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Abstract

This paper is devoted to the determination of well-
balanced solutions in search problems involving mul-
tiple cost functions. After indicating various contexts
in which the ordered weighted averaging operator (with
decreasing weights) is natural to express the preferences
between solutions, we propose a search algorithm to de-
termine the OWA-optimal solution. More precisely, we
show how to embed the search for a best solution into
the search for the set of Pareto solutions. We provide
a sophisticated heuristic evaluation function dedicated
to OWA-optimization, and we prove its admissibility.
Finally, the numerical performance of our method are
presented and discussed.

Introduction

In the heuristic exploration of a state space, the search
is usually totally ordered by a scalar and decomposable
evaluation function, which makes it possible to explore
only a small part of the graph to compute the best solu-
tion, as in A* (Hart, Nilsson, & Raphael 1968). However,
many real world problems considered in Al involve mul-
tiple dimensions, as for instance agents, scenarios or cri-
teria. In the frame of multiobjective search, practitioners
have investigated vector-valued extensions of the standard
paradigm (one dimension for each criterion). Facing such
problems, a popular model to compare solutions consists
in using a partial order called dominance. A solution is
said to dominate another one if its cost vector is at least
as “good” on every component, and strictly “better” on at
least one component. In this frame, one characterizes in-
teresting solutions as non-dominated solutions (i.e., solu-
tion for which there does not exist another solution dom-
inating it), also called Pareto solutions. Since the 1990’s
there has been a continuous interest in designing algorithms
able to cope with multiple objectives, and more precisely
to enumerate the whole set of Pareto solutions (Stewart
& White 1991; Dasgupta, Chakrabarti, & DeSarkar 1999;
Mandow & Pérez-de-la Cruz 2005). These algorithms have
been fruitfully applied in various fields such as mobile robot
path navigation (Fujimura 1996) or planning (Refanidis &
Vlahavas 2003). However, in many contexts, there is no
need to determine the entire set of Pareto solutions, but only
specific well-balanced solutions among the Pareto solutions.
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Focusing on well-balanced solutions makes it possible to
discriminate between Pareto solutions and thus to reduce
the computational effort by adequately pruning the search.
For the sake of illustration, we give below three examples of
natural problems that boil down to search for well-balanced
solutions in state space graphs with multiple cost functions.

Example 1 (Fair allocation) Consider a task allocation
problem, where we want to assign n tasks Ty, ..., T, to
m agents ay, ... Gm. The agents have different abilities
which lead to different times for handling tasks. We denote
t;; the time spent by agent a; to perform task T);. The state
space graph is defined as follows. Each node is character-
ized by a vector (s, dy, ..., d;) (j € {1 ...n}) represent-
ing a state in which the decisions on the first j tasks have
been made. Component dj, takes value in {ay, ..., am},
with dy, = a; if task T}, is performed by agent a;. Starting
node s corresponds to the initial state where no decision has
been made. Each node of type (s,di,...,d;) has m suc-
cessors, (s, dv, ..., dj, djy1) with djs1 € {a1, ..., am}.
A vector is assigned to each arc from node (s, di, ..., dj)
to node (s, dy, ..., djt1), the ith component of which is
tij+1) if dj+1 = ai, all others being 0. Goals are nodes of
type (s,dy, ..., dy). For each solution-path from s to a goal
node, one can consider a vector, the it" component of which
represents the global working time of agent a; (i.e., the sum
of the times of the tasks performed by a;). This is precisely
the sum of the vectors along the arcs of the path. We con-
sider here an instance with three tasks and two agents such
that t11 = 16, t15 = 4, t13 = 14, to1 = 13, to9 = 6, tog3 =
11. There are 8 solution-paths in this problem, named Sy,
..., Ss. The vectors associated with them are represented
on Figure 1. For example, the one associated with path (s,
a1, a1, as) is (16,0) + (4,0) + (0,11) = (20,11). The
aim is to find a fair and efficient allocation according to this
multidimensional representation.

