigated in [14] for τ constant and

under a restrictive assumption on the potential interaction. Indeed, the authors there consider
the problem

ẋi(t) = vi(t),

v̇i(t) =

N∑
j=1

Φij(x, τ)(vj(t− τ)− vi(t)), i = 1, . . . , N,
(3.3)

where the communication weights are defined in (1.10). The choice of communication rates as
in (1.10) simplifies significantly the model. Indeed, it follows that

N∑
j=1

Φij = 1, ∀ i = 1, . . . , N,

and then one can rewrite the velocity equation as

v̇i(t) =
N∑
j=i

Ψij(x, τ)vj(t− τ)− vi(t), i = 1, . . . , N.

Namely, the term depending on vi in the left-hand side of (3.3) is not λ
N

∑
j 6=i aij(t − τ)vi(t),

as for the more general model (3.1), but simply −vi(t). This simplifies the analysis allowing
immediately to get a uniform bound for all times on the velocities of the agents if this bound is
satisfied from the initial velocities (see [14, Lemma 2.1]).

Following [36], we set aii = N −
∑

j 6=i aij , so that
∑N

j=1 aij = N , i = 1, . . . , N . Setting

ṽi(t) =
1

N

N∑
j=1

aij(t− τ(t))vj(t), i = 1, . . . , N, (3.4)

the system (3.1) is written as

ẋi(t) = vi(t),

v̇i(t) = λ(ṽi(t)− vi(t)) +
λ

N

∑
j 6=i

aij(t− τ(t))(vj(t− τ(t))− vj(t)), i = 1, . . . , N.

We denote by dX(t) and dV (t) the diameter in position and velocity phase spaces (see [27]),
respectively defined by

dX(t) = max
i,j
|xj(t)− xi(t)|, dV (t) = max

i,j
|vj(t)− vi(t)|.
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A solution of (3.1) converges to consensus if

sup
t>0

dX(t) < +∞ and lim
t→+∞

dV (t) = 0.

Note that the functions dX and dV are not of class C1 in general. We will thus use a suitable
notion of generalized gradient, namely the upper Dini derivative, as in [34], in order to perform
our computations. We recall that, for a given function F continuous at t, the upper Dini
derivative of F at t is defined by

D+F (t) = lim sup
h→0+

F (t+ h)− F (t)

h
.

If F is differentiable at t, then D+F (t) = dF
dt (t). However, for all t there exists a sequence

hn → 0+ such that

D+F (t) = lim
n→+∞

F (t+ hn)− F (t)

hn
.

In particular, for a given t, there exist indices r and s such that dX(t) = |xr(t) − xs(t)| and a
sequence hn → 0+ for which

D+dX(t) = lim
n→∞

h−1n {dX(t+ hn)− |xr(t)− xs(t)|}

6 lim
n→∞

h−1n {|xr(t+ hn)− xs(t+ hn)| − |xr(t)− xs(t)|} 6
∣∣∣dxr
dt

(t)− dxs
dt

(t)
∣∣∣.

Analogous arguments apply to D+dV (t) and D+d2V (t).

Theorem 3.1. We assume that there exists ψ∗ > 0 such that

1

N2

N∑
i,j=1

min (aqiapj , aqjapi) > ψ∗, ∀ p, q = 1, . . . , N. (3.5)

Setting

τ0 =
1− c
λ

ψ∗

ψ∗ + 2
, (3.6)

if τ ∈ (0, τ0), then every solution of (3.1) satisfies

dV (t) 6 Ce−rt, t > 0, (3.7)

with

r = λ
(
ψ∗ − 2λτ

1− c− λτ

)
, (3.8)

C = dV (0) +
2λ

1− c− λτ

∫ 0

−τ(0)

∫ 0

s
max

j=1,...,N
|v̇j(σ)| dσ ds. (3.9)

Assumption (3.5) is done in order to ensure an unconditional convergence result. It is satisfied
for instance, for the interactions (1.12) and (1.13) if the influence function ψ in the definitions of
aij satisfies the lower bound ψ(r) > ψ0 > 0. Indeed, (3.5) is verified in both cases with ψ∗ = ψ0

2

and ψ∗ =
(

ψ0

‖ψ‖∞

)2
respectively.
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3.2 Proof of Theorem 3.1

We start by establishing several estimates.

