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The population decay of light-induced small polarons in iron-doped lithium niobate is simulated by a
Monte-Carlo method on the basis of Holstein's theory. The model considers randomwalks of both bound
polarons (NbLi4þ) and free polarons (NbNb4þ) ending to deep traps (FeLi3þ). The thermokinetic interplay be-
tween polaron species is introduced by trapping and de-trapping rates at niobium antisites (NbLi). The
decay of the NbLi

4þ population proceeds by three possible channels: direct trapping at FeLi
3þ sites, hopping

on niobium antisites and hopping on Nb regular sites after conversion to the free state. Up to three
regimes, each one reflecting the predominance of one of these processes, appear with different activation
energies in the Arrhenius plots of the decay time. The influence of FeLi and NbLi concentrations on the
transition temperatures is evidenced. For both polaron species, the length of the final hop (trapping
length) is found much larger than the usual hopping length and decreases at rising temperature. This
trap size effect is a natural consequence of Holstein's theory and may explain some unclear features of
polaron-related light-induced phenomena, such as the temperature-dependent stretching exponent of
light-induced absorption decays and the anomalous increase of the photoconductivity at high doping
levels.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Lithium niobate (LiNbO3, abbreviated LN) is extensively studied
since 40 years for its electro-optic, nonlinear and photorefractive
(PR) properties, which are involved in various applications in
coherent optics, telecommunications and data storage [1]. The
crystal in congruent composition (CLN) is Li-deficient ([Li]/
[Nb] ¼ 0.945) and contains a large amount of point defects: ac-
cording to the widely accepted charge compensation model [2],
1.1% of the Li sites are occupied by niobium ions (antisites NbLi) and
4.4% are vacant. These defects have a strong influence on the
physical properties. Namely, the PR effect, defined by a change of
the refractive index induced by a non-uniform illumination, is very
sensitive to the Li/Nb composition, and the role of niobium antisites
in the PR effect at high light intensities has been established [3]. At
low or moderate intensities, the PR effect is also sensitive to the
concentrations of deep traps such as Fe3þ or Cu2þ [3]. According to
usual models of photo-excitation [4,5], electrons extracted from
(I. Mhaouech).
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deep levels are injected into the conduction band, migrate at some
distance and are finally re-trapped at other locations, leaving
behind them the positive charges of ionized traps. A space charge
field arises from this new charge distribution and induces a
refractive index change through the electro-optic effect [6]. In iron-
doped LN (Fe:LN), since Fe2þ are strongly photogalvanic centers in
the blue-green range [4], the bulk photogalvanic current (Jpg) is
usually much larger than the diffusion current and is mainly
responsible for the PR effect. Moreover, empty traps (Fe3þ) kill the
photoconductivity (sph), leading to extremely large space charge
fields (Esc ¼ Jpg/sph > 105 V/m) and thus to large refractive index
changes [6].

On another hand, it is well established that light-induced elec-
trons in LN are trapped by Nb ions very quickly, and preferably by
NbLi antisites [7e10]. Therefore, light-induced phenomena in LN
should be better described within a polaron hopping model [11]
rather than usual band models [5,12]. Furthermore, since FeLi also
exhibits a large deformation change between its two charge states
[13], its contribution in the dark conductivity should better be
described also within the small polaron model. The absorption
bands of free polarons (NbNb4þ) and bound polarons (NbLi4þ) largely
differ from those of bipolarons (NbLi3þ) and FeLi2þ [14e17]. Therefore,
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the generation of free or bound polarons by light excitation induces
transient changes of the absorption spectrum, decaying as these
polarons are re-trapped by impurities or recombine into bipolar-
ons. Therefore, time-resolved light-induced absorption (LIA) gives
access to polaron relaxation dynamics. In Fe:LN, the LIA signal at
785 nm attributed to the bound polaron NbLi4þ has been found to
exhibit a stretched (multi-exponential) decay on time scales
ranging from nanoseconds (ns) to milliseconds [18e22]. The first
comprehensive LIA study in Fe:LN under ns pulses [20] has had a
major interest: it revealed the locality of the excitation process at
low pulse intensity, whereas strong pulses homogenize the polaron
distribution and erase the so-called site correlation effect (SCE),
thus increasing drastically the decay time. Though bound and free
polarons in LN are well characterized, and known to behave as
small polarons in the sense of founding theories [23e27], their
mobility ratio is unknown and their respective parts in light-
induced transport are still an open question; they should depend
on temperature and NbLi concentration but there is no model
involving both contributions in the photoconductivity up to now. In
congruent LN, the formation of bound polarons is obviously favored
owing to the large amount of NbLi but the way they relax back to
equilibrium is unclear. Several relaxation channels are possible and
an important issue is to determine in which situation one or
another predominates. If the deep trap concentration e say [Fe3þ]
e is high, one can think that direct trapping in a single hop from
NbLi to FeLi occurs, as assumed in Refs. [20]; in this case, the
stretched decay should reflect the statistical distribution r(r) of the
NbLieFeLi distances as well as the law t(r) of the trapping time. If
the deep trap concentration is low or moderate, bound polarons
can hop on the NbLi network until they recombine into bipolarons
[28] or find a deep trap; in this case the stretched decay reflects the
distribution of the NbLieNbLi distances as well as the law th(r) of the
hopping time, like shown in Ref. [29]. If NbLi also are scarce, a third
possible channel for NbLi4þ is to pass through the free state NbNb4þ, as
suggested in Ref. [22].