Example 2 (Robust optimization) Consider a  route-
finding problem in the network pictured on Figure 2, where
the initial node is 1 and the goal nodes are 6 and 7. In
robust optimization (Kouvelis & Yu 1997), the costs of
paths depend on different possible scenarios (states of
the world), or different viewpoints (discordant sources of
information). Assume that only two scenarios are relevant
here concerning the traffic, yielding two different sets of
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Figure 1: Representation in a multidimensional space.
costs on the network. Hence, to each solution-path S; from
1 to 6 or 7 is associated a vector (the sum of the vectors
along its arcs), the it" component of which represents the
cost of Sj when the ith scenario occurs. There are again 8
solution-paths, named S, ...,Ss. The vectors associated
with them are the same as in the previous example (see Fig-
ure 1). The aim here is to find a robust solution according
to this multidimensional representation, i.e. a solution that
remains suitable whatever scenario finally occurs.

(10 @10 75

Figure 2: The state space graph.

Example 3 (Multicriteria decision making) Consider a
robot navigation problem with a set of states {es, ... ez}
and a set of actions {ay, ..., ags}, where the initial state is
ey and the goal states are eg and ey. Performing an action
in a state yields to another state. Each action is evaluated
on two cost criteria (for instance, electric consumption and
time). The costs are given on Table 1. In the first column
are indicated the states from which the action in the second
column can be performed. In the third column are indicated
the costs of actions, and in the last column is indicated
the resulting state after performing an action. There are 8
possible sequences of actions, named Sy, ..., Sg, to reach
states eg and e;. The vectors associated with them are
again the same as in Example 1 (see Figure I). The aim
here is to find a best compromise solution according to both
criteria.

state  action  cost  resulting state

€1 aiq (4, 0) €9
a2 (0, 6) €3

€2, €3 as (0, 11) €4
Qa4 (14, 0) €5

e4, €5 as (0,13) 6
ag (16, 0) (&rd

Table 1: A robot navigation problem.

In these three examples, computing the whole set of
Pareto solutions provides no information. Indeed, we can
see on Figure 1 that all solutions are Pareto solutions. To
overcome this drawback, one can use a disutility function,
compatible with the dominance order, to focus on one spe-
cific Pareto solution. However, this might raise another dif-

ficulties. For instance, using the average of the costs yields
solution S5 which is a very bad solution on the second com-
ponent (representing an agent, a scenario or a criterion).
Performing a weighted sum of the costs does not solve this
problem either. Indeed, it can easily be shown that solutions
Ss, Sy and S5, that seem promising, cannot be obtained by
minimizing a weighted sum of costs since they do not belong
to the boundary of the convex hull (grey area on Figure 1)
of the points representing solutions in the multidimensional
space. Finally, focusing only on the worst component (mini-
max criterion), although it yields to interesting solutions, is a
quite conservative approach. For example, solution S5 can-
not be obtained by the minimax criterion, despite its promis-
ing costs, due to presence of solution Sy.

These observations show the limitations of standard deci-
sion criteria in the context of Examples 1, 2 and 3. Hence,
we need to resort to another decision criterion for measur-
ing the quality of a solution in these contexts. The ordered
weighted averaging (OWA) operator seems to be a relevant
criterion in this concern. Indeed, it avoids the pitfalls of stan-
dard decision criteria: unlike the weighted sum, it makes it
possible to yield a solution the cost vector of which is not
on the boundary of the convex hull; furthermore, this model
is less conservative than the minimax one since it takes into
account all the components of the vector. The aim of this
paper is to design a state space search algorithm able to find
a best solution according to this decision criterion.

The paper is organized as follows: in the next section,
we introduce preliminary formal material and we present the
OWA operator, that reveals an appropriate disutility function
for characterizing a fair, robust or best compromise solution.
Then, we propose a multiobjective search algorithm for the
determination of an OWA-optimal solution. In this frame-
work, we provide a heuristic evaluation function for pruning
the search, and we prove its admissibility. Finally, numerical
experiments are presented and discussed.

