
HAL Id: hal-01561776
https://hal.science/hal-01561776v1

Submitted on 13 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Storage under Unsynchrononized Mobile
Byzantine Faults

Silvia Bonomi, Antonella del Pozzo, Maria Potop-Butucaru, Sébastien Tixeuil

To cite this version:
Silvia Bonomi, Antonella del Pozzo, Maria Potop-Butucaru, Sébastien Tixeuil. Optimal Storage under
Unsynchrononized Mobile Byzantine Faults. [Research Report] UPMC - Université Paris 6 Pierre et
Marie Curie; Sapienza Università di Roma (Italie). 2017. �hal-01561776�

https://hal.science/hal-01561776v1
https://hal.archives-ouvertes.fr

Optimal Storage under Unsynchrononized Mobile Byzantine

Faults

Silvia Bonomi⋆, Antonella Del Pozzo⋆†, Maria Potop-Butucaru†, Sébastien Tixeuil†

⋆Sapienza Università di Roma,Via Ariosto 25, 00185 Roma, Italy

{bonomi, delpozzo}@dis.uniroma1.it
†Université Pierre & Marie Curie (UPMC) – Paris 6, France

{maria.potop-butucaru, sebastien.tixeuil}@lip6.fr

Abstract

In this paper we prove lower and matching upper bounds for the number of servers required to

implement a regular shared register that tolerates unsynchronized Mobile Byzantine failures. We consider

the strongest model of Mobile Byzantine failures to date: agents are moved arbitrarily by an omniscient

adversary from a server to another in order to deviate their computation in an unforeseen manner. When

a server is infected by an Byzantine agent, it behaves arbitrarily until the adversary decides to “move” the

agent to another server. Previous approaches considered asynchronous servers with synchronous mobile

Byzantine agents (yielding impossibility results), and synchronous servers with synchronous mobile

Byzantine agents (yielding optimal solutions for regular register implementation, even in the case where

servers and agents periods are decoupled).

We consider the remaining open case of synchronous servers with unsynchronized agents, that can

move at their own pace, and change their pace during the execution of the protocol. Most of our findings

relate to lower bounds, and characterizing the model parameters that make the problem solvable. It turns

out that unsynchronized mobile Byzantine agent movements requires completely new proof arguments,

that can be of independent interest when studying other problems in this model. Additionally, we propose

a generic server-based algorithm that emulates a regular register in this model, that is tight with respect

to the number of mobile Byzantine agents that can be tolerated. Our emulation spans two awareness

models: servers with and without self-diagnose mechanisms. In the first case servers are aware that the

mobile Byzantine agent has left and hence they can stop running the protocol until they recover a correct

state while in the second case, servers are not aware of their faulty state and continue to run the protocol

using an incorrect local state.

1 Introduction

Byzantine fault tolerance is a fundamental building block in distributed system, as Byzantine failures include

all possible faults, attacks, virus infections and arbitrary behaviors that can occur in practice (even unfore-

seen ones). The classical setting considers Byzantine participants remain so during the entire execution, yet

software rejuvenation techniques increase the possibility that a corrupted node does not remain corrupted

during the whole system execution and may be aware of its previously compromised status [19].

Mobile Byzantine Failures (MBF) models have been recently introduced to integrate those concerns.

Then, faults are represented by Byzantine agents that are managed by an omniscient adversary that “moves”

them from a host process to another, an agent being able to corrupt its host in an unforeseen manner. MBF

investigated so far consider mostly round-based computations, and can be classified according to Byzantine

mobility constraints: (i) constrained mobility [9] agents may only move from one host to another when

protocol messages are sent (similarly to how viruses would propagate), while (ii) unconstrained mobility [2,

4, 10, 15, 16, 17] agents may move independently of protocol messages. In the case of unconstrained

mobility, several variants were investigated [2, 4, 10, 15, 16, 17]: Reischuk [16] considers that malicious

agents are stationary for a given period of time, Ostrovsky and Yung [15] introduce the notion of mobile

viruses and define the adversary as an entity that can inject and distribute faults; finally, Garay [10], and

more recently Banu et al. [2], and Sasaki et al. [17] and Bonnet et al. [4] consider that processes execute

synchronous rounds composed of three phases: send, receive, and compute. Between two consecutive such

synchronous rounds, Byzantine agents can move from one node to another. Hence the set of faulty hosts

at any given time has a bounded size, yet its membership may evolve from one round to the next. The

main difference between the aforementioned four works [2, 4, 10, 17] lies in the knowledge that hosts have

about their previous infection by a Byzantine agent. In Garay’s model [10], a host is able to detect its own

infection after the Byzantine agent left it. Sasaki et al. [17] investigate a model where hosts cannot detect

when Byzantine agents leave. Finally, Bonnet et al. [4] considers an intermediate setting where cured hosts

remain in control on the messages they send (in particular, they send the same message to all destinations,

and they do not send obviously fake information, e.g. fake id). Those subtle differences on the power of

Byzantine agents turns out to have an important impact on the bounds for solving distributed problems.

A first step toward decoupling algorithm rounds from mobile Byzantine moves is due to Bonomi et

al. [8]. In their model, mobile Byzantine movements are either: (i) synchronized, but the period of movement

is independent to that of algorithm rounds, (ii) independent time bounded, meaning that Byzantine agents

are only requested to remain some minimum amount of time at any occupied node, or (iii) independent time

unbounded, which can be seen as a special case of (ii) when the minimum amount of time is one time unit.

In particular, the Bonomi et al. [8] model implies that Byzantine moves are no more related to messages that

are exchanged through the protocol.

Register Emulation. Traditional solutions to build a Byzantine tolerant storage service (a.k.a. register

emulation) can be divided into two categories: replicated state machines [18], and Byzantine quorum sys-

tems [3, 12, 14, 13]. Both approaches are based on the idea that the current state of the storage is replicated

among processes, and the main difference lies in the number of replicas that are simultaneously involved

in the state maintenance protocol. Several works investigated the emulation of self-stabilizing or pseudo-

stabilizing Byzantine tolerant SWMR or MWMR registers [1, 7, 6]. All these works do not consider the

complex case of mobile Byzantine faults. Recently, Bonomi et al. [5] proposed optimal self-stabilizing

atomic register implementations for round-based synchronous systems under the four Mobile Byzantine

models described in [2, 4, 10, 17]. The round-free model [8] where Byzantine moves are decoupled from

protocol rounds also enables optimal solutions (with respect to the number of Byzantine agents) for the

implementation of regular registers. However, this last solution requires Byzantine agents to move in syn-

chronous steps, whose duration for the entire execution is fixed, so the movements of Byzantine agents

is essentially synchronous. As it is impossible to solve the register emulation problem when processes are

asynchronous and Byzantine agents are synchronous [8], the only case remaining open is that of synchronous

processes and unsynchronized Byzantine agents.

Our Contribution. We relax the main assumption made for obtaining positive results in the round-free

model: Byzantine moves are no more synchronized. The main contribution of this paper is to thoroughly

study the impact of unsynchronized mobile Byzantine agents on the register emulation problem. We present

2

Table 1: Summary of lower bounds in different system models. δ is the upper bound on the message delay,

and ∆ is the period for synchronized agent moves (in the synchronous agents setting) or the lower bound

for an agent to remain on a server (in the unsynchronized agents setting).

Round-based model [5]

Burhman Garay Bonnet Sasaki

2f + 1 3f + 1 4f + 1 4f + 1

Round-free model

Agents moves Synchronized Unsynchronized

[8] [this paper]

Cured state awareness Aware Unaware Aware Unaware

δ ≤ ∆ < 2δ 5f + 1 8f + 1 6f + 1 12f + 1

2δ ≤ ∆ < 3δ 4f + 1 5f + 1 4f + 1 7f + 1

lower and matching upper bounds for implementing a regular register in the unsynchronized mobile Byzan-

tine model. We first explore and characterize the key parameters of the model that enable problem solvabil-

ity. As expected, the lower bounds results require completely new proof techniques that are of independent

interest while studying other classical problems in the context of unsynchronized mobile Byzantine agents.

When the problem is solvable, it turns out that minor changes to existing quorum-based protocols joint with

smart choices of quorums thresholds command optimal resilience (with respect to the number of Byzantine

agents). Table 1 summarizes all the lower bounds for the various models, the newly obtained results are

presented in boldface.

