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Abstract

Parameterized complexity theory has enabled a refined classification of the difficulty of NP-
hard optimization problems on graphs with respect to key structural properties, and so to a
better understanding of their true difficulties. More recently, hardness results for problems in
P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponen-
tial Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these
assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor
even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni,
Williams, SODA 2015). A central technique used to tackle the difficulty of the above men-
tioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial
dependency in the fixed parameter (P-FPT). This technique was rigorously formalized by Gi-
annopoulou et al. (IPEC 2015). Following that, it was continued by Abboud, Williams and
Wang in SODA 2016, by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the
treewidth as a parameter. Applying this technique to clique-width, another important graph
parameter, remained to be done.

In this paper we study several graph theoretic problems for which hardness results exist
such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems
(diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum match-
ing. We provide hardness results and fully polynomial FPT algorithms, using clique-width and
some of its upper-bounds as parameters (split-width, modular-width and P4-sparseness). We
believe that our most important result is an O(k4 ·n+m)-time algorithm for computing a maxi-
mum matching where k is either the modular-width or the P4-sparseness. The latter generalizes
many algorithms that have been introduced so far for specific subclasses such as cographs, P4-lite
graphs, P4-extendible graphs and P4-tidy graphs.

Our algorithms are based on preprocessing methods using modular decomposition, split
decomposition and primeval decomposition. Thus they can also be generalized to some graph
classes with unbounded clique-width.

∗This work has been partially supported by ANR project Stint under reference ANR-13-BS02-0007 and ANR
program “Investments for the Future” under reference ANR-11-LABX-0031-01.
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1 Introduction

The classification of problems according to their complexity is one of the main goals in computer
science. This goal was partly achieved by the theory of NP-completeness which helps to identify
the problems that are unlikely to have polynomial-time algorithms. However, there are still many
problems in P for which it is not known if the running time of the best current algorithms can be
improved. Such problems arise in various domains such as computational geometry, string matching
or graphs. Here we focus on the existence and the design of linear-time algorithms, for solving
several graph problems when restricted to classes of bounded clique-width. The problems considered
comprise the detection of short cycles (e.g., Girth and Triangle Counting), some distance
problems (e.g., Diameter, Hyperbolicity, Betweenness Centrality) and the computation
of maximum matchings in graphs. We refer to Sections 3.1, 4.1 and 5, respectively, for a recall of
their definitions.

Clique-width is an important graph parameter in structural graph theory, that intuitively repre-
sents the closeness of a graph to a cograph — a.k.a., P4-free graphs [24, 32]. Some classes of perfect
graphs, including distance-hereditary graphs, and so, trees, have bounded clique-width [57]. Fur-
thermore, clique-width has many algorithmic applications. Many algorithmic schemes and metathe-
orems have been proposed for classes of bounded clique-width [31, 28, 40]. Perhaps the most famous
one is Courcelle’s theorem, that states that every graph problem expressible in Monadic Second Or-
der logic (MSO1) can be solved in f(k) ·n-time when restricted to graphs with clique-width at most
k, for some computable function f that only depends on k [31]. Some of the problems considered
in this work can be expressed as an MSO1 formula. However, the dependency on the clique-width
in Courcelle’s theorem is super-polynomial, that makes it less interesting for the study of graphs
problems in P. Our goal is to derive a finer-grained complexity of polynomial graph problems when
restricted to classes of bounded clique-width, that requires different tools than Courcelle’s theorem.

Our starting point is the recent theory of “Hardness in P” that aims at better hierarchizing the
complexity of polynomial-time solvable problems [84]. This approach mimics the theory of NP-
completeness. Precisely, since it is difficult to obtain unconditional hardness results, it is natural
to obtain hardness results assuming some complexity theoretic conjectures. In other words, there
are key problems that are widely believed not to admit better algorithms such as 3-SAT (k-SAT),
3SUM and All-Pairs Shortest Paths (APSP). Roughly, a problem in P is hard if the existence of
a faster algorithm for this problem implies the existence of a faster algorithm for one of these
fundamental problems mentioned above. In their seminal work, Williams and Williams [85] prove
that many important problems in graph theory are all equivalent under subcubic reductions. That
is, if one of these problems admits a truly sub-cubic algorithms, then all of them do. Their results
have extended and formalized prior work from, e.g., [51, 67]. The list of such problems was further
extended in [1, 17].

Besides purely negative results (i.e., conditional lower-bounds) the theory of “Hardness in P”
also comes with renewed algorithmic tools in order to leverage the existence, or the nonexistence,
of improved algorithms for some graph classes. The tools used to improve the running time of
the above mentioned problems are similar to the ones used to tackle NP-hard problems, namely
approximation and FPT algorithms. Our work is an example of the latter, of which we first survey
the most recent results.
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Related work: Fully polynomial parameterized algorithms. FPT algorithms for
polynomial-time solvable problems were first considered by Giannopoulou et al. [55]. Such a pa-
rameterized approach makes sense for any problem in P for which a conditional hardness result is
proved, or simply no linear-time algorithms are known. Interestingly, the authors of [55] proved
that a matching of cardinality at least k in a graph can be computed in O(kn + k3)-time. We
stress that Maximum Matching is a classical and intensively studied problem in computer sci-
ence [37, 45, 46, 49, 66, 72, 71, 86]. The well known O(m

√
n)-time algorithm in [72] is essentially

the best so far for Maximum Matching. Approximate solutions were proposed by Duan and
Pettie [37].

More related to our work is the seminal paper of Abboud, Williams and Wang [3]. They obtained
rather surprising results when using treewidth: another important graph parameter that intuitively
measures the closeness of a graph to a tree [13]. Treewidth has tremendous applications in pure
graph theory [79] and parameterized complexity [27]. Furthermore, improved algorithms have long
been known for ”hard” graph problems in P, such as Diameter and Maximum Matching, when
restricted to trees [65]. However, it has been shown in [3] that under the Strong Exponential Time
Hypothesis, for any ε > 0 there can be no 2o(k) ·n2−ε-time algorithm for computing the diameter of
graphs with treewidth at most k. This hardness result even holds for pathwidth, that leaves little
chance to find an improved algorithm for any interesting subclass of bounded-treewidth graphs
while avoiding an exponential blow-up in the parameter. We show that the situation is different
for clique-width than for treewidth, in the sense that the hardness results for clique-width do not
hold for important subclasses.

We want to stress that a familiar reader could ask why the hardness results above do not apply
to clique-width directly since it is upper-bounded by a function of treewidth [25]. However, clique-
width cannot be polynomially upper-bounded by the treewidth [25]. Thus, the hardness results
from [3] do not preclude the existence of, say, an O(kn)-time algorithm for computing the diameter
of graphs with clique-width at most k.

On a more positive side, the authors in [3] show that Radius and Diameter can be solved in
2O(k log k) · n1+O(1)-time, where k is treewidth. Husfeldt [62] shows that the eccentricity of every
vertex in an undirected graph on n vertices can be computed in time n·exp [O(k log d)], where k and
d are the treewidth and the diameter of the graph, respectively. More recently, a tour de force was
achieved by Fomin et al. [44] who were the first to design parameterized algorithms with polynomial
dependency on the treewidth, for Maximum Matching and Maximum Flow. Furthermore they
proved that for graphs with treewidth at most k, a tree decomposition of width O(k2) can be
computed in O(k7 · n log n)-time. We observe that their algorithm for Maximum Matching is
randomized, whereas ours are deterministic.

We are not aware of the study of another parameter than treewidth for polynomial graph prob-
lems. However, some authors choose a different approach where they study the parameterization
of a fixed graph problem for a broad range of graph invariants [11, 43, 71]. As examples, clique-
width is part of the graph invariants used in the parameterized study of Triangle Listing [11].
Nonetheless, clique-width is not the main focus in [11]. Recently, Mertzios, Nichterlein and Nie-
dermeier [71] propose algorithms for Maximum Matching that run in time O(kO(1) · (n + m)),
for several parameters such as feedback vertex set or feedback edge set. Moreover, the authors
in [71] suggest that Maximum Matching may become the “drosophila” of the study of the FPT
algorithms in P. We advance in this research direction.
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1.1 Our results

In this paper we study the parameterized complexity of several classical graph problems under
a wide range of parameters such as clique-width and its upper-bounds modular-width [32], split-
width [78], neighbourhood diversity [68] and P4-sparseness [8]. The results are summarized in Ta-
ble 1.

Roughly, it turns out that some hardness assumptions for general graphs do not hold anymore
for graph classes of bounded clique-width. This is the case in particular for Triangle Detection
and other cycle problems that are subcubic equivalent to it such as, e.g., Girth, that all can be
solved in linear-time, with quadratic dependency on the clique-width, with the help of dynamic
programming (Theorems 2 and 3). The latter complements the results obtained for Triangle
Listing in [11]. However many hardness results for distance problems when using treewidth are
proved to also hold when using clique-width (Theorems 5, 6 and 7). These negative results have
motivated us to consider some upper-bounds for clique-width as parameters, for which better results
can be obtained than for clique-width. Another motivation stems from the fact that the existence
of a parameterized algorithm for computing the clique-width of a graph remains a challenging open
problem [23]. We consider some upper-bounds for clique-width that are defined via linear-time
computable graph decompositions. Thus if these parameters are small enough, say, in O(n1−ε)
for some ε > 0, we get truly subcubic or even truly subquadratic algorithms for a wide range of
problems.

Problem Parameterized time complexity

Diameter, Eccentricities O(mw(G)2 · n+m) O(sw(G)2 · n+m)
O(mw(G)3 + n+m) O(q(G)3 + n+m)

Betweenness Centrality O(mw(G)2 · n+m) O(sw(G)2 · n+m)
O(nd(G)3 + n+m)

Hyperbolicity O(mw(G)3 · n+m) O(nd(G)4 + n+m)
O(sw(G)3 · n+m) O(q(G)3 · n+m)

Maximum Matching O(mw(G)4 · n+m) O(q(G)4 · n+m)

Triangle Detection, Tri-
angle Counting, Girth

O(k2 · (n+m)) for any k ∈ {cw(G),mw(G), sw(G), q(G)}

Table 1: Summary of positive results.

Graph parameters and decompositions considered

Let us describe the parameters considered in this work as follows. The following is only an informal
high level description (formal definitions are postponed to Section 2).

Split Decomposition. A join is a set of edges inducing a complete bipartite subgraph. Roughly,
clique-width can be seen as a measure of how easy it is to reconstruct a graph by adding joins
between some vertex-subsets. A split is a join that is also an edge-cut. By using pairwise non
crossing splits, termed “strong splits”, we can decompose any graph into degenerate and prime
subgraphs, that can be organized in a treelike manner. The latter is termed split decomposition [56].

We take advantage of the treelike structure of split decomposition in order to design dynamic
programming algorithms for distance problems such as Diameter, Gromov Hyperbolicity and
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Betweenness Centrality (Theorems 8, 9 and 11, respectively). Although clique-width is also
related to some treelike representations of graphs [30], the same cannot be done for clique-width as
for split decomposition because the edges in the treelike representations for clique-width may not
represent a join.

Modular Decomposition. Then, we can improve the results obtained with split decomposition
by further restricting the type of splits considered. As an example, let (A,B) be a bipartition of
the vertex-set that is obtained by removing a split. If every vertex of A is incident to some edges
of the split then A is called a module of G. That is, for every vertex v ∈ B, v is either adjacent or
nonadjacent to every vertex of A. The well-known modular decomposition of a graph is a hierarchical
decomposition that partitions the vertices of the graph with respect to the modules [60]. Split
decomposition is often presented as a refinement of modular decomposition [56]. We formalize
the relationship between the two in Lemma 10, that allows us to also apply our methods for split
decomposition to modular decomposition.

However, we can often do better with modular decomposition than with split decomposition. In
particular, suppose we partition the vertex-set of a graph G into modules, and then we keep exactly
one vertex per module. The resulting quotient graph G′ keeps most of the distance properties of
G. Therefore, in order to solve a distance problem for G, it is often the case that we only need to
solve it for G′. We so believe that modular decomposition can be a powerful Kernelization tool in
order to solve graph problems in P. As an application, we improve the running time for some of
our algorithms, from time O(kO(1) ·n+m) when parameterized by the split-width (maximum order
of a prime subgraph in the split decomposition), to O(kO(1) + n + m)-time when parameterized
by the modular-width (maximum order of a prime subgraph in the modular decomposition). See
Theorem 13.

Furthermore, for some more graph problems, it may also be useful to further restrict the internal
structures of modules. We briefly explore this possibility through a case study for neighbourhood
diversity. Roughly, in this latter case we only consider modules that are either independent sets
(false twins) or cliques (true twins). New kernelization results are obtained for Hyperbolicity and
Betweenness Centrality when parameterized by the neighbourhood diversity (Theorems 16
and 17, respectively). It is worth pointing out that so far, we have been unable to obtain ker-
nelization results for Hyperbolicity and Betweenness Centrality when only parameterized
by the modular-width. It would be very interesting to prove separability results between split-
width, modular-width and neighbourhood diversity in the field of fully polynomial parameterized
complexity.

Graphs with few P4’s. We finally use modular decomposition as our main tool for the design
of new linear-time algorithms when restricted to graphs with few induced P4’s. The (q, t)-graphs
have been introduced by Babel and Olariu in [7]. They are the graphs in which no set of at most q
vertices can induce more than t paths of length four. Every graph is a (q, t)-graph for some large
enough values of q and t. Furthermore when q and t are fixed constants, t ≤ q−3, the class of (q, t)-
graphs has bounded clique-width [70]. We so define the P4-sparseness of a given graph G, denoted
by q(G), as the minimum q ≥ 7 such that G is a (q, q − 3)-graph. The structure of the quotient
graph of a (q, q − 3)-graph, q being a constant, has been extensively studied and characterized
in the literature [5, 7, 8, 6, 64]. We take advantage of these existing characterizations in order
to generalize our algorithms with modular decomposition to O(q(G)O(1) · n + m)-time algorithms
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(Theorems 18 and 20).
Let us give some intuition on how the P4-sparseness can help in the design of improved algo-

rithms for hard graph problems in P. We consider the class of split graphs (i.e., graphs that can
be bipartitioned into a clique and an independent set). Deciding whether a given split graph has
diameter 2 or 3 is hard [17]. However, suppose now that the split graph is a (q, q − 3)-graph G,
for some fixed q. An induced P4 in G has its two ends u, v in the independent set, and its two
middle vertices are, respectively, in NG(u) \NG(v) and NG(v) \NG(u). Furthermore, when G is a
(q, q− 3)-graph, it follows from the characterization of [5, 7, 8, 6, 64] either it has a quotient graph
of bounded order O(q) or it is part of a well-structured subclass where the vertices of all neighbour-
hoods in the independent set follow a rather nice pattern (namely, spiders and a subclass of p-trees,
see Section 2). As a result, the diameter of G can be computed in O(max{q3, n+m})-time when
G is a (q, q − 3) split graph. We generalize this result to every (q, q − 3)-graph by using modular
decomposition.

All the parameters considered in this work have already received some attention in the literature,
especially in the design of FPT algorithms for NP-hard problems [6, 53, 56, 50, 78]. However, we
think we are the first to study clique-width and its upper-bounds for polynomial problems. There
do exist linear-time algorithms for Diameter, Maximum Matching and some other problems we
study when restricted to some graph classes where the split-width or the P4-sparseness is bounded
(e.g., cographs [86], distance-hereditary graphs [35, 36], P4-tidy graphs [46], etc.). Nevertheless, we
find the techniques used for these specific subclasses hardly generalize to the case where the graph
has split-width or P4-sparseness at most k, k being any fixed constant. For instance, the algorithm
that is proposed in [36] for computing the diameter of a given distance-hereditary graph is based
on some properties of LexBFS orderings. Distance-hereditary graphs are exactly the graphs with
split-width at most two [56]. However it does not look that simple to extend the properties found for
their LexBFS orderings to bounded split-width graphs in general. As a byproduct of our approach,
we also obtain new linear-time algorithms when restricted to well-known graph families such as
cographs and distance-hereditary graphs.

Highlight of our Maximum Matching algorithms

Finally we emphasize our algorithms for Maximum Matching. Here we follow the sugges-
tion of Mertzios, Nichterlein and Niedermeier [71] that Maximum Matching may become the
“drosophila” of the study of the FPT algorithms in P. Precisely, we propose O(k4 · n + m)-time
algorithms for Maximum Matching when parameterized either by modular-width or by the P4-
sparseness of the graph (Theorems 22 and 24). The latter subsumes many algorithms that have
been obtained for specific subclasses [46, 86].

Let us sketch the main lines of our approach. Our algorithms for Maximum Matching are
recursive. Given a partition of the vertex-set into modules, first we compute a maximum matching
for the subgraph induced by every module separately. Taking the union of all the outputted
matchings gives a matching for the whole graph, but this matching is not necessarily maximum.
So, we aim at increasing its cardinality by using augmenting paths [12].

In an unpublished paper [73], Novick followed a similar approach and, based on an integer
programming formulation, he obtained anO(kO(k

3)n+m)-time algorithm for Maximum Matching
when parameterized by the modular-width. Our approach is more combinatorial than his.

Our contribution in this part is twofold. First we carefully study the possible ways an augment-
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ing path can cross a module. Our analysis reveals that in order to compute a maximum matching
in a graph of modular-width at most k we only need to consider augmenting paths of length O(k).
Then, our second contribution is an efficient way to compute such paths. For that, we design a
new type of characteristic graph of size O(k4). The same as the classical quotient graph keeps most
distance properties of the original graph, our new type of characteristic graph is tailored to enclose
the main properties of the current matching in the graph. We believe that the design of new types
of characteristic graphs can be a crucial tool in the design of improved algorithms for graph classes
of bounded modular-width.

We have been able to extend our approach with modular decomposition to an O(q4 · n +
m)-time algorithm for computing a maximum matching in a given (q, q − 3)-graph. However, a
characterization of the quotient graph is not enough to do that. Indeed, we need to go deeper in the
p-connectedness theory of [8] in order to better characterize the nontrivial modules in the graphs
(Theorem 23). Furthermore our algorithm for (q, q− 3)-graph not only makes use of the algorithm
with modular decomposition. On our way to solve this case we have generalized different methods
and reduction rules from the literature [66, 86], that is of independent interest.

We suspect that our algorithm with modular decomposition can be used as a subroutine in
order to solve Maximum Matching in linear-time for bounded split-width graphs. However, this
is left for future work.

1.2 Organization of the paper

In Section 2 we introduce definitions and basic notations.

Then, in Section 3 we show FPT algorithms when parameterized by the clique-width. The
problems considered are Triangle Counting and Girth. To the best of our knowledge, we
present the first known polynomial parameterized algorithm for Girth (Theorem 3). Roughly, the
main idea behind our algorithms is that given a labeled graph G obtained from a k-expression, we
can compute a minimum-length cycle for G by keeping up to date the pairwise distances between
every two label classes. Hence, if a k-expression of length L is given as part of the input we obtain
algorithms running in time O(k2L) and space O(k2).

In Section 4 we consider distance related problems, namely: Diameter, Eccentricities,
Hyperbolicity and Betweenness Centrality.

We start proving, in Section 4.2, none of these problems above can be solved in time 2o(k)n2−ε,
for any ε > 0, when parameterized by the clique-width (Theorems 5—7). These are the first known
hardness results for clique-width in the field of “Hardness in P”. Furthermore, as it is often the
case in this field, our results are conditioned on the Strong Exponential Time Hypothesis [63]. In
summary, we take advantage of recent hardness results obtained for bounded-degree graphs [41].
Clique-width and treewidth can only differ by a constant-factor in the class of bounded-degree
graphs [28, 59]. Therefore, by combining the hardness constructions for bounded-treewidth graphs
and for bounded-degree graphs, we manage to derive hardness results for graph classes of bounded
clique-width.

In Section 4.3 we describe fully polynomial FPT algorithms for Diameter, Eccentricity,
Hyperbolicity and Betweenness centrality parameterized by the split-width. Our algo-
rithms use split-decomposition as an efficient preprocessing method. Roughly, we define weighted
versions for every problem considered (some of them admittedly technical). In every case, we
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prove that solving the original distance problem can be reduced in linear-time to the solving of its
weighted version for every subgraph of the split decomposition separately.

Then, in Section 4.4 we apply the results from Section 4.3 to modular-width. First, since
sw(G) ≤ mw(G) + 1 for any graph G, all our algorithms parameterized by split-width are also
algorithms parameterized by modular-width. Moreover for Eccentricities, and for Hyperbol-
icity and Betweenness Centrality when parameterized by the neighbourhood diversity, we
show that it is sufficient only to process the quotient graph of G. We thus obtain algorithms that
run in O(mw(G)O(1) + n+m)-time, or O(nd(G)O(1) + n+m)-time, for all these problems.

In Section 4.5 we generalize our previous algorithms to be applied to the (q, q − 3)-graphs. We
obtain our results by carefully analyzing the cases where the quotient graph has size Ω(q). These
cases are given by Lemma 4.

