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SYSTOLES IN TRANSLATION SURFACES
CORENTIN BOISSY, SLAVYANA GENINSKA

ABSTRACT. For a translation surface, we define the relative systole
to be the length of the shortest saddle connection. We give a char-
acterization of the maxima of the systole function on a stratum,
and give a family of examples providing local but nonglobal max-
ima on each stratum of genus at least three. We further study the
relation between (locally) maximal values of the systole function
and the number of shortest saddle connections.

1. INTRODUCTION

This paper deals with flat metrics defined by Abelian differentials
on compact Riemann surfaces (translation surfaces). Such flat metrics
have conical singularities of angle (k + 1)27, where k is the order of
the zero of the corresponding Abelian differential. A stratum of the
moduli space of Abelian differential corresponds to translation surfaces
that share the same combinatorics of zeroes, possibly including marked
points.

A saddle connection on a translation surface is a geodesic joining two
singularities (possibly the same) and with no singularity in its interior.
A sequence of area one translation surfaces in a stratum leaves any
compact set if and only if the length of the shortest saddle connection
tends to zero. The set of translation surfaces with short saddle con-
nections and compactification issues of strata are related to dynamics
and counting problems on translation surfaces and have been widely
studied in the last 30 years (see for instance |9, 5, 4]).

In this paper, we are interested in the opposite problem: we study
surfaces that are as far as possible from the boundary and that would
represent the “core” of a stratum. For a translation surface, we define
the relative systole Sys(S) to be the length of the shortest saddle con-
nection of S. Our primary goal is to study global and local maxima
of the function Sys when restricted to area one translation surfaces.
Note that our definition is different from the “true systole” i.e. short-
est closed curve that has been studied by Judge and Parlier in [8]. In
the rest of the paper, for simplicity, if not mentioned otherwise, the

term “systole” will mean “relative systole”.
1
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This kind of question appears also in other contexts. Maxima of the
systole function for moduli spaces of hyperbolic surfaces, where the
systole is the length of the shortest closed geodesic, has been studied
by various authors, for instance Bavard [2], Schmutz Schaller [13], or
more recently Balacheff, Makover and Parlier [1]. A related question
is the maximal number of geodesics realizing the systole, the so called
kissing number, see for instance Schmutz Schaller [14], Fanoni and
Parlier [7].

In the context of area one translation surfaces, while the character-
ization of global maxima for Sys seems to have been known for some
time in the mathematic community, the existence of local maxima was
unknown. We provide explicit examples of local maxima that are not
global in each stratum with genus g = 2 with marked points or g > 3.
We also study the relation between the (locally) maximal values of
the function Sys and the (locally) maximal number of shortest saddle
connections.

The paper is organized as follows. In Section 2, we give some general
background on translation surfaces.

In Section 3, we study global maxima of the function Sys for area
one translation surfaces. We prove the following theorem (see Theo-

rem 3.3):

Theorem. Let S be a genus g > 1 translation surface of area one and
r > 0 singularities or marked points. Then

Sys(S) < <?(Qg — 2+ r))

The equality is obtained if and only if S is built with equilateral triangles
with sides saddle connections of length Sys(S). Such surface exists in
any connected component of any stratum.

D=

This result was independently proven recently by Judge and Par-
lier [8| for surfaces with one singularity: the authors are interested in
shortest closed curves but their proof should work in any strata in our
context.

In Section 4, we study local maxima of the function Sys that are not
global. With the help of explicit examples we prove the following result
which is Theorem 4.7 in the text.

Theorem. FEach stratum of area one surfaces with genus g = 2 with
marked points or g > 3 contains local mazima of the function Sys that
are not global.
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The examples are obtained by considering surfaces that decompose
into equilateral triangles and regular hexagons, with some further con-
ditions (see Theorem 4.1 for a precise statement).

In the last section, we study the relation between (locally) maximal
values of the function Sys and the (locally) maximal number of shortest
saddle connections. We call a surface rigid if it corresponds to a local
maximum of the number of shortest saddle connections. While the con-
nection is clear for global maxima (see Proposition 5.1), the situation
is more complex for the local maxima. The examples that we provide
for local maxima of the function Sys are rigid. Even more, a surface
that is a local maximum of the function Sys and that decomposes
into equilateral triangles and regular hexagons must be rigid (Proposi-
tion 5.2). However, rigid surfaces are not necessarily local maxima (see
Proposition 5.3).

The authors thank Carlos Matheus for pointing out a small mistake
in the first version of the paper, and the anonymous referee for the
improvement suggestions.