2 System Model

We consider a distributed system composed of an arbitrary large set of client processes C, and a set of n
server processes S = {s1, s2 . . . sn}. Each process in the distributed system (i.e., both servers and clients) is

identified by a unique identifier. Servers run a distributed protocol emulating a shared memory abstraction,

and clients are unaware of the protocol run by the servers.The passage of time is measured by a fictional

global clock (e.g., that spans the set of natural integers), whose processes are unaware of.At each time

instant t, each process (either client or server) is characterized by its internal state, i.e., by the set of its local

variables and their assigned values. We assume that an arbitrary number of clients may crash, and that up to

f servers host, at any time t, a Byzantine agent. Furthermore, servers processes execute the same algorithm,

and cannot rely on high level primitives such as consensus or total order broadcast.

Communication model. Processes communicate through message passing. In particular, we assume that:

(i) each client ci ∈ C can communicate with every server through a broadcast() primitive, (ii) each server can

communicate with every other server through a broadcast() primitive, and (iii) each server can communicate

with a particular client through a send() unicast primitive. We assume that communications are authenticated

(i.e., given a message m, the identity of its sender cannot be forged) and reliable (i.e., spurious messages are

not created and sent messages are neither lost nor duplicated).

Timing Assumptions. The system is round-free synchronous in the sense that: (i) the processing time of

local computations (except for wait statements) are negligible with respect to communication delays, and are

assumed to be equal to 0, and (ii) messages take time to travel to their destination processes. In particular,

concerning point-to-point communications, we assume that if a process sends a message m at time t then

it is delivered by time t + δp (with δp > 0). Similarly, let t be the time at which a process p invokes the

broadcast(m) primitive, then there is a constant δb (with δb ≥ δp) such that all servers have delivered m at

time t + δb. For the sake of presentation, in the following we consider a unique message delivery delay δ
(equal to δb ≥ δp), and assume δ is known to every process.

3

Computation model. Each process of the distributed system executes a distributed protocol P that is com-

posed by a set of distributed algorithms. Each algorithm in P is represented by a finite state automaton and it

is composed of a sequence of computation and communication steps. A computation step is represented by

the computation executed locally to each process while a communication step is represented by the sending

and the delivering events of a message. Computation steps and communication steps are generally called

events.

Definition 1 (Execution History) Let P be a distributed protocol. Let H be the set of all the events gen-

erated by P at any process pi in the distributed system and let → be the happened-before relation. An

execution history (or simply history) Ĥ = (H,→) is a partial order on H satisfying the relation →.

Definition 2 (Valid State at time t) Let Ĥ = (H,→) be an execution history of a generic computation and

let P be the corresponding protocol. Let pi be a process and let statepi be the state of pi at some time t.
statepi is said to be valid at time t if it can be generated by executing P on Ĥ .

MBF model. We now recall the generalized Mobile Byzantine Failure model [8]. Informally, in the MBF

model, when a Byzantine agent is hosted by a process, the agent takes entire control of its host making it

Byzantine faulty (i.e., it can corrupt the host’s local variables, forces it to send arbitrary messages, etc.).

Then, the Byzantine agent leaves its host with a possible corrupted state (that host is called cured) before

reaching another host.We assume that any process previously hosting a Byzantine agent has access to a

tamper-proof memory storing the correct protocol code. However, a cured server may still have a corrupted

internal state, and thus cannot be considered correct. The moves of a Byzantine agent are controlled by an

omniscient adversary.

Definition 3 (Correct process at time t) Let Ĥ = (H,→) be a history, and let P be the protocol generat-

ing Ĥ . A process is correct at time t if (i) it is correctly executing P, and (ii) its state is valid at time t. We

denote by Co(t) the set of correct processes at time t. Given a time interval [t, t′], we denote by Co([t, t′])
the set of all processes that remain correct during [t, t′] (i.e., Co([t, t′]) =

⋂

τ ∈ [t,t′]Co(τ)).

Definition 4 (Byzantine process at time t) Let Ĥ = (H,→) be a history, and let P be the protocol gener-

ating Ĥ . A process is Byzantine at time t if it is controlled by a Byzantine agent and does not execute P. We

denote by B(t) the set of Byzantine processes at time t. Given a time interval [t, t′], we denote by B([t, t′])
the set of all processes that remain Byzantine during [t, t′] (i.e., B([t, t′]) =

⋂

τ ∈ [t,t′]B(τ)).

Definition 5 (Cured process at time t) Let Ĥ = (H,→) be a history, and let P be the protocol generating

Ĥ . A process is cured at time t if (i) it is correctly executing P, and (ii) its state is not valid at time t. We

denote by Cu(t) the set of cured processes at time t. Given a time interval [t, t′], we denote by Cu([t, t′])
the set of all processes that remain cured during [t, t′] (i.e., Cu([t, t′]) =

⋂

τ ∈ [t,t′]Cu(τ)).

With respect to the movements of agents, we consider the independent time-bounded (ITB) model:

each mobile Byzantine agent mai is forced to remain on a host for at least a period ∆i. Given two mobile

Byzantine Agents mai and maj , their movement periods ∆i and ∆j may be different. Note that previous

results considering decoupled Byzantine moves [8] were established in the weaker ∆-synchronized model,

where the external adversary moves all controlled mobile Byzantine agents at the same time t, and their

movements happen periodically with period ∆. None of those properties remain valid in our model.

Concerning the knowledge that each process has about its failure state, we distinguish the following two

cases: Cured Aware Model (CAM): at any time t, every process is aware about its failure state; Cured

Unaware Model (CUM): at any time t, every process is not aware about its failure state.

4

We assume that the adversary can control at most f Byzantine agents at any time (i.e., Byzantine agents

do not replicate while moving). In our work, only servers can be affected by the mobile Byzantine agents1.

It follows that, at any time t |B(t)| ≤ f . However, during the system lifetime, all servers may be hosting a

Byzantine agent at some point (i.e., none of the servers is guaranteed to remain correct forever).

Register Specification.

A register is a shared variable accessed by a set of processes, called clients, through two operations,

namely read and write. Informally, the write operation updates the value stored in the shared variable, while

the read obtains the value contained in the variable (i.e., the last written value). Every operation issued on a

register is, generally, not instantaneous and it can be characterized by two events occurring at its boundaries:

an invocation event and a reply event. These events occur at two time instants (called the invocation time

and the reply time) according to the fictional global time.

An operation op is complete if both the invocation event and the reply event occurred, otherwise, it

failed.Given two operations op and op′, their invocation times (tB(op) and tB(op
′)) and reply times (tE(op)

and tE(op
′)), op precedes op′ (op ≺ op′) if and only if tE(op) < tB(op

′). If op does not precede op′ and op′

does not precede op, then op and op′ are concurrent (noted op||op′). Given a write(v) operation, the value v
is said to be written when the operation is complete.

In this paper, we consider a single-writer/multi-reader (SWMR) regular register, as defined by Lam-

port [11], which is specified as follows:

— Termination: if a correct client invokes an operation op, op completes.

— Validity: A read returns the last written value before its invocation (i.e. the value written by the latest

completed write preceding it), or a value written by a write concurrent with it.

3 Lower bounds

In this section we prove lower bounds with respect to the minimum fraction of correct servers to imple-

ment safe registers in presence of mobile Byzantine failures 2. In particular we first prove lower bounds

for the (∆S,CAM) and (∆S,CUM) models and then we extend those results to (ITB,CAM) and

(ITB,CUM) models. The first observation that raises is that in presence of mobile agents in the round-free

models there are several parameters to take into account with respect to the round-based model. Let us start

considering that the set of Byzantine servers changes its composition dynamically time to time. This yields

to the following question: does it impact on the read() duration? Or, in other words, such operation has to

last as less as possible or until it eventually terminates? In this chapter we consider the read() operation

duration as a parameter itself, allowing us to easily verify when the variation of such parameter has any

impact on lower bounds. Here below the list of parameters we take into account.