The present paper aims to put these three processes all together
in a general model and predict which one should predominate,
depending on temperature and trap concentrations. The model is
based on Holstein's small polaron theory [23] and Monte-Carlo
(MC) simulations. We focus on the case of iron-doped material
(Fe:LN) and consider that both species of electron single polarons
(bound and free) can be simultaneously present. Contrarily to
previous models [29,30], the present one considers not only the
hopping processes between equivalent sites (from NbNb to NbNb or
from NbLi to NbLi) and the final trapping process at a FeLi site, but
also the thermokinetic interplay between NbLi4þ and NbNb4þ, which
takes place through asymmetrical processes (trapping and de-
trapping) at NbLi defects. All these processes compete in the MC
loop and can occur a priori at any distance r e not only between
first neighbour sites. Their rates per unit time are supposed to
depend exponentially on r and 1/T. Our model thus aims to a larger
scope than previous ones involving only one polaron species and no
temperature dependence [29,30]; however, it neglects hole po-
larons, excitons and bipolarons, and does not simulate the photo-
excitation process itself. Therefore, our MC simulations can mimic
the relaxation after pulse excitation in Fe:LN materials of various
FeLi and NbLi concentrations provided that: (i) bipolaron formation
does not occur, (ii) the light-induced transfer from FeLi2þ to NbLi4þ is
the main excitation process, (iii) the site correlation effect (SCE)
addressed in Ref. [30] is excluded. The condition (i) is satisfied if the
Fe content is large enough to lock the Fermi level below the bipo-
laron level. The condition (ii) seems more or less fulfilled under ns
pulses, though electron-hole generation by two photon absorption,
which prevails under fs pulses of high peak intensity [8], can also
occur. Regarding the condition (iii), the pulse energy density must
be large enough to kick the polarons far away from Fe traps by
secondary excitations. The latter point will be re-addressed more
quantitatively in Section 5.
2. Theoretical backgrounds

We recall here some elements of small polaron theory, essen-
tially from early works of Holstein [23] and others [24,25]; see also
[26,27] and references therein. Assuming non adiabatic transfer of
the carrier from site to site, the hopping rate in Holstein's molecular
model [23] is given by

w ¼
� p

4kTU

�1=2J2
Z
exp

�
�U
kT

�
; (1)

where J is the transfer integral between initial and final sites, U the
hopping barrier, T the absolute temperature and k the Boltzmann
constant. The formula, established in the semi-classical limit for a
molecular chain, applies to a 3D crystal as well [27]. If the transport
network is aperiodic or if remote transfers are considered, J de-
pends on the distance r between sites. Neglecting orbital anisot-
ropy, we assume J(r) ¼ I exp(�r/2a) like in previous models
[29,31,32] and Eq. (1) takes the form

wðr; TÞ ¼ Z exp
�
� r
a
� U
kT

�
; (2)

where a is an orbital parameter connected to the localization radius
of the electron wave function. A trapping or de-trapping process
can be considered as an asymmetrical hopping process (Fig. 1);
More generally, the transfer rate between two sites (i, j), equivalent
or not, can be expressed by

wijðr; TÞ ¼ Zij exp

 
� r
aij
� Uij

kT

!
; (3)

with
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gij
2

 
p

4kTUij

!1=2
I2

Z
; (4)

Uij ¼
�
2Ei þWi �Wj

�2
4
�
Ei þ Ej

� : (5)

In these equations, the subscripts i and j refer to polaronic en-
ergy levels, Ei and Ej are polaron elastic energies, Wi and Wj the
binding energies at zero deformation; for Eq. (5) see Refs. [25,33]. In
Eq. (4), gij is a coordination number, i.e. the number of symmetry-
equivalent sites located at equal distance from the polaron (g ¼ 2
in Holstein's molecular chain). The three possible values of i and j
are 0, 1, 2; they correspond respectively to NbNb, NbLi, FeLi. For a hop
between energetically equivalent sites, one has Ei ¼ Ej,Wi ¼Wj and
Eq. (5) yields U ¼ E/2, the non-adiabatic hopping barrier.