2. BACKGROUND

A translation surface is a (real, compact, connected) genus g surface
S with a translation atlas i.e. a triple (S,U,¥) such that ¥ is a finite
subset of S (whose elements are called singularities) and U = {(U;, z;)}
is an atlas of S\ 3 whose transition maps are translations of C ~ R?.
We will require that for each s € X, there is a neighborhood of s iso-
metric to a Euclidean cone whose total angle is a multiple of 2. One
can show that the holomorphic structure on S\ ¥ extends to S and
that the holomorphic 1-form w = dz; extends to a holomorphic 1—form
on X where X corresponds to the zeroes of w and maybe some marked
points. We usually call w an Abelian differential. A zero of w of order
k corresponds to a singularity of angle (k + 1)27. By a slight abuse
of notation, we authorize the order of a zero to be 0, in this case it
corresponds to a regular marked point. A saddle connection is a ge-
odesic segment joining two singularities (possibly the same) and with
no singularity in its interior. Integrating w along the saddle connec-
tion we get a complex number. Considered as a planar vector, this
complex number represents the affine holonomy vector of the saddle
connection. In particular, its Euclidean length is the modulus of its
holonomy vector.

For g > 1, we define the moduli space of Abelian differentials H, as
the moduli space of pairs (X,w) where X is a genus g (compact, con-
nected) Riemann surface and w non-zero holomorphic 1—form defined
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on X. The term moduli space means that we identify the points (X, w)
and (X', w’) if there exists an analytic isomorphism f : X — X’ such
that f*w’ = w. The group SL(2, R) naturally acts on the moduli space
of translation surfaces by post composition on the charts defining the
translation structures.

Omne can also see a translation surface obtained as a polygon (or a
finite union of polygons) whose sides come by pairs, and for each pair,
the corresponding segments are parallel and of the same length. These
parallel sides are glued together by translation and we assume that
this identification preserves the natural orientation of the polygons. In
this context, two translation surfaces are identified in the moduli space
of Abelian differentials if and only if the corresponding polygons can
be obtained from each other by cutting and gluing and preserving the
identifications. Also, the SL(2,R) action in this representation is just
the natural linear action on the polygons.

The moduli space of Abelian differentials is stratified by the combi-
natorics of the zeroes; we will denote by H(ky, ..., k,) the stratum of
My, where Y . k; = 2g — 2, consisting of (classes of) pairs (X,w) such
that w has exactly r zeroes, of order ki, ..., k.. This space is (Haus-
dorff) complex analytic (see for instance [11, 15, 16]). We often restrict
to the subset Hi(k1, ..., k,) of area one surfaces. Local coordinates for
a stratum of Abelian differentials are obtained by integrating the holo-
morphic 1-form along a basis of the relative homology H;(S,X%;Z),
where Y denotes the set of conical singularities of S.

3. MAXIMAL SYSTOLE

We recall that the systole Sys(S) of a translation surface S is the
length of the shortest saddle connection of S. The aim of this section
is to prove Theorem 3.3 which characterizes translation surfaces of area
one with maximal systole. One key tool is Delaunay triangulation.

Let S be a translation surface. A Delaunay triangulation S is a
triangulation of S such that the vertices are singularities, the 1-cells
(the sides of the triangles) are saddle connections and, for a 2-cell
(triangle) T of the triangulation, the circumcircle of any representative
T of the universal covering does not have any singularity in its interior.

In Section 4 of [12] Masur and Smillie prove the existence of Delaunay
triangulations for every translation surface S.

Lemma 3.1. All shortest saddle connections of S are 1-cells in every
Delaunay triangulation of S.

Proof. Let o be a saddle connection that is not included in a Delaunay
triangulation 7. Denote by P, @ the extremities of 0. Let T" € T be
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Pl/

P/
FIGURE 1. Illustration of Lemma 3.1

the triangle in 7 with P as a vertex and containing a subsegment of
o. Let P', P” be the other vertices of T' (see Figure 1).

Consider the circumcircle ¢ of T', and the open arc of P’ P” that does
not contain P. Each chord of ¢ joining P to an element of this arc is of
length strictly greater than min(d(P, P’),d(P, P")) > Sys(S). One of
these chords is in the direction of o and since there is no singularity in
the interior of ¢, this chord is a subsegment of o. Therefore, o is not a
shortest saddle connection.

O

The first statement of the following lemma is needed for the proof of
the next theorem. The second statement will be useful for Theorem 4.7.

Lemma 3.2. Let C C H(ky,..., k) be a connected component of a
stratum of abelian differentials with ki, ..., k. > 0.

(1) There exists in C a surface S that decomposes into equilateral
triangles with sides saddle connections.