• servers knowledge about their failures state (CAM,CUM);

• the relationship between δ and ∆ (that states how many Byzantine servers there may be during an

operation);

• Tr, the read() operations duration;

1It is trivial to prove that in our model, if clients are Byzantine, it is impossible to implement deterministically even a safe

register. A Byzantine client may always introduce a corrupted value, and a server cannot distinguish between a correct client and a

Byzantine one.
2Results on safe register can be directly extended to the other register specifications.

5

• γ, the upper bound on the time during which a server can be in a cured state (the design of an optimal

maintenance() operation is out of the scope of this thesis, thus we use such upper bound as another

parameter).

Those parameters allow us to describe different failure models and help us to provide a general framework

that produces lower bounds for each specific instance of the MBF models. In the sequel it will be clear

that γ varies depending on the coordinated/uncoordinated mobile agents movements (∆S, ITB, ITU). In

other words, in this parameter is hidden the movements model taken into account, so we do not need to

explicitly parametrize it. Before to start let us precise that we do not consider the following algorithm

families: (i) full information algorithm families (processes exchange information at each time instant); (ii)

algorithms characterized by a read operation that does not require a request-reply pattern; (iii) algorithms

with non quiescent operation (the message exchange triggered by an operation eventually terminates); and

finally (iv) algorithms where clients interact with each other. All results presented in the sequel consider a

families of algorithms such that previous characteristics do not hold. The lower bounds proof leverages on

the classical construction of two indistinguishable executions. The tricky part is to characterize the set of

messages delivered by a client from correct and incorrect servers depending of the read() operation duration.

Let Tr, Tr ≥ 2δ be such duration, each read() operation requires at least a request-reply pattern). We first

characterize the correct and incorrect sets of messages, delivered during Tr time, with respect to ∆ and γ.

For clarity, in the sequel we note correct message/request/reply a message that carries a valid value when

it is sent (i.e., sent by a correct process). Otherwise, the message is incorrect. It has been proven [8] that a

protocol Preg implementing a regular register in a mobile Byzantine setting must include in addition to the

mandatory read and write operations an additional operation, maintenance, defined below.

Definition 6 (Maintenance operation maintenance) A maintenance operation is an operation that, when

executed by a process pi, terminates at some time t leaving pi with a valid state at time t (i.e., it guarantees

that pi is correct at time t).

Such operation has a direct impact on the number of correct processes in any time instant. For that reason

it is important to characterize its duration, in particular its upper bound in terms of time. The following

definition defines γ, the upper bound of the time during which a server can be in a cured state.

Definition 7 (Curing time, γ) We define γ as the maximum time a server can be in a cured state. More

formally, let Tc the time at which server sc is left by a mobile agent, let opM the first maintenance operation

that correctly terminates, then tE(opM)− Tc ≤ γ.

In order to build our indistinguishable execution, we define below a scenario of agents movement. Then,

with respect this scenario, we construct two indistinguishable executions.

Definition 8 (Scenario S∗) Let S∗ be the following scenario: for each time Ti, i ≥ 0 the affected servers

are s(i mod n)f+1, . . . , s(i mod n)f+f .

In Figure 1 is depicted S∗. In particular, the red part is the time where f agents are affecting f servers

and the gray part is the time servers are running the maintenance operation.

Let us characterize the Preg protocol in the most general possible way. By definition a register ab-

straction involves read() and write() operations issued by clients. A read operation involves at least a

request− reply communication pattern (i.e., two communication steps). Thus, given the system synchrony,

a read() operation opR lasts at least Tr ≥ 2δ time. Moreover we consider that a correct server sends a reply

6

1f

2f

3f

4f

T0 T1 T2 T3 T4 T5 T6 T7
. . .

. . .

Figure 1: Representation of S∗ where mobile agents affect groups of f different servers each Ti period. In

particular here γ > ∆.

message in two occasions: (i) after the delivery of a request message, and (ii) right after it changes its state,

at the end of the maintenance operation if an opR is occurring. The latter case exploits the maintenance

operation allowing servers to reply with a valid value in case they were Byzantine at the beginning of the

read operation. Moreover we assume that in (∗, CAM) model servers in a cured state do not participate to

the read operation. Notice that those servers are aware of their current cured state and are aware of their

impossibility to send correct replies. Even though those may seems not very general assumptions, let us just

consider that we are allowing servers to correctly contribute to the computation as soon as they can and stay

silent when they can not and under those assumptions we prove lower bounds. Thus if we remove those

assumptions the lower bounds do not decreases. Scenario and protocol has been characterized. Now we aim

to characterize the set of servers, regarding their failure states, that can appear during the execution of the

protocol, in particular during the read() operation. Those sets allow us to characterize correct and incorrect

messages that a client delivers during a read() operation.

Definition 9 (Failure State of servers in a time interval) Let [t, t+Tt] be a time interval and let t′, t′ > 0,

be a time instant. Let si be a server and statei be si state, statei ∈ {correct, cured,Byzantine}. Let

S(t′) be the set of servers si that are in the state statei at t′, S(t′) ∈ {Co(t′), Cu(t′), B(t′)}. S̃(t, t + Tr)
is the set of servers that have been in the state statei for at least one time unit during [t, t + Tr]. More

formally, S̃(t, t+ Tr) =
⋃

t≤t′≤t+Tr
S(t′).

Definition 10 (˜CBC(t, t+ Tr)) Let [t, t + Tr] be a time interval, ˜CBC(t, t + Tr) denotes servers that

during a time interval [t, t+Tr] belong first to B̃(t, t+Tr) or Cu(t) (only in (∆S,CUM) model) and then

to Co(t+ δ, t + Tr − δ) or vice versa.

In particular let us denote:

• B̃C(t, t+ Tr) servers that during a time interval [t, t+ Tr] belong to B̃(t, t+ Tr) or Cu(t) (only in

(∆S,CUM) model) and to C̃o(t+ δ, t+ Tr − δ).

• C̃B(t, t + Tr) servers that during a time interval [t, t + Tr] belong to C̃o(t + δ, t + Tr − δ) and to

B̃(t, t+ Tr).

Definition 11 (Sil(t, t+ Tr)) Let [t, t+Tr] be a time interval. Sil(t, t+Tr) is the set of servers in Cu(t, t+
TR − δ).

Servers belonging to Sil(tB(opR), tE(opR)) are servers that do no participate to opR. In oder words,

those servers in the worst case scenario became correct after tE(opR) − δ, thus if they send back a correct

7

s0

s1

s2

s3

t′ t′ + 3δ t′′ t′′ + 3δ

Figure 2: Let [t, t+Tr] be time a interval such that in the given scenario |B̃(t, t+Tr)| = MaxB̃(t, t+Tr).
In particular we have that in the time interval [t′, t′+ Tr], |B̃(t′, t′+ Tr)| = MaxB̃(t, t+ Tr). While in the

time interval [t′′, t′′ + Tr], |B̃(t′′, t′′ + Tr)| < MaxB̃(t, t+ Tr).

reply it is not sure that client delivers such reply before the end of Tr time. Now we can define the worst

case scenarios for the sets we defined so far with respect to S∗.

Definition 12 (MaxB̃(t, t+ Tr)) Let S be a scenario and [t, t + Tr] a time interval. The cardinality of

B̃S(t, t+ Tr) is maximum with respect to S if for any t′, t′ > 0, we have that |B̃S(t, t+ Tr)| ≥ |B̃S(t
′, t′ +

Tr)|. Then we call the value of such cardinality as MaxB̃S (t, t+ Tr). If we consider only one scenario per

time then we can omit the subscript related to the scenario and write directly MaxB̃(t, t+ Tr).

This value quantifies in the worst case scenario how many servers can be Byzantine, for at least one

time unit, during a read() operation. Figure 2 depicts a scenario where Tr = 3δ and during the time interval

[t′, t′+Tr] there is a maximum number of Byzantine servers while in [t′′, t′′+Tr] this number is not maximal.

Definition 13 (MaxSil(t, t+ Tr)) Let S be a scenario and [t, t + Tr] a time interval. The cardinality

of SilS(t, t + Tr) is maximum with respect to S if for any t′, t′ ≥ 0 we have that |Sil(t, t + Tr)| ≥
|Sil(t′, t′ + Tr)| and B̃(t, t + Tr) = MaxB̃(t, t + Tr). Then we call the value of such cardinality as

MaxSilS(t, t+Tr). If we consider only one scenario per time then we can omit the subscript related to the

scenario and write directly minSil(t, t+ Tr).