Within usual approximations (harmonic deformation, linear
coupling) the total enthalpy of a bound polaron below the reference
state of Fig. 1 amounts to E e (2E þ W) ≡ eH, thus H ¼ E þ W. By
definition, H is larger on a trapping site (say j) than it is on a hop-
ping site (i < j), implying Ej > Ei and/or Wj > Wi. It follows that, in
most cases, Eq. (5) gives Uij < Uii < Uji for i < j (see Fig. 1). Note that
Eqs. (3)e(5) respect the equality (Uji e Uij) ¼ (Hj e Hi) ≡ DH and the
detailed equilibrium, wji/wij f exp�(�DH/kT).

The validity of Eqs. (1)e(3) is restricted to non-adiabatic trans-
fers [23] according to the criterion:
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J2 < Zu0ðkTUÞ1=2: (6)

In LN the phonon energy ħu0 of the LOmode involved in polaron
formation is ~0.1 eV, the elastic energy E z 2U is estimated
to ~ 0.6 eV for both species [17], and the transfer energy between
Nb ions in first neighbour positions (d0 ¼ 3.765 Å) is J0 ~ 35 meV
[34,35]. It follows that Eq. (6) is satisfied at room temperature and
still far below, for free polarons hopping on the Nb sublattice, and a
fortiori for bound polarons hopping on the NbLi network at larger
distances (r ~ 3d0 or more), with J(r) << J0. It should be stressed that
U increases with r at short distance then reaches its limit value (~E/
2) at about twice the polaron radius [27]. Since LN polarons are
small, U is virtually independent of r, even for free polaron hopping;
experimental data also confirm that the activation energy of the
dark conductivity in antisite-free material (Mg:LN, Zn:LN) is
0.25e0.29 eV z E0/2 [16,17].

In our study, the addressed issue is the relaxation kinetics of
NbLi4þ (state 1) after optical de-trapping from FeLi (state 2). Up to six
transfer processes are considered (Table 1). Thermal de-trapping
(2 / 1) and hopping on the FeLi network (242) are excluded
because these processes e elsewhere involved in dark conduction
e have no effect on the relaxation kinetics. Free polaron formation
(1/ 0) (so-called conversion in the present work) and free polaron
hopping (0 / 0) can be neglected or not, depending on tempera-
ture. If they are, only the first two processes of Table 1 are simu-
lated, like in Refs. [29]; if not, all the six are considered. The values
of the energy barriers Uij taken for the simulations (last column of
Table 1) are derived from Eq. (5) with the data of Ref. [17]. The gij are
equal to 1 except g00 ¼ 6 (coordination of the Nb lattice). By seek of
simplicity, the five parameters a00, a01, a11, a02 and a12 are assumed
all equal (≡ a). It is worth stressing that the difference dW ≡ (Wi e

Wj) involved in the hopping barriers, Eq. (5), can be disturbed by
the electrical potentials created by other defects of the neigh-
bourhood; therefore, one can have dW s 0 even for equivalent
sites, but we disregard these random potentials in the present
work.
Table 1
Polaron transfers in Fe:LiNbO3. The barriers Uij are calculated by Eq. (5)
W1 ¼ 0.53 eV, E0 ¼ 0.545 eV, W0 ¼ 0).

Process Fu

Nb4þLi þ Fe3þLi �����!w12 Nb5þLi þ Fe2þLi
Bo

Nb4þLi þ Nb5þLi ����! ����w11 Nb5þLi þ Nb4þLi
Bo

Nb4þLi þ Nb5þNb�����!w10 Nb5þLi þ Nb4þNb
Po

Nb4þNb þ Nb5þNb����! ����w00 Nb5þNb þ Nb4þNb
Fre

Nb4þNb þ Nb5þLi �����!w01 Nb5þNb þ Nb4þLi
Fre

Nb4þNb þ Fe3þLi �����!w02 Nb5þNb þ Fe2þLi
Fre
3. Simulation methods

First we described the simple MC method used when free
polaron transport is neglected. A cubic lattice of L3 unit cells is
considered. The coordinates (xk, yk, zk) of n1 hopping sites (NbLi5þ)
and n2 trapping sites (FeLi3þ) are randomized in the integer range
[1...L]. The corresponding concentrations are N1 ¼ n1/L3, N2 ¼ n2/L3.
Each hopping site is connected in the MC box to a given number of
neighbour sites (NbLi5þ and FeLi3þ). Periodic boundary conditions are
used, i.e., each difference (xk e xl) is evaluated modulo L for the
calculations of the mutual distances rkl in atomic units (a.u.). Both
rates w11 (hopping) and w12 (trapping) are assumed to decrease
exponentially with rkl and 1/T according to Eq. (3). The MC simu-
lation proceeds as follows:

1. The polaron is initially set at time t ¼ 0 on a NbLi site k chosen at
random.

2. Hopping rates w11(rkl) and trapping rates w12(rkl) to close
neighbour defects are evaluated by Eq. (3), then the sum S of all
of them.