Section 5 is dedicated to our main result, linear-time algorithms for Maximum Matching.
First in Section 5.1 we propose an algorithm parameterized by the modular-width that runs in
O(mw(G)4 · n+m)-time. In Section 5.2 we generalize this algorithm to (q, q − 3)-graphs.

Finally, in Section 6 we discuss applications to other graph classes.

2 Preliminaries

We use standard graph terminology from [15, 34]. Graphs in this study are finite, simple (hence
without loops or multiple edges) and unweighted – unless stated otherwise. Furthermore we make
the standard assumption that graphs are encoded as adjacency lists.

We want to prove the existence, or the nonexistence, of graph algorithms with running time of
the form kO(1) · (n + m), k being some fixed graph parameter. In what follows, we introduce the
graph parameters considered in this work.

Clique-width

A labeled graph is given by a pair 〈G, `〉 where G = (V,E) is a graph and ` : V → N is called a
labeling function. A k-expression can be seen as a sequence of operations for constructing a labeled
graph 〈G, `〉, where the allowed four operations are:

1. Addition of a new vertex v with label i (the labels are taken in {1, 2, . . . , k}), denoted i(v);

2. Disjoint union of two labeled graphs 〈G1, `1〉 and 〈G2, `2〉, denoted 〈G1, `1〉 ⊕ 〈G2, `2〉;

3. Addition of a join between the set of vertices labeled i and the set of vertices labeled j, where
i 6= j, denoted η(i, j);

4. Renaming label i to label j, denoted ρ(i, j).

See Fig. 1 for examples. The clique-width of G, denoted by cw(G), is the minimum k such that,
for some labeling `, the labeled graph 〈G, `〉 admits a k-expression [29]. We refer to [31] and
the references cited therein for a survey of the many applications of clique-width in the field of
parameterized complexity.

Computing the clique-width of a given graph is NP-hard [42]. However, on a more positive
side the graphs with clique-width two are exactly the cographs and they can be recognized in

8



1

va

(a) 1(va)

1 2

va vb

(b) 2(vb)

1 2

va vb

(c) η(1, 2)

3 2

va vb

(d) ρ(1, 3)

3 2 1

va vb vc

(e) 1(vc)

3 2 1

va vb vc

(f) η(2, 1)

3 3 1

va vb vc

(g) ρ(2, 3)

3 3 1 2

va vb vc vd

(h) 2(vd)

3 3 1 2

va vb vc vd

(i) η(1, 2)

Figure 1: A 3-expression for the path P4.

linear-time [24, 32]. Clique-width three graphs can also be recognized in polynomial-time [23]. The
parameterized complexity of computing the clique-width is open. In what follows, we focus on
upper-bounds on clique-width that are derived from some graph decompositions.

Modular-width

A module in a graph G = (V,E) is any subset M ⊆ V (G) such that for any v ∈ V \M , either
M ⊆ NG(v) or M ∩NG(v) = ∅. Note that ∅, V, and {v} for every v ∈ V are trivial modules of G.
A graph is called prime for modular decomposition if it only has trivial modules.

A module M is strong if it does not overlap any other module, i.e., for any module M ′ of G,
either one of M or M ′ is contained in the other or M and M ′ do not intersect. Furthermore, let
M(G) be the family of all inclusion wise maximal strong modules of G that are proper subsets of
V . The quotient graph of G is the graph G′ with vertex-set M(G) and an edge between every two
M,M ′ ∈M(G) such that every vertex of M is adjacent to every vertex of M ′.

Modular decomposition is based on the following structure theorem from Gallai.

Theorem 1 ( [52]). For an arbitrary graph G exactly one of the following conditions is satisfied.

1. G is disconnected;

2. its complement G is disconnected;

3. or its quotient graph G′ is prime for modular decomposition.

Theorem 1 suggests the following recursive procedure in order to decompose a graph, that is
sometimes called modular decomposition. If G = G′ (i.e., G is complete, edgeless or prime for
modular decomposition) then we output G. Otherwise, we output the quotient graph G′ of G and,
for every strong module M of G, the modular decomposition of G[M ]. The modular decomposition
of a given graph G = (V,E) can be computed in linear-time [83]. See Fig. 2 for an example.

Furthermore, by Theorem 1 the subgraphs from the modular decomposition are either edgeless,
complete, or prime for modular decomposition. The modular-width of G, denoted by mw(G), is the
minimum k ≥ 2 such that any prime subgraph in the modular decomposition has order (number
of vertices) at most k 1. The relationship between clique-width and modular-width is as follows.

1This term has another meaning in [77]. We rather follow the terminology from [32].
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Figure 2: A graph and its modular decomposition.

Lemma 1 ( [31]). For every G = (V,E), we have cw(G) ≤ mw(G), and a mw(G)-expression
defining G can be constructed in linear-time.

We refer to [60] for a survey on modular decomposition. In particular, graphs with modular-
width two are exactly the cographs, that follows from the existence of a cotree [82]. Cographs enjoy
many algorithmic properties, including a linear-time algorithm for Maximum Matching [86].
Furthermore, in [50] Gajarskỳ, Lampis and Ordyniak prove that for some W -hard problems when
parameterized by clique-width there exist FPT algorithms when parameterized by modular-width.

Split-width

A split (A,B) in a connected graph G = (V,E) is a partition V = A∪B such that: min{|A|, |B|} ≥ 2;
and there is a complete join between the vertices of NG(A) and NG(B). For every split (A,B) of G,
let a ∈ NG(B), b ∈ NG(A) be arbitrary. The vertices a, b are termed split marker vertices. We can
compute a “simple decomposition” of G into the subgraphs GA = G[A∪{b}] and GB = G[B∪{a}].

There are two cases of “indecomposable” graphs. Degenerate graphs are such that every bi-
partition of their vertex-set is a split. They are exactly the complete graphs and the stars [33]. A
graph is prime for split decomposition if it has no split.

A split decomposition of a connected graph G is obtained by applying recursively a simple de-
composition, until all the subgraphs obtained are either degenerate or prime. A split decomposition
of an arbitrary graph G is the union of a split decomposition for each of its connected components.
Every graph has a canonical split decomposition, with minimum number of subgraphs, that can be
computed in linear-time [20]. The split-width of G, denoted by sw(G), is the minimum k ≥ 2 such
that any prime subgraph in the canonical split decomposition of G has order at most k. See Fig. 3
for an illustration.

Lemma 2 ( [78]). For every G = (V,E), we have cw(G) ≤ 2 · sw(G) + 1, and a (2 · sw(G) + 1)-
expression defining G can be constructed in linear-time.

We refer to [53, 56, 78] for some algorithmic applications of split decomposition. In particular,
graphs with split-width at most two are exactly the distance-hereditary graphs [9]. Linear-time
algorithms for solving Diameter and Maximum Matching for distance-hereditary graphs are
presented in [36, 35].

We stress that split decomposition can be seen as a refinement of modular decomposition.
Indeed, if M is a module of G and min{|M |, |V \M |} ≥ 2 then (M,V \M) is a split. In what
follows, we prove most of our results with the more general split decomposition.
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Figure 3: A graph and its split decomposition.

Graphs with few P4’s

A (q, t)-graph G = (V,E) is such that for any S ⊆ V , |S| ≤ q, S induces at most t paths on four
vertices [7]. The P4-sparseness of G, denoted by q(G), is the minimum q ≥ 7 such that G is a
(q, q − 3)-graph.

Lemma 3 ( [70]). For every q ≥ 7, every (q, q − 3)-graph has clique-width at most q, and a
q-expression defining it can be computed in linear-time.

The algorithmic properties of several subclasses of (q, q − 3)-graphs have been considered in
the literature. We refer to [8] for a survey. Furthermore, there exists a canonical decomposition
of (q, q − 3)-graphs, sometimes called the primeval decomposition, that can be computed in linear-
time [10]. Primeval decomposition can be seen as an intermediate between modular and split
decomposition. We postpone the presentation of primeval decomposition until Section 5. Until
then, we state the results in terms of modular decomposition.

More precisely, given a (q, q − 3)-graphs G, the prime subgraphs in its modular decomposition
may be of super-constant size Ω(q). However, if they are then they are part of one of the well-
structured graph classes that we detail next.

A disc is either a cycle Cn, or a co-cycle Cn, for some n ≥ 5.

(a) Thin spider. (b) Thick spider.

Figure 4: Spiders.

A spider G = (S ∪K ∪ R,E) is a graph with vertex set V = S ∪K ∪ R and edge set E such
that:

1. (S,K,R) is a partition of V and R may be empty;

11



2. the subgraph G[K ∪R] induced by K and R is the complete join K ⊕R, and K separates S
and R, i.e. any path from a vertex in S and a vertex in R contains a vertex in K;

3. S is a stable set, K is a clique, |S| = |K| ≥ 2, and there exists a bijection f : S −→ K such
that, either for all vertices s ∈ S, N(s) ∩K = K − {f(s)} or N(s) ∩K = {f(s)}. Roughly
speaking, the edges between S and K are either a matching or an anti-matching. In the
former case or if |S| = |K| ≤ 2, G is called thin, otherwise G is thick. See Fig. 4.

If furthermore |R| ≤ 1 then we call G a prime spider.

x y

Figure 5: Spiked p-chain Pk.

Let Pk = (v1, v2, v3, . . . , vk), k ≥ 6 be a path of length at least five. A spiked p-chain Pk
is a supergraph of Pk, possibly with the additional vertices x, y such that: N(x) = {v2, v3} and
N(y) = {vk−2, vk−1}. See Fig. 5. Note that one or both of x and y may be missing. In particular,
Pk is a spiked p-chain Pk. A spiked p-chain Pk is the complement of a spiked p-chain Pk.

Let Qk be the graph with vertex-set {v1, v2, . . . , vk}, k ≥ 6 such that, for every i ≥ 1,
NQk

(v2i−1) = {v2j | j ≤ i, j 6= i− 1} and NQk
(v2i) = {v2j | j 6= i} ∪ {v2j−1 | j ≥ i, j 6= i+ 1}. A

spiked p-chain Qk is a supergraph of Qk, possibly with the additional vertices z2, z3, . . . , zk−5 such
that:

• N(z2i−1) = {v2j | j ∈ [1; i]} ∪ {z2j | j ∈ [1; i− 1]};

• N(z2i) = {v2j−1 | j ∈ [1; i+ 1]} ∪ {z2j−1 | j ∈ [2; i]}

Any of the vertices zi can be missing, so, in particular, Qk is a spiked p-chain Qk. See Fig. 6. A
spiked p-chain Qk is the complement of a spiked p-chain Qk.

v1

v2
z2

v4
v6

v8

z3
v3 v5

v7

Figure 6: Spiked p-chain Qk.

Finally, we say that a graph is a prime p-tree if it is either: a spiked p-chain Pk, a spiked p-chain
Pk, a spiked p-chain Qk, a spiked p-chain Qk, or part of the seven graphs of order at most 7 that
are listed in [70].

Lemma 4 ( [6, 70]). Let G = (V,E), q ≥ 7, be a connected (q, q− 3)-graph such that G and G are
connected. Then, one of the following must hold for its quotient graph G′:
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• either G′ is a prime spider;

• or G′ is a disc;

• or G′ is a prime p-tree;

• or |V (G′)| ≤ q.

A simpler version of Lemma 4 holds for the subclass of (q, q − 4)-graphs:

Lemma 5 ( [6]). Let G = (V,E), q ≥ 4, be a connected (q, q − 4)-graph such that G and G are
connected. Then, one of the following must hold for its quotient graph G′:

• G′ is a prime spider;

• or |V (G′)| ≤ q.

The subclass of (q, q − 4)-graphs has received more attention in the literature than (q, q − 3)-
graphs. Our results hold for the more general case of (q, q − 3)-graphs.

3 Cycle problems on bounded clique-width graphs

Clique-width is the smallest parameter that is considered in this work. We start studying the
possibility for kO(1) · (n + m)-time algorithms on graphs with clique-width at most k. Positive
results are obtained for two variations of Triangle Detection, namely Triangle Counting
and Girth. We define the problems studied in Section 3.1, then we describe the algorithms in
order to solve these problems in Section 3.2.

3.1 Problems considered

We start introducing our basic cycle problem.

Problem 1 (Triangle Detection).

Input: A graph G = (V,E).

Question: Does there exist a triangle in G?

Note that for general graphs, Triangle Detection is conjectured not to be solvable in
O(n3−ε)-time, for any ε > 0, with a combinatorial algorithm [85]. It is also conjectured not to
be solvable in O(nω−ε)-time for any ε > 0, with ω being the exponent for fast matrix multipli-
cation [2]. Our results in this section show that such assumptions do not hold when restricted to
bounded clique-width graphs.

More precisely, we next describe fully polynomial parameterized algorithms for the two following
generalizations of Triangle Detection.

Problem 2 (Triangle Counting).

Input: A graph G = (V,E).

Output: The number of triangles in G.
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Problem 3 (Girth).

Input: A graph G = (V,E).

Output: The girth of G, that is the minimum size of a cycle in G.

In [85], the three of Triangle Detection, Triangle Counting and Girth are proved to
be subcubic equivalent when restricted to combinatorial algorithms.

3.2 Algorithms

Roughly, our algorithms in what follows are based on the following observation. Given a labeled
graph 〈G, `〉 (obtained from a k-expression), in order to detect a triangle in G, resp. a minimum-
length cycle in G, we only need to store the adjacencies, resp. the distances, between every two
label classes. Hence, if a k-expression of length L is given as part of the input we obtain algorithms
running in time O(k2L) and space O(k2).

Our first result is for Triangle Counting (Theorem 2). It shares some similarities with a
recent algorithm for listing all triangles in a graph [11]. However, unlike the authors in [11], we
needn’t use the notion of k-modules in our algorithms. Furthermore, since we only ask for counting
triangles, and not to list them, we obtain a better time complexity than in [11].

Theorem 2. For every G = (V,E), Triangle Counting can be solved in O(k2 · (n + m))-time
if a k-expression of G is given.

Proof. We need to assume the k-expression is irredundant, that is, when we add a complete join
between the vertices labeled i and the verticed labeled j, there was no edge before between these
two subsets. Given a k-expression of G, an irredundant k-expression can be computed in linear-
time [32]. Then, we proceed by dynamic programming on the irredundant k-expression.

More precisely, let 〈G, `〉 be a labeled graph, ` : V (G) → {1, . . . , k}. We denote by T (〈G, `〉)
the number of triangles in G. In particular, T (〈G, `〉) = 0 if G is empty. Furthermore, T (〈G, `〉) =
T (〈G′, `′〉) if 〈G, `〉 is obtained from 〈G′, `′〉 by: the addition of a new vertex with any label,
or the identification of two labels. If 〈G, `〉 is the disjoint union of 〈G1, `1〉 and 〈G2, `2〉 then
T (〈G, `〉) = T (〈G1, `1〉) + T (〈G2, `2〉).

Finally, suppose that 〈G, `〉 is obtained from 〈G′, `′〉 by adding a complete join between the
set Vi of vertices labeled i and the set Vj of vertices labeled j. For every p, q ∈ {1, . . . , k}, we
denote by mp,q the number of edges in 〈G′, `′〉 with one end in Vp and the other end in Vq. Let
np,q be the number of (non necessarily induced) P3’s with an end in Vp and the other end in Vq.
Note that we are only interested in the number of induced P3’s for our algorithm, but this looks
more challenging to compute. Nevertheless, since the k-expression is irredundant, ni,j is exactly
the number of induced P3’s with one end in Vi and the other in Vj . Furthermore after the join is
added we get: |Vi| new triangles per edge in G′[Vj ], |Vj | new triangles per edge in G′[Vi], and one
triangle for every P3 with one end in Vi and the other in Vj . Summarizing:

T (〈G, `〉) = T (〈G′, `′〉) + |Vj | ·mi,i + |Vi| ·mj,j + ni,j .

In order to derive the claimed time bound, we are now left to prove that, after any operation, we
can update the values mp,q and np,q, p, q ∈ {1, . . . , k}, in O(k2)-time. Clearly, these values cannot
change when we add a new (isolated) vertex, with any label, and they can be updated by simple
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summation when we take the disjoint union of two labeled graphs. We now need to distinguish
between the two remaining cases. In what follows, let m′p,q and n′p,q represent the former values.

• Suppose that label i is identified with label j. Then:

mp,q =



0 if i ∈ {p, q}
m′i,i +m′i,j +m′j,j if p = q = j

m′p,j +m′p,i if q = j, p /∈ {i, j}
m′j,q +m′i,q if p = j, q /∈ {i, j}
m′p,q else

,

np,q =



0 if i ∈ {p, q}
n′j,j + n′j,i + n′i,i if p = q = j

n′p,j + n′p,i if q = j, p /∈ {i, j}
n′j,q + n′i,q if p = j, q /∈ {i, j}
n′p,q else

.

• Otherwise, suppose that we add a complete join between the set Vi of vertices labeled i and
the set Vj of vertices labeled j. Then, since the k-expression is irredundant:

mp,q =

{
|Vi| · |Vj | if {i, j} = {p, q}
m′p,q else

.

For every ui, vi ∈ Vi and wj ∈ Vj we create a new P3 (ui, wj , vi). Similarly, for every uj , vj ∈ Vj
and wi ∈ Vi we create a new P3 (uj , wi, vj). These are the only new P3’s with two edges from
the complete join. Furthermore, for every edge {ui, vi} in Vi and for every wj ∈ Vj we can
create the two new P3’s (ui, vi, wj) and (vi, ui, wj). Similarly, for every edge {uj , vj} in Vj
and for every wi ∈ Vi we can create the two new P3’s (uj , vj , wi) and (vj , uj , wi). Finally,
for every edge {v, uj} with uj ∈ Vj , v /∈ Vi ∪ Vj , we create |Vi| new P3’s, and for every edge
{v, ui} with ui ∈ Vi, v /∈ Vi ∪ Vj , we create |Vj | new P3’s. Altogether combined, we deduce
the following update rules:

np,q =



n′i,i + |Vi| · |Vj | · (|Vi| − 1)/2 if p = q = i

n′j,j + |Vj | · |Vi| · (|Vj | − 1)/2 if p = q = j

n′i,j + 2 · |Vj | ·m′i,i + 2 · |Vi| ·m′j,j if {p, q} = {i, j}
n′i,q + |Vi| ·m′j,q if p = i, q /∈ {i, j}
n′p,i + |Vi| ·m′p,j if q = i, p /∈ {i, j}
n′j,q + |Vj | ·m′i,q if p = j, q /∈ {i, j}
n′p,j + |Vj | ·m′p,i if q = j, p /∈ {i, j}
n′p,q else

.
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Our next result is about computing the girth of a graph (size of a smallest cycle). To the best of
our knowledge, the following Theorem 3 gives the first known polynomial parameterized algorithm
for Girth.

Theorem 3. For every G = (V,E), Girth can be solved in O(k2 · (n+m))-time if a k-expression
of G is given.

Proof. The same as for Theorem 2, we assume the k-expression to be irredundant. It can be
enforced up to linear-time preprocessing [32]. We proceed by dynamic programming on the k-
expression. More precisely, let 〈G, `〉 be a labeled graph, ` : V (G) → {1, . . . , k}. We denote by
µ(〈G, `〉) the girth of G. By convention, µ(〈G, `〉) = +∞ if G is empty, or more generally if G is
a forest. Furthermore, µ(〈G, `〉) = µ(〈G′, `′〉) if 〈G, `〉 is obtained from 〈G′, `′〉 by: the addition of
a new vertex with any label, or the identification of two labels. If 〈G, `〉 is the disjoint union of
〈G1, `1〉 and 〈G2, `2〉 then µ(〈G, `〉) = min{µ(〈G1, `1〉), µ(〈G2, `2〉)}.

Suppose that 〈G, `〉 is obtained from 〈G′, `′〉 by adding a complete join between the set Vi of
vertices labeled i and the set Vj of vertices labeled j. For every p, q ∈ {1, . . . , k}, we are interested in
the minimum length of a nonempty path with an end in Vp and an end in Vq. However, for making
easier our computation, we consider a slightly more complicated definition. If p 6= q then we define
dp,q as the minimum length of a VpVq-path of G′. Otherwise, p = q, we define dp,q as the minimum
length taken over all the paths with two distinct ends in Vp, and all the nontrivial closed walks
that intersect Vp (i.e., there is at least one edge in the walk, we allow repeated vertices or edges,
however a same edge does not appear twice consecutively). Intuitively, dp,p may not represent the
length of a path only in some cases where a cycle of length at most dp,p is already ensured to exist
in the graph (in which case we needn’t consider this value). Furthermore note that such paths or
closed walks as defined above may not exist. So, we may have dp,q = +∞. Then, let us consider a
minimum-size cycle C of G. We distinguish between four cases.

• If C does not contain an edge of the join, then it is a cycle of G′.