This value quantifies the maximum number of servers that begin in a cured state a read() operation and

are still cured after Tr − δ time. So that any correct reply sent after such period has no guarantees to be

delivered by the client and such servers are assumed to be silent.

Definition 14 (MaxCu(t)) Let S be a scenario and t be a time instant. The cardinality of CuS(t) is

maximum with respect to S if for any t′, t′ ≥ 0, we have that |CuS(t
′)| ≤ |CuS(t)| and B̃(t, t + Tr) =

MaxB̃(t, t + Tr). We call the value of such cardinality as MaxCuS(t). If we consider only one scenario

per time then we can omit the subscript related to it and write directly MaxCu(t).

This value quantifies, in the worst case scenario, how many cured servers there may be at the beginning

of a read() operation. Figure 3 depicts a scenario where at time t′ there are the maximum number of cured

server while at t′′ this value is not maximum. Notice that in such figure, in case of a shorter time interval

[t′, t′ + 2δ] s0 would be silent.

8

s0

s1

s2

s3

t′ t′ + 3δ t′′ t′′ + 3δ

Figure 3: Let us consider the time instant t and the depicted scenario such that |Cu(t)| = MaxCu(t). In

particular, in this case |Cu(t′)| = MaxCu(t) and |Cu(t′′)| < MaxCu(t).

s0

s1

s2

s3

t′ t′ + 3δ t′′ t′′ + 3δ

Figure 4: Let [t, t+Tr] be a time interval such that in the depicted scenario |C̃o(t, t+Tr)| = minC̃o(t, t+
Tr). Then in both time intervals [t′, t′ + Tr] and [t′′, t′′ + Tr] we have that |C̃o(t′, t′ + Tr)| = |C̃o(t′′, t′′ +
Tr)| = minC̃o(t, t+ Tr).

Definition 15 (minC̃o(t, t+ Tr)) Let S be a scenario and [t, t+ Tr] be a time interval then minC̃S(t, t+
Tr) denotes the minimum number of correct servers during a time interval [t+ δ, t+Tr − δ]. If we consider

only one scenario per time then we can omit the subscript related to it and write directly minC̃(t, t+ Tr).

Figure 4 depicts a scenario where during the both intervals [t′, t′ + Tr] and [t′′, t′′ + Tr] the number of

correct servers is minimum.

Definition 16 (min ˜CBC(t, t+ Tr)) Let [t, t+Tr] be a time interval then min ˜CBC(t, t+Tr) denotes the

minimum number of servers that during a time interval [t, t+Tr] belong first to B̃(t, t+Tr) or Cu(t) (only

in (∆S,CUM) model) and then to Co(t+δ, t+Tr−δ) or vice versa and B̃(t, t+Tr) = MaxB̃(t, t+Tr).
In particular let us denote as:

• minB̃C(t, t + Tr) the minimum number of servers that during a time interval [t, t + Tr] belong to

B̃(t, t+ Tr) or Cu(t) (only in (∆S,CUM) model) and to C̃o(t+ δ, t + Tr − δ).

• minC̃B(t, t + Tr) the minimum number of servers that during a time interval [t, t + Tr] belong to

C̃o(t+ δ, t+ Tr − δ) and to B̃(t, t+ Tr).

As we stated before, Byzantine servers set changes during the read() operation opR, so there can be

servers that are in a Byzantine state at tB(opR) and in a correct state before tE(opR) − δ (cf. s0 during

9

s0

s1

s2

s3

t′ t′ + 3δ t′′ t′′ + 3δ

Figure 5: Let [t, t+Tr] a time interval such that in the depicted scenario ˜CBC(t, t+Tr) = min ˜CBC(t, t+
Tr). Then ˜CBC(t′, t′ + Tr) > min ˜CBC(t, t+ Tr) and ˜CBC(t′′, t′′ + Tr) = min ˜CBC(t, t+ Tr).

[t′, t′ + 3δ] time interval in Figure 5). Those servers contribute with an incorrect message at the beginning

and with a correct message after. The same may happen with servers that are correct from tB(opR) to at

least tB(opR)+δ (so that for sure deliver the read request message and send the reply back) and are affected

by a mobile agent after tB(opR) + δ (cf. s0 during [t′′, t′′ + 3δ] time interval in Figure 5).

Lemma 1 MaxB̃(t, t+ Tr) = (⌈Tr

∆ ⌉+ 1)f .

Proof For simplicity let us consider a single agent mak, then we extend the same reasoning to all the f
agents. In [t, t + Tr] time interval, with Tr ≥ 2δ, mak can affect a different server each ∆ time. It follows

that the number of times it may change server is Tr

∆ . Thus the affected servers are ⌈Tr

∆ ⌉ plus the server that

was affected at t. Finally, extending the reasoning to f agents, MaxB̃(t, t + Tr) = (⌈Tr

∆ ⌉ + 1)f , which

concludes the proof. 2

As we see in the sequel, the value of MaxB̃(t, t + Tr) is enough to compute the lower bound. Now

we can define the worst case scenario for a read() operation with respect to S∗. Let op be a read operation

issued by ci. We want to define, among the messages that can be deliver by ci during op, the minimum

amount of messages sent by server when they are in a correct state and the maximum amount of messages

sent by servers when they are not in a correct state.

In each scenario, we assume that each message sent to or by Byzantine servers is instantaneously delivered,

while each message sent to or by correct servers requires δ time. Without loss of generality, let us assume that

all Byzantine servers send the same value and send it only once, for each period where they are Byzantine.

Moreover, we make the assumption that each cured server (in the CAM model) does not reply as long as it

is cured. Yet, in the CUM model, it behaves similarly to Byzantine servers, with the same assumptions on

message delivery time.

Definition 17 (MaxReplies NCo(t, t+ Tr)k) Let MaxReplies NCo(t, t+ Tr)k be the multi-set main-

tained by client ck containing mij elements, where mij is the i − th message delivered by ck and sent at

time t′, t′ ∈ [t, t+ Tr] by sj such that sj /∈ Co(t′).

Considering the definitions of both MaxB̃(t, t+ Tr) and MaxCu(t) the next Corollary follows:

Corollary 1 In the worst case scenario, during a read operation lasting Tr ≥ 2δ issued by client ci, ci
delivers MaxB̃(t, t+ Tr) incorrect replies in the (∆S,CAM) model and MaxB̃(t, t+ Tr) +MaxCu(t)
incorrect replies in the (∆S,CUM) model .

10

Definition 18 (minReplies Co(t, t+ Tr)k) Let minReplies Co(t, t + Tr)k be the multi-set maintained

by client ck containing mij elements, where mij is the i − th message delivered by ck and sent at time

t′, t′ ∈ [t, t+ Tr] by sj such that sj ∈ Co(t′).

Note that correct replies come from servers that (i) have never been affected during the time interval

[t, t + Tr], or (ii) where in a cured state at t but do not belong to the Sil(t, t + Tr) set, or (iii) servers that

reply both correctly and incorrectly. The next Corollary follows.

Corollary 2 In the worst case scenario, during a read operation lasting Tr ≥ 2δ issued by client ci, ci
delivers n−(MaxB̃(t, t+Tr)+MaxSil(t, t+Tr))+min ˜CBC(t, t+Tr) correct replies in the (∆S,CAM)
model and n− [MaxB̃(t, t+Tr)+MaxCu(t)]+min ˜CBC(t, t+Tr) correct replies in the (∆S,CUM)
model.

In the following, given a time interval, we characterize correct and incorrect servers involved in such

interval. Concerning correct servers, let us first analyze when a client collects x ≤ n different replies and

then we extend such result to x > n. Then we do the same for incorrect replies.

Lemma 2 Let op be a read operation issued by client ci in a scenario S∗, whose duration is Tr ≥ 2δ. Let

x, x ≥ 2, be the number of messages delivered by ci during op. If x ≤ n then minReplies Co(t, t+ Tr)k
contains replies from x different servers.

