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Abstract
We consider the problem of belief propagation in a
network of communicating agents, modeled in the
recently introduced Belief Revision Game (BRG)
framework. In this setting, each agent expresses
her belief through a propositional formula and re-
vises her own belief at each step by considering the
beliefs of her acquaintances, using belief change
tools. In this paper, we investigate the extent to
which BRGs satisfy some monotonicity properties,
i.e., whether promoting some desired piece of be-
lief to a given set of agents is actually always use-
ful for making it accepted by all of them. We for-
mally capture such a concept of promotion by a
new family of belief change operators. We show
that some basic monotonicity properties are not sa-
tisfied by BRGs in general, even when the agents
merging-based revision policies are fully rational
(in the AGM sense). We also identify some classes
where they hold.

1 Introduction
We are interested in the issue of monotonicity in a multi-
agent system, represented as a Belief Revision Game (BRG)
[Schwind et al., 2015]. The BRG setting is a framework
for modeling the belief dynamics of a group of agents V ,
for instance agents involved in a social network. A BRG
is a dynamical system where agents have their own belief
bases (representing their belief states), and communicate syn-
chronously with their acquaintances. The acquaintance re-
lationship is given through a binary relation A over V , i.e.,
(V,A) is a graph. Let us introduce a motivating example:

Example 1. Consider a group of friends Alex, Beth and Chris
who are discussing on whether they should trust the quality
of the food served in a given restaurant. Alex and Beth know
each other, Alex and Chris as well, but Beth and Chris do
not know each other. Two meals are considered by them. At

the beginning, Alex believes that either the first meal or the
second one is healthy, but not both of them; Beth believes
that none of the two meals is healthy; whereas Chris believes
that at least one of the two meals is healthy.

At each communication step, each agent revises her be-
liefs by considering the beliefs of her acquaintances. Several
merging-based revision policies have been defined, each of
them reflecting how much an agent is ready to question her
current beliefs in front of the beliefs of her acquaintances.
Then a piece of belief ϕ is accepted by an agent i of V when
there exists a step of the game from which ϕ holds in the be-
lief bases of i at each subsequent step; and ϕ is unanimously
accepted when it is accepted by every agent of V .

Now, given a piece of belief ϕ, is adding “more ϕ” in a
BRG always beneficial to ϕ? More precisely, whenever a
piece of belief ϕ is unanimously accepted in a BRG, is it al-
ways harmless to replace at the beginning some bases by ϕ, or
more generally, by a base that is “closer” to ϕ, i.e., by a “pro-
motion” of ϕ? This monotonicity condition is essential when
one wants to investigate the potential manipulation of such
sytems, in particular the control issue: consider a set of agents
from a predefined subset C of V and an additional agent M
who can “control” the agents from C, i.e., M can modify the
initial beliefs of agents from C, then is it possible for M to
make a piece of belief unanimously accepted? Such a control
issue is significant for a number of multi-agent problems, in-
cluding brand crisis management [Dawar and Pillutla, 2000];
in such applications, it is useful to know what information
agents from C should convey to their acquaintances in order
to avoid the propagation of negative perceptions.

In the next section we provide some preliminaries on
BRGs. We then define and investigate in Section 3 the no-
tion of promoting a formula ϕ in a belief base, and show that
many rational change operators (including revision and con-
traction operators) can be used for the promotion purpose. We
then formalize in Section 4 the monotonicity property based
on promotion operators and show that this condition is not al-
ways satisfied by BRGs. As a consequence, replacing some
agents’ initial beliefs by a belief ϕ is not always the best way



to make ϕ unanimously accepted. In Section 5 we show that
the monotonicity property holds for BRGs based on the com-
plete graph topology, focusing on revision policies relying on
the merging operator based on a specific merging operator.
We discuss some related work in Section 6 before conclud-
ing. For space reasons, proofs are omitted but can be found
online at http://www.cril.fr/marquis/ ijcai16-long.pdf .

2 Belief Revision Games
Let LP be a propositional language built up from a finite set
of propositional variables P and the usual connectives, in-
cluding ⊕, the xor connective. ⊥ (resp. >) is the Boolean
constant always false (resp. true). Formulae are interpreted
in a standard way. Mod(ϕ) denotes the set of models of the
formula ϕ, |= denotes logical entailment and ≡ logical equi-
valence, i.e., ϕ |= ψ iff Mod(ϕ) ⊆ Mod(ψ) and ϕ ≡ ψ
iff Mod(ϕ) = Mod(ψ). A belief base B denotes the set of
beliefs of an agent, it is a finite set of propositional formu-
lae interpreted conjunctively, so that B is identified with the
conjunction of its elements. A profile C = 〈B1, . . . , Bn〉 is a
finite vector of belief bases. A Belief Revision Game (BRG
for short) is formalized as follows [Schwind et al., 2015]:

Definition 1 (Belief Revision Game). A Belief Revision
Game (BRG) is a tuple G = (V,A,LP ,B,R) where

• V = {1, . . . , n} is a finite set of agents;

• A ⊆ V × V is an irreflexive binary relation on V which
represents the set of acquaintances between the agents;

• LP is a finite propositional language;

• B is a mapping from V to LP where for each i ∈ V ,
B(i) (noted Bi) is the initial belief base of agent i;

• R = {R1, . . . , Rn}, where eachRi is the revision policy
of agent i, i.e., a mapping from LP×LP in(i) to LP with
in(i) = |{j | (j, i) ∈ A}| the in-degree of i, such that if
in(i) = 0, then Ri is the identity function.