Problem Formulation
Notations and Definitions

We consider a state space graph G = (N, A) where N
is a finite set of nodes (possible states), and A is a set of
arcs representing feasible transitions between nodes. For-
mally, we have A = {(n,n’) : n € N,n’ € S(n)} where
S(n) C N is the set of all successors of node n (nodes that
can be reached from n by a feasible elementary transition).
We call solution-path a path from s to a goal node v € TI'.
Throughout the paper, we assume that there exists at least
one solution-path.

The three kinds of search problems presented above
(multi-agent search, robust search and multi-criteria search)
differ from the standard one by their vector-valued cost
structure. Indeed, the state space graph is provided with a
valuation function v : A — N which assigns to each arc
a € Aavectorv(a) = (vi(a),...,vn(a)), where v;(a) de-
notes the value according to the i*"* component (i.e., agent,
scenario or criterion). The cost-vector v(P) of a path P is
then defined as the componentwise sum of the vectors of its
arcs. Hence, the comparison of paths reduces to the compar-



ison of their associated cost-vectors. Since we are looking
here for well-balanced vectors, we propose to compare paths
according to the ordered weighted averaging (OWA) opera-
tor (Yager 1988) of their associated cost-vectors.

The OWA Criterion

Definition 1 Given a vector x, its ordered weighted average
is owa(x)=), w;x(;, where ), w;=1 and x(;y > .. >
T(m) are the components of x sorted by nonincreasing order.

We consider here the subclass of OWA operators where
the weights are ranked in decreasing order: w; > ... >
Wy, Which leads to give a greater importance to high-cost
components. This preoccupation is natural when looking
for well-balanced solutions. Note that criterion max also fo-
cuses on well-balanced solutions, but it is very conservative
since it only considers the highest cost component. How-
ever, there exists a less conservative operator, called lexi-
max, which refines the order induced by max. It consists
in comparing two vectors according to their highest com-
ponent, and then their second highest component in case of
equality, and so on... The same order among vectors can be
obtained from the OWA criterion by setting a big-stepped
distribution of weights (i.e., w1 > ... > wy,).

Coming back to solutions in Figure 1, the ordered
weighted average enables to reach all interesting solutions
(in particular, solution S5). Indeed, by varying the weight-
ing vector w, we obtain solution Sy when wy € [0.5;0.6]
(and therefore wo € [0.4;0.5]), solution S5 when w; €
[0.6;0.75] and solution Sy when w; € [0.75; 1]. More gen-
erally, the OWA criterion proved meaningful in the three
contexts mentioned in the introduction:

e fair allocation: Ogryczak (2000) imports concepts from
inequality measurement in social choice theory to show the
interest of the OWA operator in measuring the equity of a
cost distribution among agents. In particular, he shows that
the OWA operator is consistent with the Pigou-Dalton trans-
fer principle, which says that, if a distribution x can be ob-
tained from a distribution y by a transfer of cost from y; to
y; (y; > y;), then distribution x should be preferred to y.

o robust optimization: Perny & Spanjaard (2003) provide an
axiomatic characterization in a way similar to von Neumann
and Morgenstern one. The authors exhibit axioms that are
very natural for modelling robustness. They show that these
axioms characterize an OWA criterion with strictly positive
and strictly decreasing weights.

e multicriteria decision making: Yager (1988) introduced
the OWA operator for aggregating multiple criteria to form
an overall decision function. He emphasizes that this opera-
tor makes it possible to model various forms of compromise
between min (one compares vectors with respect to their
lowest component) and max (one compares vectors with re-
spect to their highest component).

Problem and complexity

We are now able to formulate the OWA search problem:
Given: a vector valued state space graph G = (N, A), with
asource node s € N and asetI' C N of goal nodes.

Find: a solution path with an OWA-optimal vector in the set

of all vectors of solution-paths in G.