3. The time t is incremented by dt ¼ jln qj/S, with q randomized in
the range ]0...1[, so that dt averages statistically to 1/S, the mean
waiting time on site k.

4. A dice roll decides the fate of the polaron (hopping or trapping),
with the dice faces sized according to the respective probabili-
ties wij(rkl)/S.

5. If hopping occurs, the polaron is moved to the elected site and
the loop restarts from step 2; if trapping occurs, the loop ends
and three quantities are memorized: the lifetime tP of the
polaron, the number n11 of hops from birth to death (excluding
the final one) and the length l12 of the final hop.

The box size L is usually fixed to 21 a.u., the number n1 of
hopping sites (NbLi5þ) to 100, and the number n2 of trapping sites
(FeLi3þ) to 5 or 15; this corresponds to Fe:CLN with a Fe doping level
of 1 � 1019 or 3 � 1019 cm�3, respectively. At step 2, it is enough to
with the data of Ref. [17] (E2 ¼ 0.70 eV, W2 ¼ 1.22 eV, E1 ¼ 0.58 eV,

ll name Uij (meV)

und polaron trapping U12 ¼ 43

und polaron hopping U11 ¼ 290

laron conversion U10 ¼ 635

e polaron hopping U00 ¼ 272

e polaron bounding U01 ¼ 70

e polaron trapping U02 ¼ 3
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consider 5 hopping sites (NbLi5þ) and 5 trapping sites (FeLi3þ) in the
neighbourhood; we checked that remote transfers to farther sites
are improbable and bring insignificant changes to the results.

Step 1 implies that the starting point has no connection to any
trap; the site correlation effect (SCE) is thus disregarded. It has been
reported that the SCE exists in Fe:LN at low power densities but
vanishes above [20,21]. Our simulations do not aim to mimic this
de-correlation but to account for the high power limit of LIA ex-
periments. In this case, virtually all the Fe2þ ions are ionized, the
relevant trap concentration is thus the total Fe content, and the
positions of the polarons NbLi4þ just after the pulse are random, just
like in our simulations.

Free polaron transport is accounted for in theMC loop by adding
the possibility for the bound polaron to get free. Thus, at step 2, we
consider a conversion box centred on the NbLi defect. This box as-
similates the Nb sublattice to cubic and its size Lc is fixed to 15 a.u.,
i.e. the three coordinates (x,y,z) of the conversion site r can vary
from �7 to þ7 a.u. This procedure amounts to add 3374 (¼153e1)
faces to the MC dice, each one sized proportionally to the conver-
sion rate w10(r). If conversion occurs at step 4 of the primary loop,
then a subroutine is launched, within which the free polaronwalks
away from the conversion site (x,y,z) by randomly incrementing or
decrementing x, y or z, until the free polaron is trapped by a defect
(NbLi or FeLi). The dice of the free polaron subroutine has got 11
faces: one of size w00 for hopping, 5 of sizes w01(ri) for trapping by
one of the 5 closest NbLi neighbours, 5 of sizes w02(rj) for trapping
by one of the 5 closest FeLi neighbours. Once again, it is checked that
adding more faces to this dice or enlarging the conversion box do
not change the results significantly. Most often the subroutine leads
to a quick re-trapping of the free polaron at the origin (the NbLi
from which conversion occurred). In this case the conversion pro-
cess is said inefficient and the primary loop restarts from the pre-
vious point. If the subroutine ends on another NbLi, the conversion
process is said efficient and the primary loop restarts from there. If
the subroutine ends on a FeLi, the primary loop also stops. At the
very end, the number n10 of efficient conversion processes is
memorized.

We test the influence of free polaron transport on bound
polaron relaxation by performing some simulations with the con-
version process and some others without. This is done in the same
conditions at various temperatures. The loop is repeated 5000
times, renewing the site distribution each time. The survival
probability f(t) of the bound polaron is thus obtained with a reso-
lution of 1/5000 ¼ 2 � 10�4. It can be fitted by a Kohlrausch
function, fK(t) ¼ A exp[-(t/tK)b], as often done in experimental
works [20,22]. Typical relaxations are shown in Fig. 2. All the
memorized quantities are averaged over the 5000 runs. These av-
erages are quoted between angular brackets in what follows.

4. Results and discussion

First we test the influence of the poorly-known parameter a.
Since the transfer integral between Nb ions at the interatomic
distance d0¼ 3.765 Å is supposed to be J0¼ I exp(�d0/2a)¼ 35meV
[34], we adjust the factors I and Zij (proportional to I2) as function of
a. We find that the bound polaron lifetime decreases by one order
of magnitude with a growing from 0.9 to 1.1 Å. With respect to
experimental data of tP reported for Fe:CLN at 293 K [20,21], a fairly
consistent value is a z 1 Å. We thus keep it for our simulations
throughout the paper. Note that the stretching of the decay, usually
reflected by the b exponent of the Kohlrausch fit, is also strongly
influenced by a [29].