Let G = (V,A,LP ,B,R) be a BRG and let us denote Ci
the context of i, defined as the profile Ci = 〈Bi1 , . . . , Biin(i)

〉
where {i1, . . . , iin(i)} = {ij | (ij , i) ∈ A}. Then Ri(Bi, Ci)
is the belief base of agent i once revised by taking into ac-
count her own current beliefs Bi and her current context Ci.

In a BRG, the beliefs of each agent evolve at each time
step using her revision policy. This induces for each i ∈ V a
belief sequence (Bsi )s∈N where Bsi denotes the belief base of
agent i after s steps, defined as B0

i = Bi and for each s ≥ 0,
Bs+1
i = Ri(B

s
i , Csi ),1 where Csi is the context of i at step s.

Schwind et al. [2015] showed that in any BRG, the belief se-
quence of each agent i is cyclic, i.e., in (Bsi )s∈N there exists a
finite subsequence Bbi , . . . , B

e
i such that for every j > e, we

have Bjj ≡ B
b+((j−b)mod(e−b+1))
i ; the belief cycle Cyc(i) of

an agent i corresponds to the series of this subsequence of be-
lief bases Cyc(i) = Bbi , B

b+1
i , . . . , Bei . As we are interested

in determining the pieces of beliefs resulting from the inte-
raction of the agents, we focus on the outcome of each agent

1Abusing notations, a context Ci = 〈Bi1 , . . . , Biin(i)
〉 is here

identified with the sequence Bi1 , . . . , Biin(i)
.

i in G, denoted AccG(i) and defined as:

AccG(i) =
∨
{Bsi | Bsi ∈ Cyc(i)}.

We say that a formulaϕ is accepted by i inG ifAccG(i) |= ϕ,
which means that ϕ is a logical consequence of every belief
base in the belief cycle of i. G converges at step s if for each
i ∈ V , Bs+1

i = Bsi .
The formalization of a BRG allows each agent i to consider

any revision policy Ri ∈ R. However, one can take advan-
tage of theoretical tools from Belief Change Theory (see e.g.
[Alchourrón et al., 1985]), more precisely, belief revision and
merging operators. A merging operator ∆ associates any for-
mula µ (the integrity constraint) and any profile C with a new
formula ∆µ(C) (the merged base). A merging operator ∆
aims at defining the merged base as the beliefs of a group of
agents represented by the profile, under some integrity con-
straint. Standard properties (denoted (IC0)–(IC8)) are ex-
pected for merging operators, and such operators are called
IC merging operators (see [Konieczny and Pino Pérez, 2002]
for details on these properties).

IC merging operators include some distance-based ope-
rators, i.e., operators that are based on the selection of
some models of the integrity constraint, the “closest” ones
to the given profile. These operators are characterized
by a distance d between interpretations and an aggrega-
tion function f [Konieczny et al., 2004]. They associate
with every formula µ and every profile C a belief base
∆d,f
µ (C) satisfying Mod(∆d,f

µ (C)) = min(Mod(µ),≤d,fC ),
where ≤d,fC is the total preorder over interpretations induced
by C defined by ω ≤d,fC ω′ if and only if df (ω, C) ≤
df (ω′, C), where df (ω, C) = fB∈C{d(ω,B)} and d(ω,B) =
minω′|=B d(ω, ω′). Usual distances are dD, the drastic dis-
tance (dD(ω, ω′) = 0 if ω = ω′ and 1 otherwise), and dH
the Hamming distance (dH(ω, ω′) = n if ω and ω′ dif-
fer on n variables). Using aggregation functions such as
Σ and GMax lead to IC merging operators. For instance,
GMax operators consider for each profile C the total pre-
order over interpretations ≤d,GMax

C defined by ω ≤d,GMax
C ω′

if and only if dGMax(ω, C) ≤lex dGMax(ω′, C) (where≤lex is
the lexicographic ordering induced by the natural order) and
dGMax(ω, C) is the vector of numbers d1, . . . , dn obtained by
sorting in a non-increasing order the vector 〈d(ω,Bi) | Bi ∈
C〉. Lastly, belief revision operators can be seen as belief mer-
ging operators applied to singleton profiles: indeed, if ∆ is an
IC merging operator then the revision operator ◦∆ induced by
∆ defined for all bases B1, B2 as B1 ◦∆ B2 = ∆B2

(〈B1〉)
satisfies the standard AGM revision postulates [Alchourrón et
al., 1985, Katsuno and Mendelzon, 1992].