This problem is NP-hard. Indeed, choosing w; = 1 and
w; = 0Vi =2,...,m, we get owa(r) = x(,) = max; ;.
Hence OWA minimization in a vector graph reduces to the
min-max shortest path problem, proved NP-hard by Murthy
& Her (1992). However, note that the problem can be solved
in polynomial time of the size of the state space for some
classes of instances:

e when w; = wo = ... = w,,, the optimal path can be found
by applying the heuristic search algorithm A* on the state
space graph where each arc a is valued by >, v;(a);

e when there exists a permutation 7 of {1, ..., m} such that
Vr(1y(@a) > ... > Vr(m)(a) for every arc a, the optimal path
can be found by applying A* on the state space graph where
each arc a is valued by ), w;v, ;) (a).

Unfortunately, this kind of instances are quite uncommon.
That is why we propose below a new heuristic search algo-
rithm able to solve any OWA search problem (provided the
weights are decreasing).

Search for an OWA -optimal Solution

We now show that Bellman’s principle does not hold when
looking for an OWA optimal solution-path in a state space
graph. Consider Example 2 and assume that the weights of
the OWA operator are wy= 0.8 and ws=0.2. The optimal
solution-path is solution Sy= (1, 3,4,7) with cost (16, 17)
and owa(16,17)=16.8. However, subpath P=(1, 3, 4) from
node 1 to node 4 is not optimal since path P'=(1,2,4) is
better. Indeed we have v(P)=(0, 16) with owa(0, 16)=12.8,
and v(P’)= (4, 10) with owa(4,10)=8.8. This is a violation
of Bellman’s principle (any subpath of an optimal path is
optimal). It invalidates a direct dynamic programming ap-
proach: optimal solution S would be lost during the search
if P is pruned at node 4 due to P’.

To overcome the difficulty, one can use the property that
any OWA-optimal solution is a Pareto solution. We re-
call that a vector z is said to Pareto-dominate a vector y
if Vi=1,...,m, x; < y; and 34, x; < y;. A vector is Pareto
optimal in a set X if no vector y in X Pareto-dominates it.
Hence one can resort to multiobjective heuristic search algo-
rithms (the validity of which follows from the compatibility
of Pareto optimality with Bellman’s principle), like MOA*
(Stewart & White 1991) or the new approach to multiobjec-
tive A* designed by Mandow & Pérez-de-la Cruz (2005),
named NAMOA*. The search can be refined by focusing di-
rectly on OWA-optimal solutions during the search. This is
related to works of Mandow & Pérez-de-la Cruz (2003) and
Galand & Perny (2006), that also used a disutility function
to prune large parts of the state space during the search.

‘We now detail our refinement of NAMOA™ called OWA*,
for the direct determination of an OWA-optimal solution. As
in NAMOA*, OWA* expands vector-valued labels (attached
to subpaths) rather than nodes. Note that, unlike the scalar
case, there possibly exists several Pareto paths with distinct
cost-vectors to reach a given node; hence several labels can
be associated to a same node n. At each step of the search,
the set of generated labels is divided into two disjoint sets:
a set OPEN of not yet expanded labels and a set CLOSED of



already expanded labels. Whenever the label selected for
expansion is attached to a solution-path, its OWA value is
compared with value best of the best solution-path found so
far, and best is updated if necessary. Initially, OPEN con-
tains only the label attached to the empty subpath on node s,
CLOSED is empty and best is set to +00. We describe below
the essential features of the OWA™* algorithm.

Output: it determines an OWA-optimal solution-path. If
several paths have the same OWA value, only one of these
paths is stored using standard bookkeeping techniques.
Heuristics: at any node n, we assume we have a heuristic
value h;(n) for each cost function v;, that underestimates the
value of the best path from 7 to a goal node w.r.t. v;. Further-
more, we assume we also have a heuristic value hg(n) that
underestimates the value of the best path from n to a goal
node w.r.t. » ;" v;. These heuristic values are computed
by resorting to a context-dependent scalar heuristic function
for the search problem under consideration It is important
to note that function hg # ZZ 1 hi. Indeed, contrarily to
hg, each function h; underestlmates the best value w.r.t. v;
independently from the values on other objectives.
Priority: to direct the search we use a scalar label evaluation
ev () underestimating the OWA value of the best solution-
path we can be obtain from ¢. Hence, OWA™ expands in
priority the minimal label ¢ € OPEN according to ev. The
computation of ev() is described in the next section.
Pruning: as shown above, the pruning of labels cannot be
done directly with the OWA operator. The following prun-
ing rules are used:

