A non-commutative algorithm for multiplying 5 × 5 matrices using 99 multiplications

We present a non-commutative algorithm for multiplying 5 × 5 matrices using 99 multiplications. This algorithm is a minor modification of Makarov's algorithm which exhibit the previous best known bound with 100 multiplications.

Introduction

In his seminal work [START_REF] Strassen | Gaussian elimination is not optimal[END_REF], V. Strassen introduced a non-commutative algorithm for multiplication of two 2 × 2 matrices using only 7 coefficient multiplications. Since, several algorithms where proposed for the product of small matrices during the last 40 years (e.g. [START_REF] Laderman | A non-commutative algorithm for multiplying 3 × 3 matrices using 23 multiplications[END_REF][START_REF] Schachtel | A non-commutative algorithm for multiplying 5 × 5 matrices using 103 multiplications[END_REF][START_REF] Makarov | A non-commutative algorithm for multiplying 5 × 5 matrices using 102 multiplications[END_REF]). In 1987, O.M. Makarov shown in [START_REF] Makarov | A non-commutative algorithm for multiplying 5 × 5 matrices using one hundred multiplications[END_REF] that the product of two 5 × 5 matrices can be done using 100 coefficient multiplications.

In this note, we present a non-commutative M 5×5×5 performing the matrix product problem AB = C expressed with the following generic 5 × 5 matrices: this algorithms requires 99 coefficient multiplications. Furthermore, we explain briefly how this result is derived from Makarov's original algorithm and we conclude by some implications of this new upper bound.

2 An algorithm for multiplying 5 × 5 matrices

The algorithm presented below was accidentally obtained while implementing Makarov's algorithm in a computer algebra package devoted to matrix multiplication algorithms seen as geometric objects represented by tensors. In his orig-inal paper [START_REF] Makarov | A non-commutative algorithm for multiplying 5 × 5 matrices using one hundred multiplications[END_REF], O.M. Makarov decomposed the 5 × 5 matrix multiplication algorithm as 7 others matrix multiplication algorithms using a variant of Strassen's algorithm [START_REF] Strassen | Gaussian elimination is not optimal[END_REF] and obtain an algorithm requiring 101 multiplications. Then, Makarov uses the particular form of one of the used sub-algorithms to obtain his algorithm that we are not be able to improved. But by explicitly implementing the intermediary algorithm requiring 101 multiplications, the simplification procedure of our computer algebra package produces automatically the following evaluation scheme that requires only 99 coefficient multiplications: 