Now we focus on the temperature dependences of the average
number of hops <n11> (Fig. 3) and the average polaron lifetime
<tP> (Fig. 4). If conversion to the free polaron state is switched off
in the MC loop, two regimes are obtained. At low temperature (T),
<n11> tends to 0: polaron relaxation thus consists in a single hop
1 / 2 to a Fe trap and the activation energy Ea of <tP> in Fig. 4a is
small (0.03 eV), zU12 (0.04 eV). This is the so-called trapping (or
single-hopping) regime. Above a given temperature Th, <n11> and Ea
increase (the latter tending to ~ 0.2 eV at high T): this is the hopping
regime. One finds Ea < U11, activation energy of the hopping time
(0.29 eV), because <n11> increases with T. When the conversion
process is switched on, a third regime appears at high T (>Tc), with
Ea z 0.65 eVz U10 (conversion barrier). In this new regime, <n11>
decreases sharply as soon as <n10> (mean number of efficient
conversions) increases (Fig. 3). For experimental reasons, it seems
convenient to define Th (Tc respectively) as the temperature at
which the average lifetime is half the extrapolated value obtained
with the Arrhenius slope of the low (respectively high) temperature
regime. Note that Th increases with the Fe concentration (Fig. 4)
whereas Tc increases with the antisite concentration (see inset of
Fig. 5). With the data of Ref. [17], we find that Tc goes down from
~600 K to ~ 400 K when the NbLi concentration decreases from
3 � 1020 cm�3 to 1020 cm�3. In the latter case - and a fortiori for
weaker antisite concentrations e the hopping regime with activa-
tion energy ~0.2 eV becomes hardly visible on the Arrhenius plot of
the polaron lifetime (Fig. 5). Our results thus explain why very
different values, ranging from 0.15 to 0.62 eV, have been reported
for the activation energy of the LIA decay time in Fe:LN for various
Nb/Li ratios and Fe concentrations [20,21]. It is worth stressing that
in real crystals with some disordered potentials, the activation
energies would be slightly different than those obtained here [36],
and probably the transition temperatures as well.

The T-dependence of the b exponent is another important
finding. Fig. 4b shows a drastic increase of b through the gradual
transitions from trapping to hopping then from hopping to con-
version. This tendency, experimentally evidenced in Refs. [20], has
not been fully explained. The statistical disorder of the hopping
barriers was proposed as a possible origin of the phenomenon [29].
Our results suggest an alternative explanation. In the trapping
regime, b is a constant which depends only on the statistical dis-
tribution of the distances to the nearest trap. Note that this low-T
limit of b is only indicative because the KWW fit is usually coarse in
the trapping regime. Then, in the hopping regime, b(T) increases,
even though the conversion process is not activated (open symbols
with dash lines in Fig. 4b), because the lengthening of the random
walks (evidenced in Fig. 3a) tends to re-equilibrate the lifetimes.
Without the conversion process, the limit of b at T / ∞ would be
the value reported in Ref. [29] and determined only by the
dimensionless parameters N1a

3 and N2/N1. When the conversion
process is switched on (solid symbols with solid lines in Fig. 4b),
b(T) increases much more steeply and its high-T limit becomes very
large (~1). This is because the diffusion is boosted by free polaron
transport, making the NbLi4þ population decay less sensitive to the
randomness of the NbLi network; namely, conversion to the free
state helps the bound polaron to escape from dead-end paths
ending on isolated antisites. This is also the reasonwhy <n11> finds
a maximum then decreases sharply at rising T (Fig. 3a). Note that
b(T) in Fig. 4b shows the same tendency as in Ref. [20] but does not
fit exactly the experimental plot reported therein; the discrepancy
may come from the fact that we did not consider random potentials
in our simulations, or from our assumption on the orbital param-
eters, aij ≡ a¼ 1 Å. Though acceptable in a first step, this assumption
could be refined in the future: since the Jij transfer integrals link not
only Nb orbitals together but also Fe orbitals to Nb orbitals, one
rather expects a00z a01z a11s a02z a12. However the goal of the
paper is not to identify accurately these aij but to show how the
relaxation kinetics changes when several processes compete.

It should be stressed that the onset of polaron conversion to free



Fig. 2. Typical decays of the bound polaron population obtained by MC simulations (symbols) then fitted by KWW functions (dash lines). Free polaron transport is neglected here.
The time unit th is the hopping time at the distance lh ¼ (2pN1)�1/3 (most probable distance between neighbour antisites).