Let us go back to BRGs. Six classes of revision policies
have been proposed in [Schwind et al., 2015]. Each of them,
denoted Rk∆ (k ∈ {1, . . . , 6}) is parameterized by an IC mer-
ging operator ∆. Each class is defined as follows,2 at each
step s and for any agent i such that Ci 6= ∅:
• R1

∆(Bsi , Csi ) = ∆(Csi );

2When using a merging operator without integrity constraints we
just note ∆(C) instead of ∆>(C) for improving readibility.

http://www.cril.fr/∼marquis/ijcai16-long.pdf


steps s Bs1 Bs2 Bs3
0 p1 ⊕ p2 ¬p1 ∧ ¬p2 p1 ∨ p2

2k + 1 ¬p1 ∨ ¬p2 p1 ⊕ p2 p1 ⊕ p2

2k + 2 p1 ⊕ p2 ¬p1 ∨ ¬p2 ¬p1 ∨ ¬p2

Table 1: The belief sequences of Alex, Beth and Chris in G∗.

• R2
∆(Bsi , Csi ) = ∆∆(Csi )(〈Bsi 〉) [= Bsi ◦∆ ∆(Csi )];

• R3
∆(Bsi , Csi ) = ∆(〈Bsi , Csi 〉);

• R4
∆(Bsi , Csi ) = ∆(〈Bsi ,∆(Csi )〉);

• R5
∆(Bsi , Csi ) = ∆Bs

i
(∆(Csi )) [= ∆(Csi ) ◦∆ Bsi ];

• R6
∆(Bsi , Csi ) = ∆Bs

i
(Csi ).

Example 1 (continued). We consider the BRG G∗ =
(V∗, A∗,LP∗ ,B∗,R∗) defined as follows. V∗ = {1, 2, 3}
where 1 corresponds to Alex, 2 to Beth, and 3 to Chris.
A∗ = {(1, 2), (2, 1), (1, 3), (3, 1)} expresses that Alex knows
Beth and vice-versa, and Alex knows Chris and vice-versa,
but Beth and Chris are not connected. LP∗ is the proposi-
tional language defined from the variables P∗ = {p1, p2},
where p1 stands for “the first meal is healthy” and p2 means
“the second meal is healthy.” The initial beliefs of the group
members are B1 = p1 ⊕ p2, B2 = ¬p1 ∧ ¬p2 and B3 =
p1 ∨ p2. Assume that all agents use the same revision pol-
icy, Ri = R1

∆dH,GMax for each i ∈ V∗. The belief sequences
associated with the three agents are given in Table 1: the
belief cycle of agent 1 (resp. 2, 3) is given by (B0

1 , B
1
1)

(resp. (B1
2 , B

2
2), (B1

3 , B
2
3)). We have for each i ∈ V∗,

Cyc(i) = p1 ⊕ p2,¬p1 ∨ ¬p2 and AccG(i) = ¬p1 ∨ ¬p2.

[Schwind et al., 2015] studied the extent to which BRGs
satisfy some basic logical properties depending on the class
of revision policies used by the agents. They focused on the
case where all agents use the same revision policy ranging
over Rk∆, k ∈ {1, . . . , 6}. It turned out that when the revision
policy is induced from the merging operator ∆dD,Σ, i.e., the
merging operator based on the drastic distance and the sum-
mation function, the underlying BRGs satisfy a number of ex-
pected properties [Schwind et al., 2015]. They also developed
a software available online at http://www.cril.fr/brg/brg.jar,
allowing one to play BRGs with various revision policies.

3 On the Notion of Promotion
Belief control in a multi-agent system can take various forms,
depending on the meaning given to “control.” Here, we are
specifically interested in control strategies that consist in pro-
moting a certain belief ϕ in the beliefs of the agents. A key
issue to be addressed is then to determine what “promoting”
precisely means in this context. A simple view is to consider
that promoting ϕ in the belief base B of an agent consists in
replacing B by a base equivalent to ϕ. While such a dras-
tic way of promoting ϕ makes sense, it is not the only one.
Thus, for instance, revising B by ϕ is another approach to do
the job. Considering the whole spectrum of promotion tech-
niques is interesting because in some scenarios it could be
the case that the agent under consideration can be ready to
promote ϕ by revising her own beliefs B with it, while she

would be reluctant in questioning her whole base B and re-
placing it by ϕ. In a bribery context, she could for instance
ask much more money to accept to change her base B to ϕ
than to change it to the revision of B by ϕ.

We now characterize the notion of “promotion” of ϕ
through a preorder �ϕ over belief bases which reflects the
closeness relationship to ϕ; thus, B′ �ϕ B states that B′ is
at least as close to ϕ as B. On this ground, promoting B
consists in replacing B by any B′ satisfying B′ �ϕ B:

Definition 2 (ϕ-promotion). For every formula ϕ ∈ LP , the
ϕ-promotion relation is the binary relation �ϕ on LP × LP
defined for all belief bases B,B′ as B′ �ϕ B if and only if
B ∧ ϕ |= B′ |= B ∨ ϕ.