• Else, suppose that C contains exactly one edge of the join. Then removing this edge leaves a
ViVj-path in G′; this path has length at least di,j . Conversely, if di,j 6= +∞ then there exists
a cycle of length 1 + di,j in G, and so, µ(〈G, `〉) ≤ 1 + di,j .

• Else, suppose that C contains exactly two edges of the join. In particular, since C is of
minimum-size, and so, it is an induced cycle, the two edges of the join in C must have a
common end in the cycle. It implies that removing the two edges from C leaves a path of G′

with either its two ends in Vi or its two ends in Vj . Such paths have respective length at least
di,i and dj,j . Conversely, there exist closed walks of respective length 2 + di,i and 2 + dj,j in
G. Hence, µ(〈G, `〉) ≤ 2 + min{di,i, dj,j}.

• Otherwise, C contains at least three edges of the join. Since C is induced, it implies that C is
a cycle of length four with two vertices in Vi and two vertices in Vj . Such a (non necessarily
induced) cycle exists if and only if min{|Vi|, |Vj |} ≥ 2.

Summarizing:

µ(〈G, `〉) =

{
min{µ(〈G′, `′〉), 1 + di,j , 2 + di,i, 2 + dj,j} if min{|Vi|, |Vj |} = 1

min{µ(〈G′, `′〉), 1 + di,j , 2 + di,i, 2 + dj,j , 4} otherwise.
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In order to derive the claimed time bound, we are now left to prove that, after any operation, we can
update the values dp,q, p, q ∈ {1, . . . , k}, in O(k2)-time. Clearly, these values cannot change when
we add a new (isolated) vertex, with any label, and they can be updated by taking the minimum
values when we take the disjoint union of two labeled graphs. We now need to distinguish between
the two remaining cases. In what follows, let d′p,q represent the former values.

• Suppose that label i is identified with label j. Then:

dp,q =



+∞ if i ∈ {p, q}
min{d′i,i, d′i,j , d′j,j} if p = q = j

min{d′p,i, d′p,j} if q = j

min{d′i,q, d′j,q} if p = j

d′p,q else.

• Otherwise, suppose that we add a complete join between the set Vi of vertices labeled i and
the set Vj of vertices labeled j. The values d′p,q can only be decreased by using the edges of
the join. In particular, using the fact that the k-expression is irredundant, we obtain:

dp,q =



1 if {p, q} = {i, j}
min{2, d′p,q} if p = q = i, |Vi| ≥ 2 or p = q = j, |Vj | ≥ 2

min{d′i,i, 1 + d′i,j , 2 + d′j,j} if p = q = i, |Vi| = 1

min{d′j,j , 1 + d′i,j , 2 + d′i,i} if p = q = j, |Vj | = 1

min{d′i,q, 1 + d′j,q} if p = i, q /∈ {i, j}
min{d′p,i, d′p,j + 1} if q = i, p /∈ {i, j}
min{d′j,q, 1 + d′i,q} if p = j, q /∈ {i, j}
min{d′p,j , d′p,i + 1} if q = j, p /∈ {i, j}

.

For all the remaining values of p and q, the difficulty is to account for the cases where two consecutive
edges of the join must be used in order to decrease the value d′p,q. We do so by using the updated
values dp,i, di,q, dp,j , dj,q instead of the former values d′p,i, d

′
i,q, d

′
j,p, d

′
q,j . More precisely,

dp,q = min{d′p,q, dp,i + 1 + dj,q, dp,j + 1 + di,q} else.

The bottleneck of the above algorithms is that they require a k-expression as part of the input.
So far, the best-known approximation algorithms for clique-width run in O(n3)-time, that domi-
nates the total running time of our algorithms [75]. However, on a more positive side a k-expression
can be computed in linear time for many classes of bounded clique-width graphs. In particular,
combining Theorems 2 and 3 with Lemmas 1, 2 and 3 we obtain the following result.

Corollary 4. For every G = (V,E), Triangle Counting and Girth can be solved in O(k2 ·
(n+m))-time, for every k ∈ {mw(G), sw(G), q(G)}.
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4 Parameterization, Hardness and Kernelization for some dis-
tance problems on graphs

We prove separability results between clique-width and the upper-bounds for clique-width presented
in Section 2. More precisely, we consider the problems Diameter, Eccentricities, Hyperbolic-
ity and Betweenness Centrality (defined in Section 4.1), that have already been well studied
in the field of “Hardness in P”. On the negative side, we show in Section 4.2 that we cannot solve
these three above problems with a fully polynomial parameterized algorithm, when parameterized
by clique-width. However, on a more positive side, we prove the existence of such algorithms in
Sections 4.3, 4.4 and 4.5, when parameterized by either the modular-width, the split-width or the
P4-sparseness.

4.1 Distance problems considered

Eccentricity-based problems

The first problem considered is computing the diameter of a graph (maximum length of a shortest-
path).

Problem 4 (Diameter).

Input: A graph G = (V,E).

Output: The diameter of G, that is maxu,v∈V distG(u, v).

Hardness results for Diameter have been proved, e.g., in [80, 1, 17, 3, 41].
Our new hardness results are proved for Diameter, while our fully polynomial parameterized

algorithms apply to the following more general version of the problem. The eccentricity of a given
vertex v is defined as eccG(v) = maxu∈V distG(u, v). Observe that diam(G) = maxv eccG(v).

Problem 5 (Eccentricities).

Input: A graph G = (V,E).

Output: The eccentricities of the vertices in G, that is maxu∈V distG(u, v) for every v ∈ V .

Gromov hyperbolicity

Then, we consider the parameterized complexity of computing the Gromov hyperbolicity of a given
graph. Gromov hyperbolicity is a measure of how close (locally) the shortest-path metric of a graph
is to a tree metric [58]. We refer to [38] for a survey on the applications of Gromov hyperbolicity
in computer science.
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Problem 6 (Hyperbolicity).

Input: A graph G = (V,E).

Output: The hyperbolicity δ of G, that is:

max
u,v,x,y∈V

distG(u, v) + distG(x, y)−max{distG(u, x) + distG(v, y), distG(u, y) + distG(v, y)}
2

.

Hardness results for Hyperbolicity have been proved in [17, 26, 47]. Some fully polynomial
parameterized algorithms, with a different range of parameters than the one considered in this
work, have been designed in [43].

Centrality problems

There are different notions of centrality in graphs. For clarity, we choose to keep the focus on
one centrality measurement, sometimes called the Betweenness Centrality [48]. More precisely, let
G = (V,E) be a graph and let s, t ∈ V . We denote by σG(s, t) the number of shortest st-paths in
G. In particular, for every v ∈ V , σG(s, t, v) is defined as the number of shortest st-paths passing
by v in G.

Problem 7 (Betweenness Centrality).

Input: A graph G = (V,E).

Output: The betweenness centrality of every vertex v ∈ V , defined as:

BCG(v) =
∑

s,t∈V \v

σG(s, t, v)/σG(s, t).

See [1, 17, 41] for hardness results on Betweenness Centrality.

4.2 Hardness results for clique-width

The goal in this section is to prove that we cannot solve the problems of Section 4.1 in time
2o(cw)n2−ε, for any ε > 0 (Theorems 5—7). These are the first known hardness results for clique-
width in the field of “Hardness in P”. Our results are conditioned on the Strong Exponential Time
Hypothesis (SETH): SAT cannot be solved in O∗(2c·n)-time, for any c < 1 [63]. Furthermore, they
are derived from similar hardness results obtained for treewidth.

Precisely, a tree decomposition (T,X ) of G = (V,E) is a pair consisting of a tree T and of a
family X = (Xt)t∈V (T ) of subsets of V indexed by the nodes of T and satisfying:

•
⋃
t∈V (T )Xt = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt;

• for any v ∈ V , the set of nodes {t ∈ V (T ) | v ∈ Xt} induces a subtree, denoted by Tv, of T .
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The sets Xt are called the bags of the decomposition. The width of a tree decomposition is the size
of a largest bag minus one. Finally, the treewidth of a graph G, denoted by tw(G), is the least
possible width over its tree decompositions.

Several hardness results have already been obtained for treewidth [3]. However, cw(G) ≤
2tw(G) for general graphs [25], that does not help us to derive our lower-bounds. Roughly, we
use relationships between treewidth and clique-width in some graph classes (i.e., bounded-degree
graphs [28, 59]) in order to transpose the hardness results for treewidth into hardness results for
clique-width. Namely:

Lemma 6 ([28, 59]). If G has maximum degree at most d (with d ≥ 1), we have:

• tw(G) ≤ 3d · cw(G)− 1;

• cw(G) ≤ 20d · tw(G) + 22.

Our reductions in what follows are based on Lemma 6, and on previous hardness results for
bounded treewidth graphs and bounded-degree graphs [3, 41].

Theorem 5. Under SETH, we cannot solve Diameter in 2o(k) · n2−ε-time on graphs with maxi-
mum degree 4 and treewidth at most k, for any ε > 0.

In particular, we cannot solve Diameter in 2o(k) · n2−ε-time on graphs with clique-width at
most k, for any ε > 0.

Proof. In [3], they proved that under SETH, we cannot solve Diameter in O(n2−ε)-time, for any
ε > 0, in the class of tripartite graphs G = (A∪C∪B,E) such that: |A| = |B| = n, |C| = O(log n),
and all the edges in E are between C and A∪B. Note that there exists a tree decomposition (T,X )
of G such that T is a path and the bags are the sets {a} ∪ C, a ∈ A and {b} ∪ C, b ∈ B. Hence,
tw(G) = O(|C|) = O(log n) [3].

Then, we use the generic construction of [41] in order to transform G into a bounded-degree
graph. We prove that graphs with treewidth O(log n) can be generated with this construction2.
More precisely, let Tbig and Tsmall be rooted balanced binary trees with respective number of leaves
|A| = |B| = n and |C| = O(log n). There is a bijective correspondance between the leaves of Tbig
and the vertices in A, resp. between the leaves of Tbig and the vertices in B. Similarly, there is a
bijective correspondance between the leaves of Tsmall and the vertices of C. In order to construct
G′ from G, we proceed as follows:

• We replace every vertex u ∈ A∪B with a disjoint copy T usmall of Tsmall. We also replace every

vertex c ∈ C with two disjoint copies T c,Abig , T
c,B
big of Tbig with a common root.

• For every a ∈ A, c ∈ C adjacent in G, we add a path of length p (fixed by the construction)
between the leaf of T asmall corresponding to c and the leaf of T c,Abig corresponding to a. In the
same way, for every b ∈ B, c ∈ C adjacent in G, we add a path of length p between the leaf
of T bsmall corresponding to c and the leaf of T c,Bbig corresponding to b.

• Let TAbig and TBbig be two other disjoint copies of Tbig. For every a ∈ A we add a path of length

p between the leaf corresponding to a in TAbig and the root of T asmall. In the same way, for

every b ∈ B we add a path of length p between the leaf corresponding to b in TBbig and the

root of T bsmall.

2Our construction has less degrees of freedom than the construction presented in [41].
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• Finally, for every u ∈ A∪B, we add a path of length p with one end being the root of T usmall.

The resulting graph G′ has maximum degree 4. In [41], they prove that, under SETH, we cannot
compute diam(G′) in O(n2−ε)-time, for any ε > 0.

We now claim that tw(G′) = O(log n). Since by Lemma 6 we have tw(G′) = Θ(cw(G′)) for
bounded-degree graphs, it will imply cw(G′) = O(log n). In order to prove the claim, we assume
w.l.o.g. that the paths added by the above construction have length p = 13. Indeed, subdividing
an edge does not change the treewidth [14]. Note that in this situation, we can also ignore the
pending vertices added for the last step of the construction. Indeed, removing the pending vertices
does not change the treewidth either [13]. Hence, from now on we consider the graph G′ resulting
from the three first steps of the construction by taking p = 1.

Let (T ′,X ′) be a tree decomposition of Tbig of unit width. There is a one-to-one mapping

between the nodes t ∈ V (T ′) and the edges et ∈ E(Tbig). Furthermore, let eAt , e
B
t , e

c,A
t and ec,Bt be

the copies of edge et in the trees TAbig, T
B
big, T

c,A
big and T c,Bbig , c ∈ C, respectively. For every node t ∈

V (T ′), we define a new bag Yt as follows. If et is not incident to a leaf-node then we set Yt = eAt ∪eBt ∪[⋃
c∈C

(
ec,At ∪ ec,Bt

)]
. Otherwise, et is incident to some leaf-node. Let at ∈ A, bt ∈ B correspond

to the leaf. We set Yt = V
(
T atsmall

)
∪V

(
T btsmall

)
∪ eAt ∪ eBt ∪

[⋃
c∈C

(
ec,At ∪ ec,Bt

)]
. By construction,

(T ′, (Yt)t∈V (T ′)) is a tree decomposition of G′. In particular, tw(G′) ≤ maxt∈V (T ′) |Yt| = O(log n),
that finally proves the claim.

Finally, suppose by contradiction that diam(G′) can be computed in 2o(tw(G
′)) · n2−ε-time, for

some ε > 0. Since tw(G′) = O(log n), it implies that diam(G′) can be computed in O(n2−ε)-time,
for some ε > 0. The latter refutes SETH. Hence, under SETH we cannot solve Diameter in
2o(k) · n2−ε-time on graphs with maximum degree 4 and treewidth at most k, for any ε > 0. This
negative result also holds for clique-width since cw(G′) = Θ(tw(G′)).

The following reduction to Betweenness Centrality is from [41]. Our main contribution is
to upper-bound the clique-width and the treewidth of their construction.

Theorem 6. Under SETH, we cannot solve Betweenness Centrality in 2o(k) · n2−ε-time on
graphs with maximum degree 4 and treewidth at most k, for any ε > 0.

In particular, we cannot solve Betweenness Centrality in 2o(k) · n2−ε-time on graphs with
clique-width at most k, for any ε > 0.

Proof. Let G′ be the graph from the reduction of Theorem 5. In [41], the authors propose a
reduction from G′ to H such that, under SETH, we cannot solve Betweenness Centrality for
H in O(n2−ε)-time, for any ε > 0. In order to prove the theorem, it suffices to prove tw(H) =
Θ(tw(G′)). Indeed, the construction of H from G′ is as follows.

• For every u ∈ A ∪ B, we remove the path of length p with one end being the root of T usmall,
added at the last step of the construction of G′. This operation can only decrease the
treewidth.

• Then, we add a path of length p between the respective roots of TAbig and TBbig. Recall that
we can assume p = 1 since subdividing an edge does not modify the treewidth [14]. Adding
an edge to a graph increases its treewidth by at most one.

3The hardness result of [41] holds for p = ω(logn). We reduce to the case p = 1 only for computing the treewidth.
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• Finally, let H1 be the graph so far constructed. We make a disjoint copy H2 of H1. This
operation does not modify the treewidth. Then, for every b ∈ B, let T bsmall

′
be the copy of

T bsmall in H2. We add a new vertex b′ that is uniquely adjacent to the root of T bsmall
′
. The

addition of pending vertices does not modify the treewidth either [13].

Overall, tw(H) ≤ tw(G′) + 1 = O(log n). Furthermore, since H has maximum degree at most 4,
by Lemma 6 we have cw(H) = Θ(tw(H)) = O(log n).

Our next reduction for Hyperbolicity is inspired from the one presented in [17]. However,
the authors in [17] reduce from a special case of Diameter where we need to distinguish between
graphs with diameter either 2 or 3. In order to reduce from a more general case of Diameter we
need to carefully refine their construction.

Theorem 7. Under SETH, we cannot solve Hyperbolicity in 2o(k) · n2−ε-time on graphs with
clique-width and treewidth at most k, for any ε > 0.

Proof. We use the graph G′ from the reduction of Theorem 5. More precisely, let us take p =
ω(log n) for the size of the paths in the construction. It has been proved in [41] that either
diam(G′) = (4 + o(1))p or diam(G′) = (6 + o(1))p. Furthermore, under SETH we cannot decide
in which case we are in truly subquadratic time.

Our reduction is inspired from [17]. Let H be constructed from G′ as follows (see also Fig. 7).

• We add two disjoint copies Vx, Vy of V (G′) and the three vertices x, y, z /∈ V (G′). We stress
that Vx and Vy are independent sets. Furthermore, for every v ∈ V , we denote by vx and vy
the copies of v in Vx and Vy, respectively.

• For every v ∈ V (G′), we add a vvx-path P xv of length (3/2 + o(1))p, and similarly we add a
vvy-path P yv of length (3/2 + o(1))p.

• Furthermore, for every v ∈ V (G′) we also add a xvx-path Qxv of length (3/2 + o(1))p; a yvy-
path Qyv of length (3/2 + o(1))p; a zvx-path Qz,xv of length (3/2 + o(1))p and a zvy-path Qz,yv
of length (3/2 + o(1))p.

G'Vx Vyx y

z

u

u

u

v

v v

x

x

y

y

Figure 7: The graph H from the reduction of Theorem 7.

We claim that the resulting graph H is such that tw(H) = tw(G′) + O(1) and cw(H) =
cw(G′)+O(1). Indeed, let us first consider H ′ = H \{x, y, z}. The graph H ′ is obtained from G′ by
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adding some disjoint trees rooted at the vertices of V (G′). In particular, it implies tw(H ′) = tw(G′),
hence (by adding x, y, z in every bag) tw(H) ≤ tw(H ′) + 3 ≤ tw(G′) + 3.

Furthermore, let us fix a k-expression for G′. We transform it to a (k+ 16)-expression for H as
follows. We start adding x, y, z with three distinct new labels. Then, we follow the k-expression for
G′. Suppose a new vertex v ∈ V (G′), with label i is introduced. It corresponds to some tree Tv in
H ′, that is rooted at v. Every such a tree has clique-width at most 3 [57]. So, as an intermediate
step, let us fix a 3-expression for Tv. We transform it to a 12-expression for Tv: with each new
label encoding the former label in the 3 expression (3 possibilities), and whether the node is either
the root v or adjacent to one of x, y, z (4 possibilities). This way, we can make x, y, z adjacent
to their neighbours in Tv, using the join operation. Then, since the root v has a distinguished
label, we can “freeze” all the other nodes in Tv \ v using an additional new label and relabeling
operations. Finally, we relabel v with its original label i in the k-expression of G′, and then we
continue following this k-expression. Summarizing, cw(H) ≤ cw(G′) + 16.

Next, we claim that δ(H) ≥ (3 + o(1))p if diam(G′) = (6 + o(1))p, while δ(H) ≤ (11/4 + o(1))p
if diam(G′) = (4 + o(1))p. Recall that by Theorem 5, under SETH we cannot decide in which
case we are in time 2o(tw(G

′))n2−ε = 2o(cw(G
′))n2−ε, for any ε > 0. Therefore, proving the claim will

prove the theorem.
First suppose that diam(G′) = (6 + o(1))p. Let u, v ∈ V (G′) satisfy distG′(u, v) = (6 + o(1))p.

Observe that diam(G′) ≤ (6 + o(1))p = 4 · (3/2 + o(1))p, therefore G′ is an isometric subgraph
of H by construction. Then, S1 = distH(u, v) + distH(x, y) = (12 + o(1))p; S2 = distH(u, x) +
distH(v, y) = (6 + o(1))p; S3 = distH(u, y) + distH(v, x) = S2. As a result, we obtain δ(H) ≥
(S1 −max{S2, S3})/2 = (3 + o(1))p.

Second, suppose that diam(G′) = (4 + o(1))p. We want to prove δ(H) ≤ (11/4 + o(1))p. By
contradiction, let a, b, c, d ∈ V (H) satisfy:

S1 = distH(a, b) + distH(c, d) ≥ S2 = distH(a, c) + distH(b, d) ≥ S3 = distH(a, d) + distH(b, c),

S1 − S2 > (11/2 + o(1))p.

The hyperbolicity of a given 4-tuple is upper-bounded by the minimum distance between two
vertices of the 4-tuple [16, 22, 81]. So, let us consider the distances in H.

• Let v ∈ V (G′). For every u ∈ V (G′), distH(u, v) ≤ distG(u, v) ≤ (4 + o(1))p.

Furthermore for every u′ ∈ P xu , distH(v, u′) ≤ distH(v, u) + distH(u, u′) ≤ (11/2 + o(1))p.
Similarly for every u′ ∈ P yu , distH(v, u′) ≤ distH(v, u) + distH(u, u′) ≤ (11/2 + o(1))p.

For every u′ ∈ Qxu, distH(v, u′) ≤ distH(v, x) + distH(x, u′) ≤ (9/2 + o(1))p. We prove in the
same way that for every u′ ∈ Qyu ∪Qz,xu ∪Qz,yu , distH(v, u′) ≤ (9/2 + o(1))p.

Summarizing, eccH(v) ≤ (11/2 + o(1))p.

• Let v′ ∈ P xv , for some v ∈ V (G′).