Proof Let us suppose that minReplies Co(t, t+ Tr)k contains replies from x − 1 different servers (triv-

ially it can not be greater than x). Without lost of generality, let us suppose that ci collects replies from

s1, . . . , sx−1. It follows that there is a server si, i ∈ [1, x− 1] that replied twice and a server sx that did not

replied. Let us also suppose w.l.g. that there is one Byzantine mobile agent mak (i.e., f = 1). If during the

time interval [t, t+Tr] sx never replied, then sx has been affected at least during [t+ δ, t+Tr − δ− γ+1].
This implies that Tr ≤ ∆ + 2δ + γ. Since si replies twice then two scenarios are possible during op:

(i) si was first affected by mak and then became correct (so it replied once), then affected again and then

correct again (so it replied twice); (ii) si was correct (so it replied once), then it was affected by mak and

then correct again (so it replied twice). Let us consider case (ii) (case (i) follows trivially). Since si had

the time to reply (δ), to be affected and then became correct (∆ + γ) and reply again (δ) this means that

Tr > ∆+2δ + γ. A similar result we get in case (i) where the considered execution requires a longer time.

This is in contradiction with Tr ≤ ∆+ 2δ + γ thus ci gets replies for x different servers. 2

If a client delivers n > x messages then we can apply the same reasoning of the previous Lemma to

the first chunk of n messages, then to the second chunk of n messages and so on. Roughly speaking, if

n = 5 and a client delivers 11 messages from correct processes, then there are 3 occurrences of the message

coming from the first server and 2 occurrences of the messages coming from the remaining servers. Thus

the next Corollary directly follows.

Corollary 3 Let op be a read operation issued by client ci in a scenario S∗, op duration is Tr ≥ 2δ. Let

x, x ≥ 2, be the number of messages delivered by ci during op, then minReplies Co(t, t + Tr)k contains

x mod n messages mij whose occurrences is ⌊x
n
⌋+ 1 and (n − x (mod n)) messages whose occurrences

is ⌊x
n
⌋.

The case of MaxReplies NCo(t, t + Tr)k directly follows from scenario S∗, since by hypotheses

mobile Byzantine agents move circularly from servers to servers, never passing on the same server before

having affected all the others. Thus, the following corollary holds.

11

Table 2: Lower bounds on the number of replicas in each model.

nCAMLB
[2MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr) −min ˜CBC(t, t+ Tr)]f

nCUMLB
[2(MaxB̃(t, t+ Tr) +MaxCu(t, t+ Tr)) −min ˜CBC(t, t+ Tr)]f

Corollary 4 Let op be a read operation issued by client ci in a scenario S∗, op duration is Tr ≥ 2δ. Let

x, x ≥ 2, be the number of messages delivered by ci during op, then MaxReplies NCo(t, t+Tr)k contains

x mod n messages mij whose occurrences is ⌊x
n
⌋+ 1 and (n − x (mod n)) messages whose occurrences

is ⌊x
n
⌋.

At this point we can compute how many correct and incorrect replies a client ck can deliver in the worst

case scenario during a time interval [t, t + Tr]. Trivially, ck in order to distinguish correct and incorrect

replies needs to get minReplies Co(t, t + Tr)k > MaxReplies NCo(t, t + Tr)k. It follows that the

number of correct servers has to be enough to guarantee this condition. Table 2 follows directly from this

observation. In a model with b Byzantine (non mobile) a client ci requires to get at least 2b + 1 replies to

break the symmetry and thus n ≥ 2b+ 1. In presence of mobile Byzantine we have to sum also servers that

do not reply (silent) and do not count twice servers that reply with both incorrect and correct values.

Theorem 1 If n < nCAMLB
(n < nCUMLB

) as defined in Table 2, then there not exists a protocol Preg

solving the safe register specification in (∆S,CAM) model ((∆S,CUM) model respectively).

Proof Let us suppose that n < nCAMLB
(n < nCUMLB

) and that protocol Preg does exist. If a client

ci invokes a read operation op, lasting Tr ≥ 2δ time, if no write operations occur, then ci returns a valid

value at time tB(op). Let us consider an execution E0 where ci invokes a read operation op and let 0
be the valid value at tB(op). Let us assume that all Byzantine severs involved in such operation reply

once with 1. From Corollaries 1 and 2, ci collects MaxReplies NCo(t, t + Tr)i occurrences of 1 and

minReplies Co(t, t + Tr)i occurrences of 0. Since Preg exists and no write operations occur, then ci
returns 0. Let us now consider a another execution E1 where ci invokes a read operation op and let 1 be

the valid value at tB(op). Let us assume that all Byzantine severs involved in such operation replies once

with 0. From Corollaries 1 and 2 and Corollary 3 and Corollary 4, ci collects MaxReplies NCo(t, t+Tr)i
occurrences of 0 and minReplies Co(t, t+Tr)i occurrences of 1. Since Preg exists and no write operations

occur, then ci returns 1.

From Lemma 1 and using values in Table 2 we obtain following equations for both models:

• (∆S,CAM):

– MaxReplies NCo(t, t+ Tr)i= MaxB̃(t, t+ Tr) = (⌈Tr

∆ ⌉+ 1)f

– minReplies Co(t, t+Tr)i= n−[MaxB̃(t, t+Tr)+MaxSil(t, t+Tr)]+min ˜CBC(t, t+Tr) =

[2(MaxB̃(t, t+ Tr)) +MaxSil(t, t+ Tr)

−min ˜CBC(t, t+ Tr)]

−[(MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr))

+min ˜CBC(t, t+ Tr)] =

MaxB̃(t, t+ Tr) = (⌈
Tr

∆
⌉+ 1)f

12

• (∆S,CUM):

– MaxReplies NCo(t, t+ Tr)i= MaxB̃(t, t+ Tr)+MaxCu(t) = (⌈Tr

∆ ⌉+1)f +MaxCu(t)

– minReplies Co(t, t+ Tr)i= n− [MaxB̃(t, t+ Tr) +MaxCu(t)] +min ˜CBC(t, t+ Tr) =

[2MaxB̃(t, t+ Tr) + 2MaxCu(t))−min ˜CBC(t, t+ Tr)]+

−[MaxB̃(t, t+ Tr) +MaxCu(t)] +min ˜CBC(t, t+ Tr) =

MaxB̃(t, t+ Tr) +MaxCu(t) = (⌈
Tr

∆
⌉+ 1)f +MaxCu(t)

It follows that in E0 and E1 ci delivers the same occurrences of 0 and 1, both executions are indistin-

guishable leading to a contradiction.

2

MaxReplies NCo(t, t+ Tr)i and minReplies Co(t, t+ Tr)i are equal independently from the value

assumed by Tr, the read() operation duration. From the equation just used in the previous lemma the next

Corollary follows.

Corollary 5 For each Tr ≥ 2δ if n > nCAMLB
(n > nCUMLB

) then MaxReplies NCo(t, t + Tr)i <
minReplies Co(t, t+ Tr)i.

At this point we compute minCu(t), MaxSil(t, t + Tr) and min ˜CBC(t, t + Tr) to finally state ex-

act lower bounds depending on the system parameters, in particular depending on ∆, γ and the servers

awareness, i.e., (∆S,CAM) and (∆S,CUM).
Let us adopt the following notation. Given the time interval [t, t+Tr] let {s1, s2, . . . , sb} ∈ B(t, t+Tr)

be the servers affected sequentially during Tr by the mobile agent mak. Let {s−1, s−2, . . . , s−c} ∈ Cu(t)
be the servers in a cured state at time t such that s−1 is the last server that entered in such state and sc the

first server that became cured. Let tBB(si) and tEB(si) be respectively the time instant in which si become

Byzantine and the time in which the Byzantine agent left. tBCu(si) and tECu(si) are respectively the time

instant in which si become cured and the time instant in which it became correct. Considering that mak
moves each ∆ time then we have that tBB(si−1) − tBB(si) = ∆ and tBCu(s−j) − tBCu(s−j+1) = ∆.

The same holds for the tE of such states. Moreover tBB(s1) = tBCu(s−1). Now we are ready to build the

read scenario with respect to S∗. In particular we build a scenario for the (∆S,CAM) model and one for

the (∆S,CUM) model. Intuitively, the presence of cured servers do not have the same impact in the two

models, thus in the (∆S,CUM) model we maximize such number. Let [t, t + 2δ] be the considered time

interval and let ǫ be a positive number arbitrarily smaller, then we consider in the (∆S,CAM) scenarios

t = tEB(s1)− ǫ (cf. Figure 6) and in the (∆S,CUM) scenarios tBB(sb) = t+ 2δ − ǫ (cf. Figure 7).