m 1 = (a 51 + a 35 + a 45 -a 55 ) b 54 , (2) 
m 2 = (-a 12 + a 14 ) b 21 , (3) 
m 3 = -a 32 b 23 , (4) 
m 4 = -a 34 b 43 , (5) 
m 5 = a 14 (b 21 + b 41 ), (6) 
m 6 = (-a 32 + a 42 ) (b 14 -b 24 + b 34 -b 44 ) , (7) 
m 7 = (a 12 + a 32 -a 14 ) (b 21 + b 41 + b 43 ) , (8) 
m 8 = a 53 b 35 ℓ, (9) 
m 9 = a 51 b 15 ℓ, (10) 
m 10 = (-a 43 + a 34 -a 44 ) (b 21 -b 41 + b 12 -b 22 -b 32 + b 42 ) , (11) 
m 11 = (a 21 -a 12 + a 22 + a 23 -a 14 + a 24 ) (-b 43 -b 34 + b 44 ) , (12) 
m 12 = (a 32 -a 42 -a 14 + a 24 ) (b 12 -b 22 + b 14 -b 24 + b 34 -b 44 ) , (13) 
m 13 = (-a 21 + a 12 -a 22 ) (-b 23 + b 43 -b 14 + b 24 + b 34 -b 44 ) , (14) 
m 14 = a 45 (b 32 -b 42 + b 52 ) , (15) 
m 16 = (-a 41 + a 32 -a 42 -a 43 + a 34 -a 44 ) (-b 21 -b 12 + b 22 ) , (16) 
m 17 = (-a 23 -a 25 ) (-b 53 + b 54 ) , (17) 
m 18 = (a 43 + a 44 ) (b 21 -b 41 -b 22 + b 42 ) , (18) 
m 19 = (-a 21 -a 22 -a 23 -a 24 ) (-b 43 + b 44 ) , (19) 
m 20 = (a 14 -a 24 ) (b 12 -b 22 + b 32 -b 42 + b 14 -b 24 + b 34 -b 44 ) , (20) 
m 21 = (a 21 + a 22 ) (-b 23 + b 43 + b 24 -b 44 ) , (21) 
m 22 = (-a 12 -a 32 + a 14 + a 34 ) (b 41 + b 43 ) , (22) 
m 23 = (a 12 + a 32 ) (b 21 + b 41 + b 23 + b 43 ) , (23) 
m 24 = (a 12 -a 22 -a 32 + a 42 -a 25 ) (b 12 -b 22 ) , (24) 
m 25 = (-a 31 + a 41 -a 32 + a 42 ) (b 14 + b 34 ) , (25) 
m 26 = (-a 41 -a 43 ) (-b 13 + b 23 + b 14 -b 24 ) , (26) 
m 27 = a 35 (b 32 + b 52 ) , (27) 
m 28 = (-a 54 -a 45 ) (b 32 -b 42 + b 52 + b 54 ) , (28) 
m = ℓa 13 + a 53 -ℓ 2 a 15 b 31 + b 51 ℓ -ℓb 35 , (34) 
m = (a 52 -a 54 ) b 45 , (35) 
m = (a 14 -a 23 + a 43 -a 24 -a 34 + a 44 ) b 42 -b 41 -b 32 -b 43 -b 34 + b 44 , (36) 
m = -a 52 (b 14 -b 24 + b 54 ) , (37) 
m = (a 21 + a 41 a 43 ) (b 31 -b 41 -b 32 + b 42 -b 13 + b 23 + b 14 -b 24 ) , (38) 
m = (a 53 + a 54 -a 35 ) (b 32 + b 52 + b 54 ) , (39) 
m = - a 11 ℓ - a 51 ℓ 2 + a 15 b 13 + b 53 ℓ -ℓb 15 , (40) 
m = (a 21 -a 41 -a 12 + a 22 + a 32 -a 42 ) b 24 -b 21 -b 12 +b 22 -b 23 -b 14 , (41) 
m = a 25 (b 12 -b 22 + b 52 ) , (42) 
m = -a 54 (b 32 -b 42 + b 52 + b 34 -b 44 + b 54 ) , (43) 
m = ℓa 33 + a 53 -ℓ 2 a 35 b 33 + b 53 ℓ -ℓb 35 , (46) 
m = (a 52 + a 14 ) (b 21 -b 45 ) , (47) 
m = a 31 ℓ + a 51 ℓ 2 b 11 + b 51 ℓ , (48) 
m = a 45 (-b 53 + b 54 -b 15 + b 25 + b 55 ) , (49) 
m = -ℓa 31 + ℓ 2 a 35 (b 11 -ℓb 15 ) , (50) 
m = (a 21 -a 45 ) (-b 51 + b 52 + b 15 -b 25 ) , (51) 
m = -a 21 (b 11 -b 21 -b 51 -b 12 + b 22 + b 52 -b 13 + b 23 + b 14 -b 24 ) , (53) m = (a 21 + a 25 ) (b 51 -b 52 ) , (52) 
m = a 13 ℓ + a 53 ℓ 2 b 31 + b 51 ℓ , (54) 
m = (a 52 -a 34 -a 54 ) (b 23 + b 25 + b 45 ) , (55) 
m = -ℓa 13 + ℓ 2 a 15 (b 31 -ℓb 35 ) , (56) 
m = a 11 ℓ + a 51 ℓ 2 b 13 + b 53 ℓ , (64) 
m = (-a 32 + a 42 + a 34 -a 44 + a 54 ) (b 34 -b 44 ) , (65) 
m = -ℓa 11 + ℓ 2 a 15 (b 13 -ℓb 15 ) , (66) 
m = a 15 (b 12 + b 52 ) , (67) 
m = (a 51 + a 52 ) (b 14 + b 54 ) , (68) 
m = -ℓa 33 + ℓ 2 a 35 (b 33 -ℓb 35 ) , (69) 
m = (-a 53 -a 15 -a 25 + a 55 ) (b 52 + b 54 ) , (70) 
m = a 33 ℓ + a 53 ℓ 2 b 33 + b 53 ℓ , (71) 
m = (-a 14 + a 24 + a 34 -a 44 -a 45 ) (b 32 -b 42 ) , (72) 
m = (a 11 -a 21 -a 31 + a 41 + a 12 -a 22 -a 32 + a 42 -a 15 ) b 12 , (73) 
m = (a 12 -a 22 + a 52 -a 14 + a 24 ) (b 12 -b 22 + b 14 -b 24 ) , (74) 
m 92 = (a 43 + a 44 ) b 45 , (92) 
m 93 = (a 41 + a 42 ) b 25 , (93) 
m 94 = (a 32 + a 52 -a 34 -a 54 ) (b 23 + b 25 ) , (94) 
m 95 = -a 35 b 11 + b 51 ℓ + b 33 + b 53 ℓ -ℓb 15 -ℓb 35 -b 55 , (95) 
m 96 = (a 23 + a 24 ) b 45 , (96) 
m 97 = (a 21 + a 22 ) b 25 , (97) 
m 98 = (a 25 + a 45 ) (-b 51 + b 52 -b 35 + b 45 + b 55 ) , (98) 
m 99 = (a 12 + a 52 ) (b 21 + b 25 ) . ( (99) 
) c = - m 8 ℓ -m 2 + m 5 + m 78 + m 54 ℓ - m 56 ℓ - m 34 ℓ , 100 
c = m 10 + m 11 + m 12 -m 2 + m 5 + m 6 -m 52 + m 53 + m 62 + m 36 -m 38 + m 42 + m 15 + m 20 + m 24 -m 26 , (101) 
c = m 7 - m 9 ℓ + m 2 + m 4 + m 77 - m 50 ℓ - m 32 ℓ + m 48 ℓ + m 22 , (102) 
c = -m 7 - m 9 ℓ + m 3 -m 5 + m 83 - m 66 ℓ + m 64 ℓ + m 40 ℓ + m 23 , (111) 
c = -m 7 -m 11 -m 12 + m 13 + m 3 -m 5 -m 6 + m 74 + m 82 + m 62 + m 37 -m 38 + m 45 + m 17 + m 23 -m 24 -m 26 , (112) 
c = - m 8 ℓ -m 3 -m 4 + m 88 - m 69 ℓ + m 71 ℓ - m 46 ℓ , (113) 
c 54 = -m 14 -m 1 + m 68 + m 61 + m 37 -m 39 + m 43 -m 27 -m 28 , (119) 
c 15 = - m 8 ℓ 2 - m 9 ℓ 2 - m 34 ℓ 2 + m 2 + m 89 + m 99 + m 54 + m 64 + m 40 -m 47 + m 31 , (120) 
c 25 = m 96 + m 97 + m 98 -m 49 + m 51 + m 53 -m 33 + m 17 , (121) 
c 35 = - m 8 ℓ 2 - m 9 ℓ 2 - m 46 ℓ 2 - m 32 ℓ 2 + m 3 + m 94 + m 95 + m 71 -m 55 + m 35 + m 48 , (122) 
c 45 = m 92 + m 93 + m 49 + m 57 + m 59 + m 33 -m 17 , (123) 
c 55 = m 8 ℓ + m 9 ℓ + m 91 -m 35 -m 31 . ( (124) 
) 125 
Remark 1 -The free parameter ℓ used in ( 2) -(125) came from the utilisation of Winograd variant of Strassen algorithms (see [START_REF] Chatelin | On transformations of algorithms to multiply 2 × 2 matrices[END_REF]) as presented in [START_REF] Sedoglavic | Laderman matrix multiplication algorithm can be constructed using Strassen algorithm and related tensor's isotropies[END_REF].