RULE 1: at node n, a label / € OPEN is pruned if there
exists another label ¢’ at the same node n such that g(¢)
is Pareto-dominated by g(¢'), where g(¢) denotes the cost-
vector v(P) of the subpath P associated with ¢. This rule is
the same as in NAMOA™ and is justified by the fact that la-
bels pruned by rule 1 necessarily lead to solution-paths with
cost-vectors outside the Pareto set, and there always exists
an OWA-optimal vector in this set. Indeed, if a vector =
Pareto dominates a vector y, then owa(z) < owal(y).

RULE 2: a label £ € OPEN is pruned if ev(¢) < best, where
ev(f) is a function underestimating the OWA value of the
best solution-path that can be obtained from ¢. This rule al-
lows an early elimination of uninteresting labels while keep-
ing admissibility of the algorithm.

Termination: the process is kept running until set OPEN be-
comes empty, i.e. there is no remaining subpath able to reach
a solution-path improving best. By construction, OWA™ ex-
plores a subgraph of the one explored by NAMOA™ and its
termination derives from the one of NAMOA*.

A Heuristic Evaluation Function for OWA
Partitioning the representation space

Given a label £ on a node n, we now explain how to compute
the value ev(¢). Let g;(¢) denote the i*" component of g().
We use value fs(¢) = >, gi(f) + hs(n) and vector f(¢)
defined by f;(¢)=g;({) + h;(n) for i=1,...,m. Note that
fi(£) underestimates the value of the optimal solution-path
that can be obtained from the subpath attached to ¢, when
focusing on the i*" component only. The evaluation function

we propose consists in solving the following program:
min owa(x)

> fi(0) Vi=1..
(F2) doimy ii > ﬁs((f)) Z "
r € R™

When fs(¢) <>, fi(¢) (which is very unlikely), the op-
timal value is obviously owa(f(¢)). In other cases, the solu-
tion of (P) requires to take into account the way the compo-
nents of z are ordered. Hence, this problem can be divided
into several subproblems, each one focusing on a subspace
of R™ where all vectors are comonotonic, i.e. for any pair
x,y of vectors there exists a permutation 7 of (1,...,m)
such that Tr(1) > .2 Tr(m) and Yr(1) > .2 Yr(m)-
Within a particular subspace, the OWA operator reduces to a
usual weighted sum of the components. The solution of (P)
reduces therefore to solving each linear program defined by
a particular permutation 7 of (1,...,m):

min Zi:l WiTr(4)

(Pe,) x> fill)  Vi=1l.m (1.2)
Yimiwi > [fs(f) (1.3)
x € R™

Value ev(f) is then defined by ev(£)=minen owa(zy )
where x; . denotes the optimal solution to linear program

(Py,») and II the set of all possible permutations. Note
that for m components, there are |II|=m! linear programs
to solve. However, in practice, it is not necessary to solve
the m! linear programs. Indeed, there exists an easily com-
putable permutation 7* for which ev(¢)=owa(x} . ):