Obviously, one can check that for any ϕ ∈ LP , the binary
relation �ϕ is reflexive and transitive. More precisely:

Proposition 1. For every formula ϕ ∈ LP , (LP ,�ϕ) is a
Boolean lattice (LP ,uϕ,tϕ, ¬̇, ϕ,¬ϕ), where:

• uϕ is the meet operation defined for each B,B′ ∈ LP
as B uϕ B′ = (B ∧B′) ∨ ((B ∨B′) ∧ ϕ),

• tϕ is the join operation defined for each B,B′ ∈ LP as
B tϕ B′ = (B ∧B′) ∨ ((B ∨B′) ∧ ¬ϕ),

• ¬̇ is the complement corresponding to the standard logi-
cal negation ¬,

• ϕ is the least element, i.e., for each B ∈ LP , ϕ �ϕ B,

• ¬ϕ is the top element, i.e., for each B ∈ LP , B �ϕ ¬ϕ.

where formulae of LP are considered up to equivalence.

Every base B′ promoting ϕ in B satisfies ϕ �ϕ B′ �ϕ B.
Thus B is (up to logical equivalence) the greatest formula
w.r.t. �ϕ promoting ϕ in B, and ϕ is (up to logical equiva-
lence) the least formula w.r.t. �ϕ promoting ϕ in B. Stated
otherwise, the least demanding promotion of ϕ w.r.t. B con-
sists in letting B unchanged, while the promotion of ϕ w.r.t.
B leading to a formula as close as possible to ϕ consists in
replacing B by ϕ.

The following model-theoretic characterization of the no-
tion of promotion can be derived easily. N denotes the sym-
metric difference between sets:

Proposition 2. Given a formula ϕ, let B and B′ be two
belief bases such that B′ promotes ϕ w.r.t. B. Then
∃S ⊆ Mod(B)NMod(ϕ) such that Mod(B′) = (Mod(B) ∩
Mod(ϕ)) ∪ S.

This proposition also illustrates the fact that B and ϕ plays
symmetric role in the notion of promotion. Indeed, making
B closer to ϕ is precisely the same as making ϕ closer to B:

Proposition 3. B′ �ϕ B if and only if B′ �B ϕ.

When a promotion of ϕ in B is achieved, the set of inter-
pretations assigning different truth values to the base B and
to ϕ may only diminish. Formally:

Proposition 4. Given a formula ϕ, let B and B′ be
two belief bases such that B′ promotes ϕ in B. Then
Mod(B′)NMod(ϕ) ⊆ Mod(B)NMod(ϕ).

We define a promotion operator � as a mapping from
LP × LP to LP such that ψ � ϕ �ϕ ψ. Interestingly, some

http://www.cril.fr/brg/brg.jar


belief change operators of the literature are promotion ope-
rators. We recall below some of the postulates for rational
revision operators ◦, and contraction operators − [Katsuno
and Mendelzon, 1992, Caridroit et al., 2015], as well as some
postulates for arbitration (alias symmetric revision) operators
� [Liberatore and Schaerf, 1998]:

(R1) ϕ ◦ µ |= µ.

(R2) If ϕ ∧ µ is consistent, then ϕ ◦ µ ≡ ϕ ∧ µ.

(C1) ϕ |= ϕ− µ.

(C2) If ϕ 6|= µ, then ϕ− µ |= ϕ.

(C4) If ϕ |= µ, then (ϕ− µ) ∧ µ |= ϕ.

(LS2) ϕ ∧ µ |= ϕ � µ.

(LS7) ϕ � µ |= ϕ ∨ µ.

Proposition 5. Let ϕ be a formula and letB be a belief base.
Let ◦ be any revision operator satisfying (R1) and (R2), let
− be any KM contraction operator satisfying (C1), (C2) and
(C4), and let � be any arbitration operator satisfying (LS2)
and (LS7). We have:

1. (i)B◦ϕ �ϕ B∧ϕ �ϕ B, (ii)B∨ϕ �ϕ B−¬ϕ �ϕ B,
and (iii) B � ϕ �ϕ B;

2. B◦ϕ,B∧ϕ,B∨ϕ,B−¬ϕ andB�ϕ are incomparable
w.r.t. �ϕ in the general case.3

We can now lift the relation of formula promotion to BRGs
defined on the same set of variables V , acquaintance relation
A, propositional language LP and revision policies R. Given
two BRGs G = (V, A, LP , B, R) and G′ = (V, A, LP , B′,
R) and a formula ϕ, we note G′ �ϕ G if and only if for each
agent i ∈ V , B′i �ϕ Bi. Finally, we note G�ϕ any BRG G′

such that G′ �ϕ G. Observe that such a promotion operation
of ϕ in G can be non-uniform, i.e., it is not necessarily the
case that the promotion ofϕ in distinct bases ofG′ is achieved
thanks to the same promotion operator. For instance, it can be
the case that B′i = Bi for agent i ∈ V , while B′j = Bj ◦ ϕ
for agent j ∈ V , and B′k = ϕ for agent k ∈ V .