(2) Furthermore, for each i,j we can find such a surface with a
side of an equilateral triangle being a saddle connection joining
a singularity of degree k; to a singularity of degree k;, with the
convention that the two singularities are different if i # j and
equal if i = j.

Proof. We first prove (1). By Lemma 18 in [10] there exists in each
connected component of each stratum a surface with a horizontal one
cylinder decomposition. Up to a shear transformation that creates a
vertical saddle connection, such surface can be described as a rectan-
gle with the two vertical sides identified that correspond to a saddle
connection, and each horizontal side decomposes into horizontal saddle
connections (each one appearing on the top and on the bottom). We
can freely change the lengths of these saddle connections hence we can
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FIGURE 2. Surface with a equilateral triangle decomposition

assume they are all of length one, and get a square tiled surface with
singularities in each corner of the squares. Now we rotate the verti-
cal one until it makes an angle of 7/3 with the horizontal ones (see
Figure 2), this gives the surface S required.

The proof of (2) is a small variation of the above proof: observe
first that each singularity appears both on the top line and on the
bottom line of the cylinder. Recall that SL(2,R) acts on the connected
component of the stratum by linear action on the polygons. Then
applying the matrix (%) and suitably cutting and pasting we obtain
a new rectangle. For a suitable n there is a vertical length one saddle
connection joining the singularity of degree k; to the singularity of

degree k;, and the above argument finishes the proof.
O

Theorem 3.3. Let S be a genus g > 1 translation surface of area one
and r > 0 singularities or marked points. Then

Sys(9) < <?(29 — 2+ r))

The equality is obtained if and only if S is built with equilateral triangles
with sides saddle connections of length Sys(S). Such a surface ezists
in any connected component of any stratum.

(SIS

Proof. For simplicity, instead of looking at a translation surface of area
one and trying to determine the longest systole possible, we suppose
that S has a systole of length 1 and we try to minimize the area A(S).

We consider a Delaunay triangulation of S given by saddle connec-
tions. By Lemma 3.1 all shortest saddle connections of S are 1-cells in
this triangulation. Note that some triangles in the Delaunay triangu-
lation might have small area.
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We consider the Voronoi diagram of S. This is a partitioning of
S into cells. Each cell contains exactly one singularity and is the set
of points of S that are closer to that singularity than to any other.
The boundary of each cell consists of points that are equidistant to at
least two singularities in the sense that there are at least two different
distance realizing geodesics of equal length connecting the point with
a singularity (see Section 4 of [12] for reference).

The boundaries of the cells of the Voronoi diagram are parts of the
orthogonal bisectors of the saddle connection in the Delaunay trian-
gulation. Even though the triangulation is not unique, the Voronoi
diagram is unique.

We can compute A(S) as the sum of the areas of the triangles with
one of the vertices a singularity and its opposite side a side of the
Voronoi cell containing the singularity (see Figure 3). The height of
such a triangle is a half of a saddle connection and hence its length is
greater than or equal to % Therefore A(S) is greater or equal to one
half of the sum of the lengths of all the sides of the Voronoi cells.

FIGURE 3. A Delaunay triangle T'= AABC, with the
Voronoi cell V(A) containing A. The area of the gray
triangle is at least one half times the length of corre-
sponding side of the Voronoi cell.

For each triangle T" in the Delaunay triangulation we consider the
sum o(7") of the signed distances from the circumcenter of T' to its
sides. The sum of the lengths of all the sides of the Voronoi cells equals
the sum of o(7’) of all T" in the triangulation. We want to bound from
below o(T') for each triangle 7.

By Carnot’s theorem' o(T') is equal to the sum of the inradius and
the circumradius of 7' (see for instance [6]). Hence by Lemma 3.4,

o(T) > %5° with equality if and only if 7" is equilateral of side 1.

Hazare Carnot 1753-1823.
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The number of triangles in the triangulation is 2(2g — 2 + r). Hence

A(S) > @(Qg — 2 + r) if the systole is of length 1. Thus for a

translation surface of area one, we have that the systole is at most
1

(@(2g —24 7")) * and can be obtained only if S is built with equi-

lateral triangles with sides saddle connections of length Sys(.S).
We conclude by using the first statement of Lemma 3.2. O

Lemma 3.4. Let T be a nondegenerate Euclidean triangle with sides
of length at least 1. Then, the sum of the circumradius and the inradius
3

of T 1s at least 5>, with equality if and only if T' is equilateral of side 1.

