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Introduction

In the seminal work of Symanzik [START_REF] Symanzik | Euclidean quantum field theory[END_REF], Poisson ensembles of Brownian loops were implicitly used.

Since the work of Lawler and Werner [START_REF] Lawler | The Brownian loop soup[END_REF] on "loop soups", these ensembles have also been the object of many investigations. Their properties can be studied in the context of rather general Markov processes, in particular Markov chains on graphs (Cf [START_REF] Fitzsimmons | Loop measures without transition probabilities[END_REF], [START_REF] Le | Markov paths, loops and fields[END_REF], [START_REF] Le | Markov loops, free field and Eulerian networks[END_REF], [START_REF] Le | Markov loops, Coverings and Fields[END_REF] ) .

The purpose of the present work is to explore their topological properties.

Geodesics and loops on graphs

We consider a finite connected graph G " pX, Eqq.

The set of oriented edges is denoted Ý Ñ E . We also set, for any oriented edge Ý Ñ e " pe ´, e `q, ´Ý Ñ e " pe `, e ´q. Recall that on graphs, geodesics are defined as non backtracking paths: px 0 , x 1 , ..., x n q with tx i , x i`1 u in E and x i´1 ‰ x i`1 . Fundamental groups Γ x are defined by geodesics from x to x equipped with concatenation with erasure of backtracking subarcs. They are all isomorphic to the free group with |E| ´|X| `1 generators, in a non canonical way. The isomorphisms, as well as a set of generators for the free group, can be defined by the choice of a spanning tree of the graph. However, geodesic loops are in canonical bijection with the conjugacy classes of all Γ x . Each loop l is homotopic to a unique geodesic loop l g . Figure 1: Loop Ñ Geodesic Loop

Markov loops

We attach a positive conductance C e to each edge e P E and a killing rate κ x to each vertex x P X, then define the duality measure λ x " κ x `řy C x,y and the λ-symmetric transition matrix P x y "

C x,y λ x , P x ∆ " κ x λ x .
The energy functional is:

pf, f q " 1 2 ÿ x,y C x,y pf pxq ´f pyqq 2 `ÿ x κ x f pxq 2
We define a measure µ on (discrete time, unbased) loops:

µplq " 1 multplq ź edges of l ´P e é`¯m ultplq .
Here multplq denotes the multiplicity of the loop l. Note that |µ| " µp1q " ´logpdetpI ´P qq Recall ( [START_REF] Le | Markov paths, loops and fields[END_REF]) that this measure is induced by the restriction to non-trivial discrete loops of the measure ř xPX ş 8 0 1 t P x,x t λ x dt defined on continuous time based loops, P x,x t being the non-normalized bridge measure defined by the transition semigroup expptrI ´P sq associated with the energy functional. A probability measure ν is defined on spanning trees (Cayley):
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νpT q " ś edges of T P e éd etpI ´P q

Recall that Wilson's algorithm, based on loop erasure can be extended to provide samples pT, Lq: T is a sample of ν and L is a sample of a Poisson point process of intensity µ, i.e. N samples of µ µp1q , where N is an independent Poisson variable of mean µp1q. The algorithm follows the following steps: -Order X -Run a P -Markov chain from the first vertex x 0 to the added cemetery point ∆ .

-Erase all loops (starting from x 0 ) to obtain a self avoiding path γ.

-Restart the chain from the first point R γ, until the path hits γ.

-Erase loops and iterate until X is covered. We have obtained a spanning tree T and a set of based loops tl x , x P Xu.

-Divide each l x at its base point x: If l x visits x n x times, partition it into tn 1 , n 2 ..., n k u with probability

ś k 1 pn i ´1q! nx!
and define L to be the associated set of (unbased) loops .

DISTRIBUTION OF GEODESIC LOOPS

If px, yq is an edge, let us denote r x,y the probability that the Markov chain starting at y returns to y without visiting x and following a tree-contour subloop (cf Figure 1). Note that: Note that ρ satisfies the relation:

r x,
ρ x,y " 1 `ÿ z‰x P y z P z x ρ x,y ρ y,z
Let us now denote r x,y,k the probability that the Markov chain starting at y returns to y for the first time in 2k steps following a tree-contour subloop and without visiting x. Set r x,y psq " ř r x,y,k s k . Set ρ x,y psq " ř 8 n"0 rr x,y psqs n Note that: r x,y psq " s

ÿ z‰x P y z P z y ρ y,z
Note that ρ x,y psq satisfies the relation:

ρ x,y psq " 1 `s ÿ z‰x P y z P z x ρ x,y psqρ y,z psq
Let us now denote r x,k the probability that the Markov chain starting at x returns to x for the first time in 2k steps following a tree-contour subloop. Set r x psq " ř r x,k s k Note that:

r x psq " s ÿ y P x y P y x ρ x,y psq
Let denote ρ x,k the probability that the Markov chain starting at x returns to x in 2k steps following a tree-contour subloop. Set ρ x psq " ř 8 0 ρ x,k s k . Note that: ρ x psq " 

CONNEXIONS AND HOLONOMIES

Recall that free groups are conjugacy separable: Two conjugacy classes are separated by a morphism in some finite group G.