Lemma 3.2. ([36]). Let S = (S)16i,j6N be a skew-symmetric matrix such that |Sij | 6 M for
all i, j. Let u,w ∈ IRN be two given real vectors with nonnegative entries, ui, wi > 0, and let
U = 1

N

∑
i ui and W = 1

N

∑
iwi. Then,

1

N2
|〈Su,w〉| 6M

(
UW − 1

N2

N∑
i,j=1

min (uiwj , ujwi)
)
. (3.10)

Lemma 3.3. Let ((x(·),v(·)) be a solution of (3.1). Setting

στ (t) =

∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds, (3.11)

we have, for every t > 0,

D+dX(t) 6 dV (t), D+dV (t) 6 −λψ∗dV (t) + 2λστ (t), (3.12)

where ψ∗ is the constant in (3.5).

Proof. Fix t > 0 and let p, q, r and s be indices such that dX(t) = |xr(t) − xs(t)| and dV (t) =
|vp(t)− vq(t)|. Then we have D+dX(t) 6 |vr(t)− vs(t)| 6 dV (t), and besides,

D+(d2V (t)) 6 2 〈vp − vq, v̇p(t)− v̇q(t)〉
= 2λ〈vp(t)− vq(t), ṽp(t)− ṽq(t)〉 − 2λ|vp(t)− vq(t)|2

+ 2
λ

N

〈
vp(t)− vq(t),

∑
j 6=p

apj(t− τ(t))(vj(t− τ(t))− vj(t))

−
∑
j 6=q

aqj(t− τ(t))(vj(t− τ(t))− vj(t))
〉
,

where ṽi, i = 1, . . . , N, are defined in (3.4), and then

D+(d2V (t)) 6 2 〈vp(t)− vq(t), v̇p(t)− v̇q(t)〉
= 2λ〈vp(t)− vq(t), ṽp(t)− ṽq(t)〉 − 2λ|vp(t)− vq(t)|2

+ 4λ|vp(t)− vq(t)|
∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds.

But since

ṽp(t)− ṽq(t) =
1

N

N∑
j=1

apj(t− τ(t))vj(t)−
1

N

N∑
i=1

aqi(t− τ(t))vi(t)

=
1

N2

N∑
i=1

aqi(t− τ(t))
N∑
j=1

apj(t− τ(t))vj(t)

− 1

N2

N∑
j=1

apj(t− τ(t))

N∑
i=1

aqi(t− τ(t))vi(t)

=
1

N2

N∑
i,j=1

aqi(t− τ(t))apj(t− τ(t))(vj(t)− vi(t)),
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we get that

D+(d2V (t)) 6 2
λ

N2

N∑
i,j=1

aqi(t− τ(t))apj(t− τ(t))〈vj(t)− vi(t), vp(t)− vq(t)〉

− 2λ|vp(t)− vq(t)|2 + 4λ|vp(t)− vq(t)|
∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds.

(3.13)

We estimate the first term at the right-hand side of (3.13) by applying Lemma 3.2, with Sij =
〈vj(t)− vi(t), vp(t)− vq(t)〉 and ui = aqi(t− τ) and wj = apj(t− τ(t)) for i, j = 1, . . . , N . Since
|Sij | 6 d2V (t) and U,W = 1, using Assumption (3.5), we infer from (3.10) with θ = ψ∗ that

∣∣∣ 1

N2

N∑
i,j=1

aqi(t− τ(t))apj(t− τ(t))〈vj(t)− vi(t), vp(t)− vq(t)〉
∣∣∣ 6 (1− ψ∗)d2V (t).