Proposition 1 Let ©* denote the permutation such that
freey() = fre@)() = oo 2 frem)(£). For all feasi-
ble solution x to (Py ), there exists a feasible solution y to
(Py,z+) such that owa(y) = owa(x).
Proof. The idea is to determine a feasible solution y to
(Pg,7+) such that y¢;=x;) Vi. Indeed, it implies owa(x)=
owa(y) and the conclusion is then straightforward. In this
respect, we construct a sequence (z’ )j:l,___,k of solutions
and a sequence (77);—1 ) of permutations s.t. 7 is
feasible for Py .; (for j=1,...,k), with =z, wl=m,
wk=r* and x%i):xfi): . =$I(€¢) Vi. Assume that 3 ig, i1 €
{1, .. .,m} s.t. 19 < 71 and fﬂl(m)(f) < fﬂ.l(n)(f) Let per-
mutation 72 be defined by 72(ig)=nr'(i1), m2(i1)=n"(io),
and 72 (i)=n'(i) Vi # i0,11. Let solution 2 be defined by
mwz(i):x}rl(i) for i=1, ..., m. We now show that 22 is a
feasible solution to (P, ,2). Note that z} wl(io) 2 Tt (io) (£),
> fﬂ_1(i1)(€), 711,1(10) > .1‘ (i) and fﬂl(“)(E) >
fﬂl(io)(f). Hence, constramts (1.2) are satisfied:
zi?(%)“il(%) = 1(1 ) 2 Jr (i) (0= Fr2(io) (£,
® o) i (iy) 2 frr ) (€) > friio) (O=Fr20i1) (),
i 337272(1'):%';1(1') > fwl(i) ()= f7r2(i) (£) for i # ig, 1.
Constraints (1.1) are also satisfied since [$71r1(i) > z}rl(iﬂ)
Vi] = (2320 > 2224y Vil Indeed, a1, =22, ;) Vil
These equalities imply also that constraint (1.3) is satisfied



and that z(;= y(;) Vi. Solution 22 is therefore feasible

for (P 2) with @)=y Vi. Since any permutation is
the product of elementary permutations, one can always
construct in this way a sequence of permutations that leads
to 7* (and the corresponding feasible solutions). By setting
y=x*, one obtains the desired feasible solution to (P, ). [J

An immediate consequence of this result is that ev(¢) =
owa(zy . ). Thus, the computation of ev (/) reduces to solv-
ing linear program (P - ). Furthermore, we now show that
the solution of this program can be performed in linear time
of m without resorting to a linear programming solver.

Resolution of (P )

For the convenience of the reader, we first explain the princi-
ple of the solution procedure thanks to an example with three
cost functions. Consider a label ¢ for which fs(¢) = 21,
F(0) = (5, 10, 3). Since fo(£) > f1(€) > f3(¢). permuta-
tion 7* is defined by 7*(1) = 2, 7*(2) = 1 and 7*(3) = 3.
By Proposition 1, value ev(£) is obtained by solving:

min wixs + wex1 + wzxs
To Z T Z I3 (2.1)
ry > 5 (2.2)
ro > 10 (2.3)
T3 Z 3 (24)
r1+x9+23 > 21 (25)
xr € R3

The principle of the procedure is the following:

e we set x=f(¢)=(5, 10, 3): all constraints except (2.5) are
thus satisfied. However, constraint (2.5) can be satisfied
only if amount 21 — (5 + 10 + 3) = 3 is added on one or
several components of x.

e The component of minimal weight (i.e. x3) is then
increased as much as possible without violating constraints
(2.1): we therefore set 3 = min{z;23 + 3}. We
get x3 = 5, which is not enough to satisfy constraint
(2.5). This constraint can now be satisfied only if amount
21—(5+10+5) = 1is added on one or several components.
e The two components of minimal weights (i.e. x3 and
x1) are then increased simultaneously as much as possi-
ble without violating constraints (2.1): we therefore set
z3 = x1 = min{zs;z; + 1} (one distributes amount 1
among both components). We get here z; = x3 = 5.5.
Constraint (2.5) is now satisfied.

ez = (5.5,10,5.5) is a feasible solution to the program: it
is the optimum.

