
HAL Id: hal-01562090
https://hal.science/hal-01562090

Submitted on 13 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding new consequences of an observation in a system
of agents

Gauvain Bourgne, Katsumi Inoue, Nicolas Maudet

To cite this version:
Gauvain Bourgne, Katsumi Inoue, Nicolas Maudet. Finding new consequences of an observation in
a system of agents. 11th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Jun 2012, Valencia, Spain. pp.1223-1224. �hal-01562090�

https://hal.science/hal-01562090
https://hal.archives-ouvertes.fr


Finding new consequences of an observation in a system
of agents

Gauvain Bourgne
NII

Tokyo, Japan
bourgne@nii.ac.jp

Katsumi Inoue
NII

Tokyo, Japan
ki@nii.ac.jp

Nicolas Maudet
LIP6 - SMA Team, UPMC

Paris, France
nicolas.maudet@lip6.fr

ABSTRACT
When a new observation is added to an existing logical the-
ory, it is often necessary to compute new consequences of
this observation together with the theory. This paper inves-
tigates whether this reasoning task can be performed incre-
mentally in a distributed setting involving first-order the-
ories. We propose a complete asynchronous algorithm for
this non-trivial task, and illustrate it with a small example.
As some produced consequences may not be new, we also
propose a post-processing technique.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence —Multiagent systems

General Terms
Algorithms, Theory

Keywords
Distributed Consequence Finding, Incremental Consequence
Finding, Abduction

1. INTRODUCTION
This paper deals with the problem of finding all interesting

new consequences which can be derived from some observa-
tions, given a full clausal theory. A consequence is deemed
interesting if it respects a given language bias, and new if
it is a consequence of the observations taken together with
the theory but was not a consequence of the theory alone.
Consequence finding is a general reasoning problem which
lies at the heart of many AI applications. By focusing on
computation of new consequences, one can perform efficient
online computation of interesting consequences, an essential
feature in dynamic contexts. On top of it, some problems
specifically require to compute only new consequences, such
as abduction by the principle of inverse entailment. Indeed,
the set of abductive hypotheses is exaclty the set of the
negation of new consequences of the negated observation wrt
the background theory. The computation of new interesting
consequences is thus a very important challenge.

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Of course, one can always compute new consequences by
computing all consequences of the theory with and without
the observations, and making the difference. But focusing
only on new consequences is much more efficient, which can
be especially interesting in context when information is ac-
cessed progressively. The research question we address in
this paper is the following: does it still hold in a distributed
setting? There exist methods for computing new conse-
quences in a distributed setting [1], but restricted to the
propositional case. On the other hand, some recent work
[2] focus on computing interesting consequences of a first-
order theory, but not only the new ones. We propose here a
method that can deal with first order clausal theories while
focusing on interesting new consequences. We introduce, in
Section 2, (distributed) new consequence finding, and then
present our algorithm (Section 3). Section 4 then concludes.

2. FINDING NEW CONSEQUENCES
A clause is a disjunction of literals. A clause C sub-

sumes another clause D if there is a substitution θ such that
Cθ ⊆ D. A clausal theory is a set of clauses, interpreted as
the conjunction of all clauses in it. A consequence of Σ is
a clause entailed by Σ. A clause C belongs to a production
field P = 〈L〉, where L is a set of literals closed under in-
stantiation, iff every literal in C belongs to L. The set of
all subsumption-minimal consequences of a theory Σ that
belongs to a production field P is called the characteristic
clauses of Σ wrt P [3], and denoted by Carc(Σ,P). When
some observations O are added to a clausal theory Σ, further
consequences are derived due to this new information. Such
new and interesting consequences are called new charactestic
clauses. It is formally defined as the set of all subsumption-
minimal consequences of Σ ∪ O belong to P that are not
consequences of Σ, and denoted by Newcarc(Σ, C,P).

We now consider a system of nA agents a0, . . . , anA−1,
each having a clausal theory Σi. I = {0, . . . , nA−1} denotes
the set of indexes of all agents in the system. These agents
make some new observations (or acquire new information),
represented as a set of clauses Oi, possibly empty. The ob-
jective is to determine all the new consequences of those new
observations O =

⋃
i∈I

Oi wrt the whole theory Σ =
⋃

i∈I
Σi

belonging to the shared target production field P = 〈LP 〉,
that is, to compute Newcarc(

⋃
i∈I

Σi,
⋃

i∈I
Oi, 〈LP 〉). This

specifies a distributed new consequence finding problem. We
emphasize that agents do not share their theories, though for
better efficiency, they share their respective languages.

Example 1. Consider a system of 4 agents, whose knowl-
edge (theory and new observations) is defined as follows:



a0: Σ0 = {f ∨ g, a ∨ g}, O0 = {e}.
a1: Σ1 = {¬a ∨ b,¬g ∨ h}, O1 = ∅.
a2: Σ2 = {¬b ∨ c ∨ d,¬d ∨ ¬e}, O2 = ∅.
a3: Σ3 = {¬c ∨ ¬f}, O3 = ∅.

The target production field is P = 〈{h}〉 (i.e. LP = {h}).