In the sequel we use the notion of Ramp Function:

R(x) =

{

x if x ≥ 0

0 if x < 0

Lemma 3 Let us consider a time interval [t, t+ Tr], Tr ≥ 2δ and an arbitrarily small number ǫ > 0, then

in fthe (∆S,CAM) model MaxCu(t) = R(⌈γ−∆+ǫ
∆ ⌉).

13

s−2=−c

s1

s2

s−1 s3=b

. . .t t+ 2δ

Figure 6: Representation of S∗ when we consider a (∆S,CAM) model, in particular tEB(s1) = t+ ǫ, for

ǫ > 0 and arbitrarily small.

s−2=−c

s1

s2

s−1 s3=b

. . .t t+ 2δ

Figure 7: Representation of S∗ when we consider a (∆S,CUM) model, in particular tBB(sc) = t+2δ−ǫ,
for ǫ > 0 and arbitrarily small.

Proof As we defined, s−1 is the most recent server that entered in a cured state, with respect to the con-

sidered time interval. Intuitively each s−j is in Cu(t) if tECu(s−j) > t. Considering that tECu(s−j) −

tECu(s−j−1) = ∆ then the number of servers in a cured state at t is MaxCu(t) = ⌈ tECu(s1)−t
∆ ⌉. 3 As

we stated, for (∗, CAM) models we consider scenarios in which t, the beginning of the considered time

interval, is just before tEB(s1). Thus given an arbitrarily small number ǫ > 0, let t = tEB(s1) − ǫ. By

construction we know that tBB(s1) = tEB(s1)−∆ = tBCu(s−1). Substituting tBCu(s−1) = t+ ǫ−∆,

since we consider γ the upper bound for the curing time, then tECu(s−1) = t + ǫ − ∆ + γ . So finally,

MaxCu(t) = ⌈ tECu(s1)−t
∆ ⌉ = ⌈γ−∆+ǫ

∆ ⌉ and since there can no be a negative result then MaxCu(t) =

R(⌈γ−∆+ǫ
∆ ⌉). This concludes the proof. 2

Lemma 4 Let us consider a time interval [t, t+ Tr], Tr ≥ 2δ and an arbitrarily small number ǫ > 0, then

in the (∆S,CUM) model MaxCu(t) = R(⌈
Tr−ǫ−⌈

Tr
∆
⌉∆+γ

∆ ⌉).

Proof As we defined, s−1 is the most recent server that entered in a cured state, with respect to the consid-

ered interval. Intuitively, s−j is in Cu(t) if tECu(s−j) > t. Considering that tECu(s−j)−tECu(s−j−1) =

∆ then the number of servers in a cured state at t is MaxCu(t) = ⌈ tECu(s1)−t
∆ ⌉. As we state, for (∗, CUM)

models we consider scenarios in which the end of the considered time interval, is just after tBB(sb). Thus

3Consider Figure 6, s2 is the most recent server that entered in the cured state. This is the server that spend more time in such

state with respect to the others. It follows that other servers are in a cured state if during this time interval there is enough time for

a “jump”

14

given an arbitrarily small number ǫ > 0, let tBB(sb) = t + Tr − ǫ. By construction we know that

tBB(s1) = tEB(s1)−∆ = tBCu(s−1) and tBB(s1) = tBB(sb)−⌈Tr

∆ ⌉∆ (cf. Lemma 1). Substituting and

considering that tECu(s−1) = tBCu(s−1)+γ) we get the following: tECu(s−1) = t+Tr− ǫ−⌈Tr

∆ ⌉+γ.

Finally MaxCu(t) = ⌈ tECu(s1)−t
∆ ⌉ = ⌈

Tr−ǫ−⌈
Tr
∆
⌉+γ

∆ ⌉ and since there can not be a negative result then

MaxCu(t) = R(⌈
Tr−ǫ−⌈

Tr
∆
⌉∆+γ

∆ ⌉). This concludes the proof. 2

Lemma 5 Let us consider a time interval [t, t+ Tr], Tr ≥ 2δ and an arbitrarily small number ǫ > 0, then

in the (∆S,CAM) model MaxSil(t, t+ Tr) = R(⌈γ−∆+ǫ−Tr+δ
∆ ⌉).

Proof As we defined, s−1 is the most recent server that entered in a cured state, with respect to the consid-

ered interval. Intuitively, s−j is in Sil(t, t + 2δ) if tECu(s−j) > Tr − δ. Considering that tECu(s−j) −

tECu(s−j−1) = ∆ then the number of servers in a silent state at t is MaxSil(t, t+2δ) = ⌈ tECu(s1)−Tr+δ
∆ ⌉.

As we stated for (∆S,CAM) models we consider scenarios in which t, the beginning of the considered time

interval, is just before tEB(s1). Thus given an arbitrarily small number ǫ > 0, let t = tEB(s1) − ǫ. By

construction we know that tBB(s1) = tEB(s1)−∆ = tBCu(s−1). Substituting tBCu(s−1) = t+ ǫ−∆,

since we consider γ the upper bound for curing time, then tECu(s−1) = t + ǫ − ∆ + γ . So finally,

MaxSil(t, t + Tr) = ⌈ tECu(s1)−Tr+δ
∆ ⌉ = ⌈γ−∆+ǫ−Tr+δ

∆ ⌉, then since there can not be a negative result

MaxSil(t, t+ 2δ) = R(⌈γ−∆+ǫ−Tr+δ
∆ ⌉). 2

Lemma 6 Let us consider a time interval [t, t+ Tr], Tr ≥ 2δ and an arbitrarily small number ǫ > 0, then

in the (∆S,CUM) model MaxSil(t, t+ Tr) = ⌈
Tr−ǫ−⌈

Tr
∆
⌉∆+γ−δ

∆ ⌉.

Proof As we defined, s−1 is the most recent server that entered in a cured state, with respect to the consid-

ered interval. Intuitively, s−j is in Sil(t, t + Tr) if tECu(s−j) > Tr − δ. Considering that tECu(s−j) −

tECu(s−j−1) = ∆ then the number of servers in a silent state at t is MaxSil(t, t+Tr) = ⌈ tECu(s1)−Tr+δ
∆ ⌉.

As we stated for (∆S,CUM) models we consider scenarios in which t+Tr, the end of the considered time

interval, is just after tBB(sb). Thus given an arbitrarily small number ǫ > 0, let tBB(sb) = t + Tr − ǫ.
By construction we know that tBB(s1) = tEB(s1)−∆ = tBCu(s−1) and tBB(s1) = tBB(sb)− ⌈Tr

∆ ⌉∆
(cf. Lemma 1). Substituting and considering that tECu(s−1 = tBCu(s−1) + γ) we get the following:

tECu(s−1 = t+Tr−ǫ−⌈Tr

∆ ⌉+γ. Finally MaxSil(t, t+Tr) = ⌈ tECu(s1)−Tr+δ
∆ ⌉ = ⌈

Tr−ǫ−⌈
Tr
∆
⌉+γ−Tr+δ

∆ ⌉,

then since there can not be a negative result, MaxSil(t, t+ Tr) = ⌈
Tr−ǫ−⌈

Tr
∆
⌉∆+γ−Tr+δ

∆ ⌉. 2

Lemma 7 Let us consider a time interval [t, t+Tr], Tr ≥ 2δ then in the (∆S,CAM) model. min ˜CBC =
R(⌈Tr

∆ ⌉ − ⌈ δ
∆⌉) +R(⌈Tr−γ−Tr+δ

∆ ⌉).

Proof By definition min ˜CBC(t, t+ Tr) = minC̃B(t, t+ Tr) +minB̃C(t, t+ Tr).
- minC̃B(t, t + Tr) is the minimum number of servers that correctly reply and then, before t + Tr are

affected and incorrectly reply. Let us observe that a correct server correctly reply if belongs to Co(t, t+ δ),
it follows that servers in B̃(t, t+ δ) do not correctly reply. Thus, minC̃B(t, t+ Tr) = MaxB̃(t, t+ Tr)−
MaxB̃(t, t+ δ). It may happen that MaxB̃(t, t+ Tr) < MaxB̃(t, t+ Tr − δ), but obviously there can no

be negative servers, so we consider only non negative values, minC̃B(t, t+ Tr) = R(MaxB̃(t, t+ Tr)−
MaxB̃(t, t+ δ)).