In the following section, we present explicitly the difference between the original Makarov's algorithm and the improved version presented here.

3 Where does the improvement come from?

Makarov's result is based on a divide-and-conquer strategy:

• The original problem is "divided" into 7 matrix multiplication subproblems using the Strassen's matrix multiplication algorithm [START_REF] Strassen | Gaussian elimination is not optimal[END_REF] (see Drevet et all [START_REF] Drevet | Optimization techniques for small matrix multiplication[END_REF] or Sedoglavic [START_REF] Sedoglavic | A non-commutative algorithm for multiplying 7 × 7 matrices using 250 multiplications[END_REF] for a detailled description of similar-but inequivalent-decompositions).

• Each of these 7 subproblems could be handled by the more efficient known matrix multiplication algorithm adapted to its matrix sizes. These resolutions allow to "conquer" an algorithm solving the original problem more efficiently then the trivial approach. Above, the indices i in M i refer directly to Makarov's numeration in [START_REF] Makarov | A non-commutative algorithm for multiplying 5 × 5 matrices using one hundred multiplications[END_REF] and the final algorithm (1) could be obtained in a trilinear form by the sum:

M|M 5×5×5 = S|M 9 + L|M 4 + K|M 6 + i∈{1,2,3,5} H|M i . (126) 
The interested reader could found in [START_REF] Sedoglavic | Laderman matrix multiplication algorithm can be constructed using Strassen algorithm and related tensor's isotropies[END_REF] a brief description of the framework (trilinear form, etc.) evoked above and in [START_REF] Sedoglavic | Fast matrix multiplication database[END_REF] the complete description of the used algorithms. The-tedious-complete presentation of these details is not necessary to expose the improvement done to Makarov's algorithm.