With the above estimate, we obtain from (3.13) that

D+(d2V (t)) 6 2λ(1− ψ∗)d2V (t)− 2λd2V (t) + 4λdV (t)στ (t),

from which (3.12) follows.

Lemma 3.4. Let (x(·),v(·)) be a solution of (3.1). Then

max
j=1,...,N

|v̇j(t)| 6 λdV (t) + λστ (t), (3.14)

for every t > 0.

Proof. Using (3.1), we have

v̇i(t) =
λ

N

∑
j 6=i

aij(t− τ(t))(vj(t)− vi(t)) +
λ

N

∑
j 6=i

aij(t− τ(t))(vj(t− τ(t))− vj(t)),

from which we infer that

|v̇i(t)| 6
λ

N

∑
j 6=i

aij(t− τ(t))dV (t) +
λ

N

∑
j 6=i

aij(t− τ(t))

∫ t

t−τ(t)
|v̇j(s)| ds.

Then, we have

|v̇i(t)| 6 λdV (t) + λ

∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds,

and the lemma is proved by taking the maximum in the left-hand side and using the definition
(3.11) of στ (t).

We are now in a position to prove the theorem. Let β > 0 to be chosen later. We consider
the Lyapunov functional defined along any solution by

F(t) = dV (t) + β

∫ t

t−τ(t)

∫ t

s
max

j=1,...,N
|v̇j(σ)| dσ ds. (3.15)
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First of all, using (3.12), we have

D+F(t) 6 −λψ∗dV (t) + 2λστ (t)− β(1− τ ′(t))
∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds+ βτ(t) max

j=1,...,N
|v̇j(t)| .

It follows from Lemma 3.4, using (1.5)-(1.6), that

D+F(t) 6 −λψ∗dV (t) + (2λ− β(1− c))στ (t) + βτλdV (t) + βτλ

∫ t

t−τ(t)
max

j=1,...,N
|v̇j(s)| ds

6 −λ(ψ∗ − βτ)dV (t)− (β(1− c)− 2λ− βτλ)στ (t).

Convergence to consensus will be ensured if

ψ∗ − τβ > 0, β(1− c)− 2λ− βτλ > 0. (3.16)

The second inequality of (3.16) yields a first restriction on the size of the delay: τ < 1−c
λ . Let

us now choose the constant β > 0 in the definition (3.15) of the Lyapunov functional F so that
both conditions in (3.16) are satisfied. We impose that β < ψ∗

τ and β > 2λ
1−c−λτ . This is possible

if and only if 2λ
1−c−λτ <

ψ∗

τ , that is, equivalently, τ < τ0, where τ0 is defined by (3.6).
We now choose β in the definition of F such that

D+F(t) 6 −rdV (t), (3.17)

for a suitable positive constant r. In order to have a better decay estimate let us fix β = 2λ
1−c−λτ .

Then, we obtain (3.17) with r as in (3.8). Therefore,

dV (t) 6 F(t) 6 F(0)− r
∫ t

0
dV (s) ds,

and we conclude from the Gronwall lemma that dV (t) 6 F(0)e−rt for every t > 0. The expo-
nential decay estimate (3.7) is then proved with C = F(0) as in (3.9).

4 A numerical simulation

We provide here a numerical simulation illustrating our results. We take d = 2, N = 3 (3
agents), and we take the Cucker and Smale potential ψ(s) = 1

(1+s2)β
with β = 2. As recalled in

the introduction, for such a value of β convergence to consensus does not occur for any initial
condition.

For the moment, we do not consider any time delay in the model, i.e., τ ≡ 0. We take as
initial conditions

x01 = (0, 0), v01 = (1, 0),

x02 = (0, 1), v02 = (1, 0),

x02 = (1, 0), v02 = (0.5, 0.5).