Proof. Denote by R the circumradius and by r the inradius of T". First
we note that when we shrink 7" we decrease the sum R+ r. So without
loss of generality, we can assume that at least one of the sides of T' is of
length 1. So for the triangle T'= AABC with 1 = AB < BC < AC we
take a point D on the side BC' so that BD = AB. Note that AD > 1.
For the inradius 7 and the circumradius R of the isosceles AABD we
can see that 7 < r and R < R. Indeed, the circumcenter of AABD is
nearer to AB than the circumcenter of AABC and therefore R < R.
And to obtain that 7 < r, we note that the incenter of AABD is nearer
to B than the incenter of AABC.

For a triangle with sides 1,1 and x, we can find the inradius and the
circumraduis with the help of the lengths of the sides:

R 1

with = € [1,2). For the sum (R 4 7)(z) and its derivative we obtain
2+ 2z — x? ~ 8 — 6z + 23
=———— (R+7)(2) = —w
i AT =g @ —a2)5.
Since 8 — 6z +2° = 2(1 —2)* +2(2—12)* +x > 0 for x € [1,2), we have
that (R + 7)(z) is strictly increasing in the interval [1,2) and hence

obtains its minimum for z = 1. Therefore R + r > R+7 > ? with
equality exactly when the triangle T" is equilateral with side 1.

(R+7)(z)

O

4. LOCALLY MAXIMAL SYSTOLE

The question is if there exists local but not global maxima in any
given stratum H;(ky, ..., k) of translation surfaces of area one. Note
that such maxima is never strict since rotating a translation surface
preserves the systole. We denote by PH (ky, ..., k) the moduli space
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of translation surfaces in H(k1, ..., k) up to rotation and scaling. The
systole function is well defined in PH (ky, ..., k,.): for [S] € PH(ky, ..., k),
we define Sys([S]) to be Sys(S), where S is any area one representative
of [9].

In this section, we show examples of local maxima of the function
Sys that are not global and prove that such examples are realized in
all but a finite number of strata.

We need first, for technical reasons, to define a distance around a
point in H(ky, ..., k.) and in PH(ky, ..., k). Let Sy € H(ky,..., k).
Fix a basis of the relative homology given by saddle connections that
determines local coordinates (vy,...,v;) around Sy. Then for S in a
sufficiently small neighborhood of Sy, we define d(S, Sp) = max;{|v; —
Ui0|}'

We will identify a sufficiently small neighborhood of an element
[So] € PH(ky, ..., k), with the subset of representatives in H(ky, ..., k;)
normalized in the following way:

(1) the first coordinate vy is in |0, 4+o00],
(2) the length of the shortest saddle connection is 1.

Then, the distance to [Sp] is the distance in H(k1, ..., k) following this
identification.

Theorem 4.1. Let S,., be a translation surface in Hi(ki, ..., k) such
that when cut along its saddle connections of length Sys(Sye,), it de-
composes to equilateral triangles and reqular hexagons so that:

o the set of the equilateral triangles without the vertices is con-
nected,

e the boundary of each polygon is contained in the boundary of
the set of triangles.

Then Sys(Sreq) is a local mazimum in Hi(ky, ..., k.) and even a strict
local mazimum in PH(ky, ..., k).

Remark 4.2. The second condition of the above statement is equivalent
to having the hexagons neither adjacent nor self-adjacent.

The idea of the proof is the following: when deforming a little [S,.]
following the normalization described above, the area of each triangle
does not decrease, the area of each hexagon might decrease, but this
will be compensated by an increase coming from at least one triangle.

The next two lemmas are estimations of the variation of areas of
hexagons and triangles that are deformed in our context.

Lemma 4.3. Let H,., be the reqular hexagon of sides of length 1. There
exists a positive constant ¢ such that for every e > 0 small enough and
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‘ d3

FIGURE 4. The hexagon H and the new hexagon H' of
side 1 (dashed).

every convexr hexagon H = AjAs...A¢ with sides of lengths in the
interval [1,1+¢] and diagonals A1 As, AsAs and AsA; of lengths in the
interval [v/3 — ,v/3 + €], we have Area(H) > Area(H,.,) — ce?.

Proof. We consider the convex hexagon H' = A;ALA3A} A5 Af such
that all of its sides are of length 1 (see Figure 4 ). We see that
Area(H) > Area(H’).

We note the lengths of the diagonals A;As, A3As and AsA; by dy,
dy and d3 respectively. The area of the hexagon H’ depends smoothly
on (dy,ds,ds) and admits a local minimum at the point (v/3,v/3,v/3)
(that corresponds to the regular hexagon).

Therefore by the Taylor-Young formula we obtain

Area(H) = Area(H,ey) + o(||(dy — V/3,dy — V/3,ds — V/3)|?).