15

- minB̃C(t, t + 2δ) is the minimum number of servers that incorrectly reply and then become correct in

time that the correct reply is delivered. A server is able to correctly reply if it is correct before t + Tr − δ
(the reply message needs at most δ time to be delivered). Thus we are interested in servers that are affected

by a mobile agent up to t + Tr − γ − δ. For (∆, CAM) models we consider scenarios in which t, the

beginning of the considered time interval, is just before tEB(s1). Thus given an arbitrarily small number

ǫ > 0, let t = tEB(s1)− ǫ. In the time interval [t, t+ Tr − γ − δ] the number of the mobile agent “jumps”

is given by ⌈Tr−γ−δ
∆ ⌉ Trivially, we can not have a negative number, so it becomes R(⌈Tr−γ−δ

∆ ⌉). Summing

up min ˜CBC = R(⌈Tr

∆ ⌉ − ⌈ δ
∆⌉) +R(⌈Tr−γ−δ

∆ ⌉), which concludes the proof. 2

Lemma 8 Let us consider a time interval [t, t + Tr], Tr ≥ 2δ, let ǫ > 0 be an arbitrarily small number.

If maxCu(t) > 0 or γ > ∆ then in the (∆S,CUM) model minC̃B = ⌈Tr−ǫ−δ
∆ ⌉ otherwise minC̃B =

R(MaxB̃(t, t+ Tr)−MaxB̃(t, t+ Tr − δ)).

Proof minC̃B(t, t+Tr) is the minimum number of servers that correctly reply and then, before t+Tr are

affected by a mobile agent and incorrectly reply. We are interested in the maximum number of Byzantine

servers in B(t, t + Tr − δ), so that the remaining ones belong to B(t + Tr − δ, t + Tr), which means

that servers in B(t + Tr − δ, t + Tr) are in Co(t, t + δ) (considering the scenario S∗). Thus, considering

that in the (∆, CUM) model we consider tBB(sb) = t + Tr − ǫ (ǫ > 0 and arbitrarily small) then we

consider the maximum number of “jumps” there could be in the time interval [t + δ, t + Tr − ǫ]. Thus

minC̃B(t, t + Tr) = ⌈ t+Tr−ǫ−t−δ
∆ ⌉ = ⌈Tr−ǫ−δ

∆ ⌉. If MaxCu(t) = 0 or γ > ∆ then it has no sense to

consider the (∆S,CUM) worst case scenario that aims to maximize cured servers. Thus in this case we

consider the (∆S,CAM) worst case scenario, minC̃B = R(MaxB̃(t, t+ Tr)−MaxB̃(t, t+ Tr − δ)),
concluding the proof. 2

Lemma 9 Let us consider a time interval [t, t + Tr], Tr ≥ 2δ then in the (∆S,CUM) model then if

maxCu(t) > 0min ˜CBC = ⌈Tr−ǫ−δ
∆ ⌉+R(⌈Tr

∆ ⌉−⌈γ−δ∆ ⌉)+(MaxCu(t)−MaxSil(t, t+Tr)), otherwise

min ˜CBC assumes the same values as in the (∆S,CAM) case.

Proof By definition min ˜CBC(t, t + Tr) = minC̃B(t, t + Tr) + minB̃C(t, t + Tr). From Lemma 8,

if maxCu(t) > 0 or ∆ > γ then in the (∆S,CUM) model minC̃B = ⌈Tr−ǫ−δ
∆ ⌉ otherwise minC̃B =

R(MaxB̃(t, t+ Tr)−MaxB̃(t, t+ Tr − δ)).
minB̃C(t, t+Tr) is the minimum number of servers that incorrectly reply and then, before t+Tr−δ become

correct so that are able to correctly reply in time such that their reply is delivered. In the (∆S,CUM)
model servers may incorrectly reply because affect by a mobile agent or because in a cured state. In the

first case, a server is able to correctly reply if it become correct before t + Tr − δ (the reply message

needs at most δ time to be delivered). Thus we consider the maximum number of servers that can be

affected in the period t + Tr − γ − δ, t + Tr, which is ⌈γ+δ
∆ ⌉. Thus, among the Byzantine servers (i.e.,

MaxB̃(t, t + T)) we consider servers not affected in the time interval [t + Tr − γ + δ, t + Tr]. In other

words such servers have γ time to became correct and δ time to reply before the end of the operation.

Thus MaxB̃(t, t + Tr) − Max(t + Tr − γ + δ, t + Tr). Again we can not have a negative number, so it

becomes R(⌈Tr

∆ − γ−δ
∆ ⌉). Concerning servers that incorrectly reply when in a cured state, we are interested

in servers that correctly reply after in time such that the reply is delivered by the client, i.e., they are not

silent. This number is easily computable, MaxCu(t) − MaxSil(t, t + Tr). Thus minB̃C(t, t + 2δ) =
(MaxCu(t)−MaxSil(t, t+Tr)). Summing up if maxCu(t) > 0 or ∆ > γ, then min ˜CBC = ⌈Tr−ǫ−δ

∆ ⌉+

16

Table 3: Values for a general read() operation that terminates after Tr time.

MaxB̃(t, t+ Tr) MaxCu(t) MaxSil(t, t+ Tr)

(∆S,CAM) ⌈Tr

∆ ⌉+ 1 R(⌈γ−∆+ǫ
∆ ⌉) R(⌈γ−∆+ǫ−Tr+δ

∆ ⌉)

(∆S,CUM) ⌈Tr

∆ ⌉+ 1 R(⌈
Tr−ǫ−⌈

Tr
∆
⌉∆+γ

∆ ⌉) ⌈
γ+δ−ǫ−⌈Tr

∆
⌉∆

∆ ⌉

min ˜CBC(t, t+ Tr)

(∆S,CAM) R(⌈Tr

∆ ⌉ − ⌈ δ
∆⌉) +R(⌈Tr−γ−δ

∆ ⌉)

(∆S,CUM) ⌈Tr−ǫ−δ
∆ ⌉a+R(⌈Tr

∆ ⌉ − ⌈γ+δ
∆ ⌉) + (MaxCu(t)−MaxSil(t, t+ Tr))

aif maxCu(t) > 0 otherwise is the same value of min ˜CBC(t, t+ Tr) in the (∗, CAM) model

R(⌈Tr

∆ ⌉ − ⌈γ−δ∆ ⌉) + (MaxCu(t)−MaxSil(t, t+ 2δ)), otherwise min ˜CBC assumes the same values as

in the (∆S,CAM) model, which concludes the proof. 2

In Table 3 are reported all the results found so far for (∆S, ∗) models.

Such results have been proved considering f = 1. Extending such results to scenario for f > 1 is

straightforward in the (∆S, ∗) model. The extension to f > 1 in the (ITB, ∗) and (ITU, ∗) models is less

direct. What is left to prove is that the results found for f = 1 can be applied to all other models in which

mobile agents move independently from each other. In the following Lemma we employ ∗ to indicate that

the result holds for ∗ assuming consistently the value CAM or CUM .

Lemma 10 Let n∗LB
≤ α∗(∆, δ, γ)f be the impossibility results holding in the (∆S, ∗) model for f = 1.

If there exists a tight protocol Preg solving the safe register for n ≥ α∗(∆, δ, γ)f + 1 (f ≥ 1) then all the

Safe Register impossibility results that hold in the (∆S, ∗) models hold also in the (ITB, ∗) and (ITU, ∗)
models.