This computation can be simplified by directly determin-
ing components ¢ for which the value in the optimal solu-
tion to (Pp, -+ ) is distinct from f;(¢), and the common value
of these components in the optimal solution. We now de-
scribe Algorithm 1 which precisely performs these opera-
tions. To satisfy constraint (1.3), it is necessary to distribute
surplus A = fg(¢) — >, fi(¢) > 0 among the lowest
components of the solution under construction.The number
of these components is known by determining the lowest
component that need not be modified. Its index is &k =

max {j = 0.m-1: 32721 (m = i) (fre () (O — fre(irn) (0)

> A}, with fre)(£) = 4o0. Value fr-;(€) is there-
fore assigned to component 7*(¢) for i = 1,...,k. Value
r= (3"t faeiy(£) + A)/(m — k) is then assigned to
each of the (m — k) lowest components (i.e. components
(i) fori = k+1,...,m), so as to satisfy constraint (1.3)
for a minimum cost.

Algorithm 1: Solution of (Pp +)
A fs(0) =33, fi0)
s+ 0;a+0;k+m

// a: max amount that can be added to components k+1,...,m
while « < A do

k< k—1:s s+ freosny ()

if £ = 0 then a < +o0

else a < a + (fr= ) (£) = frr(es1)(£))(m — k)
end
r (s+A)/(m—k)
fOl‘j = 1 to k dO xzﬂ_*(J) <— fﬂ'*(]) (6)
forj=(k+1)tomdoxy .\«
Output: owa(xj .)

Proposition 2 establishes the validity of our algorithm:

Proposition 2 Let k = max {j = 0..m-1: Zf;;l (m — 1)
(Frri)(0) = fre(ivn)(0)) = A and r = (3272, 1 fre (i) (€)
+ A) / (m — k). An optimal solution to (Ppr+) is v =
(fﬂ‘*(l)(e)7 cey fw*(k)(f) y Ty 7T)'

Proof. W.l.o.g., we assume that f1(¢) > .. > f,(¢) (i.e.
m* = id) for clarity in the following. To simplify the proof
presentation, we assume that fs(¢) > . fi(¢) and w; >
w;y1 > 0 Vi < m. We first show that any optimal solution
saturates constraint (1.3). Since fs(¢) > >, fi(£), feasibil-
ity implies there exists at least one constraint (1.2) that is not
saturated. Consequently if constraint (1.3) is not saturated,
it is possible to decrease the value of at least one component
while keeping feasibility, and hence to find a better solution.
We now show that « is an optimal solution to (Pp « ). Con-
sider a feasible solution y # x. We claim that y cannot be
optimal. Indeed, there are two cases:

Case 1. 3jy < ks.t. yj, > fj,(£): two subcases:

Case 1.1. Vi > jo, y; > yj,: since y; < y;, Vi > jo by con-
straints (1.1), we have therefore y; = y;, Vi > jo. Hence
D ier Yi = Doiey i + (m = jo)yj,. However, yj, > fj,(£)
by assumption, fj,(¢) = z;, by definition of , and ¥i > jo
Zj, > x; by constraint (1.1). Therefore Vi > jo y;, > x;. It

implies Z:il Yi > 230:1 fz(ﬁ) —+ Z?;jo-l‘l T; = Z:il Z;
since z; = fi(¢) Vi < jo. Consequently, > " y; >
St xi = fs(£). Constraint (1.3) is not saturated and y
cannot then be optimal.

Case 1.2. 3t > jo s.t. y; < Yjo- Lettp = min {’L 14 > jo and
Y; > Yi+1 }. By definition of ¢, we have y;, = y;,, which
implies Yto > fjo(e) > fto (6) Let €1 = Ytg — Yto+1 > 0,
€2 = Yt, — fito(£) > 0 and € = min {1, g2} > 0. Consider
a solution z to (P .~ ) defined by 2y, = y1, — €/2, 21941 =
Yto+1 + /2 and z; = y; otherwise, z is then feasible. Since
Wy, > Wyy+1, owa(y) > owa(z). Then y is not optimal.
Case 2. Vj < k,y; = f;(¢), and Fjo > k s.t. yj, #



Case 2.1. Assume that y;, > r: if there exists ¢ > jg s.t. y¢
< yj, then y is not optimal (case 1.2). If y;, = y; for all ¢
> jo, then y; > y;, > Vi € {k+ 1,...50} and y; = yj,
>rV¥ie{jo+1,...,m} Then Y " vy > (m—k)r.
Since Zle Yi = Zle zi, we have Y07y > D01 @
and constraint (1.3) is not saturated. Then y is not optimal.