Fig. 3. Mean numbers of hops (a) and conversions (b) of the bound polaron on its
random walk until trapping. Open symbols in Fig. 3a are the results obtained with the
conversion to free polaron switched off in the MC loop.

Fig. 4. Bound polaron lifetime (a) and stretching exponent (b), with and without the
conversion process (solid and open symbols respectively). The KWW fit is made on the
5000 points of each MC decay. The NbLi concentration is 2 � 1020 cm�3 (CLN case).
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state (Figs. 4a and 5) does not mean that most of bound polarons
turn into free ones. The lifetime of the free polaron is always very
short compared to the waiting time on the antisite before conver-
sion. Correlatively, the equilibrium population ratio of free polarons
versus bound polarons, NF/NP z (N0/N1) exp�(�DH/kT), is always
very small (<2 � 10�3 at 600 K with the data of Table 1). Obviously,
free polarons boost the transport above Tc, even though they are
very few, because they aremuchmoremobile than bound polarons.

It is also worth commenting on the T-dependence of the mean
trapping lengths <l01>, <l02>, <l12> (Fig. 6). The latter (trapping
length of the bound polaron by FeLi3þ) is recorded during the MC
loop described in the first part of section 3 (conversion off). The
former two (trapping lengths of the free polaron by NbLi5þ and FeLi3þ

respectively) are obtained after 5000 runs of a quick loop simu-
lating the walk of a free polaron among one trap species only
(either NbLi5þ or FeLi3þ). All these trapping lengths increase almost
linearly with T�1 at high T then reach a limit at low T. Therefore, it is
clear that polaron traps have an effective spatial extension,
decreasing at rising T. This important result can be interpreted by
estimating at which distance dij a polaron on a site i gets equal
chances to be trapped by j or to escape on another equivalent site i0

located at a typical hopping distance di, proportional toNi
�1/3. At the



Fig. 5. Bound polaron lifetime in Fe:LN of various Li contents ranging from nearly
stoichiometric to sub-congruent. The Fe concentration is fixed here to 2 � 1019 cm�3.

Fig. 6. Mean trapping lengths <lij> for various concentrations of Fe3þ traps (j ¼ 2) and
NbLi5þ traps (j ¼ 1). Subscript i refers to the carrier (0 for free polaron, 1 for bound
polaron). Conversion is switched-off to determine <l12>. The asymptotic limits (dash
lines) are the trapping distances dij(T) given by Eq. (7) for high temperatures and the
mean distances dj to the nearest trap in the cubic structure for low temperatures.
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distance dij, the trapping rate to an isolated trap would be
approximately equal to the hopping rate wii(di). More precisely, the
site i' has got nearly equal chances to be at a smaller or larger
distance di'j from the trap, and most probably the polaron will
escape only in the latter case but be trapped in the former case. It
follows that wij(dij) z wii(di)/2, from which one readily finds:

dijðTÞzdi þ a ln
�
2Zij
Zii

�
þ a

Uii � Uij

kT
(7)

In the second member of Eq. (7), the first term di is the hopping
distance; for free polarons, it equals the Nb-Nb distance
(d0 ¼ 3.765 Å), and for bound polarons the mean distance to the
nearest NbLi site (d1 ¼ 9.5 Å in CLN). The second term is ordinary
small but the third one (>0) becomes large at low T. The distance dij
given by Eq. (7) can be seen as the radius of a trapping sphere
surrounding each trap and shrinking at rising T. This so-called trap
size effect (TSE) is shown in Fig. 8. Obviously, the mean trapping
length <lij> estimated by MC simulations can be close to the ex-
pected value dij only for isolated traps (far away from each other);
therefore dij(T) is an asymptotic limit for <lij> at high T, as can be
seen in Fig. 6 for <l01> and <l02>. The case of <l12> is slightly
different. If the conversion process is switched off in MC simula-
tions, the Fe trap size actually shrinks like a(U11 e U12)/kT and tends
typically to the mean hopping distance d1 for T/∞, as shown by a
linear extrapolation in Fig. 6; however, conversion settles at a finite
Tc, above which the transport cannot be described in terms of
bound polaron hopping anymore, since free polaron transport be-
comes predominant. When conversion is efficient (thus above Tc)
the trapping length <l12> shrinks more quickly than below Tc,
typically like a(U10 e U12)/kT, as shown in Fig. 7.

For free polarons, according to our MC simulations, Fe3þ has a
trapping radius bigger than that of NbLi5þ. This is a consequence of a
smaller trapping barrier, U02 < U01 (Table 1). With a ¼ 1 Å and the
data of Ref. [17], Eq. (7) gives d01 z 11 Å and d02 z 15 Å at 293 K.
The efficient conversion length <l10>, elsewhere estimated through
the full MC loop, is found much larger than d0 (interatomic dis-
tance), except at T/∞. It means that electronic transfers fromNbLi
to a first neighbour Nb site are inefficient because the newborn free
polaron is immediately re-trapped by the antisite. Only remote
conversions are efficient, and the average distance <l10> at which
they occur is found equal to <l01>, as expected by virtue of the
detailed equilibrium.

