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Impact dynamics near unilaterally constrained grazing orbits

Stéphane Junca®, Huong Le Thi", Mathias Legrand™, and Anders Thorin™

*Mathematical Laboratory JAD, Université Cote d’Azur, Inria, CNRS, Nice, France,
“Department of Mechanical Engineering, McGill University, Montréal, Québec, Canada

Summary. The dynamics of vibro-impact systems near grazing is known to be singular. The authors have recently exhibited nonlinear
modal motions in the vicinity of grazing orbits within a conservative framework, suggesting the latter play a important role in the
dynamics. In this work, insights on the dynamics of solutions near some periodic grazing orbits are given. It is found that the first
return time may involve a square-root singularity or a cube-root singularity and also become discontinuous. These properties may affect
the first return map and thus the dynamics near grazing orbits.

Motivation

In vibration analysis of unilaterally contrained systems, a grazing contact is a contact with zero-velocity. In contrast
to the smooth dynamics framework, the dynamics of vibro-impact mechanical systems is singular near grazing orbits,
involving square-root singularities of the first return time [10]. As experienced by the authors, periodic grazing orbits
(i.e. linear modes) are often the starting points to nonlinear modes of vibration [9, 12, 14], defined as continuous one-
parameter families of periodic orbits [6, 15] of nonlinear systems. The aim of this work is to explore such dynamics in
the neighborhood of a linear grazing modal motion (LGM) and in the neighborhood of a periodic solution with a sticking
phase (SPP).

Model

As illustrated in Figure 1, consider a conservative N -degree-of-freedom (dof) oscillator consisting of a chain of N
masses mj, j = 1,..., N connected by N springs, one of which being attached to the ground. The system is also
unilaterally constrained by a rigid foundation. The 7th spring acts on the jth mass via the stiffness k;;. The displacement
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Figure 1: A unilaterally constrained N -spring-mass system: at equilibrium [gray] and in its current configuration [black].

of the masses with respect to their equilibrium position is denoted by u ; and the corresponding velocities and accelerations
are denoted by 1 ; and ii ;, respectively. The distance between the constraint and the equilibrium position of the unilaterally
constrained mass is d. The dynamics is governed by the following equations:

Mii + Ku=r (la)
u(0) =up, w0) =nug (1b)
uy(t)<d, R()=<0, (un(t)—d)R(t)=0, Vit (o)
()" Mu(r) + u(r) Ku(r) = E(u(r)) = Eu(0)), (1d)

where M = diag(m;)i1<j<n, K = (kij)1<i,j<n, w(t) = (u;(t))1<j<n, and r() = (0,...,0, R(¢)). The term R(t)
captures the reaction force acting on the last mass and induced by the constraint. The last equation ensures that the total
energy E of the system is preserved. System (1) without (1d) is not well posed: it is known that uniqueness is not guaranteed
for the initial value problem [1, 11]. This is usually overcome by incorporating an impact law into the formulation. Here,
since we are interested in non-dissipative dynamics, condition (1d) is enforced: the total energy is preserved during the

motion. This implies the existence of a perfectly elastic impact law of the form L'tj(, = —eiy with e = 1 where 11}, and

u; respectively stand for the pre- and post-impact velocities of mass N. The impact law with e = 1 is equivalent to the

conservation of the total energy.
First return time and square-root singularity

Without loss of generality, the initial data is such that the last mass lies on the wall: u (0) = d. The first return time
(FRT) is defined as the duration between two successive contacts; a precise definition follows. This governs the choice of
the Poincaré section as the hyperplane £ = {[u,1]" € R?", uy = d} of the phase-space [4], on which is defined the
Poincaré Map. Two questions on the first return time naturally arise:

1. Does it exist? In other words, does the last mass always return to the wall? Generically, the answer is affirmative.
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2. Is the first return time a smooth function of the initial data? The answer is also affirmative in the case of impact with
nonzero velocity [2].

This property however no longer holds for grazing orbits. It is not impossible that the last mass grazes with the wall once
but then never comes back.

On the other extreme, could there be a solution with a sticking phase of infinite duration for which the first return time
does not exist? When the first return time does exist, it is never smooth in term of initial data because of the presence of
the square-root singularity [2, 10]. Indeed, it is already singular for a one-dof oscillator [5]. This square-root singularity
is investigated in details within the simple mathematical framework of system (1) in [8], based on the implicit function
theorem adapted to this degenerate contact. The impact hyperplane H is of dimension 2N — 1. It is divided into three
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Figure 2: Cross-section of the admissible state-space.
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disjoint subsets as depicted in Figure 2:
H™ ={[u,07]" e R?M uy =d and ity > 0}
HT ={[u,at]T e R*N uy =d and i}, <0}

HO = {[u,il]—r (S RZN, Uy = d andi:lN = O}

By conservation of energy, it can be seen that the solution involving a contact with non-zero velocity will always experience
a later contact. The problem of whether there will be a subsequent contact or not emerges only on #°. It is proven [8]
that most orbits which belong to H° feature an infinite number of closing contacts. The set of these orbits is denoted by
H!. As a consequence, the Poincaré section defined below is reasonable and the first return time is then shown to be well
defined.