Since for i € {1,2,3} we have d; € [v/3 — &,/3 + ¢] there exists a
constant ¢ € R such that

Area(H) > Area(H,.,) — c&>.
U

Lemma 4.4. Let T,., be the equilateral triangle of sides of length 1.
There exists a positive constant ¢ € R such that for every e > 0 small
enough and every triangle T with one of its sides of length 1+¢ and the
other sides of lengths in the interval [1,1+ €], we have that Area(T') >
Area(T},) + ce.

Proof. Let T'= AABC and d(A, B) = 1+ ¢ and let C’ be such that

d(A,C") =d(B,C") = 1. We have Area(AABC) > Area(AABC").
By Heron’s formula, the area of AABC" is:

3 V3

Area(AABCY) — img oot +r="Y1 ?35 +o(e).
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Therefore there exists a constant ¢ > 0 such that for all £ small enough
we have Area(T') > Area(T,.,) + ce. O

Lemma 4.5. Let ABC' be a nondegenerate triangle of sides of length
Iy, = BC, I, = AC, and l3 = AB. For ¢ small enough, let A’B'C" be
a triangle with sides of lengths 1,15, 15 such that for each i € {1,2,3},
|l; = l}] <e. We assume further that d(A, A’) <e, d(B,B’") <& and C
and C" are in the same half-plane determined by AB. Then there is a
constant J > 1, only depending on ly, 13,3 such that d(C,C") < Je.

—
Proof. We consider first the translation 7 of R? of direction A’A. We
remark that 7(A’) = A and d(B’,7(B’)) < 2¢. Then we consider the
rotation p with center A and of angle K{BA7(B’). We note X" =
p(T(X")) where X € {A", B',C"}. See Figure 5. We remark that A, B
and B” are on the same line and that
d(r(A), 7(C"))
d(r(A"),7(B"))
Since d(7(B’), B") < d(7(B'), B) + d(B, B") < 2¢ + ¢, we obtain for ¢
small enough a constant J; = Ji(lo,[3) such that

d(r(C"),C") < Jie.

d(r(C"),C") = d(r(B'), B").

A:A/l ‘Bij B//

FIGURE 5. The triangles ABC, A'B'C" and A”B"C".

We want to bound d(C, C"). For (M,t) in a neighborhood of (C,3),
we consider the triangle AM N, where N, is in the ray AB with d(A, N;) =
t and we define ¢(M,t) = (d(M, A),d(M, N;),d(A, N;)). The map ¢
is smooth and its Jacobian derivative at (C,l3) is invertible. Hence, it
defines a locally invertible map and ¢~! is smooth. This implies that
there is a constant Jy = Jo(ly, la, [3) such that for € small enough

d(C,C") < Jae.
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Combining with the above estimations, we obtain d(C,C") < (J; +
J2 + 1)8 D

Proof of Theorem 4.1. We show directly that Sys([S,,]) is a strict local
maximum in the projective stratum, and replace S,., by a surface, still
denoted S,¢, with shortest saddle connections of length one.

First, we remark that removing all shortest saddle connections of
Sreg gives a union of topological disks. Hence we can find a basis
of the relative homology that consists of shortest saddle connections
(71, ---,7) and we can assume that -, is horizontal and oriented from
left to right. We use this basis to fix local coordinates of the stratum
H(ki1,..., k), and define a distance in a neighborhood of S,.,. Recall
that we identify a neighborhood of element [S,.,] € PH(ki,... k)
with a subset U of H(ky,...,k,) satisfying the following conditions:
the shortest saddle connection is of length 1 and 7, stays horizontal.
For S € U, we call short saddle connection any saddle connection that
corresponds to a shortest saddle connection of S,,.

Let ¢ > 0 be small enough and S € U be such that ¢ = d(S, Syeg)-
Let us define p(S) = Maxz.,(I(v) — 1), where the maximum is taken on
all short saddle connections of S. By hypothesis, p(S) > 0.

In a more general setting, we prove in Section 5.2 that we have
p(S) = 0if and only if S = S,.,. However in the current proof we need
a stronger result (see the claim below).

We observe that since any short saddle connection 7 is a linear com-
bination of {71,...,7x} in the relative homology group, then its cor-
responding affine holonomy v, satisfies |vy — v, req| < Ke. Since there
are only a finite number of short saddle connections, K can be made
universal for all short saddle connections. In particular, p(S) < Ke.

We have the following facts:

(1) The sides of each hexagon H in S corresponding to a regular
hexagon H,., in the decomposition of S,., are short saddle con-
nections. By the above observation, we can apply Lemma 4.3
to H for ¢/ = 2Ke. Hence, there is a constant ¢, such that

Area(H) > Area(H,e,) — c1°.