However, let us present with more details Makarov's subproblem [9, M 1 ] and [9, M 2 ] that are in our notations: As any other decomposition applied to this problem, the decomposition (126) shows directly the following statement: Remark 4 -The second part of Makarov's paper use the fact that a coefficient in [9, M 2 ] is 0 in order to show that this last subproblem could be solved using 14 multiplications instead of 15 by avoiding a useless multiplication. Similarly, one can obtain (5 × 5 × 5 ; 100) by various decompositions (mainly based on Winograd variant of Strassen algorithm) not necessarily equivalent to Makarov's one.

However, Makarov's decomposition (in contrary to others decompositions known by the author of this note) is the only one where two subproblems sharewithout any further manipulations like Pan's trilinear aggregations [START_REF] Pan | How can we speed up matrix multiplication[END_REF]-some common terms in such a way that the total complexity is reduced.

In fact, the part of the original problem corresponding to subproblems [9, M 1 ] and [9, M 2 ] could be computed using only 28 instead of expected 30 multiplications. To show that very briefly, let us present-in trilinear form-the concerned terms of Hopcroft-Kerr algorithm H: This simplification was automatically produced by our pilote computer algebra package and implies the new upper bound (5 × 5 × 5 ; 99). We unfortunately do not have any geometric interpretation of this simplification and thus, we do not know if it is possible to reproduce it on other matrix multiplication algorithm obtained by a divide-and-conquer process.

H, M 1 = • • • +  (a 55 -a 51 -a 52 -a 35 ) b 54 (c 54 -c 52 ) +  (a 55 -a 53 -a 54 -a 15 ) (b 52 + b 54 ) c 52 , (128a) 
H, M 2 = • • • + (1 -) (

Concluding remarks

Remark 5 -The algorithm presented in this note could be used to improve slightly other matrix multiplication algorithm's bounds like (10 × 10 × 10 ; 693) for example.

Remark 6 -It is shown in [START_REF] Hart | A fast search algorithm for (m,m,m) triple product property triples and application for 5 × 5 matrix multiplication[END_REF] that no group can realize 5 × 5 matrix multiplication better then Makarov's algorithm using the group-theoretic approach of Cohn and Umans [START_REF] Cohn | A group-theoretic approach to fast matrix multiplication[END_REF]. Hence, the algorithm presented in this note shows that this approach does not produce better algorithms then (5 × 5 × 5 ; 99). The same assertion for (3 × 3 × 3 ; 23) and (4 × 4 × 4 ; 49) was proved in [START_REF] Hedtke | Search and test algorithms for triple product property triples[END_REF]Theorem 7.3].

m 15 =

 15 (a 12a 21a 22a 43 + a 34a 44 ) b 22b 21b 12 +b 44b 43b 34 ,

m

  29 = (a 21 + a 22 + a 43 + a 44 ) (-b 21 + b 22b 43 + b 44 ) , (30) m = (a 41 + a 42 + a 43 + a 44 ) (-b 21 + b 22 ) , (31) m = -a 52 (b 25 + b 45 ) , (32) m = ℓa 31 + a 51ℓ 2 a 35 b 11 + b 51 ℓ ℓb 15 , (33) m = (a 23 + a 25 + a 45 ) (b 53b 54b 35 + b 45 ) ,

m

  = (a 31a 41 + a 32a 42a 13 + a 23a 14 + a 24 ) (b 12 + b 14 + b 34 ) , (45) m = (-a 52a 25 ) (b 12b 22b 54 ) ,

m

  = (a 23 + a 43 + a 25 + a 45 ) (b 35b 45 ) , (58) m = (a 23a 43 + a 24a 44 ) (-b 41 + b 42b 43 + b 44 ) , (59) m = (-a 41a 45 ) (-b 15 + b 25 ) , (60) m = (a 13a 23 + a 14a 24 ) (b 12 + b 32 + b 14 + b 34 ) , (61) m = (a 53 + a 54 ) (b 32 + b 52 + b 34 + b 54 ) , (62) m = (a 21 + a 41 + a 23 + a 43 ) (b 31b 41b 32 + b 42 ) , (63) m = (-a 21 + a 41a 22 + a 42 ) (-b 21 + b 22b 23 + b 24 ) ,