Definition 1 (Poincaré section) The Poincaré section Hp C H is the union of the set of initial data with non-zero velocity
contacts and the set of initial data with zero velocity contact that gives rise to an infinite number of subsequent closing
contacts:

Hp =H™ UHS,. )

Definition 2 (First return time) Let u be a solution to (1) with the initial data W € Hp at the initial time t = 0, i.e.
uny(0) = e;u(O) = d. The first return time T = T (W) > 0 is defined by

TW)=min{t >0: uy() =d} 3)
if there is no sticking phase att = 0.

Two types of closing contacts can occur: contacts with non-zero pre-impact velocity, commonly referred to as impacts,
and contacts with zero pre-impact velocity. The second category can be divided as follows: grazing if the mass leaves
the obstacle right after the gap closes, or sticking if the mass stays in contact with the obstacle for a finite time interval.
Accordingly, the set 12, can also be split into two subsets: ’Hg including all the initial data belonging to H2, such that the
solution starts by a sticking contact and ’Hg of initial data such that the solution starts by a grazing contact:

H, = HE UHY. (4)

The first return time is known to be generically analytic with respect to the initial data: let Wy € H~ and W, the state at
the first return to H; if W; € #H~, then the FRT is analytic near Wy [2, 9]. However, if W; € #°, then there is a grazing
contact and it is known that a square-root singularity appears [10].

ISee [8] for the definition of this set.



ENOC 2017, June 25-30, 2017, Budapest, Hungary

By definition of Hp, which is not empty since it contains 7™, there exists a time such that the orbit emanating from
W € Hp comes back to Hp. The first return time is then well defined for all initial data, sticking phases set aside. In the
present work, all numerical simulations are performed with N = 2 using the parameters m; = m, = l and k; = k, = 1;
where not explicitly mentioned, sticking phases are not considered.

Near linear grazing modes features

The behavior of the first return time is investigated near the linear grazing modes. Let W, denote an initial data
generating an orbit with a grazing contact at the first return time Ty = 7' (Wy). Then, the set of initial data with their
first return time near Ty is not a neighborhood of W [8]. This means that, in the vicinity of Wy, initial conditions might
generate orbits with a first return time far from Ty: as a consequence, the first return time 7' (W) is discontinuous at Wy.
This discontinuity of the first return time is illustrated in the vicinity of v{(0) = 0 for the two linear grazing modes of
the considered two-dof system in Figure 3. The first return time can also be discontinuous near any grazing contacts, for
instance, when v1(0) is near &~ —0.2 which corresponds to the initial velocity v (0) of an initial condition generates a
nonlinear grazing orbit.
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Figure 3: First return time 7 in the vicinity of LGM: FRT for v;(0) ~ v]fGMl (0) = 0 of the first LGM [red curves]; FRT for
v1(0) ~ v]fGMz (0) = 0 of the second LGM [blue curves].

The square-root singularity is shown by zooming in the two branches of the first return time curve near the initial
velocity of both linear grazing modes in Figure 3. Figure 4 shows T as a function of vy (0) near v (0) = 0.
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Figure 4: Square-root singularity when v1(0) varies near the initial velocity v]fGMl (0) = 0 of the first LGM.

Grazing dynamics

By construction, the first return map (FRM) depends on both the trajectory and the first return time. Since the former is
smooth during the free-flight, the singularity must emanate from the first return time. This singularity would a priori induce
a singularity of the FRM. However, our observations suggest that the FRM smoothens the singularity in the same way as
squaring removes a square-root singularity. If this assumption does not hold, the dynamics may not be unstable as expected
with the square-root singularity [8]. Overall, there are two interesting cases: near a linear grazing mode and near a periodic
solution with one sticking phase-per-period (1-SPP) [7, 13]. One feature of the LGM is that the sticking phase does not
occur near such a mode [8]. Hence the FRM is well defined.

Definition 3 (First return map) Suppose W € H~ U 7—[09 and T = T (W) > 0 is the first return time to Hp of the orbit
emanating from W. The map which associates points in Hp to their first return images to Hp is called the first return
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map F. Formally, F : H~™ U H(g’ — Hp and
FW) =R(T(W))SW (5)
where S = diag(1,...,1,—1) isa 2N x 2N diagonal matrix with last entry —1 to reflect the impact law.