For every u ∈ V (G′) and u′ ∈ P xu there are two cases. Suppose that distH(u′, ux) ≤ p+o(1) or
distH(v′, vx) ≤ p+ o(1). Then, distH(v′, u′) ≤ distH(v′, vx) + distH(vx, ux) + distH(ux, u

′) ≤
(1 + 3 + 3/2 + o(1))p = (11/2 + o(1))p. Otherwise, max{distH(u′, u), distH(v′, v)} ≤ (1/2 +
o(1))p, and so, distH(u′, v′) ≤ distH(u′, u)+distH(u, v)+distH(v′, v) ≤ (5+o(1))p. Similarly
(replacing ux with uy), for every u′ ∈ P yu we have dist(v′, u′) ≤ (11/2 + o(1))p.
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For every u′ ∈ Qxu, distH(v′, u′) ≤ distH(v′, vx) + distH(x, vx) + distH(x, u′) ≤ (9/2 + o(1))p.
In the same way for every u′ ∈ Qz,xu ∪ Qz,yu , distH(v′, u′) ≤ distH(v′, vx) + distH(z, vx) +
distH(z, u′) ≤ (9/2 + o(1))p.

For every u′ ∈ Qyu, we first need to observe that distH(vx, uy) = (3 +o(1))p and distH(v, y) =
(3 + o(1))p. In particular if distH(v, v′) ≤ p + o(1) then, distH(v′, u′) ≤ distH(v, v′) +
distH(v, y) + distH(y, u′) ≤ (11/2 + o(1))p. Otherwise, distH(v′, u′) ≤ distH(v′, vx) +
distH(vx, uy) + distH(uy, u

′) ≤ (1/2 + 3 + 3/2 + o(1))p = (5 + o(1))p.

Summarizing, eccH(v′) ≤ (11/2 + o(1))p.

• Let v′ ∈ P yv , for some v ∈ V (G′). In the same way as above, we prove eccH(v′) ≤ (11/2 +
o(1))p.

• Let v′ ∈ Qz,xv ∪Qz,yv , for some v ∈ V (G′).

For every u ∈ V (G′) and for every u′ ∈ Qz,xu ∪ Qz,yu we have distH(v′, u′) ≤ distH(v′, z) +
distH(z, u′) ≤ (3 + o(1))p.

For every u′ ∈ Qxu we have distH(v′, u′) ≤ distH(v′, z) + distH(z, ux) + distH(ux, u
′) ≤ (9/2 +

o(1))p. Similarly for every u′ ∈ Qyu we have distH(v′, u′) ≤ (9/2 + o(1))p.

Summarizing, eccH(v′) ≤ (11/2 + o(1))p.

In particular, every vertex in H has eccentricity at most (11/2 + o(1))p, except maybe
those in

⋃
v∈V (G′)Q

x
v = X and those in

⋃
v∈V (G′)Q

y
v = Y . However, S1 − S2 ≤

min{distH(a, b), distH(c, d)} [22]. So, we can assume w.l.o.g. a, c ∈ X and b, d ∈ Y . Furthermore,
S1−S2 ≤ 2 ·distH(a, c) [16, 81]. Hence, (11/2+o(1))p < S1−S2 ≤ 2 ·distH(a, c) ≤ 2 ·(distH(a, x)+
distH(c, x)). It implies max{distH(a, x), distH(c, x)} > (11/8+o(1))p = (3/2−1/8+o(1))p. Assume
by symmetry that distH(a, x) > (3/2− 1/8 + o(1))p. Then, distH(a, Vx) < (1/8 + o(1))p. However,
distH(a, c) ≤ distH(a, Vx) + (3 + o(1))p+ distH(c, Vy) < (1/8 + 3 + 3/2 + o(1))p < (11/2 + o(1))p.
A contradiction. Therefore, we obtain as claimed that δ(H) ≤ (11/4 + o(1))p.

It is open whether any of these above problems can be solved in time 2O(k) · n on graphs with
clique-width at most k (resp., on graphs with treewidth at most k, see [3, 62]).

4.3 Parameterized algorithms with split decomposition

We show how to use split decomposition as an efficient preprocessing method for Diameter,
Eccentricities, Hyperbolicity and Betweenness Centrality. Improvements obtained with
modular decomposition will be discussed in Section 4.4. Roughly, we show that in order to solve
the problems considered, it suffices to solve some weighted variant of the original problem for every
split component (subgraphs of the split decomposition) separately. However, weights intuitively
represent the remaining of the graph, so, we need to account for some dependencies between the
split components in order to define the weights properly.

In order to overcome this difficulty, we use in what follows a tree-like structure over the split
components in order to design our algorithms. A split decomposition tree of G is a tree T where
the nodes are in bijective correspondance with the subgraphs of the split decomposition of G,
and the edges of T are in bijective correspondance with the simple decompositions used for their
computation.

More precisely:

24



• If G is either degenerate, or prime for split decomposition, then T is reduced to a single node;

• Otherwise, let (A,B) be a split of G and let GA = (A∪{b}, EA), GB = (B ∪{a}, EB) be the
corresponding subgraphs of G. We construct the split decomposition trees TA, TB for GA and
GB, respectively. Furthermore, the split marker vertices a and b are contained in a unique
split component of GA and GB, respectively. We obtain T from TA and TB by adding an
edge between the two nodes that correspond to these subgraphs.

A split decomposition tree can be constructed in linear-time [20].

Diameter and Eccentricities

Lemma 7. Let (A,B) be a split of G = (V,E) and let GA = (A ∪ {b}, EA), GB = (B ∪ {a}, EB)
be the corresponding subgraphs of G. Then, for every u ∈ A we have:

eccG(u) = max{eccGA
(u), distGA

(u, b) + eccGB
(a)− 1}.

Proof. Let C = NG(B) ⊆ A and D = NG(A) ⊆ B. In order to prove the claim, we first need to
observe that, since (A,B) is a split of G, we have, for every v ∈ V :

distG(u, v) =

{
distGA

(u, v) if v ∈ A
distG(u,C) + 1 + distG(v,D) if v ∈ B.

Furthermore, distG(u,C) = distGA
(u, b) − 1, and similarly distG(v,D) = distGB

(v, a) − 1 ≤
eccGB

(a)− 1. Hence, eccG(u) ≤ max{eccGA
(u), distGA

(u, b) + eccGB
(a)− 1}.

Conversely, eccGA
(u) = max{distGA

(u, b)} ∪ {distGA
(u, v) | v ∈ A} = max{distG(u,D)} ∪

{distG(u, v) | v ∈ A} ≤ eccG(u). In the same way, let v ∈ B maximize distG(v, C). We have:
distG(u, v) = distGA

(u, b) + eccGB
(a)− 1 ≤ eccG(u).

Theorem 8. For every G = (V,E), Eccentricities can be solved in O(sw(G)2 · n+m)-time.
In particular, Diameter can be solved in O(sw(G)2 · n+m)-time.

Proof. Let T be a split decomposition tree of G, with its nodes being in bijective correspondance
with the split components C1, C2, . . . , Ck. It can be computed in linear-time [20]. We root T in
C1. For every 1 ≤ i ≤ k, let Ti be the subtree of T that is rooted in Ci. If i > 1 then let
Cp(i) be its parent in T . By construction of T , the edge {Cp(i), Ci} ∈ E(T ) corresponds to a split
(Ai, Bi) of G, where V (Ci) ⊆ Ai. Let GAi = (Ai ∪ {bi}, EAi), GBi = (Bi ∪ {ai}, EBi) be the
corresponding subgraphs of G. We observe that Ti is a split decomposition tree of GAi , T \ Ti is a
split decomposition tree of GBi .

Our algorithm proceeds in two main steps, with each step corresponding to a different traversal
of the tree T . First, let G1 = G and let Gi = GAi for every i > 1. We first compute, for every
1 ≤ i ≤ k and for every vi ∈ V (Ci), its eccentricity in Gi. In order to do so, we proceed by dynamic
programming on the tree T :

• If Ci is a leaf of T then Eccentricities can be solved: in O(|V (Ci)|)-time if Ci induces a
star or a complete graph; and in O(|V (Ci)|3) = O(sw(G)2 · |V (Ci)|)-time else.

25



• Otherwise Ci is an internal node of T . Let Ci1 , Ci2 , . . . , Cil be the children of Ci in T .
Every edge {Ci, Cit} ∈ E(T ), 1 ≤ t ≤ l corresponds to a split (Ait , Bit) of Gi, where
V (Cit) ⊆ Ait . We name bit ∈ V (Cit), ait ∈ V (Ci) the vertices added after the simple
decomposition. Furthermore, let us define e(ait) = eccGit

(bit) − 1. For every other vertex
u ∈ V (Ci) \ {ai1 , ai2 , . . . , aik}, we define e(u) = 0. Then, applying Lemma 7 for every split
(Ait , Bit) we get:

∀u ∈ V (Ci), eccGi(u) = max
v∈V (Ci)

distCi(u, v) + e(v).

We distinguish between three cases.

1. If Ci is complete, then we need to compute xi ∈ V (Ci) maximizing e(xi), and yi ∈
V (Ci)\{xi}maximizing e(yi). It can be done in O(|V (Ci)|)-time. Furthermore, for every
u ∈ V (Ci), we have eccGi(u) = 1+e(xi) if u 6= xi, and eccGi(xi) = max{e(xi), 1+e(yi)}.

2. If Ci is a star with center node r, then we need to compute a leaf xi ∈ V (Ci) \ {r}
maximizing e(xi), and another leaf yi ∈ V (Ci) \ {xi, r} maximizing e(yi). It can be
done in O(|V (Ci)|)-time. Furthermore, eccGi(r) = max{e(r), 1 + e(xi)}, eccGi(xi) =
max{e(xi), 1+e(r), 2+e(yi)}, and for every other u ∈ V (Ci)\{xi, r} we have eccGi(u) =
max{1 + e(r), 2 + e(xi)}.

3. Otherwise, |V (Ci)| ≤ sw(G), and so, all the eccentricities can be computed in
O(|V (Ci)||E(Ci)|) = O(sw(G)2 · |V (Ci)|)-time.

Overall, this step takes total time O(sw(G)2 ·
∑

i |V (Ci)|) = O(sw(G)2 · n). Furthermore, since
G1 = G, we have computed eccG(v1) for every v1 ∈ V (C1).

Second, for every 2 ≤ i ≤ k, we recall that by Lemma 7:

∀vi ∈ V (Gi), eccG(vi) = max{eccGi(vi), distGi(vi, bi) + eccGBi
(ai)− 1}.

In particular, since we have already computed eccGi(vi) for every vi ∈ V (Ci) (and as a byproduct,
distGi(vi, bi)), we can compute eccG(vi) from eccGBi

(ai). So, we are left to compute eccGBi
(ai) for

every 2 ≤ i ≤ k. In order to do so, we proceed by reverse dynamic programming on the tree T .
More precisely, let Cp(i) be the parent node of Ci in T , and let Cj0 = Ci, Cj1 , Cj2 , . . . , Cjk

denote the children of Cp(i) in T . For every 0 ≤ t ≤ k, the edge {Cp(i), Cjt} represents a split
(Ajt , Bjt), where V (Cjt) ⊆ Ajt . So, there has been vertices bjt ∈ V (Cjt), ajt ∈ V (Cp(i)) added
by the corresponding simple decomposition. We define e′(ajt) = eccGjt

(bjt) − 1. Furthermore, if
p(i) > 1, let Cp2(i) be the parent of Cp(i) in T . Again, the edge {Cp2(i), Cp(i)} represents a split
(Ap(i), Bp(i)), where V (Cp(i)) ⊆ Ap(i). So, there has been vertices bp(i) ∈ V (Cp(i)), ap(i) ∈ V (Cp2(i))
added by the corresponding simple decomposition. Let us define e′(bp(i)) = eccGBp(i)

(ap(i)) − 1

(obtained by reverse dynamic programming on T ). Finally, for any other vertex u ∈ V (Cp(i)), let
us define e′(u) = 0. Then, by applying Lemma 7 it comes:

∀0 ≤ t ≤ k, eccGBit
(ait) = max

v∈V (Cp(i))\{ait}
distCp(i)

(ait , v) + e′(v).

We can adapt the techniques of the first step in order to compute all the above values in O(sw(G)2 ·
|V (Cp(i))|)-time. Overall, the time complexity of the second step is also O(sw(G)2 · n).

Finally, since a split decomposition can be computed in O(n+m)-time, and all of the subsequent
steps take O(sw(G)2 ·n)-time, the total running time of our algorithm is an O(sw(G)2 ·n+m).
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Gromov hyperbolicity

It has been proved in [81] that for every graph G, if every split component of G is δ-hyperbolic
then δ(G) ≤ max{1, δ}. We give a self-contained proof of this result, where we characterize the gap
between δ(G) and the maximum hyperbolicity of its split components.

Lemma 8. Let (A,B) be a split of G = (V,E) and let C = NG(B) ⊆ A, D = NG(A) ⊆ B.
Furthermore, let GA = (A ∪ {b}, EA), GB = (B ∪ {a}, EB) be the corresponding subgraphs of G.

Then, δ(G) = max{δ(GA), δ(GB), δ∗} where:

δ∗ =


1 if neither C nor D is a clique;

1/2 if min{|C|, |D|} ≥ 2 and exactly one of C or D is a clique;

0 otherwise.

Proof. Since GA, GB are isometric subgraphs of G, we have δ(G) ≥ max{δ(GA), δ(GB)}. Con-
versely, for every u, v, x, y ∈ V define L and M to be the two largest sums amongst {distG(u, v) +
distG(x, y), distG(u, x) + distG(v, y), distG(u, y) + distG(v, x)}. Write δ(u, v, x, y) = (L −M)/2.
Furthermore, assume that δ(u, v, x, y) = δ(G). W.l.o.g., |{u, v, x, y} ∩ A| ≥ |{u, v, x, y} ∩ B|. In
particular, if u, v, x, y ∈ A then δ(u, v, x, y) ≤ δ(GA). Otherwise, there are two cases.

• Suppose |{u, v, x, y} ∩ A| = 3. W.l.o.g., y ∈ B. Then, for every w ∈ {u, v, x} we have
distG(w, y) = distGA

(w, b) + distGB
(a, y)− 1. Hence, δ(u, v, x, y) = δ(u, v, x, b) ≤ δ(GA).

• Otherwise, |{u, v, x, y} ∩ A| = 2. W.l.o.g. x, y ∈ B. Observe that M = distG(u, x) +
distG(v, y) = distG(u, y) + distG(v, x) = distGA

(u, b) + distGA
(v, b) + distGB

(a, x) +
distGB

(a, y) − 2. Furthermore, L = distG(u, v) + distG(x, y) ≤ distGA
(u, b) + distGA

(v, b) +
distGB

(a, x) + distGB
(a, y). Hence, δ(u, v, x, y) = max{0, L−M}/2 ≤ 1. In particular:

– Suppose min{|C|, |D|} = 1. Then, the 4-tuple u, v, x, y is disconnected by some cut-
vertex c. In particular, M = distG(u, c) +distG(v, c) +distG(c, x) +distG(c, y) ≥ L, and
so, δ(u, v, x, y) = 0. Thus we assume from now on that min{|C|, |D|} ≥ 2.

– Suppose L −M = 2. It implies both a is on a shortest xy-path (in GB) and b is on a
shortest uv-path (in GA). Since there can be no simplicial vertices on a shortest path, we
obtain that neither a nor b can be simplicial. Thus, C and D are not cliques. Conversely,
if C and D are not cliques then there exists an induced C4 with two ends in C and two
ends in D. As a result, δ(G) ≥ 1.

– Suppose L−M = 1. Either C or D is not a clique. Conversely, if either C or D is not
a clique then, since we also assume min{|C|, |D|} ≥ 2, there exists either an induced
C4 or an induced diamond with two vertices in C and two vertices in D. As a result,
δ(G) ≥ 1/2.

Theorem 9. For every G = (V,E), Hyperbolicity can be solved in O(sw(G)3 · n+m)-time.

Proof. First we compute in linear-time the split components C1, C2, . . . , Ck of G. By Lemma 8,
we have δ(G) ≥ maxi δ(Ci). Furthermore, for every 1 ≤ i ≤ k we have: if Ci induces a star or a
complete graph, then δ(Ci) = 0; otherwise, |V (Ci)| ≤ sw(G), and so, δ(Ci) can be computed in
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O(|V (Ci)|4) = O(sw(G)3 · |V (Ci)|)-time, simply by iterating over all possible 4-tuples. Summariz-
ing, we can compute maxi δ(Ci) in O(sw(G)3 ·

∑
i |V (Ci)|) = O(sw(G)3 · n)-time. By Lemma 8

we have δ(G) ≤ max{1,maxi δ(Ci)}. Therefore, if maxi δ(Ci) ≥ 1 then we are done. Otherwise, in
order to compute δ(G), by Lemma 8 it suffices to check whether the sides of every split used for
the split decomposition induce a complete subgraph. For that, we use a split decomposition tree
T of G. Indeed, recall that the edges of T are in bijective correspondance with the splits.

Let us root T in C1. Notations are from the proof of Theorem 8. In particular, for every
1 ≤ i ≤ k let Ti be the subtree of T that is rooted in Ci. If i > 1 then let Cp(i) be its parent in
T . By construction of T , the edge {Cp(i), Ci} ∈ E(T ) corresponds to a split (Ai, Bi) of G, where
V (Ci) ⊆ Ai. Let GAi = (Ai ∪ {bi}, EAi), GBi = (Bi ∪ {ai}, EBi) be the corresponding subgraphs
of G. Vertex ai is simplicial in GBi if and only if the side NG(Ai) is a clique. Similarly, vertex bi
is simplicial in GAi if and only if the side NG(Bi) is a clique. So, we perform tree traversals of T
in order to decide whether ai and bi are simplicial.

More precisely, we recall that Ti and T \ Ti are split decomposition trees of GAi and GBi ,
respectively. We now proceed in two main steps.

• First, we decide whether bi is simplicial in GAi by dynamic programming. More precisely,
let Ci1 , Ci2 , . . . , Cik be the children of Ci in T . (possibly, k = 0 if Ci is a leaf). Then, bi
is simplicial in GAi if and only if: it is simplicial in Ci; and for every 1 ≤ t ≤ k such that
{bi, ait} ∈ E(Ci), we have that bit is simplicial in GAit

. In particular, testing whether bi is

simplicial in Ci takes time: O(1) if Ci induces a star or a complete graph; and O(|V (Ci)|2) =
O(sw(G) · |V (Ci)|) otherwise. Since a vertex can have at most |V (Ci)| − 1 neighbours in Ci,
testing whether bi is simplicial in GAi can be done in O(|V (Ci)|) additional time. So, overall,
the first step takes O(sw(G) ·

∑
i |V (Ci)|) = O(sw(G) · n)-time.

• Second, we decide whether ai is simplicial in GBi by reverse dynamic programming. Let
Cj0 = Ci, Cj1 , Cj2 , . . . , Cjk denote the children of Cp(i) in T . Furthermore, if p(i) 6= 1 then let
Cp2(i) be the parent of Cp(i) in T . Then, ai is simplicial in GBi if and only if: it is simplicial in
Cp(i); for every 1 ≤ t ≤ k such that {ai, ajt} ∈ E(Cp(i)), we have that bjt is simplicial in GAjt

;
if p(i) 6= 1 and {ai, bp(i)} ∈ E(Cp(i)), we also have that ap(i) is simplicial in GBp(i)

. Testing,
for every 0 ≤ t ≤ k, whether ajt is simplicial in Cp(i) takes total time: O(|V (Cp(i))|) if Cp(i)
induces a star or a complete graph; and O(|V (Cp(i))|3) = O(sw(G)2 · |V (Cp(i))|) otherwise.

Then, for stars and prime components, we can test, for every 0 ≤ t ≤ k, whether
ajt is simplicial in GBjt

in total O(|E(Cp(i))|)-time, that is O(|V (Cp(i))|) for stars and

O(|V (Cp(i))|2) = O(sw(G) · |V (Cp(i))|) for prime components. For the case where Cp(i) is
a complete graph then, since all the vertices in Cp(i) are pairwise adjacent, we only need to
check whether there is at least one vertex ajt such that bjt is non simplicial in GAjt

, and also
if p(i) > 1 whether ap(i) is non simplicial in GBp(i)

. It takes O(|V (Cp(i))|)-time.

So, overall, the second step takes O(sw(G)2 · n)-time.

Corollary 10 ( [81]). For every connected G = (V,E) we have δ(G) ≤ max{1, b(sw(G)− 1)/2c}.
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Betweenness Centrality

The following subsection can be seen as a broad generalization of the preprocessing method pre-
sented in [76]. We start introducing a generalization of Betweenness Centrality for vertex-
weighted graphs. Admittedly, the proposed generalization is somewhat technical. However, it will
make easier the dynamic programming of Theorem 11.