4 On Monotonicity in BRGs
In this section, we focus on the issue of monotonicity for
BRGs instantiated with revision policies from the six classes
defined in the previous section. Given a merging operator ∆
and E ⊆ {1, . . . , 6} RE∆ denotes the set {Rk∆ | k ∈ E}. We
use the simpler notation Rk∆ instead of RE∆ when E = {k}.
Given a class G of BRGs and E ⊆ {1, . . . , 6}, G(RE∆) is the
subclass of all BRGs (V,A,LP ,B,R) from G where for each
Ri ∈ R, Ri ∈ RE∆. Additionally, a set of revision policies
RE∆ is said to satisfy a given property P on a given class G of
BRGs if all BRGs from G(RE∆) satisfy P .

Given a BRG G = (V, A, LP , B, R), a subset C of V
of so-called “controllable agents” whose initial beliefs can be
modified, and a formula ϕ, one is interested in determining
how to modify the belief bases of agents inC in order to make

3This is even the case for ◦ and − when they correspond one
another thanks to Levi/Harper identities.

steps s Bs1 Bs2 Bs3
0 p1 ⊕ p2 ¬p1 ∧ ¬p2 p1 ∧ p2

s ≥ 1 p1 ⊕ p2 p1 ⊕ p2 p1 ⊕ p2

Table 2: An example of control strategy for G∗ where ϕ =
p1 ∨ p2 is unanimously accepted.

ϕ unanimously accepted in the resulting game (when possi-
ble). The objective is thus to determine a successful “control
strategy” to be implemented in order to reach the goal when
it can be reached. A control strategy forG given C takes here
the form of a mapping σ fromC to LP , stating for each i ∈ C
that Bi must be replaced by σ(i); it is successful for ϕ if ϕ is
unanimously accepted in the BRG obtained by applying σ to
G. Typically, one wants to minimize the number of agents in
C to be controlled, but the optimization problem under con-
sideration can also be much more complex (for instance, it
may take into account the cost of controlling each agent in C
which is not always uniform).

Among the potential control strategies is the basic strategy
σϕ for G given C defined for any i ∈ C by σ(i) ≡ ϕ: it
simply amounts to promoting ϕ as much as possible in the
belief base of each agent from C. We have the following
surprising result:
Proposition 6. Given a BRG G = (V, A, LP , B, R), a set
C ⊆ V of controllable agents, and a formula ϕ, it can be
the case that the basic strategy σϕ for G given C is not suc-
cessful for ϕ, while a control strategy for G given C which is
successful for ϕ exists.
Example 1 (continued). Assume that the goal of the restau-
rant manager is to convince all protagonists that at least one
of the meals is healthy, i.e., ϕ = p1 ∨ p2. Note that at the be-
ginning, Chris’ beliefs coincide with this goal (sinceB3 = ϕ)
and thatϕ is not unanimously accepted. So if Chris is the only
controllable agent, the basic strategy σϕ is not successful.
However, when we replace Chris’ beliefs by p1 ∧ p2 instead,
we get that AccG∗(i) = p1 ⊕ p2 for each i ∈ V , so p1 ∨ p2

is unanimously accepted (see Table 2). This shows that con-
trol is possible here given C = {3} as the only controllable
agent, but not with the basic strategy.

This example illustrates the complexity of the controllabi-
lity issue for BRGs in the general case. This explains why it
is important to identify some conditions on BRGs for which
focusing on the basic strategy would be enough to decide
whether a positive answer can be given or not to the control-
lability question. In the following, we show that some mo-
notonicity properties can be used as such conditions. A first
property of monotonicity has been introduced in [Schwind et
al., 2015]. Given a BRG G = (V, A, LP , B,R), a formula α
and an agent i ∈ V , let us denote Gi→α the BRG (V , A, LP ,
B′,R) where B′ maps V to {B′1, . . . , B′n}, withB′i = Bi∧α
and for every j ∈ V , j 6= i, B′j = Bj .

Definition 3 (Monotonicity (Mon)). A BRG G = (V, A, LP ,
B,R) satisfies (Mon) if whenever ϕ is unanimously accepted
in G, ϕ is unanimously accepted in Gi→ϕ for every i ∈ V .