FRT near a linear grazing mode

From LGM emanate multiple coexisting branches of periodic solutions with one impact-per-period (1-IPP) [9]. Also,
LGM are generally expected to be unstable due to the square-root singularity [10]. The orbit of a periodic solution with
one impact-per-period and with a period almost twice as much as the period of the LGM, as illustrated in Figure 5, shows
clearly that the first return time is not continuous with respect to the initial data in the vicinity of a LGM.
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Figure 5: 1-IPP of a two-dof system near a LGM with twice its period. Within a very small change in the initial conditions, the dark blue
orbit of first return time 75 becomes the light blue orbit and then the red orbit, of first return times ~ 275.
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Figure 6: Top: Frequency-energy plot (FEP) of the investigated two-dof system. Bottom left: same plot represented in terms of
energy-FRT. The bottom right figure is a close-up view, exhibiting the square-root singularities. The discontinuity of the FRT appears in
all plots.
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The frequency-energy plot in Figure 6 (top) shows the energy of several 1-IPP periodic solutions as a function of their
frequency. This is a standard tool useful to vibration analysts. The vertical dashed lines corresponds to the linear modes
and their harmonics. When they reach a certain level of energy, represented by the two dotted horizontal lines, they become
LGM: they are still linear modes, but graze the obstacle. Then, the LGM bifurcate into various nonlinear modes represented
as solid lines. The first return time of the 1-IPP is the period of the nonlinear mode and the discontinuity in frequency here
corresponds to w, /1, w, /2, and w, /5. The branches of a given fundamental mode and its harmonics all start at the same
level of energy. If the frequency and the energy axes are reversed (Figure 6, bottom), the discontinuity of the first return
time becomes obvious [9].

FRT near a periodic solution with a sticking phase

The first return map is more complicated for an orbit involving a sticking phase due to the presence of a continuum of
states with zero velocity. Numerical results suggest that a cube-root singularity emerges in the first return time, as depicted
in Figure 7. It can also be shown that a fourth-root singularity for the considered two-dof system may occur, as reported
in [3]. More singular behaviors are expected for N > 2.

First return time T
To 8.2
I
|
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|
5.76 v1(0) ~ 5.86 5.96

Initial velocity of the first mass v (0)

Figure 7: First return time 7" when a value of the initial data is changed in the vicinity of a periodic solution with one sticking phase. A
cube-root singularity appears near v1(0) = 5.86.

Discontinuous FRM leading to instability

The quantities in Expression (5) are either analytic or linear with respect to the initial data, except the first return time.
Accordingly, a discontinuity of the first return time may imply a discontinuity of the FRM. Also, a discontinuity of the
FRM at the LGM implies directly? the instability of the LGM [8].

The conservation of energy gives a condition on the discontinuity of the FRM. Moreover, the trajectories ¢ — u(t)
are continuous. In [1, Sec. 7, p. 254], it is shown that continuous dependence on the initial data holds for our system of
interest. This means for every fixed T and Ve > 0, 3y > 0 such that if || W — Wy | < n then ||u(z, W) — u(é Wo)| < €
forall ¢ € [0; T[. Let us consider Figure 8 representing the FRM when v (0) is varied in the vicinity of v, M (0) =0,
j = 1,2. It is seen that the square-root singularity is activated in almost all the components of the FRM, as proven in [8].
Also, the left and right branches of u1(T"), v1(T') and v,(T") at v1(0) = 0 correspond to two different continuous branches
of the first return time. The square-root singularity is not activated for #; near both LGM [8]. Although the first return time
is singular, a coefficient related to the matrix map ¢ + R(#) vanishes and regularizes the singularity. Interestingly, the
FRM is discontinuous for all components near v (0) ~ —0.2 as shown in Figure 8(a). However, this initial data does not
correspond to a LGM.

Conclusions

In structural dynamics, it is known that orbits near grazing contacts of vibro-impact systems with a unilateral contact lead
to square-root instability. In this paper, the first return map is revisited in a numerical framework to expose the theoretical
results reported in [8]: square-root singularity of the first return time, activation or not of the square-root singularity in the
first return map, discontinuity of the first return time and first return map. The square-root singularity and new singular
behaviors such as a cube-root singularity are highlighted. The existence and the singularity of the first return time is a
key step to study the first return map in the vicinity of a grazing orbit. The instability of periodic grazing orbits can be
conjectured.

2 As a reminder, the solution u(¢) = u(z, Wo) is said to be unstable if Ie > 0 such that V7 > 0, IW: ||W — Wy || < n and 3¢ > 0 such that
lu(z, W) —u(z, Wo)|l > e.
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Figure 8: Cross-sections of the first return map as a function of the initial velocity vq(0).
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