Precisely, let G = (V,E, α, β) with α, β : V → N be weight functions. Intuitively, for a split
marker vertex v, α(v) represents the side of the split replaced by v, while β(v) represents the total
number of vertices removed by the simple decomposition. For every path P = (v1, v2, . . . , v`) of
G, the length of P is equal to the number ` of edges in the path, while the cost of P is equal to∏`
i=1 α(vi). Furthermore, for every s, t ∈ V , the value σG(s, t) is obtained by summing the cost

over all the shortest st-paths in G. Similarly, for every s, t, v ∈ V , the value σG(s, t, v) is obtained
by summing the cost over all the shortest st-paths in G that contain v. The betweenness centrality
of vertex v is defined as:

1

α(v)

∑
s,t∈V \v

β(s)β(t)
σG(s, t, v)

σG(s, t)
.

Note that if all weights are equal to 1 then this is exactly the definition of Betweenness Centrality
for unweighted graphs.

Lemma 9. Let (A,B) be a split of G = (V,E, α, β) and let C = NG(B) ⊆ A, D = NG(A) ⊆ B.
Furthermore, let GA = (A ∪ {b}, EA, αA, βA), GB = (B ∪ {a}, EB, αB, βB) be the corresponding
subgraphs of G, where: 

αA(v) = α(v), βA(v) = β(v) if v ∈ A
αB(u) = α(u), βB(u) = β(u) if u ∈ B
αA(b) =

∑
u∈D α(u), βA(b) =

∑
u∈B β(u)

αB(a) =
∑

v∈C α(v), βB(a) =
∑

v∈A β(v).

Then for every v ∈ A we have:

BCG(v) = BCGA
(v) + [v ∈ C]BCGB

(a).

Proof. Let v ∈ A be fixed. We consider all possible pairs s, t ∈ V \ v such that distG(s, t) =
distG(s, v) + distG(v, t).

Suppose that s, t ∈ A \ v. Since (A,B) is a split, the shortest st-paths in G are contained
in NG[A] = A ∪ D. In particular, the shortest st-paths in GA are obtained from the short-
est st-paths in G by replacing any vertex d ∈ D by the split marker vertex b. Conversely,
the shortest st-paths in G are obtained from the shortest st-paths in GA by replacing b with
any vertex d ∈ D. Hence, σGA

(s, t, b) =
∑

d∈D σG(s, t, d), that implies σG(s, t) = σGA
(s, t).

Furthermore, σG(s, t, v) = σG(s, v)σG(v, t) = σGA
(s, v)σGA

(v, t) = σGA
(s, t, v). As a result,

σG(s, t, v)/σG(s, t) = σGA
(s, t, v)/σGA

(s, t).

Suppose that s ∈ B, t ∈ A \ v. Every shortest st-path in G is the concatenation of a short-

est sD-path with a shortest tC-path. Therefore, σG(s, t) =
σGB

(s,a)·σGA
(b,t)

αB(a)·αA(b) . We can further-
more observe v is on a shortest st-path in G if, and only if, v is on a shortest bt-path in GA.

Then, σG(s, t, v) = σG(s, v)σG(v, t) =
σGB

(s,a)·σGA
(b,v)

αB(a)·αA(b) σGA
(v, t). As a result, σG(s, t, v)/σG(s, t) =

σGA
(b, t, v)/σGA

(b, t).
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Finally, suppose that s, t ∈ B. Again, since (A,B) is a split the shortest st-paths in G are
contained in NG[B] = B ∪ C. In particular, σG(s, t, v) 6= 0 if, and only if, we have v ∈ C and

σGB
(s, t, a) 6= 0. More generally, if v ∈ C then σG(s, t, v) = αA(v)

αB(a)σGB
(s, t, a). As a result, if v ∈ C

then σG(s, t, v)/σG(s, t) = αA(v)
αB(a) · σGB

(s, t, a)/σGB
(s, t).

Overall, we have:

BCG(v) =
1

α(v)

∑
s,t∈V \v

β(s)β(t)
σG(s, t, v)

σG(s, t)

=
1

α(v)

∑
s,t∈A\v

β(s)β(t)
σG(s, t, v)

σG(s, t)
+

1

α(v)

∑
s∈B, t∈A\v

β(s)β(t)
σG(s, t, v)

σG(s, t)
+

1

α(v)

∑
s,t∈B

β(s)β(t)
σG(s, t, v)

σG(s, t)

=
1

αA(v)

∑
s,t∈A\v

βA(s)βA(t)
σGA

(s, t, v)

σGA
(s, t)

+
1

αA(v)

∑
s∈B, t∈A\v

βB(s)βA(t)
σGA

(b, t, v)

σGA
(b, t)

+
1

αA(v)
[v ∈ C]

∑
s,t∈B

βB(s)βB(t)
αA(v)

αB(a)
· σGB

(s, t, a)

σGB
(s, t)

=

BCGA
(v)− βA(b)

αA(v)

∑
t∈A\v

βA(t)
σGA

(b, t, v)

σGA
(b, t)

+

∑
s∈B β(s)

αA(v)

∑
t∈A\v

βA(t)
σGA

(b, t, v)

σGA
(b, t)

+ [v ∈ C]BCGB
(a)

= BCGA
(v) + [v ∈ C]BCGB

(a),

that finally proves the lemma.

Theorem 11. For every G = (V,E), Betweenness Centrality can be solved in O(sw(G)2 ·
n+m)-time.

Proof. Let T be a split decomposition tree of G, with its nodes being in bijective correspondance
with the split components C1, C2, . . . , Ck. It can be computed in linear-time [20]. As for Theorem 8,
we root T in C1. For every 1 ≤ i ≤ k, let Ti be the subtree of T that is rooted in Ci. If i > 1 then let
Cp(i) be its parent in T . We recall that by construction of T , the edge {Cp(i), Ci} ∈ E(T ) corresponds
to a split (Ai, Bi) of G, where V (Ci) ⊆ Ai. Furthermore, let GAi = (Ai ∪ {bi}, EAi), GBi =
(Bi ∪ {ai}, EBi) be the corresponding subgraphs of G. We observe that Ti is a split decomposition
tree of GAi , while T \ Ti is a split decomposition tree of GBi .

Let us assume G = (V,E, α, β) to be vertex-weighted, with initially α(v) = β(v) = 1 for every
v ∈ V . For every i > 1, let GAi = (Ai ∪ {bi}, EAi , αAi , βAi), GBi = (Bi ∪ {ai}, EBi , αBi , βBi) be as
described in Lemma 9. In particular, for every i > 1:

αAi(v) = α(v) = 1, βAi(v) = β(v) = 1 if v ∈ Ai
αBi(u) = α(u) = 1, βBi(u) = β(u) = 1 if u ∈ Bi
αAi(bi) = |NG(Ai)|, βAi(bi) = |Bi|
αBi(ai) = |NG(Bi)|, βBi(ai) = |Ai|.

Hence, all the weights can be computed in linear-time by dynamic programming over T . We set
G1 = G while Gi = GAi for every i > 1. Furthermore, we first aim at computing BCGi(v) for every
v ∈ V (Ci).

If Ci is a leaf of T then there are three cases to be considered.
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1. Suppose Gi is a complete graph. Then, for every v ∈ V (Ci) we have BCGi(v) = 0.

2. Suppose Gi is a star, with center node r. In particular, BCGi(v) = 0 for every v ∈ V (Ci)\{r}.
Furthermore, since r is onto the unique shortest path between every two leaves s, t ∈ V (Ci) \
{r}, we have σGi(s, t, r) = σGi(s, t). Let us write β(Gi) =

∑
v∈V (Ci)\{r} βGi(v). We have:

BCGi(r) =
1

αGi(r)

∑
s,t∈V (Ci)\{r}

βGi(s)βGi(t)

=
1

2αGi(r)

∑
s∈V (Ci)\{r}

βGi(s)

 ∑
t∈V (Ci)\{r,s}

βGi(t)


=

1

2αGi(r)

∑
s∈V (Ci)\{r}

βGi(s) (β(Gi)− βGi(s)) .

It can be computed in O(|V (Ci)|)-time.

3. Finally, supposeGi is prime for split decomposition. Brandes algorithm [18] can be generalized
to that case. For every v ∈ V (Ci), we first compute a BFS ordering from v. It takes
O(|E(Ci)|)-time. Furthermore for every u ∈ V (Ci) \ {v}, let N+(u) be the neighbours w ∈
NCi(u) such that w is on a shortest uv-path. We compute σGi(u, v) by dynamic programming.

Precisely, σGi(v, v) = αGi(v), and for every u 6= v, σGi(u, v) = αGi(u)·
(∑

w∈N+(u) σGi(w, v)
)

.

It takes O(|E(Ci)|)-time.

Overall in O(|V (Ci)||E(Ci)|)-time, we have computed σGi(u, v) and distGi(u, v) for every
u, v ∈ V (Ci). Then, for every v ∈ V (Ci), we can compute BCGi(v) in O(|V (Ci)|2)-time by
enumerating all the pairs s, t ∈ V (Ci) \ {v}. Since Gi is prime, the total running time is in
O(|V (Ci)|3) = O(sw(G)3), and so, in O(sw(G)2 · |V (Ci)|).

Otherwise, Ci is an internal node of T . Let Ci1 , Ci2 , . . . , Cik be the children of Ci in T . Assume
that, for every 1 ≤ t ≤ k, BCGit

(bit) has been computed (by dynamic programming over T ). Let
us define the following weight functions for Ci:{

αi(ait) = αBit
(ait), βi(ait) = βBit

(ait)

αi(v) = αAi(v), βi(v) = βAi(v) otherwise.

Observe that every edge {Ci, Cit} also corresponds to a split (A′it , B
′
it

) of Gi, where V (Cit) ⊆
A′it = Ait . By applying all the corresponding simple decompositions, one finally obtains Hi =
(V (Ci), E(Ci), αi, βi). Then, let us define `i(ait) = BCGit

(bit) and `i(v) = 0 else. Intuitively, the
function `i is a corrective term updated after each simple decomposition. More precisely, we obtain
by multiple applications of Lemma 9, for every v ∈ V (Ci):

BCGi(v) = BCHi(v) +
∑

u∈NHi
(v)

`i(u)

Clearly, this can be reduced in O(|E(Hi)|)-time, resp. in O(|V (Hi)|)-time when Hi is complete, to
the computation of BCHi(v). So, it can be done in O(sw(G)2 · |V (Ci)|)-time (i.e., as explained for
the case of leaf nodes).
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Overall, this first part of the algorithm takes time O(sw(G)2 ·
∑

i |V (Ci)|) = O(sw(G)2 · n).
Furthermore, since G1 = G, we have computed BCG(v) for every v ∈ V (C1). Then, using the same
techniques as above, we can compute BCGBi

(ai) for every i > 1 by reverse dynamic programming

over T . It takes O(sw(G)2 · n)-time. Finally, by Lemma 9 we can compute BCG(v) from BCGi(v)
and BCGBi

(ai), for every v ∈ V (Ci). It takes linear-time.

4.4 Kernelization methods with modular decomposition

The purpose of the subsection is to show how to apply the previous results, obtained with split
decomposition, to modular decomposition. On the way, improvements are obtained for the running
time. Indeed, it is often the case that only the quotient graph G′ needs to be considered. We thus
obtain algorithms that run in O(mw(G)O(1) + n+m)-time. See [71] for an extended discussion on
the use of Kernelization for graph problems in P.

We start with the following lemma:

Lemma 10 (folklore). For every G = (V,E) we have sw(G) ≤ mw(G) + 1.

Proof. First we claim that mw(H) ≤ mw(G) for every induced subgraph H of G. Indeed, for every
module M of G we have that M ∩ V (H) is a module of H, thereby proving the claim. We show
in what follows that a “split decomposition” can be computed from the modular decomposition of
G such that all the non degenerate split components have size at most mw(G) + 14. Applying this
result to every prime split component of G in its canonical split decomposition proves the lemma.

W.l.o.g., G is connected (otherwise, we consider each connected component separately). Let
M(G) = {M1,M2, . . . ,Mk} ordered by decreasing size.

1. If |M1| = 1 (G is either complete or prime for modular decomposition) then we output G.

2. Otherwise, suppose |M1| < n−1. We consider all the maximal strong modules M1,M2, . . . ,Mt

such that |Mi| ≥ 2 sequentially. For every 1 ≤ i ≤ t, we have that (Mi, V \Mi) is a split.
Furthermore if we apply the corresponding simple decomposition then we obtain two sub-
graphs, one being the subgraph Gi obtained from G[Mi] by adding a universal vertex bi, and
the other being obtained from G by replacing Mi by a unique vertex ai with neighbourhood
NG(Mi). Then, there are two subcases.

• Subcase M(G) = {M1,M2}. In particular, |M2| ≥ 2. We perform a simple decomposi-
tion for M1. The two resulting subgraphs are exactly G1 and G2.

• Subcase {M1,M2} ( M(G). We apply simple decompositions for M1,M2, . . . ,Mt se-
quentially. Indeed, let i ∈ {1, . . . , t} and suppose we have already applied simple decom-
positions for M1,M2, . . . ,Mi−1. Then, since there are at least three modules in M(G)
we have that (Mi, {a1, a2, . . . ai−1} ∪

⋃
j>iMj) remains a split, and so, we can apply a

simple decomposition. The resulting components are exactly: the quotient graph G′

and, for every 1 ≤ i ≤ t, the subgraph Gi obtained from G[Mi].

Furthermore, in both subcases we claim that the modular decomposition of Gi can be updated
from the modular decomposition of G[Mi] in constant-time. Indeed, the set of all universal
vertices in a graph is a clique and a maximal strong module. We outputG′ (only if {M1,M2} (
M(G)) and, for every 1 ≤ i ≤ t, we apply the procedure recursively for Gi.

4Formally this is only a partial split decomposition, since there are subgraphs that could be further decomposed.
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3. Finally, suppose |M1| = n − 1. In particular, M(G) = {M1,M2} and M2 is trivial. Let
M(G[M1]) = {M ′1,M ′2, . . . ,M ′p} ordered by decreasing size. If |M ′1| = 1 (i.e., G[M1] is either
edgeless, complete or prime for modular decomposition) then we output G. Otherwise we
apply the previous Step 2 to the modular partition M ′1,M

′
2, . . . ,M

′
p,M2.

The procedure takes linear-time if the modular decomposition of G is given. Furthermore, the
subgraphs obtained are either: the quotient graph G′; a prime subgraph for modular decomposition
with an additional universal vertex; or a degenerate graph (that is obtained from either a complete
subgraph or an edgeless subgraph by adding a universal vertex).

Corollary 12. For every G = (V,E) we can solve:

• Eccentricities and Diameter in O(mw(G)2 · n+m)-time;

• Hyperbolicity in O(mw(G)3 · n+m)-time;

• Betweenness Centrality in O(mw(G)2 · n+m)-time.

In what follows, we explain how to improve the above running times in some cases.

Theorem 13. For every G = (V,E), Eccentricities can be solved in O(mw(G)3 +n+m)-time.
In particular, Diameter can be solved in O(mw(G)3 + n+m)-time.

Proof. W.l.o.g., G is connected. Consider the (partial) split decomposition obtained from the
modular decomposition of G (Lemma 10). Let T be the corresponding split decomposition tree.
By construction, there exists a modular partition M1,M2, . . . ,Mk of G with the two following
properties:

• All but at most one split components of G are split components of some Gi, 1 ≤ i ≤ k, where
the graph Gi is obtained from G[Mi] by adding a universal vertex bi.

• Furthermore, the only remaining split component (if any) is the graph G′ obtained by replac-
ing every module Mi with a single vertex ai. Either G′ is degenerate (and so, diam(G′) ≤ 2)
or k ≤ mw(G) + 1. We can also observe in this situation that if we root T in G′ then the
subtrees of T \ {G′} are split decomposition trees of the graphs Gi, 1 ≤ i ≤ k.

We can solve Eccentricities for G as follows. First for every 1 ≤ i ≤ k we solve Eccentricities
for Gi. In particular, diam(Gi) ≤ 2, and so, for every v ∈ V (Gi) we have: eccGi(v) = 0 if and
only if V (Gi) = {v}; eccGi(v) = 1 if and only if v is universal in Gi; otherwise, eccGi(v) = 2.
Therefore, we can solve Eccentricities for Gi in O(|V (Gi)| + |E(Gi)|)-time. Overall, this step
takes O(

∑k
i=1 |Vi|+ |Ei|) = O(n+m)-time. Then there are two subcases.

Suppose G′ is not a split component. We deduce from Lemma 10 G = G[M1]⊕G[M2]. In this
situation, for every i ∈ {1, 2}, for every v ∈ V (Gi) we have eccG(v) = max{eccGi(v), 1}.

Otherwise, let us compute Eccentrities for G′. It takes O(|V (G′)|) = O(n)-time if G′ is
degenerate, and O(mw(G)3)-time otherwise. Applying the algorithmic scheme of Theorem 8, one
obtains eccG(v) = max{eccGi(v), distGi(v, ai) + eccG′(bi)− 1} = max{eccGi(v), eccG′(bi)} for every
v ∈Mi. Hence, we can compute eccG(v) for every v ∈ V in O(n)-time.

Corollary 14. For every connected G = (V,E), diam(G) ≤ max{mw(G), 2}.
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Next, we consider Hyperbolicity. It is proved in [81] that, for every G = (V,E) with quotient
graph G′, δ(G′) ≤ δ(G) ≤ max{δ(G′), 1}. The latter immediately implies the following result:

Theorem 15. For every G = (V,E), we can decide whether δ(G) > 1, and if so, compute δ(G),
in O(mw(G)4 + n+m)-time.

However, we did not find a way to preprocess G in linear-time so that we can compute δ(G)
from δ(G′). Indeed, let GM be a graph of diameter at most 2. Solving Eccentricities for GM
can be easily done in linear-time. However, the following shows that it is not that simple to do so
for Hyperbolicity.

Lemma 11 ( [26]). For every G = (V,E) we have δ(G) ≤ bdiam(G)/2c. Furthermore, if
diam(G) ≤ 2 then δ(G) < 1 if and only if G is C4-free.

The detection of an induced C4 in O(mw(G)O(1) + n+m)-time remains an open problem.

Short digression: using neighbourhood diversity

We show that by imposing more constraints on the modular partition, some more kernels can be
computed for the problems in Section 4.1. Two vertices u, v are twins in G if NG(u)\v = NG(v)\u.
Being twins induce an equivalence relationship over V (G). The number of equivalence classes is
called the neighbourhood diversity of G, sometimes denoted by nd(G) [68]. Observe that every set
of pairwise twins is a module of G. Hence, mw(G) ≤ nd(G).

Theorem 16. For every G = (V,E), Hyperbolicity can be solved in O(nd(G)4 + n+m)-time.

Proof. Let V1, V2, . . . , Vk, k = nd(G), partition the vertex-set V in twin classes. The partition can
be computed in linear-time [68]. Furthermore, since it is a modular partition, we can compute
a (partial) split decomposition as described in Lemma 10. Let G′ = (V ′, E′) such that V ′ =
{v1, v2, . . . , vk} and E′ = {{vi, vj} | Vi × Vj ⊆ E}. Then, the split components are either: G′, stars
Si (if the vertices of Vi are pairwise nonadjacent, i.e., false twins) or complete graphs Ki (if the
vertices of Vi are pairwise adjacent, i.e., true twins).

Applying the algorithmic scheme of Theorem 9, in order to solve Hyperbolicity for G it
suffices to compute, for every split component Cj , the hyperbolicity value δ(Cj) and all the simplicial
vertices in Cj . This can be done in O(|V (Cj)|)-time if Cj is a star or a complete graph, and in
O(nd(G)4)-time if Cj = G′. Therefore, we can solve Hyperbolicity for G in total O(nd(G)4 +
n+m)-time.

In [43], the authors propose an O(2O(k)+n+m)-time algorithm for computing Hyperbolicity
with k being the vertex-cover of the graph. Their algorithm is pretty similar to Theorem 16. This
is no coincidence since every graph with vertex-cover at most k has neighbourhood diversity at
most 2O(k) [68].

Finally, the following was proved implicitly in [76].

Theorem 17 ( [76]). For every G = (V,E), Betweenness Centrality can be solved in
O(nd(G)3 + n+m)-time.
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4.5 Applications to graphs with few P4’s

Before ending Section 4, we apply the results of the previous subsections to the case of (q, q − 3)-
graphs. For that we need to consider all the cases where the quotient graph has super-constant size
Ω(q) (see Lemma 4).

Eccentricities

Theorem 18. For every G = (V,E), Eccentricities can be solved in O(q(G)3 + n+m)-time.

Proof. By Lemma 10, there exists a partial split decomposition of G such that the only split
component with diameter possibly larger than 2 is its quotient graph G′. Furthermore, as shown
in the proof of Theorem 13, solving Eccentricities for G can be reduced in O(n + m)-time to
the solving of Eccentricities for G′. By Lemma 4 we only need to consider the following cases.
We can check in which case we are in linear-time [6].

• Suppose G′ = (S′ ∪K ′ ∪R′, E′) is a prime spider. There are two subcases.