(2) By Lemma 4.4, there exists at least one equilateral triangle 7.,
in the decomposition of 5,4, such that for the corresponding
triangle 7" in S we have Area(T) > Area(T}eq) + c2p(S) where
o 18 a positive constant. Furthermore the area of each triangle
in Sy¢4 is not greater than the area of the corresponding trian-
gle in S. Summing up the corresponding contributions of the
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triangles, we obtain
Area(UT') > Area(UT,cqy) + c2p(S).

Claim: There is a constant D such that for ¢ = d(S5, S,¢,) small
enough, e < Dp(S). In other words: lengths of short saddle connections
control the distance from S to Syg.

Summing up all contributions, assuming the claim, we see that the
area of S is greater than the area of S,¢, for € > 0 small enough. Hence
Sreg 15 a local maximum of Sys which is nonglobal since the surface
Sreg 1s not built with equilateral triangles of sides saddle connections.

Now we prove the claim. Recall that we assume that v; does not
change direction. Let 0 = p(S5).

Let v € {7a,...,7} be a saddle connection in the fixed basis. By
hypothesis, there is a sequence of pairwise distinct equilateral triangles
Ti,...,T; (whose sides are length one saddle connections) that form a
“path” from v to «, i.e. such that

(1) v is a side of T7,

(2) for each i € {1,...,1 — 1}, T; and T}, are adjacent,

(3) 7 is a side of 7;.
Observe that [ is bounded from above by the total number N of trian-
gles in the decomposition of S,.4. Denote by v,.4 the affine holonomy of
7 in S,¢4 and by v the affine holonomy of v in S. We will use Lemma 4.5
to bound |v — vy

Using the developing map (see Figure 6), we can view the trian-
gles (T;); as a sequence of adjacent equilateral triangles of the plane
although in this case the triangles might intersect. We deform the sur-
face S,., to obtain the surface S. The triangles (7;); persist but are
not necessarily equilateral any more. Again, we can view them as a
sequence of adjacent triangles (77); in the plane.

Denote by Ty = A;B;Cy and 1] = A} BjC]. We can assume that
Ay = Al is the vertex neither in 7, nor in 7j, and By, B) are such
that the segments A; By and A’ B} are horizontal (see Figure 6). More
generally for ¢ > 1, denote the triangle T; by A;B;C; in such a way that
A; B; is a side of previous triangle and that B;C; is a side of the next tri-
angle, and we denote analogously the vertices of 7. Using Lemma 4.5
we see that d(Cy, () < J§ (recall that since p(S) < Kd(S, Syey) = Ke,
we can assume ¢ to be arbitrarily small). Since d(By, B}) < § < J6
we can apply Lemma 4.5 to the triangles T, and Ty for the constant
J& and we get d(Cy, Ch) < J?§. Since [ is bounded from above by
N and § can be chosen arbitrarily small, we get d(C;,C]) < J'6 and
d(By, B]) < J=16. Finally, observe that v is given by the difference of
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Ap = Ay B B

FIGURE 6. A sequence of adjacent triangles and the per-
turbed ones

the coordinates of B; and C, and therefore:
[V — Vpeg| < (J+ TN < 2.JN6.

This concludes the proof of the claim and of the theorem.
O

Example 4.6. The surfaces given in Figure 7 are examples (with one
hezagon) of local mazima that are nonglobal in the strata H(2,0%) and
H(1,1,0%), for k > 1.

The above examples will be used in the next theorem in order to
build examples in most strata.

Theorem 4.7. Let H be a stratum of area one and genus g > 2 sur-
faces. We assume that H is neither H(1,1) nor H(2). Then H contains
local mazima of the function Sys that are not global.

We first prove the following lemma.

Lemma 4.8. We consider the stratum H = H(mq,...,m,,x,y) with
my,...,mp,x,y > 0. We assume that there exists a surface S1 € H
that satisfies the hypothesis of Theorem 4.1 and such that there is a
shortest saddle connection 7y, joining a singularity of degree x to a
distinct singularity of degree y. Then

a) For any ny,...,ng,p,q > 0 with p + q + >, n; even, there
exists a local but nonglobal maximum of Sys in the stratum
H(my, ..., mop+a+1,g+a+1,ng,...,n).
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in 7-[(2702”_3)
forn>2

in H(1,1,0%"~%)
forn >3

in H(2,0%1)
forn >3

in H(1,1,0%"79)
forn >3

FI1GURE 7. Examples of local but nonglobal maxima.

b) For anyns,...,ng,p > 0 withp+) . n; even, there exists a local
but nonglobal mazximum of Sys in the stratum H(my, ..., m,, p+
rTH+y+2,n,...,0k).

Proof. By Lemma 3.2, there is a surface S; that decomposes into equi-
lateral triangles with sides saddle connections in H(p,q,ni,...,nk),
and with a shortest saddle connection 7, joining a singularity of degree
p to a (distinct) singularity of degree q.