For such initial conditions, we have convergence to consensus, see Figures 1 and 2. On these
figures, the initial points are represented with a red point. At the top left are drawn the curves
t 7→ xi(t) ∈ R2: motion in the plane of the three agents. At the top right, one can see the
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modulus of the speeds ‖vi(t)‖, in function of t. AT the bottom are drawn the time evolution of
the position variance X(t) and of the speed variance V (t).

Figure 1: No time delay, τ = 0. Simulation on the time interval [0, 10].

Figure 2: No time delay, τ = 0. Simulation on the time interval [0, 50].

We now introduce a time delay which, for simplicity, we take fixed: τ(t) ≡ τ . We take as
initial conditions, on [−τ, 0],

xi(t) = x0i + (t+ τ)v0i , vi(t) = v0i , i = 1, . . . , N.

In other words, along the interval [−τ, 0] the agents follow the dynamics ẋi = vi and v̇i = 0, and
thus each agent performs a translation motion, starting at x0i with the speed v0i .

16



The corresponding solution for τ = 5 is drawn on Figure 3. For this value of the time delay,
convergence to consensus is lost. When time goes to infinity, the agents do not remain grouped,
and one can indeed observe that the position variance X(t) tends to +∞.

Figure 3: Time delay τ = 5. Simulation on the time interval [−5, 20].

The loss of consensus actually occurs for smaller values of τ , but we chose here to provide a
simulation for τ = 5 because, if we take τ smaller, we have to consider much larger integration
times to see that consensus is lost, and simulations are then not so nice to be printed here.

Numerically, we find that, for τ less than (approximately) 0.5, consensus still occurs, whereas
for larger values of τ consensus is lost. This threshold is slightly larger than the threshold τ0
predicted by our result (which is not sharp).

5 Conclusion and further comments

We have analyzed the finite-dimensional general Cucker-Smale model with time-varying time-
delays, and we have established precise convergence results to consensus under appropriate
assumptions on the time-delay function τ(·). Our results are valid for symmetric as well as for
nonsymmetric interaction rates. The symmetric case has been analyzed thanks to a L2 analysis,
in the spirit of the original papers [19, 20], while we were able to deal with the loss of symmetry
by carrying out a L∞ analysis as in [36].

In both cases, we have established convergence to consensus provided the time-delay is below
a precise threshold. The bound depends on the coupling strength λ, on the communication
weights and on the bound c on the time-derivative of τ(·), but it does not depend on the number
N of the agents. This important fact suggests that it might be possible to extend our analysis
performed here on the finite-dimensional Cucker-Smale model to the infinite-dimensional case.
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Towards a kinetic extension. The kinetic equation for the undelayed Cucker-Smale model
has been derived in [27] using the BBGKY hierarchy from the Cucker-Smale particle model as
a mesoscopic description for flocking (see also [25, 41]). By considering the mean-field limit in
the case τ = 0, one obtains the kinetic equation

∂tµ+ 〈v, gradxµ〉+ divv ((ξ[µ])µ) = 0,

where µ(t) = µ(t, x, v) is the density of agents at time t at (x, v), with the interaction field
defined by

ξ[µ](x, v) =

∫
IRd×IRd

ψ(|x− y|)(w − v) dµ(y, w).

If we introduce a delay τ in the Cucker-Smale system, even when τ is constant, it is no clear how
to deduce the corresponding kinetic model. In contrast, it is easy to pass to the mean-field limit
when one considers a Cucker-Smale model with communication weights as in (1.10): indeed,
the authors of [14], putting a delay on xj but not on xi in the communication weights in the
equation for vi, are able to pass to the mean-field limit and obtain the kinetic equation

∂tµ(t) + 〈v, gradxµ(t)〉+ divv ((ξ[µ(t− τ)])µ(t)) = 0.

Deriving an appropriate kinetic equation by considering the mean-field limit of (1.3), with com-
munication weights depending on the states at time t − τ for all the agents, as it is, in our
opinion, more adequate from a physical point of view, seems out of reach at this moment. We
let it as an open question.
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