1. If G′ is a thick spider then it has diameter two. Since in addition, there is no universal
vertex in G′, therefore every vertex of G′ has eccentricity exactly two.

2. Otherwise, G′ is a thin spider. Since there is no universal vertex in G′, every vertex
has eccentricity at least two. In particular, since K ′ is a clique dominating set of G′,
eccG′(v) = 2 for every v ∈ K ′. Furthermore, since there is a join between K ′ and R′,
eccG′(v) = 2 for any v ∈ R′. Finally, since every two vertices of S′ are pairwise at
distance three, eccG′(v) = 3 for every v ∈ S.

• Suppose G′ is isomorphic either to a cycle Cn′ , or to a co-cycle Cn′ , for some n′ ≥ 5.

1. If G′ is isomorphic to a cycle Cn′ then every vertex of G′ has eccentricity bn′/2c.
2. Otherwise, G′ is isomorphic to a co-cycle Cn′ . We claim that every vertex of G′ has

eccentricity 2. Indeed, let v ∈ Cn′ be arbitrary and let u,w ∈ Cn′ be the only two
vertices nonadjacent to v. Furthermore, let u′, w′ be the unique vertices of Cn′ \ v that
are respectively nonadjacent to u and to w. Since n′ ≥ 5, we have u′ 6= w′. In particular,
(v, u′, w) and (v, w′, u) are, respectively, a shortest vw-path and a shortest vu-path.
Hence, eccG′(v) = 2.

• Suppose G′ is a spiked p-chain Pk, or its complement.

– Subcase G′ is a spiked p-chain Pk. In particular, G′ contains the k-node path Pk =
(v1, v2, . . . , vk) as an isometric subgraph. Furthermore, if x ∈ V (G′) then distG′(v1, x) =
2, and x and v2 are twins in G′ \ v1. Similarly, if y ∈ V (G′) then distG′(vk, y) = 2, and y
and vk−1 are twins in G′ \ vk. As a result: for every 1 ≤ i ≤ k, eccG′(vi) = eccPk

(vi) =
max{i − 1, k − i}; if x ∈ V (G′) then eccG′(x) = eccPk

(v2) = k − 2; if y ∈ V (G′) then
eccG′(y) = eccPk

(vk−1) = k − 2.

– Subcase G′ is a spiked p-chain Pk. In particular, G′ is a spiked p-chain Pk. Since k ≥ 6,
every spiked p-chain Pk has diameter more than four. Hence, diam(G′) ≤ 2, that implies
Eccentricities can be solved for G′ in linear-time.
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• Suppose G′ is a spiked p-chain Qk, or its complement.

– Subcase G′ is a spiked p-chain Qk. There is a clique-dominating set K ′ =
{v2, v4, . . . , v2j , . . .} of G′. In particular, every vertex of K ′ has eccentricity two. Fur-
thermore, any zi is adjacent to both v2, v4. Every vertex v2i−1, except v3, is adjacent
to v2. Finally, every vertex v2i−1, except v1 and v5, is adjacent to v4. As a result, any
vertex zi has eccentricity two; any vertex v2i−1, i /∈ {1, 2, 3}, also has eccentricity two.
However, since v2 and v4 are, respectively, the only neighbours of v1 and v3, we get
distG′(v1, v3) = distG′(v3, v5) = 3. Hence eccG′(v1) = eccG′(v3) = eccG′(v5) = 3.

– Subcase G′ is a spiked p-chain Qk. Roughly, we reverse the roles of vertices v2i with
even index with the roles of vertices v2i−1 with odd index. More precisely, there is a
clique-dominating set K ′ = {v1, v3, . . . , v2j−1, . . .} of G′. In particular, every vertex of
K ′ has eccentricity two. Furthermore, any zi is adjacent to both v1, v3. Every vertex v2i,
except v2, is adjacent to v1. Finally, every vertex v2i, except v4, is adjacent to v3. As a
result, any vertex zi has eccentricity two; any vertex v2i, i /∈ {1, 2}, also has eccentricity
two. However, since v3 is the only neighbour of v2, we get distG′(v2, v4) = 3, hence
eccG′(v2) = eccG′(v4) = 3.

• Otherwise, |V (G′)| ≤ q(G). Then, solving Eccentricities for G′ can be done in O(q(G)3)-
time.

Therefore, in all the above cases, Eccentricities can be solved for G′ in O(min{q(G)3, n+m})-
time.

Corollary 19. For every connected (q, q − 4)-graph G = (V,E), diam(G) ≤ q.

Corollary 19 does not hold for (q, q − 3)-graphs because of cycles and spiked p-chains Pk.

Gromov hyperbolicity

Theorem 20. For every G = (V,E), Hyperbolicity can be solved in O(q(G)3 · n+m)-time.

Proof. By Lemma 10, we can compute a partial split decomposition from the modular decomposi-
tion of G. It takes O(n+m)-time. Let C1, C2, . . . , Ck be the split components. By using the algo-
rithmic scheme of Theorem 9, solving Hyperbolicity can be reduced in O(

∑
i |V (Ci)|+ |E(Ci)|)-

time to the computation, for every 1 ≤ i ≤ k, of the hyperbolicity value δ(Ci) and of all the
simplicial vertices in Ci. We claim that it can be done in O(q(G)3 · |V (Ci)|+ |E(Ci)|)-time. Since∑

i |V (Ci)| = O(n) and
∑

i |E(Ci)| = O(n + m) [78], the latter claim will prove the desired time
complexity.

If Ci is degenerate then the above can be done in O(|V (Ci)|)-time. Otherwise, Ci is obtained
from a prime subgraph G′ in the modular decomposition of G by possibly adding a universal vertex.
In particular, we have: δ(G′) = δ(Ci) if G′ = Ci; δ(Ci) = 0 can be decided in O(|V (Ci)|+ |E(Ci)|)-
time [61]; otherwise, diam(Ci) ≤ 2, and so, by Lemma 11 we have δ(Ci) = 1 if and only if Ci contains
an induced cycle of length four (otherwise, δ(Ci) = 1/2). Therefore, we are left to compute the
following for every prime subgraph G′ in the modular decomposition of G:

• Compute δ(G′);

• Decide whether G′ contains an induced cycle of length four;
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• Compute the simplicial vertices in G′.

In particular, if |V (G′)| ≤ q(G) then it can be done in O(|V (G′)|4) = O(q(G)3 · |V (G′)|)-time.
Otherwise, by Lemma 4 we only need to consider the following cases. We can check in which case
we are in linear-time [6].

• Suppose G′ is a prime spider. In particular it is a split graph, and so, it does not contain an
induced cycle of length more than three. Furthermore the simplicial vertices of any chordal
graph, and so, of G′, can be computed in linear-time. If G′ is a thin spider then it is a
block-graph, and so, δ(G′) = 0 [61]. Otherwise, G′ is a thick spider, and so, it contains an
induced diamond. The latter implies δ(G′) ≥ 1/2. Since diam(G′) ≤ 2 and G′ is C4-free, by
Lemma 11 δ(G′) < 1, hence we have δ(G′) = 1/2.

• Suppose G′ is a cycle or a co-cycle of order at least five. Since cycles and co-cycles are non
complete regular graphs they do not contain any simplicial vertex [4]. Furthermore, a cycle
of length at least five of course does not contain an induced cycle of length four; a co-cycle
of order five is a C5, and a co-cycle or order at least six always contains an induced cycle
of length at least four since there is an induced 2K2 = C4 in its complement. Finally, the
hyperbolicity of a given cycle can be computed in linear-time [21]; for every co-cycle of order
at least six, since it has diameter at most two and it contains an induced cycle of length four,
by Lemma 11 it has hyperbolicity equal to 1.

• Suppose G′ is a spiked p-chain Pk, or its complement. In particular, if G′ is a spiked p-chain Pk
then it is a block-graph, and so, a chordal graph. It implies δ(G′) = 0 [61], G′ does not contain
any induced cycle of length four, furthermore all the simplicial vertices of G′ can be computed
in linear-time. Else, G′ is a spiked p-chain Pk. Since, in G′, every vertex is nonadjacent to
at least one edge of Pk, it implies that G′ has no simplicial vertex. Furthermore, since Pk,
and so, G′, contains an induced 2K2, the graph G′ contains an induced cycle of length four.
Since diam(G′) = 2, it implies by Lemma 11 δ(G′) = 1.

• Otherwise, G′ is a spiked p-chain Qk, or its complement. In both cases, G′ is a split graph,
and so, a chordal graph. It implies that G′ does not contain an induced cycle of length four,
and that all the simplicial vertices of G′ can be computed in linear-time. Furthermore, we
can decide in linear-time whether δ(G′) = 0 [61]. Otherwise, it directly follows from the
characterization in [19] that a necessary condition for a chordal graph to have hyperbolicity
at least one is to contain two disjoint pairs of vertices at distance 3. Since there are no such
pairs in G′, δ(G′) = 1/2.

The solving of Betweenness Centrality for (q, q − 3)-graphs is left for future work. We
think it is doable with the techniques of Theorem 11. However, this would require to find ad-hoc
methods for every graph family in Lemma 4. The main difficulty is that we need to consider
weighted variants of these graph families, and the possibility to add a universal vertex.

5 New Parameterized algorithms for Maximum Matching

A matching in a graph is a set of edges with pairwise disjoint end vertices. We consider the problem
of computing a matching of maximum size.
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Problem 8 (Maximum Matching).

Input: A graph G = (V,E).

Output: A matching of G with maximum cardinality.

Maximum Matching can be solved in polynomial time with Edmond’s algorithm [39]. A
naive implementation of the algorithm runs in O(n4) time. Nevertheless, Micali and Vazirani [72]
show how to implement Edmond’s algorithm in time O(m

√
n). In [71], Mertzios, Nichterlein and

Niedermeier design some new algorithms to solve Maximum Matching, that run in O(kO(1) · (n+
m))-time for various graph parameters k. They also suggest to use Maximum Matching as the
“drosophilia” of the study of fully polynomial parameterized algorithms.

In this section, we present O(k4 · n + m)-time algorithms for solving Maximum Matching,
when parameterized by either the modular-width or the P4-sparseness of the graph. The latter
subsumes many algorithms that have been obtained for specific subclasses [46, 86].

5.1 Computing short augmenting paths using modular decomposition

Let G = (V,E) be a graph and F ⊆ E be a matching of G. A vertex is termed matched if it is
incident to an edge of F , and unmatched otherwise. An F -augmenting path is a path where the
two ends are unmatched, all edges {x2i, x2i+1} are in F and all edges {x2j−1, x2j} are not in F .
We can observe that, given an F -augmenting path P = (x1, x2, . . . , x2k), the matching E(P )∆F
(obtained by replacing the edges {x2i, x2i+1} with the edges {x2j−1, x2j}) has larger size than F .

Theorem 21 (Berge, [12]). A matching F in G = (V,E) is maximum if and only if there is no
F -augmenting path.

We now sketch our approach. Suppose that, for every module Mi ∈ M(G), a maximum
matching Fi of G[Mi] has been computed. Then, F =

⋃
i Fi is a matching of G, but it is not

necessarily maximum. Our approach consists in computing short augmenting paths (of length
O(mw(G))) using the quotient graph G′, until we obtain a maximum matching. For that, we need
to introduce several reduction rules.

The first rule (proved below) consists in removing, from every module Mi, the edges that are
not part of its maximum matching Fi.

Lemma 12. Let M be a module of G = (V,E), let G[M ] = (M,EM ) and let FM ⊆ EM be a
maximum matching of G[M ]. Then, every maximum matching of G′M = (V, (E \ EM ) ∪ FM ) is a
maximum matching of G.

Proof. Let us consider an arbitrary maximum matching of G. We totally order M = {v1, v2, . . . , vl},
in such a way that unmatched vertices appear first, and for every edge in the matching FM the two
ends of it are consecutive. Let S ⊆M, |S| = k be the vertices of M that are matched with a vertex
of V \M . We observe that with the remaining |M | − k vertices of M \ S, we can only obtain a
matching of size at most µM = min{|FM |, b(|M | − k)/2c}. Conversely, if S = {v1, v2, . . . , vk} then
we can always create a matching of size exactly µM with the vertices of M \ S and the edges of
FM . Since M is a module of G, this choice can always be made without any loss of generality.

From now on we shall assume each module induces a matching. In particular, for every M ∈
M(G), the set V (E(G[M ])) stands for the non isolated vertices in the subgraph G[M ].
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Then, we need to upper-bound the number of edges in an augmenting path that are incident
to a same module.

Lemma 13. Let G = (V,E) be a graph such that every module M ∈ M(G) induces a matching.
Furthermore let G′ = (M(G), E′) be the quotient graph of G, and let F ⊆ E be a non maximum
matching of G. There exists an F -augmenting path P = (x1, x2, . . . , x2`) such that the following
hold for every M ∈M(G):

• |{i | x2i−1, x2i ∈M}| ≤ 1;

furthermore if |{i | x2i−1, x2i ∈ M}| = 1 then, for every M ′ ∈ NG′(M) we have {i |
x2i−1, x2i ∈M ′} = ∅;

• |{i | x2i, x2i+1 ∈M}| ≤ 1;

• |{i | x2i−1 /∈M, x2i ∈M}| ≤ 1;

• |{i | x2i /∈M, x2i+1 ∈M}| ≤ 2;

furthermore if |{i | x2i /∈M, x2i+1 ∈M}| = 2 then there exist x2i0+1, x2i0+3, x2i0+4 ∈M ;

• |{i | x2i−1 ∈M, x2i /∈M}| ≤ 1;

• |{i | x2i ∈M, x2i+1 /∈M}| ≤ 2;

furthermore if |{i | x2i ∈M, x2i+1 /∈M}| = 2 then there exist x2i0−1, x2i0 , x2i0+2 ∈M .

In particular, P has length O(|M(G)|).

Proof. Let P be a shortest F -augmenting path that minimizes i(P ) =∣∣∣E(P ) ∩
(⋃

M∈M(G)E(G[M ])
)∣∣∣. Equivalently, P is a shortest augmenting path with the

minimum number of edges i(P ) with their two ends in a same module. There are four cases.

1. Suppose by contradiction there exist i1 < i2 such that x2i1−1, x2i1 , x2i2−1, x2i2 ∈ M .
See Fig. 8-9. In particular, i2 − i1 ≥ 2 since M induces a matching. Furthermore,
x2i1+1, x2i2−2 ∈ NG(M). Then, (x1, . . . , x2i1−1, x2i1+1, x2i1 , x2i2−2, x2i2−1, x2i2 , . . . x2`) is an
F -augmenting path, thereby contradicting the minimality of i(P ).

Figure 8: Case x2i1−1, x2i1 , x2i2−1, x2i2 ∈M . Figure 9: Local replacement of P .

Similarly, suppose by contradiction there exist x2i1−1, x2i1 ∈M and there exist x2i2−1, x2i2 ∈
M ′, M ′ ∈ NG′(M). See Fig 10. We assume by symmetry i1 < i2. In this situation, either
i1 = 1, and so, x2i1−1 = x1 is unmatched, or i1 > 1 and so, x2i1−1 is matched to x2i1−2 6=
x2i2 . Then, (x1, . . . , x2i1−1, x2i2 , . . . , x2`) is an F -augmenting path, thereby contradicting the
minimality of |V (P )|.
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Figure 10: Case x2i1−1, x2i1 ∈M and x2i2−1, x2i2 ∈M ′.

2. Suppose by contradiction there exist i1 < i2 such that x2i1 , x2i1+1, x2i2 , x2i2+1 ∈ M .
See Fig 11. In particular, x2i1−1 ∈ NG(M) since M induces a matching. Then,
(x1, . . . , x2i1−1, x2i2 , x2i2+1, . . . x2`) is an F -augmenting path, thereby contradicting the mini-
mality of |V (P )|.

Figure 11: Case x2i1 , x2i1+1, x2i2 , x2i2+1 ∈M .

3. Suppose by contradiction there exist i1 < i2 such that x2i1−1, x2i2−1 /∈ M, x2i1 , x2i2 ∈ M .
See Fig 12. Either i1 = 1, and so, x2i1−1 = x1 is unmatched, or i1 > 1 and so, x2i1−1
is matched to x2i1−2 6= x2i2 . Then, (x1, . . . , x2i1−1, x2i2 , . . . , x2`) is an F -augmenting path,
thereby contradicting the minimality of |V (P )|.

Figure 12: Case x2i1−1, x2i2−1 /∈M, x2i1 , x2i2 ∈M .

By symmetry, the latter also proves that |{i | x2i−1 ∈M, x2i /∈M}| ≤ 1.

4. Finally suppose by contradiction there exist i1 < i2 < i3 such that x2i1 , x2i2 , x2i3 /∈ M ,
x2i1+1, x2i2+1, x2i3+1 ∈ M . See Fig 13. Then, (x1, . . . , x2i1 , x2i1+1, x2i3 , x2i3+1 . . . , x2`) is an
F -augmenting path, thereby contradicting the minimality of |V (P )|.

Figure 13: Case x2i1 , x2i2 , x2i3 /∈M , x2i1+1, x2i2+1, x2i3+1 ∈M .

We prove in the same way that if there exist i1 < i2 such that x2i1 , x2i2 /∈ M and
x2i1+1, x2i2+1 ∈ M then i2 = i1 + 1. See Fig 14. Furthermore, if x2i2+2 = x2i1+4 /∈ M
then (x1, . . . , x2i1 , x2i1+1, x2i2+2, x2i2+3 . . . , x2`) is an F -augmenting path, thereby contradict-
ing the minimality of |V (P )|.
By symmetry, the same proof as above applies to {i | x2i ∈M, x2i+1 /∈M}.
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Figure 14: Case x2i2+2 = x2i1+4 /∈M .

Overall, every M ∈M(G) is incident to at most 8 edges of P , and so, P has length O(|M(G)|).

Based on Lemmas 12 and 13, we introduce in what follows a witness subgraph in order to find
a matching. We think the construction could be improved but we chose to keep is as simple as
possible.

Definition 1. Let G = (V,E) be a graph, G′ = (M(G), E′) be its quotient graph and F ⊆ E be
a matching of G.

The witness matching F ′ is obtained from F by keeping a representative for every possible type
of edge in an augmenting path. Precisely:

• Let M ∈M(G). If E(G[M ])∩F 6= ∅ then there is exactly one edge {uM , vM} ∈ E(G[M ])∩F
such that {uM , vM} ∈ F ′. Furthermore if E(G[M ])\F 6= ∅ then we pick an edge {xM , yM} ∈
E(G[M ]) \ F and we add in F ′ every edge in F that is incident to either xM or yM .

• Let M,M ′ ∈ M(G) be adjacent in G′. There are exactly min{4, |F ∩ (M × M ′)|} edges
{vM , vM ′} added in F ′ such that vM ∈M, vM ′ ∈M ′ and {vM , vM ′} ∈ F .

The witness subgraph G′F is the subgraph induced by V (F ′) with at most two unmatched vertices
added for every strong module. Formally, let M ∈ M(G). The submodule MF ⊆ M contains
exactly min{2, |M \ V (F )|} vertices of M \ V (F ). Then,

G′F = G

V (F ′) ∪

 ⋃
M∈M(G)

MF

 .
As an example, suppose that every edge of F has its two ends in a same module and every

module induces a matching. Then, G′F is obtained from G′ by substituting every M ∈M(G) with
at most one edge (if F ∩E(G[M ]) 6= ∅) and at most two isolated vertices (representing unmatched
vertices).

From the algorithmic point of view, we need to upper-bound the size of the witness subgraph,
as follows.

Lemma 14. Let G = (V,E) be a graph, G′ = (M(G), E′) be its quotient graph and F ⊆ E be a
matching of G. The witness subgraph G′F has order O(|E(G′)|).

Proof. By construction for every M ∈ M(G) we have |M ∩ V (G′F )| = O(degG′(M)). Therefore,
|V (G′F )| =

∑
M∈M(G) |M ∩ V (G′F )| = O(|E(G′)|).
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Our algorithm is based on the correspondance between F -augmenting paths in G and F ′-
augmenting paths in G′F , that we prove next. The following Lemma 15 is the key technical step of
the algorithm.

Lemma 15. Let G = (V,E) be a graph such that every module M ∈ M(G) induces a matching.
Let F ⊆ E be a matching of G such that

⋃
M∈M(G) V (E(G[M ])) ⊆ V (F ). There exists an F -

augmenting path in G if and only if there exists an F ′-augmenting path in G′F .

Proof. In one direction, G′F is an induced subgraph of G. Furthermore, according to Definition 1,
F ′ ⊆ F and V (F ′) = V (F ) ∩ V (G′F ). Thus, every F ′-augmenting path in G′F is also an F -
augmenting path in G.

Conversely, suppose there exists an F -augmenting path in G. Let P = (v1, v2, . . . , v2`) be
an F -augmenting path in G that satisfies the conditions of Lemma 13. We transform P into an
F ′-augmenting path in G′F as follows. For every 1 ≤ i ≤ 2` let Mi ∈M(G) such that vi ∈Mi.