(Mon) is similar to the monotonicity criterion in Social
Choice Theory. In the BRG context, a formula ϕ that is una-
nimously accepted should still be so if some agent’s initial



Bsi ∧ ϕmax(Bs) |= ⊥ (case (i)) ϕmax(Bs) |= Bsi (case (ii)) Otherwise (case (iii))
R1

∆dD,Σ ϕmax(Bs) ϕmax(Bs) ∨ (ϕmax−1(Bs) ∧ ¬Bsi ) ϕmax(Bs) ∧ ¬Bsi
R2

∆dD,Σ ϕmax(Bs) ϕmax(Bs) ϕmax(Bs) ∧ ¬Bsi
R3

∆dD,Σ ϕmax(Bs) ϕmax(Bs) ϕmax(Bs)
R4

∆dD,Σ ϕmax(Bs) ∨Bsi ϕmax(Bs) ϕmax(Bs) ∨Bsi
R5

∆dD,Σ Bsi ϕmax(Bs) Bsi
R6

∆dD,Σ Bsi ϕmax(Bs) ϕmax(Bs) ∧Bsi

Table 3: Bs+1
i depending on the revision policy applied by agent i in any BRG from Gcom(R

{1,...,6}
∆dD,Σ ).

beliefs were “strengthened” by ϕ. Note that the strengthe-
ning of a belief base by a formula ϕ involved here consists in
just expanding the base by ϕ. However, one could consider
weaker versions than expansion, i.e., the promotion operators
� we formalized in the previous section. So we introduce
now a stronger version of the monotonicity property (cf. De-
finition 3) on BRGs based on the promotion relation:
Definition 4 (Strong Monotonicity (SMon)). A BRG G =
(V, A, LP , B, R) satisfies (SMon) if for each i ∈ V , if ϕ is
unanimously accepted in G, then ϕ is unanimously accepted
in any BRG G� ϕ.

It is easy to see that (SMon) implies (Mon) and that the
converse does not hold in general. BRGs satisfying (SMon)
are interesting in terms of strategy-proofness. Indeed, Propo-
sition 1 tells us that ϕ is the least element of (LP ,�ϕ). As a
consequence, for such BRGs, determining whether it is pos-
sible to convince all the agents involved in the BRG to ac-
cept some piece of belief ϕ simply amounts to determining
whether ϕ is unanimously accepted in the BRG obtained by
the promotion of ϕ in every Bi associated with a controllable
agent so that Bi � ϕ = ϕ. Stated otherwise:
Proposition 7. Let G = (V, A, LP , B, R) satisfying
(SMon), a set C ⊆ V of controllable agents, and a formula
ϕ. If the basic strategy σϕ for G given C is not successful for
ϕ then no control strategy for G given C is successful for ϕ.

An interesting issue now is to know whether there are
BRGs satisfying (SMon). We provide a positive answer to
this question in the next section.

5 The Case of Complete Graphs
We now study the extent to which (SMon) is satisfied by
BRGs whose acquaintance graph is a complete graph. This
simple topology is adequate to the cases when all the agents
of V know each other (for instance, this is the case in mee-
tings where all agents are sitting around a table). We simply
call the corresponding class of BRGs the complete BRGs:
Definition 5 (Complete BRG). A BRG G = (V, A, LP , B,
R) is complete if (V,A) is a complete graph, i.e., for all i, j ∈
V , i 6= j, (i, j) ∈ A. Given a class G of BRGs, Gcom denotes
the subclass of complete BRGs from G.

In the general case, (SMon) is not satisfied by BRGs from
Gcom(Rk∆) with k ∈ {1, . . . , 6}, even when ∆ is “fully” ra-
tional in the sense that it satisfies all IC postulates. Indeed:

Proposition 8. For ∆ ∈ {∆dH ,
∑
,∆dH ,GMax}, for any k ∈

{1, . . . , 6}, Rk∆ does not satisfy (SMon) on Gcom(Rk∆).

In the following, we investigate the monotonicity issue for
complete BRGs when the merging operator used for defi-
ning the revision policies is the distance-based merging ope-
rator based on the drastic distance (and the summation func-
tion) ∆dD,Σ. Computing ∆dD,Σ

µ (C) consists in selecting in
the models of the integrity constraint µ those satisfying as
many bases of the profile C as possible. Several works have
proved this specific operator to satisfy a number of expected
properties, e.g., some (language) independence conditions
[Konieczny et al., 2011, Marquis and Schwind, 2014]. In
particular, ∆dD,Σ is robust from the point of view of strategy-
proofness [Everaere et al., 2007], this is why this operator
appears as a good candidate for the monotonicity issue.

The following notations are used in the rest of this sec-
tion. Let C be a profile and ω be an interpretation.

∧
C =∧

{Bi | Bi ∈ C}. #E denotes the number of elements from
a finite set E. #max(C) is the maximal number of belief
bases from C that are consistent when interpreted conjunc-
tively, i.e., #max(C) = max(#{C′ | C′ ⊆ C,

∧
C′ 6|= ⊥}).

{C | ω |= C} = {Bi ∈ C | ω |= Bi}. ϕmax(C) = ∆dD,Σ(C).
and ϕmax−1(C) is any formula ϕ such that Mod(ϕ) = {ω |
#{C | ω |= C} = #max(C)− 1}.