We can assume 74,7y, are vertical and of the same length. Now we
glue the two surfaces by the following classical surgery: cut the two
surfaces along v; and 7., and glue the left side of ~; with the right
side of 7, and the right side of 7; with the right side of v5. We get a
surface in H(my,...,m,,p+a+1,q+a+1,ny,...,n;) that satisfies the
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hypothesis of Theorem 4.1 and hence is a local but nonglobal maximum
for Sys. This proves Case a).

The proof of Case b) is the same by considering a surface Sy in
H(p,ni,...,ng) with a shortest saddle connection joining a singularity
of degree p to itself. O

Proof of Theorem 4.7. Recall that examples of local but nonglobal max-
ima of Sys in the strata H(2,0%) and H(1,1,0%), for k > 1 have already
been constructed in Example 4.6. It remains to constructs examples in
all strata of genus at least 3.

We start from the example Spo € H(2,0) given in Example 4.6.
There is a saddle connection joining the two singularities.

e By Case b) of Lemma 4.8, there is a local maximum in any
stratum of the form H(p+4,n4,...,nx) withp > 0, £ > 0, and
Ny, ...,k > 0.
e By Case a) of Lemma 4.8, there is a local maximum in any
stratum of the form H(p + 3,9 + 1,nq,...,n;) with p,q > 0,
k>0, and nq,...,n, > 0.
There remains to construct examples in strata with singularities of
degree at most 2. Now we consider Sy € H(2,0,0) given in Exam-
ple 4.6. There is a saddle connection joining the two marked points.

e By Case b) of Lemma 4.8, there is a local maximum in any stra-
tum of the form H(2,2,nq,...,ng), with k > 0, and ny, ..., n; >
0.
Now we consider S1 100 € H(1,1,0,0) given in Example 4.6. There is
a saddle connection joining the two marked points.

e By Case b) of Lemma 4.8, there is a local maximum in any
stratum of the form #H(1,1,2,ny,...,n%), with & > 0, and

Ny, ...,k > 0.
e By Case a) of Lemma 4.8, there is a local maximum in any
stratum of the form H(1,1,1,1,n4,...,n%), with & > 0, and

Ny, ...,k > 0.
Finally, we have produced examples in all strata of genus g > 2
except H(2) and H(1,1). O

Remark 4.9. We remark that we cannot build with these constructions
local maxima in H(2) and in #(1,1). Indeed, for H(2) we need one
hexagon and two triangles and there is only one possibility that pro-
vides a surface in 7(2). But in this case the hexagon is self-adjacent
(see next section for a proof that it not a local maximum). For H(1,1),
we need one hexagon and four triangles, and by checking all the possi-
bilities we see that we cannot built the required example.
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We prove in a following paper [3] that in these strata (and more
generally in any hyperelliptic connected components of strata), any
local maximum is a global maximum.

5. NUMBER OF SHORTEST SADDLE CONNECTIONS

In this section, we explore the relations between the (locally) maxi-
mal values of the function Sys is the (locally) maximal number of short
saddle connections.

5.1. Maximal number. In the case of global maxima, the relation is
clear as shown in the next proposition.

Proposition 5.1. The greatest number of shortest saddle connections
of a surface in H(k, ... k) is equal to >"._, 3(k;+1) and this number
15 realized if and only if the surface is a global maximum for the function

Sys in PH(ky,..., k).

Proof. Let S be a surface in H(ky,..., k). We consider two shortest
saddle connections v; and 7, in S starting at the same singularity.

Let us assume that the conical angle between ~; and v, is less than
Then

e cither the not common ends of 7; and 7, can be connected by
a saddle connection and as consequence this saddle connection
is shorter than v, and ~,,

e or there is a saddle connection between 7, and 7 (starting at
the same singularity) that is shorter than them.

s

3

In both cases we have a contradiction and hence the maximal number of
shortest saddle connections starting at a singularity of order k; is 6(k; +
1). This gives us that the total number of shortest saddle connections
cannot exceed Y. 3(k; + 1).

This number is the number of 1-cells in the Delaunay triangulation.
Hence, by Lemma 3.1, the surface has this number of shortest saddle
connections if and only if its Delaunay triangulation is given by equi-
lateral triangles. By Theorem 3.3 this situation corresponds precisely
to global maxima of the function Sys. O

5.2. Locally maximal number: rigid surfaces. For a given trans-
lation surface, one would like to find a path joining this surface to a
global maximum for the function Sys. Following the above proposition,
a greedy algorithm could be to try to increase the number of shortest
saddle connections until we reach a surface with the maximal number.
Unfortunately, this algorithm does not always work.
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We call a surface S in H(ky, ..., k,) rigid if there exists a punctured
neighbourhood of [S] € PH(ky, . .., k.) where all surfaces have a strictly
smaller number of shortest saddle connections. As explained above, the
global maxima of the systole function are rigid surfaces.