• We choose u1 ∈ M1 ∩ V (G′F ), u2` ∈ M2` ∩ V (G′F ) unmatched. Furthermore, if M1 = M2`

then we choose u1 6= u2`. The two of u1, u2` exist according to Definition 1.

• Then, for every 1 ≤ i ≤ ` − 1, we choose u2i ∈ M2i ∩ V (G′F ), u2i+1 ∈ M2i+1 ∩ V (G′F ) such
that {u2i, u2i+1} ∈ F ′. Note that if M2i = M2i+1 then {u2i, u2i+1} is the unique edge of
F ′ ∩E(G[M2i]). By Lemma 13 we also have that {v2i, v2i+1} is the unique edge of E(P )∩ F
such that v2i, v2i+1 ∈M2i. Otherwise, M2i 6= M2i+1. If there are p edges e ∈ F with one end
in M2i and the other end in M2i+1 then there are at least min{p, 4} such edges in F ′. By
Lemma 13 there are at most min{p, 4} edges e ∈ E(P )∩F with one end in M2i and the other
end in M2i+1. Hence, we can always ensure the uj ’s, 1 ≤ j ≤ 2`, to be pairwise different.

The resulting sequence SP = (u1, u2, . . . , u2`) is not necessarily a path, since two consecutive vertices
u2i−1, u2i need not be adjacent in G′F . Roughly, we insert alternating subpaths in the sequence
in order to make it a path. However, we have to be careful not to use twice a same vertex for
otherwise we would only obtain a walk.

Let IP = {i | {u2i−1, u2i} /∈ E}. Observe that for every i ∈ IP we have M2i−1 = M2i. In
particular, since we assume

⋃
M∈M(G) V (E(G[M ])) ⊆ V (F ), it implies i /∈ {1, `}. Furthermore,

M2i−2 6= M2i and M2i 6= M2i+1 since otherwise v2i−2, v2i−1, v2i ∈ M2i or v2i−1, v2i, v2i+1 ∈ M2i

thereby contradicting that M2i induces a matching. According to Definition 1 there exist xi, yi ∈
M2i such that {xi, yi} ∈ E(G[M2i]) \ F and every edge of F that is incident to either xi or yi is
in F ′. Such two edges always exist since we assume

⋃
M∈M(G) V (E(G[M ])) ⊆ V (F ), hence there

exist wi, zi such that {wi, xi}, {yi, zi} ∈ F ′. Note that wi, zi /∈ M2i since {xi, yi} ∈ E(G[M2i]) and
M2i induces a matching.

Since by Lemma 13 {v2i−1, v2i} is the unique edge e ∈ E(P ) \F such that e ⊆M2i, the vertices
xi, yi, i ∈ IP are pairwise different. Furthermore, we claim that there can be no i1, i2 ∈ IP such that
si1 ∈ {xi1 , yi1} and ti2 ∈ {xi2 , yi2} are adjacent in G. Indeed otherwise, M2i1 ∈ NG′(M2i2), there
exist v2i1−1, v2i1 ∈ M2i1 and v2i2−1, v2i2 ∈ M2i2 , thereby contradicting Lemma 13. As a result, all
the vertices wi, xi, yi, zi, i ∈ IP are pairwise different. However, we may have {wi, xi} = {u2j , u2j+1}
or {yi, zi} = {u2j , u2j+1} for some j.

We consider the indices i ∈ IP sequentially, by increasing value. By Lemma 13, v2j /∈
M2i, v2j+1 ∈ M2i for some j 6= i − 1 implies j = i − 2. Similarly (obtained by reverting the
indices, from v′1 = v2` to v′2` = v1), v2j ∈ M2i, v2j+1 /∈ M2i for some j 6= i implies j = i + 1.
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Therefore, if (wi, xi) ∈ Sp then (wi, xi) ∈ {(u2i−4, u2i−3), (u2i−2, u2i−1), (u2i+1, u2i), (u2i+3, u2i+2)},
and the same holds for (yi, zi). Note also that the pairs (wi, xi) and (zi, yi) play a symmetric role.
Thus we can reduce by symmetries (on the sequence and on the two of (wi, xi) and (zi, yi)) to the
six following cases:

• Case xi, yi /∈ SP . See Fig 15. In particular, wi, zi /∈ SP .

Figure 15: Case xi, yi /∈ SP .

We insert the F ′-alternating subpath (u2i−1, wi, xi, yi, zi, u2i).

• Case xi /∈ SP , yi ∈ {u2i−1, u2i}. We assume by symmetry yi = u2i. See Fig 16. In particular,
we have wi /∈ SP .

Figure 16: Case xi /∈ SP , yi = u2i.

We insert the F ′-alternating subpath (u2i−1, wi, xi, yi = u2i). Note that the case xi ∈
{u2i−1, u2i}, yi /∈ SP is symmetrical to this one.

• Case xi /∈ SP , yi ∈ Sp \ {u2i−1, u2i}. We assume by symmetry (yi, zi) = (u2i+2, u2i+3) (the
case (zi, yi) = (u2i−4, u2i−3) is obtained by reverting the indices along the sequence). See
Fig 17.

Figure 17: Case xi /∈ SP , (yi, zi) = (u2i+2, u2i+3).
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We replace (u2i−1, u2i, u2i+1, yi = u2i+2) by the F ′-alternating subpath (u2i−1, wi, xi, yi). Note
that the case xi ∈ Sp \ {u2i−1, u2i}, yi /∈ SP is symmetrical to this one.

• Case (wi, xi) = (u2i−4, u2i−3), yi = u2i. See Fig 18.

Figure 18: Case (wi, xi) = (u2i−4, u2i−3), yi = u2i.

We replace (u2i−3 = xi, u2i−2, u2i−1, u2i = yi) by the F ′-alternating subpath (xi, yi). Note that
the case xi = u2i−1, (yi, zi) = (u2i+2, u2i+3), and the two more cases obtained by switching
the respective roles of (xi, wi) and (yi, zi), are symmetrical to this one.

• Case (wi, xi) = (u2i−4, u2i−3), yi = u2i−1. See Fig 19.

Figure 19: Case (wi, xi) = (u2i−4, u2i−3), yi = u2i−1.

We replace (u2i−3 = xi, u2i−2 = zi, u2i−1 = yi, u2i) by the F ′-alternating subpath
(xi, yi, zi, u2i). Note that the case xi = u2i, (yi, zi) = (u2i+2, u2i+3), and the two more cases
obtained by switching the respective roles of (xi, wi) and (yi, zi), are symmetrical to this one.

• Case (wi, xi) = (u2i−4, u2i−3), (yi, zi) = (u2i+2, u2i+3). See Fig 20.

Figure 20: Case (wi, xi) = (u2i−4, u2i−3), (yi, zi) = (u2i+2, u2i+3).

Since xi = u2i−3, yi = u2i+2 are adjacent we can remove (u2i−2, u2i−1, u2i, u2i+1) from SP .

Overall, in every case the procedure only depends on the subsequence between u2i−4 and u2i+3. In
order to prove correctness of the procedure, it suffices to prove that this subsequence has not been
modified for a smaller i′ ∈ IP , i′ < i. Equivalently, we prove that the above procedure does not
modify the subsequence between u2j−4 and u2j+3 for any j ∈ IP , j > i. First we claim j ≥ i + 2.
Indeed, M2i+1 ∈ NG′(M2i). Hence, by Lemma 13, i ∈ IP implies i + 1 /∈ IP , that proves the
claim. In this situation, 2j − 4 ≥ 2i. Furthermore, the subsequence (u2i, . . . , u2`) is modified only
if u2i+2 ∈ {xi, yi}. However in the latter case we have u2i+3 /∈ M2i, hence M2i+3 ∈ NG′(M2i), and
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so, by Lemma 13 j ≥ i + 3. In particular, 2j − 4 ≥ 2i + 2 and the subsequence (u2i+2, . . . , u2`) is
not modified by the procedure. Altogether, it proves that the above procedure is correct.

Finally, applying the above procedure for all i ∈ IP leads to an F ′-alternating path in G′F .

We can now state the main result in this subsection.

Theorem 22. For every G = (V,E), Maximum Matching can be solved in O(mw(G)4 · n+m)-
time.

Proof. The algorithm is recursive. If G is trivial (reduced to a single node) then we output an
empty matching. Otherwise, let G′ = (M(G), E′) be the quotient graph of G. For every module
M ∈M(G), we call the algorithm recursively on G[M ] in order to compute a maximum matching
FM of G[M ]. Let F ∗ =

⋃
M∈M(G) FM . By Lemma 12 (applied to every M ∈ M(G) sequentially),

we are left to compute a maximum matching for G∗ = (V, (E\
⋃
M∈M(G)E(G[M ]))∪F ∗). Therefore

from now on assume G = G∗.

If G′ is edgeless then we can output F ∗. Otherwise, by Theorem 1 G′ is either prime for modular
decomposition or a complete graph.

Suppose G′ to be prime. We start from F0 = F ∗. Furthermore, we ensure that the two following
hold at every step t ≥ 0:

• All the vertices that are matched in F ∗ are also matched in the current matching Ft. For
instance, it is the case if Ft is obtained from F0 by only using augmenting paths in order to
increase the cardinality of the matching.

• For every M ∈ M(G) we store |FM ∩ Ft|. For every M,M ′ ∈ M(G) adjacent in G′ we store
|(M ×M ′)∩ Ft|. In particular, |FM ∩ F0| = |FM | and |(M ×M ′)∩ F0| = 0. So, it takes time
O(
∑

M∈M(G) degG′(M)) to initialize this information, that is in O(|E(G′)|) = O(mw(G)2).
Furthermore, it takes O(`)-time to update this information if we increase the size of the
matching with an augmenting path of length 2`.

We construct the graph G′Ft
according to Definition 1. By using the information we store for the

algorithm, it can be done in O(|E(G′Ft
)|)-time, that is in O(|E(G′)|2) = O(mw(G)4) by Lemma 14.

Furthermore by Theorem 21 there exists an Ft-augmenting path if and only if Ft is not maximum.
Since we can assume all the modules in M(G) induce a matching, by Lemma 15 there exists an
Ft-augmenting path in G if and only if there exists an F ′t -augmenting path in G′Ft

. So, we are left
to compute an F ′t -augmenting path in G′Ft

if any. It can be done in O(|E(G′Ft
)|)-time [49], that is

in O(mw(G)4). Furthermore, by construction of G′Ft
, an F ′t -augmenting path P ′ in G′Ft

is also an
Ft-augmenting path in G. Thus, we can obtain a larger matching Ft+1 from Ft and P . We repeat
the procedure above for Ft+1 until we reach a maximum matching Ftmax . The total running time
is in O(mw(G)4 · tmax).

Finally, assume G′ to be complete. Let M(G) = {M1,M2, . . . ,Mk} be linearly ordered. For
every 1 ≤ i ≤ k, write Gi = G[

⋃
j≤iMj ]. We compute a maximum matching F i for Gi, from

a maximum matching F i−1 of Gi−1 and a maximum matching FMi of G[Mi], sequentially. For
that, we apply the same techniques as for the prime case, to some “pseudo-quotient graph” G′i
isomorphic to K2 (i.e., the two vertices of G′i respectively represent V (Gi−1) and Mi). Since the
pseudo-quotient graphs have size two, this step takes total time O(|V (G′)|+ (|F k| − |F ∗|)).
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Overall, summing the order of all the subgraphs in the modular decomposition of G amounts
to O(n) [78]. Furthermore, a maximum matching of G also has cardinality O(n). Therefore, the
total running time is in O(mw(G)4 · n) if the modular decomposition of G is given. The latter
decomposition can be precomputed in O(n+m)-time [83].

5.2 More structure: (q, q − 3)-graphs

The second main result in Section 5 is an O(q(G)4 ·n+m)-time algorithm for Maximum Matching
(Theorem 24). Our algorithm for (q, q−3)-graphs reuses the algorithm described in Theorem 22 as
a subroutine. However, applying the same techniques to a case where the quotient graph has super-
constant size Ω(q) happens to be more challenging. Thus we need to introduce new techniques in
order to handle with all the cases presented in Lemma 4.

Computing a maximum matching for the quotient graph is easy. However, we also need to
account for the edges present inside the modules. For that, we need the following stronger variant
of Lemma 4. The latter generalizes similar structure theorems that have been obtained for some
specific subclasses [54].

Theorem 23. For an arbitrary (q, q− 3)-graph G, q ≥ 7, and its quotient graph G′, exactly one of
the following conditions is satisfied.

1. G is disconnected;

2. G is disconnected;

3. G is a disc (and so, G = G′ is prime for modular decomposition);

4. G is a spider (and so, G′ is a prime spider);

5. G′ is a spiked p-chain Pk, or a spiked p-chain Pk. Furthermore, for every v ∈ V (G′), if the
corresponding module Mv ∈M(G) is such that |Mv| ≥ 2 then we have v ∈ {v1, vk, x, y};

6. G′ is a spiked p-chain Qk, or a spiked p-chain Qk. Furthermore, for every v ∈ V (G′), if the
corresponding module Mv ∈ M(G) is such that |Mv| ≥ 2 then we have either v ∈ {v1, vk} or
v = zi for some i;

7. |V (G′)| ≤ q.

The proof of Theorem 23 is postponed to the appendix. It is based on a refinement of modular
decomposition called primeval decomposition.

In what follows, we introduce our techniques for the cases where the quotient graph G′ is neither
degenerate nor of constant size.

Simple cases

Lemma 16. For every disc G = (V,E), a maximum matching can be computed in linear-time.

Proof. If G = Cn, n ≥ 5 is a cycle then the set of edges {{2i, 2i + 1} | 0 ≤ i ≤ bn/2c − 1} is a
maximum matching. Otherwise, G = Cn is a co-cycle. Let Fn contain all the edges {4i, 4i+2}, {4i+
1, 4i+ 3}, 0 ≤ i ≤ bn/4c− 1. There are three cases. If n = 0 (mod 4) or n = 1 (mod 4) then there
is at most one vertex unmatched by Fn, and so, Fn is a maximum matching of G. Otherwise, if
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n = 3 (mod 4) then a maximum matching of G is obtained by adding the edge {n − 3, n − 1} to
Fn. Finally, assume n = 2 (mod 4). By construction, Fn leaves unmatched the two of n− 2, n− 1.
We obtain a perfect matching of G from Fn by replacing {0, 2} with {n − 2, 0}, {n − 1, 2}. Note
that it is possible to do that since n ≥ 5.

Lemma 17. If G = (S∪K∪R,E) is a spider then there exists a maximum matching of G composed
of: a perfect matching between K and S; and a maximum matching of G[R].

Proof. We start from a perfect matching F0 between K and S. We increase the size of F0 using
augmenting paths until it is no more possible to do so. By Theorem 21, the obtained matching
Fmax is maximum. Furthermore, either there is a perfect matching between K and S or there is at
least one vertex of S that is unmatched. Since V (F0) ⊆ V (Fmax) the latter proves the lemma.

The case of prime p-trees

Roughly, when the quotient graph G′ is a prime p-tree, our strategy consists in applying the
following reduction rules until the graph is empty.

1. Find an isolated module M (with no neighbour). Compute a maximum matching for G[M ]
and for G[V \M ] separately.

2. Find a pending module M (with one neighbour v). Compute a maximum matching for G[M ].
If it is not a perfect matching then add an edge between v and any unmatched vertex in M ,
then discard M ∪ {v}. Otherwise, discard M (Lemma 18).

3. Apply a technique known as “SPLIT and MATCH” [86] to some module M and its neigh-
bourhood NG(M). We do so only if M satisfies some properties. In particular, we apply
this rule when M is a universal module (with a complete join between M and V \M). See
Definition 2 and Lemma 19.

We introduce the reduction rules below and we prove their correctness.

Reduction rules. The following lemma generalizes a well-known reduction rule for Maximum
Matching: add a pending vertex and its unique neighbour to the matching then remove this
edge [66].

Lemma 18. Let M be a module in a graph G = (V,E) such that NG(M) = {v}, FM is a maximum
matching of G[M ] and F ∗M is obtained from FM by adding an edge between v and any unmatched
vertex of M (possibly, F ∗M = FM if it is a perfect matching). There exists a maximum matching F
of G such that F ∗M ⊆ F .

Proof. By Lemma 12, every maximum matching for G′M = (V, (E \ E(G[M ]) ∪ FM ) is also a
maximum matching for G. There are two cases.

Suppose there exists u ∈ M \ V (FM ). Then, u is a pending vertex of G′M . There exists a
maximum matching of G′M that contains the edge {u, v} [66]. Furthermore, removing u and v
disconnects the vertices of M \ u from V \ NG[M ]. It implies that a maximum matching F ′ of
G \ (u, v) is the union of any maximum matching of G[M \ u] with any maximum matching of
G[V \NG[M ]]. In particular, FM is contained in some maximum matching F ′ of G \ (u, v). Since
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{u, v} is contained in a maximum matching of G, therefore F = F ′ ∪ {{u, v}} is a maximum
matching of G. We are done since F ∗M = FM ∪ {{u, v}} ⊆ F by construction.

Otherwise, FM is a perfect matching of G[M ]. For every edge {x, y} ∈ FM , we have that x, y
have degree two in G′M . The following reduction rule has been proved to be correct in [66]: remove
any x of degree two, merge its two neighbours and increase the size of the solution by one unit. In
our case, since NG′M

[y] ⊆ NG′M
[v] the latter is equivalent to put the edge {x, y} in the matching.

Overall, applying the reduction rule to all edges {x, y} ∈ FM indeed proves the existence of some
maximum matching F such that FM = F ∗M ⊆ F .

Then, we introduce a technique known as “SPLIT and MATCH” in the literature [86].

Definition 2. Let G = (V,E) be a graph, F ⊆ E be a matching of G. Given some module
M ∈M(G) we try to apply the following two operations until none of them is possible:

• Suppose there exist u ∈M, v ∈ NG(M) unmatched. We add an edge {u, v} to the matching
(MATCH).

• Otherwise, suppose there exist u, u′ ∈M, v, v′ ∈ NG(M) such that u and u′ are unmatched,
and {v, v′} is an edge of the matching. We replace the edge {v, v′} in the matching by the
two new edges {u, v}, {u′, v′} (SPLIT).

The “SPLIT and MATCH” has been applied to compute a maximum matching in linear-time
for cographs and some of its generalizations [45, 46, 86]. Our Theorem 22 can be seen as a broad
generalization of this technique. In what follows, we introduce more cases where the “SPLIT and
MATCH” technique can be used in order to compute a maximum matching directly.

Lemma 19. Let G = G1⊕G2 be the join of two graphs G1, G2 and let F1, F2 be maximum matchings
for G1, G2, respectively. For F = F1∪F2, applying the ‘SPLIT and MATCH” technique to V (G1),
then to V (G2) leads to a maximum matching of G.

Proof. The lemma is proved in [86] when G is a cograph. In particular, let G∗ = (V, (V (G1) ×
V (G2)) ∪ F1 ∪ F2). Since it ignores the edges from (E(G1) \ F1) ∪ (E(G2) \ F2), the procedure
outputs the same matching for G and G∗. Furthermore, G∗ is a cograph, and so, the outputted
matching is maximum for G∗. By Lemma 12, a maximum matching for G∗ is a maximum matching
for G.

Applications. We can now combine our reductions rules as follows.

Proposition 1. Let G = (V,E) be a (q, q − 3)-graph, q ≥ 7, such that its quotient graph G′ is
isomorphic to a prime p-tree. For every M ∈M(G) let FM be a maximum matching of G[M ] and
let F ∗ =

⋃
M∈M(G) FM .

A maximum matching Fmax for G can be computed in O(|V (G′)|+ |E(G′)|+ |Fmax|− |F ∗|)-time
if F ∗ is given as part of the input.

Proof. There are five cases. If G′ has order at most 7 then we can apply the same techniques as
for Theorem 22. Otherwise, G′ is either a spiked p-chain Pk, a spiked p-chain Pk, a spiked p-chain
Qk or a spiked p-chain Qk.
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Case G is a spiked p-chain Pk. By Theorem 23 we have that (v2, v3, . . . , vk−1) are vertices of
G. In this situation, since NG′(v1) = v2, Mv1 is a pending module. We can apply the reduction
rule of Lemma 18 to Mv1 . Doing so, we discard Mv1 and possibly v2. Let S = Mx if v2 has
already been discarded and let S = Mx ∪ {v2} otherwise. We have that S is a pending module in
the resulting subgraph, with v3 being its unique neighbour. Furthermore, by Lemma 18 we can
compute a maximum matching of G[S] from FMvx

, by adding an edge between v2 (if it is present)
and an unmatched vertex in Mx (if any). So, we again apply the reduction rule of Lemma 18, this
time to S. Doing so, we discard S, and possibly v3. Then, by a symmetrical argument we can also
discard Mvk , My, vk−1 and possibly vk−2. We are left with computing a maximum matching for
some subpath of (v3, v4, . . . , vk−2), that can be done in linear-time by taking half of the edges.