The increase of <lij> with T�1 is no longer linear when the
trapping regime settles, that is, when the trapping spheres begin to
overlap (Fig. 8c). In this regime <lij> tends to a low-T limit equal to
the mean distance to the nearest trap, dj z (2pNj)�1/3, as it can be
checked in Fig. 6.
5. Conclusion

A first important result of this work is that the lifetime of bound
polarons among deep traps cannot follow a single Arrhenius law. As
a rule, when the simulation takes account of all possible processes
on the basis of Holstein's model, several regimes are observed.
Direct trapping predominates at low temperature, then a multi-
hopping regime settles upon heating. The activation energies of
these two regimes are very different and slightly lower than the
corresponding barriers. At high temperature, a third regime ap-
pears, within which polarons diffuse in the free state more effi-
ciently than by hopping on shallow traps. This so-called conversion
regime settles at a lower temperature if the shallow trap concen-
tration is smaller. Fig. 9 schematically recapitulates the three re-
gimes versus temperature and shows how their transitions are
influenced by the trap concentrations. When Tc and Th are not very
different, like in the case of iron-doped nearly stoichiometric LN
(Fe:NSLN), the hopping regime can virtually disappear and the
activation energy of the bound polaron lifetime is expected much



Fig. 7. Mean trapping lengths <l12>with and without the conversion of bound polaron
to free polaron. The Fe concentration is fixed to 1 � 1019 cm�3.
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higher than in the CLN case. This was clearly evidenced by LIA
experiments, e.g. Ea ~0.62 eV in Fe:NSLN (49.6% mol Li) instead of
Ea < 0.3 eV in Fe:CLN [20].

This work also brings a new explanation for the T-dependence of
the stretching exponent. The previous interpretation based on
disorder [29] would be probably valid if the relaxing particles were
electrons with no (or weak) polaronic character, hopping across
random potentials V of large standard deviation dV, like e.g. elec-
trons hopping on shallow traps in silicon at low temperature [31].
In this case, there would be no difference between hopping and
trapping barriers, and the trapping sites would have no sizeable
Fig. 8. Trap size effect versus temperature. Small dotted circles (brown in colour version)
circles are trapping spheres of radius d12 surrounding FeLi traps (blue squares). Random wal
hop when the trapping spheres overlap. At high doping level, overlapping facilitates efficien
ones (red arrow in Fig. 8b). (For interpretation of the references to colour in this figure leg

Fig. 9. Diagram showing the sequence of pola
extension in the network, like assumed in Ref. [29]. The case of
small polarons in LN is different: the strong electron-phonon
coupling induces large differences between hopping and trapping
barriers, (Uii e Uij) ≡ dUij >> dV. A trap size effect (TSE), that is, a T-
dependent trapping radius, is thus predicted according to Eq. (7).
This TSE, clearly evidenced in Figs. 6e7 and schematically illus-
trated in Fig. 8, appears as a direct consequence of dUij and is thus a
general property of polaron traps. As soon as dUij > dV, the TSE is
probably the major effect (versus disorder) and should play the
leading role in T-dependent phenomena related to polaron
transport.

Furthermore, the TSE helps to describe clearly the SCE. The de-
correlation threshold reported in Ref. [21] (~160 MW/cm2) corre-
sponds to a photonic density of 1018 photons/cm2 per pulse, ~4/SP
(with SP the absorption cross section of NbLi4þ). It means that most of
the bound polarons are kicked away from their starting Fe site
when each of them has been hit by 4 photons (in average) during
the pulse. For lower photonic densities, some polarons stay inside
the trapping sphere of their Fe site and are most often re-trapped in
a single hop, even from distances as large as d12 (~20 Å in CLN at
293 K), thus much farther than the nearest NbLi neighbour. Wemay
thus predict that in the SCE regime, the activation energy of the
polaron lifetime should go down to U12 ~ 0.04 eV, like in the
trapping regime.

The scope of the TSE spreads far beyond light-induced absorp-
tion and may also explain several unclear features of other light-
induced effects versus temperature, antisite concentration and
deep trap concentration. Namely, the big trapping radii estimated
for Fe3þ in this work could be responsible for the weak photocon-
ductivity of Fe:CLN, for its non-Arrhenius dependence and for its
anomalous behaviour at high doping levels [37]. The latter feature
can be explained by the overlapping of the trapping spheres, which
facilitates light-induced transfers from Fe2þ to Fe3þ (Fig. 8c) instead
are trapping spheres of radius d01 surrounding NbLi traps (brown dots), dashed (blue)
ks (dotted arrows) shorten at decreasing temperature until they are reduced to a single
t light-induced transfers Fe2þ/ NbLi5þ/ Fe3þ (blue arrow in Fig. 8c) versus inefficient
end, the reader is referred to the web version of this article.)

ron decay regimes at rising temperature.
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of direct re-trapping of the polaron by the Fe ion (Fig. 8b).
However, the estimates given in this paper must be refined.