An example of a rigid surface is every surface S that, when cut
along its shortest saddle connections, decomposes into equilateral tri-
angles and polygons with no singularities in the interior satisfying the
following conditions:

e the set of the equilateral triangles without the vertices is con-
nected,

e the boundary of each polygon is contained in the boundary of
the set of triangles.

Indeed, when deforming such a surface in a way that the initial short-
est saddle connections stay of the same length, the set of triangles is
isometrically preserved and therefore the set of polygons. In particular,
the examples of Theorem 4.1 are rigid surfaces.

We give another family of examples: consider a surface S as above,
but instead of having one, it has 2 connected components of triangles.
We further assume that there is a polygon P such that the sum of
the affine holonomy of the set of saddle connections of its boundary
associated to each component of triangles is nonzero when orienting
the saddle connections according to the natural orientation of the OP.
Indeed as above, when deforming such a surface in a way that the
initial shortest saddle connections stay of the same length, then each
connected component of triangles is isometrically preserved, and the
condition on the holonomy implies that the boundary P is unchanged,
which rigidifies the whole surface. If further the polygons are regular
hexagons, we can adapt the proof of Theorem 4.1 to show that these
are also local but nonglobal maxima.

The examples given in Figure 8 show that it is not sufficient to be
decomposed into equilateral triangles and regular hexagons in order to
be a local maximum: in this figure, the shortest saddle connections re-
main of length one and hence the area of the triangles does not change,
but the hexagon is deformed and therefore its area decreases. The first
example has one connected component of triangles but the hexagon is
self-adjacent. The second one has two connected components of trian-
gles. Note that the example in (0, 0,0) can be easily modified to give
a surface with true singularities (see Remark 5.4).

More generally, we have the following proposition:
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FIGURE 8. Examples of nonrigid surfaces in #(0,0,0)
and in H(2).

Proposition 5.2. Let S be a translation surface such that, when cut
along its saddle connections of shortest length, it decomposes into equi-
lateral triangles and regular hexagons. If the function Sys admits a
local mazimum at [S] € PH(ky, ..., k), then S is rigid.

Proof. We assume that S is nonrigid, and deform the surface so that
we keep all shortest saddle connections of the same length 1. This
deformation does not change the metric on each triangle. Therefore, it
must change the metric on at least one hexagon, otherwise the metric
would be globally unchanged and the transformation would be just a
rotation. In particular, the area of the deformed hexagons must strictly
decrease, while the area of the triangles (and the unchanged hexagons)
remains the same. Hence the area of the surface decreases and thus
Sys([S]) increases. O



20 CORENTIN BOISSY, SLAVYANA GENINSKA

An interesting question is if the converse of the above proposition
is true. We can also ask if, in general, any local maximum for Sys
comes from a rigid surface. Note that in general, rigid surfaces do not
necessarily give local maxima, as shown in the following example.

Proposition 5.3. The translation surface given by Figure 9 is rigid
but it is not a local maximum for the function Sys in PH forn > 3.

n—2 n-—1

F1GURE 9. Example of a rigid surface that is not a local maximum

Remark 5.4. Note that the translation surface given in Figure 9 con-
tains marked points in the set of singularities. We can easily make
them true singularities by surgeries analogous to the ones described in
the proof of Lemma 4.8.

Proof. The fact that the surface is rigid is clear: when cut along shortest
saddle connections it decomposes into equilateral triangles and a non
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self-adjacent polygon with no singularities in the interior in such a way
that the set of triangles is connected.

Now, we deform the surface as shown in the figure: the only short
saddle connections that change are the horizontal ones in the parallel-
ograms drawn with fat sides (see the labels “1” and “n — 1”) and their
diagonals. The affine holonomy of the saddle connection corresponding
to the label “1” is changed by adding —ic and similarly, we add ic to
the one corresponding to the label “n — 1"

Since all short saddle connections keep to be of length at least one,
we need to check that the area of the surface decreases.

(1) The area of each fat parallelogram increases exactly by the area
of the gray parallelogram in Figure 10, which is less that ¢, and
the two fat parallelograms in Figure 9 are disjoints for n > 3.

length=1

F1GURE 10. Comparing the area of the two parallelograms

(2) The area of the polygon decreases by (n — 1)e + (n — 2)e =
(2n — 3)e.

Hence the total area decreases if n > 3. O
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