Case G is a spiked p-chain Pk. By Theorem 23, the nontrivial modules of M(G) can only be
Mv1 ,Mvk ,Mx,My. In particular, F ∗ = FMv1

∪ FMvk
∪ FMx ∪ FMy . Let U = Mv1 ∪Mvk ∪Mx ∪

My. The graph G \ U is isomorphic to Pk−2, k ≥ 6. Furthermore, let Fk−2 contain the edges
{v2, vdk/2e+1}, {vbk/2c, vk−1} plus all the edges {vi, vk+1−i}, 3 ≤ i ≤ bk/2c − 1. Observe that Fk−2
is a maximum matching of Pk−2. In particular it is a perfect matching of Pk−2 if k is even, and
if k is odd then it only leaves vertex vdk/2e unmatched. We set F0 = F ∗ ∪ Fk−2 to be the initial
matching. Then, we repeat the procedure below until we cannot increase the matching anymore.
We consider the modules M ∈ {Mv1 ,Mvk ,Mx,My} sequentially. For every M we try to apply the
SPLIT and MATCH technique of Definition 2.

Overall, we claim that the above procedure can be implemented to run in constant-time per
loop. Indeed, assume that the matched vertices (resp., the unmatched vertices) are stored in a
list in such a way that all the vertices in a same module Mv, v ∈ V (G′) are consecutive. For
every matched vertex u, we can access to the vertex that is matched with u in constant-time.
Furthermore for every v ∈ V (G′), we keep a pointer to the first and last vertices of Mv in the list
of matched vertices (resp., in the list of unmatched vertices). For any loop of the procedure, we
iterate over four modules M , that is a constant. Furthermore, since |NG(M)| ≥ |V (G) \M | − 2
then we only need to check three unmatched vertices of V \M in order to decide whether we can
perform a MATCH operation. Note that we can skip scanning the unmatched vertices in M using
our pointer structure, so, it takes constant-time. In the same way, we only need to consider three
matched vertices of V \M in order to decide whether we can perform a SPLIT operation. Again,
it takes constant-time. Therefore, the claim is proved.

Let Fmax be the matching so obtained. By the above claim it takes O(|Fmax| − |F0|)-time to
compute it with the above procedure. Furthermore, we claim that Fmax is maximum. Suppose for
the sake of contradiction that Fmax is not a maximum matching. By Lemma 12, Fmax cannot be a
maximum matching of G∗, obtained from G by removing the edges in (E(G[Mv1 ]) ∪ E(G[Mvx ]) ∪
E(G[Mvy ])∪E(G[Mvk ]))\F ∗. Let P = (u1, u2, . . . , u2`) be a shortest Fmax-augmenting path in G∗,
that exists by Theorem 21.

We prove as an intermediate subclaim that both u1, u2` must be part of a same module amongst
Mv1 ,Mvk ,Mx,My. Indeed, for every distinct M,M ′ ∈ {Mv1 ,Mvk ,Mx,My}, every vertex of M is
adjacent to every vertex of M ′. Furthermore, V (Fk−2) ⊆ V (Fmax) by construction and vdk/2e (the

only vertex of Pk−2 possibly unmatched) is adjacent to every vertex of U . Therefore, if the subclaim
were false then u1, u2` should be adjacent, hence they should have been matched together with a
MATCH operation. A contradiction. So, the subclaim is proved.

Let M ∈ {Mv1 ,Mvk ,Mx,My} so that u1, u2` ∈ M . Since E(G∗[M ]) = FM , and V (FM ) ⊆
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V (F ∗) ⊆ V (Fmax) by construction, we have u2 ∈ NG(M). Furthermore, u3 /∈ NG(M) since
otherwise, by considering u1, u2` ∈M and u2, u3 ∈ NG(M), we should have increased the matching
with a SPLIT operation. In this situation, either u3 ∈ M or u3 ∈ V \ NG[M ]. We prove as
another subclaim that u3, u4 ∈ M . Indeed, suppose by contradiction u4 ∈ NG(M). In particular,
(u1, u4, u5, . . . , u2`) is a shorter augmenting path than P , thereby contradicting the minimality of
P . Therefore, u4 /∈ NG(M). Moreover, if u3 ∈ V \NG[M ] then, since the set V \NG[M ] induces a
stable, we should have u4 ∈ NG(M). A contradiction. So, u3 ∈M , and u4 ∈ NG[M ]\NG(M) = M ,
that proves the subclaim.

The above subclaim implies {u3, u4} ∈ FM . Since {u3, u4} /∈ Fmax, there exists a module M ′

such that u2, u5 ∈M ′, and the edges {u2, u3}, {u4, u5} have been obtained with a SPLIT operation.
However, since u1, u2` ∈ M are unmatched, and M ⊆ NG(M ′), we should have performed two
MATCH operations intead of performing a SPLIT operation. A contradiction. Therefore, as
claimed, Fmax is a maximum matching of G.

Case G is a spiked p-chain Qk. For every 1 ≤ i ≤ dk/2e, let Vi =
⋃
j≥i(Mv2j−1 ∪ Mv2j ∪

Mz2j−1 ∪Mz2j ) (by convention Mv = ∅ if vertex v is not present). Roughly, our algorithm tries to
compute recursively a maximum matching for Gi = G[Vi ∪Ui−1], where Ui−1 is a union of modules
in {Mv2i−2 , Mz2i−2}. Initially, we set i = 1 and U0 = ∅. See Fig. 21.
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Figure 21: Schematic view of graph Gi.

If i = dk/2e then the quotient subgraph G′i has order at most six. We can reuse the same
techniques as for Theorem 22 in order to solve this case. Thus from now on assume i < dk/2e.
We need to observe that v2i−1 is a pending vertex in the quotient subgraph G′i, with v2i being
its unique neighbour. By Theorem 23, v2i ∈ V (G), hence Mv2i−1 is a pending module of Gi.
Thus, we can apply the reduction rule of Lemma 18. Doing so, we can discard the set Si, where
Si = Mv2i−1 ∪ {v2i} if FMv2i−1

is not a perfect matching of G[Mv2i−1 ], and Si = Mv2i−1 otherwise.

Furthermore, in the case where Ui−1 6= ∅, there is now a complete join between Ui−1 and Vi \Si.
By Lemma 19 we can compute a maximum matching of Gi \ Si from a maximum matching of
G[Ui−1] and a maximum matching of G[Vi \ Si]. In particular, since Ui−1 is a union of modules
in {Mv2i−2 , Mz2i−2} and there is a complete join between Mv2i−2 and Mz2i−2 , by Lemma 19 a
maximum matching of G[Ui−1] can be computed from FMv2i−2

and FMz2i−2
. So, we are left to

compute a maximum matching of G[Vi \ Si].
Then, there are two subcases. If v2i ∈ Si then Mz2i−1 is disconnected in G[Vi \ Si]. Let

Ui = Mz2i . The union of FMz2i−1
with a maximum matching of Gi+1 = G[Vi+1 ∪Ui] is a maximum

matching of G[Vi \Si]. Otherwise, Mz2i−1 is a pending module of G[Vi \Si] with v2i being its unique
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neighbour. We apply the reduction rule of Lemma 18. Doing so, we can discard the set Ti, where
Ti = Mz2i−1 ∪ {v2i} if FMz2i−1

is not a perfect matching of G[Mz2i−1 ], and Ti = Mz2i−1 otherwise.
Let Ui = Mz2i if v2i ∈ Ti and Ui = Mz2i ∪Mv2i otherwise. We are left to compute a maximum
matching of Gi+1 = G[Vi+1 ∪ Ui]. Overall, the procedure stops after we reach an empty subgraph,
that takes O(|V (G′)|) recursive calls.

Case G is a spiked p-chain Qk. Roughly, the case where G′ is isomorphic to a spiked p-chain
Qk is obtained by reverting the role of vertices with even index and vertices with odd index. For
every 1 ≤ i ≤ bk/2c, let Vi =

⋃
j≥i(Mv2j ∪Mz2j ∪Mv2j+1 ∪Mz2j+1). Our algorithm tries to compute

recursively a maximum matching for Gi = G[Vi ∪ Ui−1], where Ui−1 is a union of modules in
{Mv2i−1 , Mz2i−1}. Initially, we set i = 1 and U0 = Mv1 .

If i = bk/2c then the quotient subgraph G′i has order at most six. We can reuse the same
techniques as for Theorem 22 in order to solve this case. Thus from now on assume i < bk/2c.
We need to observe that v2i is a pending vertex in the quotient subgraph G′i, with v2i+1 being
its unique neighbour. By Theorem 23, v2i+1 ∈ V (G), hence Mv2i is a pending module of Gi.
Thus, we can apply the reduction rule of Lemma 18. Doing so, we can discard the set Si, where
Si = Mv2i ∪ {v2i+1} if FMv2i

is not a perfect matching of G[Mv2i ], and Si = Mv2i otherwise.
Furthermore, in the case where Ui−1 6= ∅, there is now a complete join between Ui−1 and Vi \Si.

By Lemma 19 we can compute a maximum matching of Gi \ Si from a maximum matching of
G[Ui−1] and a maximum matching of G[Vi \ Si]. In particular, since Ui−1 is a union of modules
in {Mv2i−1 , Mz2i−1} and there is a complete join between Mv2i−1 and Mz2i−1 , by Lemma 19 a
maximum matching of G[Ui−1] can be computed from FMv2i−2

and FMz2i−2
. So, we are left to

compute a maximum matching of G[Vi \ Si].
Then, there are two subcases. If v2i+1 ∈ Si then Mz2i is disconnected in G[Vi \ Si]. Let

Ui = Mz2i+1 . The union of FMz2i
with a maximum matching of Gi+1 = G[Vi+1 ∪Ui] is a maximum

matching of G[Vi\Si]. Otherwise, Mz2i is a pending module of G[Vi\Si] with v2i+1 being its unique
neighbour. We apply the reduction rule of Lemma 18. Doing so, we can discard the set Ti, where
Ti = Mz2i ∪ {v2i+1} if FMz2i

is not a perfect matching of G[Mz2i ], and Ti = Mz2i otherwise. Let
Ui = Mz2i+1 if v2i+1 ∈ Ti and Ui = Mz2i+1 ∪Mv2i+1 otherwise. We are left to compute a maximum
matching of Gi+1 = G[Vi+1 ∪Ui]. Overall, the procedure stops after O(|V (G′)|) recursive calls.

Main result

Theorem 24. For every G = (V,E), Maximum Matching can be solved in O(q(G)4 ·n+m)-time.

Proof. We generalize the algorithm for Theorem 22. In particular the algorithm is recursive.
If G is trivial (reduced to a single node) then we output an empty matching. Otherwise, let
G′ = (M(G), E′) be the quotient graph of G. For every module M ∈ M(G), we call the
algorithm recursively on G[M ] in order to compute a maximum matching FM of G[M ]. Let
F ∗ =

⋃
M∈M(G) FM . If G′ is either edgeless, complete or a prime graph with no more than q(G)

vertices then we apply the same techniques as for Theorem 22 in order to compute a maximum
matching Fmax for G. It takes constant-time if G′ is a stable, O(q(G)4 · (|Fmax| − |F ∗|))-time if G′

is prime and O(|V (G′)|+(|Fmax|− |F ∗|))-time if G′ is a complete graph. Otherwise by Theorem 23
the following cases need to be considered.

• Suppose G is a disc. In particular, G = G′. By Lemma 16, we can compute a maximum
matching for G in O(|V (G′)|+ |E(G′)|)-time.
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• Suppose G = (S ∪ K ∪ R,E) is a spider. In particular, G′ = (S ∪ K ∪ R′, E′) is a prime
spider. By Lemma 17, the union of FR = F ∗ with a perfect matching between S and K is a
maximum matching of G. It can be computed in O(|V (G′)|+ |E(G′)|)-time.

• Otherwise G′ is a prime p-tree. By Proposition 1, a maximum matching Fmax for G can be
computed in O(|V (G′)|+ |E(G′)|+ |Fmax| − |F ∗|)-time.

Overall, summing the order of all the subgraphs in the modular decomposition of G amounts to
O(n) [78]. Summing the size of all the subgraphs in the modular decomposition of G amounts to
O(n+m) [78]. Furthermore, a maximum matching of G also has cardinality O(n). Therefore, the
total running time is in O(q(G)4 · n + m) if the modular decomposition of G is given. The latter
decomposition can be precomputed in O(n+m)-time [83].

6 Applications to other graph classes

Our algorithmic schemes in Sections 4 and 5 are all based on preprocessing methods with either
split decomposition or modular decomposition. If the prime subgraphs of the decomposition have
constant-size then the input graph has bounded clique-width. However, when the prime subgraphs
are “simple” enough w.r.t. the problem considered, we may well be able to generalize our techniques
in order to apply to some graph classes with unbounded clique-width. In what follows, we present
such examples.

A graph is weak bipolarizable if every prime subgraph in its modular decomposition is a chordal
graph [74]. Some cycle problems such as Girth (trivially) and Triangle Counting (by using a
clique-tree) can be easily solved in linear-time for chordal graphs. The latter extends to the larger
class of weak bipolarizable graphs by using our techniques.

Another instructive example is the class of graphs with small prime subgraphs for c-
decomposition. The c-decomposition consists in successively decomposing a graph by the modular
decomposition and the split decomposition until all the subgraphs obtained are either degenerate
(complete, edgeless or star) or prime for both the modular decomposition and the split decom-
position [69]. Let us call c-width the minimum k ≥ 2 such that any prime subgraph in the
c-decomposition has order at most k. The following was proved in [77].

Theorem 25 ( [77]). The class of graphs with c-width 2 (i.e., completely decomposable by the
c-decomposition) has unbounded clique-width.

It is not clear how to compute the c-decomposition in linear-time. However, both the modular
decomposition and the split decomposition of graphs with small c-width already have some inter-
esting properties which can be exploited for algorithmic purposes. Before concluding this section
we illustrate this fact with Eccentricities.

Lemma 20. Let G = (V,E) be a graph with c-width at most k that is prime for modular decom-
position. Every split component of G that is not degenerate either has order at most k or contains
a universal vertex.

Proof. Since G has c-width at most k, every non degenerate split component of G with order at least
k + 1 can be modularly decomposed. We show in the proof of Lemma 10 that if a non degenerate
graph can be modularly decomposed and it does not contain a universal vertex then it has a split.
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Therefore, every non degenerate split component of size at least k + 1 contains a universal vertex
since it is prime for split decomposition.

We now revisit the algorithmic scheme of Theorem 8.

Proposition 2. For every G = (V,E) with c-width at most k, Eccentricities can be solved in
O(k2 · n+m)-time. In particular, Diameter can also be solved in O(k2 · n+m)-time.

Proof. Let G′ = (V ′, E′) be the quotient graph of G. Note that G′ has c-width at most k. Fur-
thermore, by Theorem 13 the problem reduces in linear-time to solve Eccentricities for G′.
We compute the split-decomposition of G′. It takes linear-time [20]. By Lemma 20 every split
component of G′ either has order at most k or it has diameter at most 2.

Let us consider the following subproblem for every split component Ci. Given a weight function
e : V (Ci)→ N, compute maxu∈V (Ci)\{v} distCi(u, v) + e(u) for every v ∈ Ci. Indeed, the algorithm
for Theorem 8 consists in solving the above subproblem a constant-number of times for every
split component, with different weight functions e that are computed by tree traversal on the split
decomposition tree. In particular, if the above subproblem can be solved in O(k2 ·|V (Ci)|+|E(Ci)|)-
time for every split component Ci then we can solve Eccentricities for G′ in O(k2 · |V (G′)| +
|E(G′)|)-time.

There are two cases. If Ci has order at most k then the above subproblem can be solved
in O(|V (Ci)||E(Ci)|)-time, that is in O(k2 · |V (Ci)|). Otherwise, by Lemma 20 Ci contains a
universal vertex, that can be detected in O(|V (Ci)|+ |E(Ci)|)-time. In particular, Ci has diameter
at most two. Let V (Ci) = (v1, v2, . . . , v|V (Ci)|) be totally ordered such that, for every j < j′

we have e(vj) ≥ e(vj′). An ordering as above can be computed in O(|V (Ci)|)-time, for instance
using a bucket-sort algorithm. Then, for every v ∈ V (Ci) we proceed as follows. We compute
Dv = 1 + maxu∈NCi

(v) e(u). It takes O(degCi(v))-time. Then, we compute the smallest j such that

vj and v are nonadjacent (if any). Starting from v1 and following the ordering, it takes O(degCi(v))-
time. Finally, we are left to compare, in constant-time, Dv with 2 + e(vi). Overall, the subproblem
is solved in O(|V (Ci)|+ |E(Ci)|)-time in this case.

Therefore, Eccentricities can be solved in O(k2 · n+m)-time for G.
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A Proof of Theorem 23

Our proof in this section involves a refinement of modules, that is called p-connected components.
The notion of p-connectedness also generalizes connectivity in graphs. A graph G = (V,E) is
p-connected if and only if, for every bipartition (V1, V2) of V , there exists a path of length four
with vertices in both V1 and V2. The p-connected components of a graph are its maximal induced
subgraphs which are p-connected. Furthermore, a p-connected graph is termed separable if there
exists a bipartition (V1, V2) of its vertex-set such that, for every crossing P4, its two ends are in V2
and its two internal vertices are in V1. The latter bipartition (V1, V2) is called a separation, and if
it exists then it is unique.

We need a strengthening of Theorem 1:

Theorem 26 ( [64]). For an arbitrary graph G exactly one of the following conditions is satisfied.
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1. G is disconnected;

2. G is disconnected;

3. There is a unique proper separable p-connected component of G, with its separation being
(V1, V2) such that every vertex not in this component is adjacent to every vertex of V1 and
nonadjacent to every vertex of V2;

4. G is p-connected.

If G or G is disconnected then it corresponds to a degenerate node in the modular decomposition
tree. So we know how to handle with the two first cases. It remains to study the p-connected
components of (q, q − 3)-graphs.

For that, we need to introduce the class of p-trees:

Definition 3 ( [6]). A graph G = (V,E) is a p-tree if one of the following conditions hold:

• the quotient graph G′ of G is a P4. Furthermore, G is obtained from G′ by replacing one
vertex by a cograph.

• the quotient graph G′ of G is a spiked p-chain Pk, or its complement. Furthermore, G is
obtained from G′ by replacing any of x, y, v1, vk by a module inducing a cograph.

• the quotient graph G′ of G is a spiked p-chain Qk, or its complement. Furthermore, G is
obtained from G′ by replacing any of v1, vk, z2, z3, . . . , zk−5 by a module inducing a cograph.

We stress that the case where the quotient graph G′ is a P4, and so, of order 4 ≤ 7 ≤ q can
be ignored in our analysis. Other characterizations for p-trees can be found in [5]. The above
Definition 3 is more suitable to our needs.

Theorem 27 ( [8]). A p-connected component of a (q, q − 3)-graph either contains less than q
vertices, or is isomorphic to a prime spider, to a disc or to a p-tree.

Finally, before we can prove Theorem 23, we need to further characterize the separable p-
connected components. We use the following characterization of separable p-connected components.

Theorem 28 ( [64]). A p-connected graph G = (V,E) is separable if and only if its quotient graph
is a split graph. Furthermore, its unique separation (V1, V2) is given by the union V1 of the strong
modules inducing the clique and the union V2 of the strong modules inducing the stable set.

We are now ready to prove Theorem 23.

Proof of Theorem 23. Suppose G and G are connected (otherwise we are done). By Theorem 26
there are two cases. First we assume G to be p-connected. By Theorem 27, G either contains less
than q vertices, or is isomorphic to a prime spider, to a disc or to a p-tree. Furthermore, if G is a
p-tree then according to Definition 3, the nontrivial modules can be characterized. So, we are done
in this case. Otherwise, G is not p-connected. Let V = V1 ∪ V2 ∪ V3 such that: H = G[V1 ∪ V2] is a
separable p-component with separation (V1, V2), every vertex of V3 is adjacent to every vertex of V1
and nonadjacent to every vertex of V2. Note that G′ is obtained from the quotient graph H ′ of H
by possibly adding a vertex adjacent to all the strong modules in V1. In particular, by Theorem 28
H ′ is a split graph, and so, G′ is also a split graph. By Lemma 4, it implies that G′ is either a prime
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spider, a spiked p-chain Qk, a spiked p-chain Qk, or a graph with at most q vertices. Furthermore,
if G′ is a prime spider then by Theorem 27 so is H, hence G is a spider. Otherwise, G′ is either a
spiked p-chain Qk or a spiked p-chain Qk. It implies that H is a p-tree. In particular, the nontrivial
modules in H can be characterized according to Definition 3. The only nontrivial module of G that
is not a nontrivial module of H (if any) contains V3. Finally, since the module that contains V3 has
no neighbour among the modules in V2, the corresponding vertex in the quotient can only be a zi,
for some i. So, we are also done in this case.
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