For the fundamental groups Γ x morphisms are obtained from maps A, assigning to each oriented edge Ý Ñ e an element Ap Ý Ñ e q P G with Ap´Ý Ñ e q " Ap Ý Ñ e q ´1. A based loop is mapped to the product of the image by A of its oriented edges and the associated loop l to the conjugacy class of this image, denoted H A plq. Moreover H A plq " H A pl o q A gauge equivalence relation between assignment maps is defined as follows: A 1 " A 2 iff there exists Q: X Þ Ñ G such that:

A 1 p Ý Ñ e q " Qpe `qA 1 p Ý Ñ e qQ ´1pe ´q
Equivalence classes are G-connexions. They define G-Galois coverings of G (cf [START_REF] Le | Markov loops, Coverings and Fields[END_REF]). Obviously, holonomies depend only on the connection defined by A.

Given a spanning tree T , there exists a unique A T " A such that A T peq " I for every edge e of T . For any unitary representation π of G, denote χ π pCq the normalized trace of the image of any element in the conjugacy class C. As G, π and A vary, functions γ Þ Ñ χ π pH A pγqq span an algebra and separate geodesic loops.

Define an extended transition matrix P A,π with entries in Xˆt1, 2, ... dimpπqu by rP A,π s x,i y,j " P x y rπpApx, yqqs i j . Then:

ÿ χ π pH A plqµplq " ´1 dimpπq logpdetpI ´P A,π qq
and |tl P L, H A plq " Cu| are independent Poisson r.v. with expectations:

µptl, H A plq " Cuq " ´ÿ πPR χ π pCq |C| |G| dimpπq logpdetpI ´P A,π q, q
R denoting the set of irreducible unitary representations of G.

IN THE CONTINUUM

Some aspects of the theory extend to manifolds after proper rescaling and renormalisation). We consider a Riemannian manifold M of dimension n with metric tensor g i,j , and a potential (killing rate) k on it. The energy functional is:

pf, f q " 1 2 ż g i,j pxq Bf Bx i Bf Bx j detpgq ´1 2 dx `ż kpxqf pxq 2 detpgq ´1 2 dx
The heat semigroup P t is associated with the infinitesimal generator

1 2 ∆ x ´κpxq
Its kernel is denoted p t px, yq.

The σ´finite measure µ and the Poisson process of Brownian loops are defined in the same way as Lawler and Werner "loop soup" (Cf [START_REF] Lawler | The Brownian loop soup[END_REF]). More precisely, µ " ş xPX ş 8 0 1 t P x,x t dt detpgq ´1 2 dx where P x,y t denotes the Brownian bridge distribution multiplied by p t px, yq.

HOMOTOPY CLASSES

In this section we consider only the case of a compact surface with constant negative curvature and constant κ which can be represented as the quotient ΓzH of the hyperbolic plane by a discrete group of isometries Γ. Γ is the fundamental group of the surface and loop homotopy classes are in one-to one correspondence with closed geodesics. If γ is a closed geodesic, we set |γ| = length(γ) It follows from an integration of the correponding term of Selberg's trace formula (cf [START_REF] Mc Kean | Selberg's Trace Formula as Applied to a Compact Riemann Surface[END_REF]) for to the heat kernel that: µptl, l homotopic to γuq " 

ż

FLAT CONNEXIONS AND HOLONOMIES

Given a compact Lie group G with Lie algebra g, a g-valued 1-form A inducing a flat connection, a formula can be given for the distribution of the loop holonomies. For a smooth path η indexed by r0, T s define X A η psq to be the solution of the differential equation: dX s " ApηpsqqX s . Given a unitary representation π of G, define a matrix-valued heat kernel p A,π t with entries in t1, 2, ... dimpπqu by rp A,π t px, yqs i j " ş prπpX A γ qs i j qP x,y t pdγq. The definition of the multiplicative integral X A γ on a non-smooth path could be given using Stratonovich integral but we can note instead that we can take X A γ " X A γ 1 if γ 1 is a smooth path close enough to γ,with time length T pγq " T pγ 1 q and the same endpoints. Indeed, a smooth loop which is not homotopic to zero has a minimum positive diameter and if the uniform distance between two smooth paths γ 1 and γ" is small enough, we can cut them into path segments of small diameter and join the extremities of these segments by geodesics to produce a chain of loops of null holonomy from which we can deduce that X A . See [START_REF] Le | Homology of Brownian loops[END_REF] for references and proof sktech in the Abelian case. The proof here is similar: ş T plq s χ π pH A plqq ´1qµpdlq is well defined and holomorphic as loops with non trivial holonomy have a minimal positive diameter, analytic continuation shows that the holomorphic functions ζ A,π psq ´ζpsq and 

γ 1 " 2 żχ π pgqdg ζ 1 AdimpπqΓpsq ż 8 0t

 1218 X A γ" . Then, if C m are disjoint central compact subsets of G, not containing the identity |tl P L, H A plq P C m u| are independent Poisson r.v. with expectations: µptl, H A plq P C m uq " ´ÿ πPR dimpπq Cm ,π p0q where dg denotes the normalised Haar measure on G, R the irreducible unitary representations, χ π pgq the normalized trace of πpgq, and ζ A,π the meromorphic extension of the zeta function defined for s ą n 2 by ζ A,π psq " 1 s´1 Trrp A,π t s dt

1

 1 ΓpsqşT plq s χ π pH A plqq ´1qµpdlq are equal. Thenş pχ π pH A plqq´1qµpdlq " π pH A plqq´1qµpdlq " ζ 1A,π p0q´ζ 1 p0q, as the reciprocal gamma function vanishes and has unit derivative in zero. Finally we conclude by Peter-Weyl theorem, noting that ř πPR dimpπq 2 ş C χ π pgqdg vanishes as C m does not contain the identity.
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If G is a d-regular graph, with C e " 1, κ constant, we see that