3. DISTRIBUTED ALGORITHM
The main principle of our algorithm is to compute locally

all relevant new consequences (and only those ones) and for-
ward them to agents that can resolve them. Relevant con-
sequences either (i) are new characteristics clauses of the
problem, or (ii) can be used by one or more other agents to
build such a new characteristic clause. Those latter ones,
called bridge consequences, necessarily contains literals that
can be resolved by other agents. We thus define, for each
agent ai the output language Li→ the set of all literals that
(i) ai might produce1 and (ii) can be resolved with a clause
from another agent2 and an input language L→i of an agent
ai as the set of all literals that (i) might be produced by
another agent and (ii) can be resolved by some clause in its
knowledge. Agents do not know each other theories, but
they know each other input languages. Agents can focus
their computations by using L→i and LP . Though a bridge
consequence C could have literals that are not in these pro-
duction fields, such literals can only appear if they were in a
received clause. We thus define the reduction of C wrt some
language L (reduc(C,L)) as the set of all literals that appear
in C, but do not appear in positive nor negative form in L.
To achieve better efficiency, we apply a prune function to the
received clauses, which checks them against Σi ∪ listCsqi,
removing any subsumed clause.

Algorithm 1 Asynchronous algorithm
Global variables of agent ai:

Σi, Oi: initialized by problem, constant
firstRun ← true
listCsqi ← ∅

// Whenever agent ai receive sentCl from an agent

Receive(sentCl)
if firstRun then sentCl ← sentCl ∪ Oi end if

firstRun ← false
// Computing new consequences

prune(sentCl)
pField ← 〈LP ∪ Li→ ∪ reduc(sentCl,Li→)〉
newCsqi ← newcarc(Σi ∪ listCsqi, sentCl, pField)
listCsqi ← listCsqi ∪ newCsqi
// Sending relevant new consequences to neighbours

for all agents aj do

toSend[j]← ∅
for all c ∈ newCsqi do

if c contains literals from L→j then

toSend[j] ← toSend[j] ∪ {c}
end if

end for

if toSend[j] 6= ∅ then

send(aj, toSend[j])

end if

end for

//Check new consequences as output

for all c ∈ newCsqi do

if belongs(c,LP ) then

Output c
end if

end for

End

Example 2. (ex. 1 ctd.) Figure 1 illustrates the unfold-
ing of the asynchronous algorithm. Each box represents an
agent (its index) applying the receive procedure. Arrows be-
tween two boxes correspond to the communication of some

1meaning that it must appear in at least one clause of ai.
2meaning that there is at least one clause in the theory of a
different agent that contains the negation of this literal.

clauses (given as label) by the first agent to the second one.
The process is initiated by a0, who send e to a2 (as e is only
in L→2). Then a2 computes the new consequences of e wrt
to Σ2 with production field 〈{h,¬b,¬e, c}〉 getting ¬b ∨ c,
which partially belongs to Lall→1 (through ¬b) and L→3

(c). It is thus sent to these two agents. Then a1 computes
Newcarc(Σ1,¬b ∨ c, 〈{h,¬a, b,¬g, c}〉), and gets ¬a ∨ ¬c,
which is sent to a0 and a3, and so on, until h is sent as
output and other branches are closed.

0

2

e

1 3
¬b ∨ c

0 3 1 0
¬a ∨ c ¬b ∨ ¬f

3 1 0 0 1
g ∨ c

¬a ∨ ¬f ¬a ∨ ¬f ¬b ∨ g

1 0 3 1 0
g ∨ ¬f

h ∨ c g ¬a ∨ h

0 0 Output

h ∨ ¬f h ∨ ¬f h

Figure 1: Asynchronous resolution of pb 1.

Termination is guaranteed for non-recursive theories. Oth-
erwise, we need to enforce termination by fixing a limit
to the number of resolve operations that can be applied
to get a consequence.This algorithm is complete for multi-
agent new consequence finding, meaning that it outputs all
new consequences of

⋃
i∈I

Oi wrt
⋃

i∈I
Σi and 〈LP 〉. It

also ensures that each output is indeed a consequence of⋃
i∈I

Oi ∪
⋃

i∈I
Σi. However, it might also be a consequence

of the theory alone (and thus not strictly a new conse-
quence). If our purpose is to incrementally compute all
characteristic clauses, this is not a problem at all, but in
some other cases, such as the computation of abductive hy-
pothesis, we should only output new characteristic clauses.
This can be ensured as follows. We remove all new obser-
vations, and for each candidate consequence C , compute
NC = Newcarc(

⋃
i∈I

Σi, negC, 〈∅〉). If NC = {∅}, C is not
new, otherwise, it can be kept as a solution.

4. CONCLUSION
We proposed in this paper a complete asynchronous al-

gorithm to compute the new interesting consequences of
some observations with respect to a full clausal theory dis-
tributed among a set of agents. Termination is guaran-
teed in cases where the centralized case also terminates, and
soundness is ensured for incremental computations of con-
sequences. Moreover some post processing was proposed to
ensure soundness for computation of new consequences.

5. REFERENCES
[1] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset,

and L. Simon. Distributed reasoning in a peer-to-peer
setting: Application to the semantic web. JAIR,
25:269–314, 2006.

[2] G. Bourgne and K. Inoue. Partition-based consequence
finding. In Proc. of ICTAI’2011, pages 641–648, 2011.

[3] K. Inoue. Linear resolution for consequence finding.
Art. Intel., 56(301–353), 1992.