  = (a 51 + a 52a 15 ) (b 12b 54 ) , (76) m = (a 21 + a 41 ) b 11b 21b 31 + b 41b 12 +b 22 + b 32b 42b 15 + b 25 , (77) m = a 33 b 31 , (78) m = a 11 b 11 , (79) m = (-a 13 + a 23 + a 33a 43a 14 + a 24 + a 34a 44a 35 ) b 32 , (80) m = (a 14 + a 54 ) (b 41 + b 45 ) , (81) m = -a 31 -a 51 ℓ a 13 -a 53 ℓ + ℓa 15 + ℓa 35 + a 55 b 51 , (82) m = a 23 (-b 31 + b 41 + b 32b 42 + b 33b 43b 53b 34 + b 44 + b 54 ) , (83) m = a 13 b 33 , (84) m = a 11a 21a 51 + a 12a 22 -a 52a 13 + a 23a 14 + a 24 (b 12 + b 14 ) , (85) m = (a 34 + a 54 ) (b 23 + b 43 + b 25 + b 45 ) , (86) m = -a 11 -a 51 ℓ a 33 -a 53 ℓ + ℓa 15 + ℓa 35 + a 55 b 53 , (87) m = a 43 (-b 13 + b 23 + b 33b 43 + b 14b 24b 34 + b 44b 35 + b 45 ) , (88) m = a 31 b 13 , (89) m = a 15 -b 31 -b 51 ℓ b 13 -b 53 ℓ + ℓb 15 + ℓb 35 + b 55 , (90) m 90 = (-a 31 + a 41a 32 + a 42 + a 33a 43a 53 + a 34a 44a 54 ) b 34 , (91) m 91 = a 55 b 55 ,

c = m 13 -

 13 m 14m 3m 4m 6 + m 87 + m 57 + m 65 + m 33 + m 41 + m 43 + m 15m 16m 17 + m 26m 28 , (114) c 53 = m 8 + m 9 + m 4 + m 85 + m 86 + m 66 + m 69 + m 55m 40 ℓ 2 + m 46 + m 31 , (115) c 14 = -m 7m 11 + m 13 + m 3m 5 + m 84 + m 68m 73 + m 75m 44m 19 + m 21 + m 23m 25 , (116) c 24 = -m 7m 11m 12 + m 13 + m 3m 5m 6 + m 74 + m 37 + m 45m 19 + m 21 + m 23m 24 , (117) c 34 = m 13m 3m 4 + m 90 + m 61 + m 63m 39 + m 41 + m 15m 16 + m 21m 25m 27 + m 29m 30 , (118) c 44 = m 13m 14m 3m 4m 6 + m 63 + m 65 + m 41 + m 43 + m 15m 16 + m 21m 28 + m 29m 30 ,

Notation 2 -

 2 In the sequel, we denote by (a × b × c ; d) a matrix multiplication algorithm computing the product of a matrix of size a × b by a matrix of size b × c using d coefficient multiplications. Makarov's algorithm M relies on the following subproblems: • one (2 × 2 × 2 ; 7) product M 9 done by Strassen algorithm S [15]; • one (3 × 3 × 3 ; 23) product M 4 done by Laderman algorithm L [7]; • one (2 × 2 × 3 ; 11) product M 6 done by Hopcroft-Kerr algorithm K [6, Th 3] (a.k.a. basic use of Strassen algorithm); • and four (3 × 3 × 2 ; 15) products M 3 , M 5 , M 1 and M 2 done by Hopcroft-Kerr algorithms H [6] (a.k.a. clearly not basic use of Strassen algorithm).

11 + 12 - 12 -

 111212 a 12a 21a 22 a 13 + a 14a 23a 24 a 15 a 31 + a 32a 41a 42 a 33 + a 34a 43a 44 a 35 a 51 + a 52 a 53 + a 54 a 55 a 22 a 14a 24 a 25 a 32a 42 a 34a 44 a 45 b 22 b 14b 24 b 32b 42 b 34quantities n ij stand for intermediate variables allowing the computation of the wanted result C (similar to m i in (2) -(125)) and  is a free parameters.

Lemma 3 -

 3 Strassen, Laderman and Hopcroft-Kerr algorithms allow to construct (5 × 5 × 5 ; 101).

  a 52a 45 ) b 54 (c 54c 52 ) + (1 -) (a 54a 25 ) (b 52 + b 54 ) c 52 . (128b) These four last trilinear terms could be factorize as two trilinear terms: H, M 1 + H, M 2 = • • • + ((a 55a 51a 35 ) + (1 -2) a 52 -(1 -) a 45 ) b 54 (c 54c 52 ) + ((a 55a 53a 15 ) + (1 -2) a 54 -(1 -) a 25 ) (b 52 + b 54 ) c 52 . (129)
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