Some polaron data used to calculate the barriers Uij are still un-
certain (see Appendix) and the orbital parameters aij are also poorly
known. Detailed comparisons of MC predictions to experimental
LIA data should permit one to extract some missing parameters.
Unfortunately, LIA data versus temperature in Fe:LN are still
insufficient and limited to narrow T-ranges. Namely, new LIA ex-
periments in Fe:CLN below 200 K are necessary to check whether
the activation energy of the polaron lifetime <tP> becomes small
and the stretching exponent b tends to a low limit, possibly giving
access to a12. On another hand, in the hopping regime, the T-de-
pendences of both <tP> and b should give access to refined values
of both U11 (zE1/2) and a11, whereas the activation energy of <tP>
in NSLN at high temperature should permit one to refine U10, the
conversion barrier. The model presented in this paper and the so-
called trap size effect evidenced by the simulations can serve as a
solid basis to better explain the light-induced properties of LiNbO3,
not only light-induced absorption at micro or nanosecond scale, but
also photoconduction and photorefractive effects, under pulse
excitation or constant wave as well.

Acknowledgements

The authors are grateful to Region Lorraine for financial support
of their research works and would like to thank Prof. G. Mon-
temezzani (University of Lorraine) and Dr. M. Bazzan (University of
Padova) for useful discussions and critical reading.

Appendix. Polaron energies

The elastic energy E of a small polaron is experimentally
accessible, either from the activation energy of the electrical con-
ductivity (U ¼ E/2 in non adiabatic regime) or from spectroscopic
data [17]. For a bound polaron, there is a binding energyW, which is
the additional potential energy of the carrier localized on the
defective site at null deformation.Within the simple polaronmodel
assuming harmonic deformation and linear coupling, that is, the
elastic energy E proportional to Q2 (square of the deformation) and
the electronic energy shift Eelec (gained in the deformation) pro-
portional to Q, one finds Eelec ¼ �2E in the equilibrium state, the
optical absorption band peaks at M ¼ (W þ 2E) and its width is
proportional to (Eħu0)1/2. It follows that both E and W can be
deduced from the polaron absorption spectrum, if the phonon
energy ħu0 of the LO mode involved in the deformation is known.
Assuming ħu0 ¼ 0.10 eV (typical value for oxides), Schirmer et al.
[17] estimated in this way the polaron energies in LiNbO3:

NbNb4þ: M0 ¼ 1.09 eV, E0 ¼ 0.54 eV (since W0 ¼ 0)
NbLi4þ: M1 ¼ 1.69 eV, E1 ¼ 0.58 eV, W1 ¼ 0.53 eV
FeLi2þ: M2 ¼ 2.62 eV, E2 ¼ 0.70 eV, W2 ¼ 1.22 eV

Putting these data in Eq. (5), one finds the values of Table 1 for
the barriers Uij used in the present work. The value ħu0 ¼ 0.1 eV is
consistent with the breathing mode of the O6 octahedron around
Nb ions, and E0 z 0.5 eV is redundantly confirmed by experimental
data; see Ref. [17] and references therein. However, the phonon
energy ħu1 of NbLi4þmay be lower than 0.1 eV because the distortion
around the antisite probably involves also the stretching of the
cationic bond Nb-Nb along the polar axis [38], which is much softer
than the O6 breathing mode. Revising ħu1 implies to revise both E1
and W1, as well as the difference dU12 ¼ U11 e U12), which de-
termines the effective trap size of Fe3þ and thus the extrinsic light-
induced properties of Fe:LN. Moreover, ħu1 influences also the
conversion barrier U10, thus the conversion temperature and the
intrinsic properties of Li-deficient LN. In the extreme case, if one
setsW1 ~ 0 (virtually no attractive potential on NbLi), one would get
ħu1 ¼ 70 meV, U11 ¼ 0.41 eV, U01 ¼ 0.2 eV (instead of 0.07 eV),
dU12 ¼ 0.37 eV (instead of 0.25 eV). On the other hand, ab initio
calculations [38] suggest that the linear approximation (Eelec f �Q)
is rough for NbLi4þ. The phonon energy of the deep polaron FeLi2þ also
may differ more or less from 0.1 eV and affect both U12 and U02. It is
thus essential to investigate more accurately the structures of
bound polarons in LN and refine their energies.
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