We now present a number of characterization results con-
cerning stability and acceptability for such BRGs, which are
interesting by their own, and will be exploited to identify
classes of BRGs offering (SMon). We first show that a
stronger version of the agreement preservation property (AP)
(see [Schwind et al., 2015]) is satisfied by these BRGs:
Proposition 9. Let G = (V, A, LP , B, R) be a BRG from
Gcom(R

{1,...,6}
∆dD,Σ ). If there is a step s where

∧
{Bsi | i ∈ V }

is consistent, then for each i ∈ V , AccG(Bi) =
∧
{Bi | i ∈

V }. Moreover,G converges at step s+2 at most. It converges
at step s+ 1 at most if G ∈ Gcom(R

{2,...,6}
∆dD,Σ ).

We now intend to characterize the outcome of a BRG from
its initial state. Beforehand, let us introduce an intermediary
result characterizing the belief base of any agent in a BRG
from Gcom(Rk

∆dD,Σ) where k ∈ {1, . . . , 6}, at some step s+1
given the belief bases of all agents at step s:
Lemma 1. Let E ⊆ {1, . . . , 6} and G be a BRG from
Gcom(RE

∆dD,Σ). Then for each agent i ∈ V and each step
s, her base Bs+1

i can be characterized as shown in Table 3.
Obviously enough, a consequence of Table 3 is that all six

revision policies from Rk
∆dD,Σ , k ∈ {1, . . . , 6}, remain dis-

tinct. Moreover, in the case when all agents have the same
revision policy among Rk

∆dD,Σ , k ∈ {1, . . . , 4}, the outcome
of complete BRGs can be fully characterized:



Proposition 10. Let k ∈ {1, . . . , 4} and G = (V, A, LP , B,
R) be a BRG from Gcom(Rk

∆dD,Σ). Then for each i ∈ V ,

AccG(i) = ∆dD,Σ(〈B1, . . . , Bn〉).

The cases when all agents have the same revision policy
among Rk

∆dD,Σ , k ∈ {5, 6} is simpler to characterize:

Proposition 11. Let k ∈ {5, 6} and G = (V, A, LP , B, R)
be a BRG from Gcom(Rk

∆dD,Σ).
• If k = 5, then for all i ∈ V , AccG(i) = Bi
if ∆dD,Σ(〈B1, . . . , Bn〉) 6|= Bi, otherwise AccG(i) =
∆dD,Σ(〈B1, . . . , Bn〉).
• If k = 6, then for all i ∈ V , AccG(i) = Bi if
∆dD,Σ(〈B1, . . . , Bn〉) ∧ Bi |= ⊥, otherwise AccG(i) =
∆dD,Σ(〈B1, . . . , Bn〉) ∧Bi.

These results allow us now to derive monotonicity results
for the class of complete BRGs we are dealing with:
Proposition 12. Let k ∈ {1, . . . , 6}. Then all BRGs from the
class Gcom(Rk

∆dD,Σ) satisfy (SMon).
A consequence of Propositions 7 and 12 is that considering

the basic strategy is enough for BRGs from Gcom(Rk
∆dD,Σ),

i.e., to decide whether a control strategy exists for making a
formula ϕ accepted by all agents in such a BRG, it is enough
to focus on the basic strategy. Let us illustrate how these
monotonicity results apply to the following slightly modified
version of our running example:
Example 1 (continued). Consider again the BRG G∗ =
(V∗, A∗,LP∗ ,B∗,R∗) from our running example, and let G′∗
be the BRG (V∗, A

′
∗,LP∗ ,B′∗,R∗) where:

• A′ is the total relation over V∗, i.e., Beth and Chris know
each other as well;
• B′∗ maps V∗ to {B′1, B′2, B′3}, with B′1 = B1, B′2 = B2

and B′3 = ¬p1 ∧ ¬p2, i.e., the beliefs of Alex and Beth in G′∗
remain the same as in G∗, but Chris now initially believes in
G′∗ that none of the two meals is healthy.

From Proposition 10, we get thatAccG′∗(i) = ∆dD,Σ(〈B′1,
B′2, B

′
3〉) ≡ ¬p1 ∧¬p2 for each i ∈ V∗. Note that p1 ∨ p2 is

not accepted by any agent. By applying the basic strategy σϕ
where ϕ = p1 ∨ p2 and when Chris is the only controllable
agent, one gets that the outcome of each agent in the resulting
BRG becomes p1 ⊕ p2. We have now ϕ being unanimously
accepted, which means that σϕ is successful.

6 Related Work
As far as we know, the control problem for multi-agent sys-
tems has not been investigated so far in settings similar to
BRGs. Though there are many works on opinion dynam-
ics where some control or influence issues have been stud-
ied, the opinion of an agent takes typically the form of a real
number, as in Hegselmann-Krause’s model [Hegselmann and
Krause, 2005]. Let us mention among others [Tsang and Lar-
son, 2014, Bloembergen et al., 2014, Ranjbar-Sahraei et al.,
2014, Blondel et al., 2009]. The very nature of the agents’
opinions (real number vs. propositional formula) makes these
studies and our own approach quite unrelated. Indeed, unlike
real numbers that can be simply averaged, merging proposi-
tional formulae is a much more complex process (this is why

many works on the topic in the knowledge representation area
have been done for two decades). The quite paradoxical re-
sult presented in the paper (roughly, promoting some belief is
not guaranteed to be the safest way to make it unanimously
accepted) echoes paradoxes pointed out in other settings for
multi-agent systems, in particular social network games [Apt
et al., 2013]. However, the resemblance is only at a shal-
low level since the BRG model departs a lot from social net-
work games. Especially, social network games are “true”
games, unlike BRGs (in the BRG model, agents do not have
strategies and there is no payoff based on the adequacy of an
agent’s beliefs with the beliefs of her acquaintances).