Case 2.2. Assume that y;, < r: we have then y; < y;, <r
Vi € {jo, ..., m},and therefore ) " . y; < (m — jo+ 1)r.
However >, | y; = (m — k)r when constraint (1.3) is
saturated. Then 250:7;1 yi > (m—k)r—(m—jo+1)r=
(jo —k—1)r. Itimplies there exists ¢o in {k+1,...,jo—1}
s.t. ¥;, > 7, and thus y cannot be optimal (see case 2.1). [J

Numerical Tests

Algorithms were implemented in C++. The computational
experiments were carried out with a Pentium IV 3.6Ghz
PC. Table 2 summarizes the average performances of OWA*
when the evaluation function presented in the previous sec-
tion is used (sharp approach SA). We compare it with the re-
sults obtained with a more naive approach (NA), where the
evaluation function consists in computing the OWA value
of vector f(¢). The same priority rule is used in both
approaches. The tests have been performed for different
classes of graphs G ;, characterized by their number ¢ of
thousands of nodes and j of cost functions. The number of
nodes range from 1,000 (with 190,000 arcs) to 3,000 (with
2,000,000 arcs). Cost vectors are integers randomly drawn
within [0,100] for each arc. For each class and each ap-
proach, we give three average time performances over 50
different instances, depending on weight vectors that yield
a gradation of OWA operators from close to max (weights

close to (1,0,...,0)) to close to average (weights close to
(L,...,L)). For every class, we give the average percent-
m m

age of nodes generated by NA that have not been generated
by SA (%.,). Admissible heuristic functions (i.e., underesti-
mating the values of the cheapest paths) were generated by
setting h;(n) = ah(n) and hg(n) = ah§(n), where o de-
notes a random value within [0.8,1) for each node and h} (n)
(resp. h§(n)) the perfectly informed heuristic for compo-
nent ¢ (resp. for the sum of components).

close to max between max & avg close to avg

NA SA %, | NA SA %, | NA SA %,
G133 02 01 67 {02 01 74 |02 01 77
Gas 07 03 67 |08 03 74 |08 02 74
G333 1.5 0.7 6l 1.9 06 76 | 21 06 77
Gis 03 01 71 03 01 8 |05 01 87
Gas 1.2 04 73 |14 03 83 |17 03 87
G5 27 09 70 129 07 78 |34 06 85
Giio | 14 05 64 |20 02 92 |21 02 92
G0 | 63 22 66 | 9.0 07 92 | 11.1 07 94
Gz | 157 50 69 | 214 1.7 92 | 230 14 94

Table 2: OWA-based search (time in seconds).

These results show that SA generates an optimal solution
significantly faster than NA. The saving in the number of
generated nodes is all the more so significant as the size of
the search space increases. Moreover, SA is much more ro-
bust to weights changes than NA, thanks to the use of fg(¢).

Conclusion

We have presented an efficient way to seek for well-balanced
solutions in search problems with multiple cost functions.
We have justified the use of the OWA operator to compare
solutions in the representation space. We have then provided
a new multiobjective search algorithm, named OWA*, to ef-
ficiently determine an OWA-optimal solution-path in a state
space graph. The efficiency of OWA* strongly relies on a
procedure that estimates the value of an OWA-optimal so-
lution by combining two types of scalar heuristic informa-
tions: a value for each cost function, and a value taking
into account tradeoffs between components. In the future,
it should be worth studying decision criteria able to express
interactions between components by weighting not only in-
dividual components, but also groups of components, such
as Choquet integral (of which the OWA operators are partic-
ular instances) or Sugeno integral (e.g., Grabisch 1996).
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