On the other hand, some control issues (under various
forms: manipulation, bribery, etc.) have received much at-
tention recently in voting theory, especially from the point
of view of computational complexity. See among many
others [Amanatidis et al., 2015, Bredereck et al., 2015, Fal-
iszewski et al., 2015, Loreggia et al., 2015, Faliszewski et al.,
2014, Bouveret and Lang, 2014, Christian et al., 2007]. How-
ever, the results obtained in voting theory cannot be exploited
directly for BRGs since in BRGs the beliefs of the agents
may evolve after each communication step (when voting is
considered, the users preferences are typically considered as
fixed and the agents do not influence each other). An excep-
tion is [Hassanzadeh et al., 2013] which shows how to reach
a consensus on rankings (encoding the agents preferences)
by iterative voting. Nevertheless, the corresponding model is
quite different from the BRG one since it deals with preferen-
ces, and not with beliefs, and the system dynamics is ruled by
distinct mechanisms (voting vs. revision). Furthermore, be-
lief control has not been investigated in this model (the focus
is on convergence issues).

Finally, though other approaches have been considered for
modeling the belief dynamics of a group of agents (see dy-
namic epistemic logic [Harel et al., 2000, Hendricks and
Symons, 2006], or more recent studies in propositional logic
[Gauwin et al., 2007, Delgrande et al., 2007, Grandi et al.,
2015]), the belief control issue for such settings has not been
considered as well.

7 Conclusion
We pointed out a quite paradoxical result in belief diffusion:
in a network of agents, replacing some agents’ belief bases by
a piece of belief ϕ may fail to make ϕ unanimously accepted,
while other successful strategies exist nevertheless. However,
we have identified a class of BRGs satisfying a property of
strong monotonicity, and thus, avoiding this paradox, making
for these BRGs the belief control issue easier to manage.

As perspectives for further research, we plan to identify ad-
ditional classes of BRGs for which the strong monotonicity
property holds, e.g., by considering other topologies as the
line, single loop and more generally regular graph topologies.
For all these BRGs, the next step will be to search for control
strategies by focusing now on the “who” issue, i.e., which
agents from a predefined set C should be considered. Ano-
ther interesting research direction is to investigate on its own
the notion of “promotion” of a piece of belief, as an attempt
to provide an uniformized axiomatization of a large class of
standard belief change operators.
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Pérez. Merging information under constraints: a lo-
gical framework. Journal of Logic and Computation,
12(5):773–808, 2002.

[Konieczny et al., 2004] S. Konieczny, J. Lang, and P. Mar-
quis. DA2 merging operators. Artificial Intelligence,
157:49–79, 2004.

[Konieczny et al., 2011] S. Konieczny, P. Marquis, and
N. Schwind. Belief base rationalization for propositional
merging. In IJCAI’11, pages 951–956, 2011.

[Liberatore and Schaerf, 1998] P. Liberatore and M. Schaerf.
Arbitration (or how to merge knowledge bases). IEEE
Transactions on Knowledge and Data Engineering,
10(1):76–90, 1998.

[Loreggia et al., 2015] A. Loreggia, N. Narodytska, F. Rossi,
K. B. Venable, and T. Walsh. Controlling elections by re-
placing candidates or votes. In AAMAS’15, pages 1737–
1738, 2015.

[Marquis and Schwind, 2014] P. Marquis and N. Schwind.
Lost in translation: Language independence in proposi-
tional logic - application to belief change. Artificial In-
telligence, 206:1–24, 2014.

[Ranjbar-Sahraei et al., 2014] B. Ranjbar-Sahraei, H. Bou
Ammar, D. Bloembergen, K. Tuyls, and G. Weiss. Evolu-
tion of cooperation in arbitrary complex network. In AA-
MAS’14, pages 677–684, 2014.

[Schwind et al., 2015] N. Schwind, K. Inoue, G. Bourgne,
S. Konieczny, and P. Marquis. Belief revision games. In
AAAI’15, pages 1590–1596, 2015.

[Tsang and Larson, 2014] A. Tsang and K. Larson. Opinion
dynamics of skeptical agents. In AAMAS’14, pages 277–
284, 2014.


	Introduction
	Belief Revision Games
	On the Notion of Promotion
	On Monotonicity in BRGs
	The Case of Complete Graphs
	Related Work
	Conclusion