Proof Let us consider the scenario S∗ for f = 1 and a read() operation time interval [t, t + Tr], t ≥
0. Depending on the value of t there can be different (but finite) read scenarios, rs1, rs2, . . . , rss. By

hypothesis there exists Preg solving the safe register for n ≥ α∗f(∆, δ, γ)+1 then among the read scenarios

RS = {rs1, rs2, . . . , rss} all the possible worst case scenarios {wrs1, . . . , wrsw} ⊆ RS hold for n =
α∗(∆, δ, γ)f (meaning that Preg does not exist). We can say that those worst scenarios are equivalent in

terms of replicas, i.e., for each wsrk is it possible to build an impossibility run if n = α∗(∆, δ, γ) but Preg

works if n = α∗(∆, δ, γ) + 1 (if we consider f = 1). Let us now consider (∆S, ∗) for f > 1. In this case,

mobile agents move all together, thus the same wrsk scenario is reproduced f times. For each wrsk scenario

is it possible to build an impossibility run if n = α∗(∆, δ, γ)f , i.e., α∗(∆, δ, γ) − 1 non Byzantine servers

are not enough to cope with 1 Byzantine server, then it is straightforward that α∗(∆, δ, γ)−f non Byzantine

servers are not enough to cope with f Byzantine servers, the same scenario is reproduced f times.

In the case of unsynchronized movements (ITB and ITU) we consider ∆ = min {∆1, . . . ,∆f}. Each

mobile agent generates a different read scenarios, those scenario can be up to f . As we just stated, if Preg

exists, those worst case scenarios are equivalent each others in terms of replicas. Since all the worst case

scenarios are equivalent in terms of replicas, thus impossibility results holding for mobile agents moving

together hold also for mobile agent moving in an uncoordinated way. 2

In [8], for n ≥ α∗(∆, δ, γ)f + 1 (f ≥ 1), it has been presented a tight protocol Preg that solves the

Regular Register problem whose bounds match the safe register lower bounds. Thus the next corollary

follows.

17

Table 4: Parameters for PReg Protocol in the (ITB,CAM) and (ITB,CUM) models, minimum number

of replicas, and minimum expected occurrence of correct values.

(CAM, ITB)

2δ ≤ ∆<3δ
nCAM 4f+1

#replyCAM 2f+1

δ ≤ ∆<2δ
nCAM 6f+1

#replyCAM 3f+1

(CUM, ITB)

2δ ≤ ∆<3δ
nCUM 7f+1

#replyCUM 4f+1

δ ≤ ∆<2δ
nCUM 12f+1

#replyCUM 7f+1

Corollary 6 Let n∗LB
≤ α∗(∆, δ, γ)f be the impossibility results holding in the (∆S, ∗) model for f = 1.

All the Safe Register impossibility results hold also in the (ITB, ∗) and (ITU, ∗) models.

4 Upper Bounds

In this section, we present an overview of the optimal protocols that implement a SWMR Regular Register

in a round-free synchronous system respectively for (ITB,CAM) and (ITB,CUM) instances of the

proposed MBF model.

Following the same approach we used in [8] for the (∆S,CAM) model, our solution is based on the

following two key points: (1) we implement a maintenance() operation, in this case executed on demand;

(2) we implement read() and write() operations following the classical quorum-based approach. The size

of the quorum needed to carry on the operations, and consequently the total number of servers required by

the computation, is dependent on the time to terminate the maintenance() operation, δ and ∆ (see Table 4).

The difference with respect (∆S,CAM) model is that the time at which mobile agents move is unknown.

Notice that each mobile mai agent has it own ∆i. Since we do not have any other information we consider

∆ = min{∆1, . . . ,∆f}.

The maintenance() operation for (ITB,CAM) model. This operation is executed by servers on demand

(request-reply) when the oracle notifies them that are in a cured state. Notice that in the (∗, CAM) models

servers know when a mobile agent leaves them, thus depending on such knowledge they execute different

actions. In particular, if a server si is not in a cured state then it does nothing, it just replies to ECHO REQ()
messages. Otherwise, if a server si is in a cured state it first cleans its local variables and broadcast to

other servers a request. Then, after 2δ time units it removes values that may come from servers that were

Byzantine before the maintenance() and updates its state by checking the number of occurrences of each

value received from the other servers. Contrarily to the (∆S,CAM) case, a cured server notifies to all

servers that it was Byzantine in the previous δ time period. This is done invoking the awareAll function that

broadcasts a default value ⊥ after δ time a server discovered to be in a cured state. This is done to prevent

a cured server to collect “slow” replies coming from servers that were affected before the execution of the

maintenance() operation. In this model, the curing time γ ≤ 2δ.

The maintenance() operation for (ITB,CUM) model. In this case servers are not aware of their failure

state, thus they have to run such operation even if they are correct or cured. In addition, in the (ITB,CUM)
model, the moment at which mobile agents move is not known, thus as for the (ITB,CAM) case, a request-

reply pattern is used to implement the maintenance() operation. Such operation is executed by servers every

2δ times. In this case, to prevent a cured server to collect “slow” replies coming from servers that were af-

fected before the execution of the maintenance() operation, a server choses a random number to associate

18

Table 5: Parameters for PRreg Protocol for the (ITB,CUM) model.

k = ⌈ 2δ
∆
⌉ ≥ 1 nCUM ≥ (5k + 2)f + 1 #replyCUM ≥ (3k + 1)f + 1 #echoCUM ≥ (3k) + 1f

k = 2 12f + 1 7f + 1 6f + 1
k = 1 7f + 1 4f + 1 4f + 1

to such particular maintenance() operation instance 4, broadcast the ECHO REQ() message and waits 2δ be-

fore restart ing the operation. When there is a value whose occurrence overcomes the #echoCUM threshold,

such value is stored at the server side.

Notice that, contrarily to all the previous models, servers are not aware of their failure state and do not

synchronize the maintenance() operation with each other. The first consequence is that a mobile agent may

leave a cured server running such operation with garbage in server variables, making the operation unfruit-

ful. Such server has to wait 2δ to run again the maintenance() operation with clean variables, so that next

time it will be effective, which implies γ ≤ 4δ.

The write operation. To write a new value v, the writer increments its sequence number csn and propa-

gates v and csn to all servers via a WRITE messages. Then, it waits for δ time units (the maximum message

transfer delay) before returning. When a server si delivers a WRITE, it updates its local variables and sends

a REPLY message to all clients that are currently reading to allow them to complete their read operation.

The read operation. When a client wants to read, it broadcasts a READ request to all servers and then waits

2δ time (i.e., one round trip delay) to collect replies. When it is unblocked from the wait statement, it selects

a value v occurring enough number of times (see #replyC∗M from Table 4) from the replies set, sends an

acknowledgement message to servers to inform that its operation is now terminated and returns v as result

of the operation. When a server si delivers a READ(j) message from client cj , it first puts its identifier in

the pending read set to remember that cj is reading and needs to receive possible concurrent updates and it

sends a reply back to cj .

4.1 Preg in the (ITB,CAM)model

The protocol Preg for the (ITB,CAM)model is described in Figures 8 - 10, which present the maintenance(),
write(), and read() operations, respectively.

Local variables at client ci. Each client ci maintains a set replyi that is used during the read() operation to

collect the three tuples 〈j, 〈v, sn〉〉 sent back from servers. In particular v is the value, sn is the associated

sequence number and j is the identifier of server sj that sent the reply back. Additionally, ci also maintains

a local sequence number csn that is incremented each time it invokes a write() operation and is used to

timestamp such operations monotonically.

Local variables at server si. Each server si maintains the following local variables (we assume these

variables are initialized to zero, false or empty sets according their type):

• Vi: an ordered set containing d tuples 〈v, sn〉, where v is a value and sn the corresponding se-

quence number. Such tuples are ordered incrementally according to their sn values. The function

4Is it out of the scope of this work to describe such function, we assume that Byzantine server can not predict the random number

chosen next.

19

insert(Vi, 〈vk, snk〉) places the new value in Vi according to the incremental order and, if there are

more than d values, it discards from Vi the value associated to the lowest sn.

• pending readi: set variable used to collect identifiers of the clients that are currently reading.

• curedi: boolean flag updated by the cured state oracle. In particular, such variable is set to true when

si becomes aware of its cured state and it is reset during the algorithm when si becomes correct.

• echo valsi and echo readi: two sets used to collect information propagated through ECHO messages.

The first one stores tuple 〈j, 〈v, sn〉〉 propagated by servers just after the mobile Byzantine agents

moved, while the second stores the set of concurrently reading clients in order to notify cured servers

and expedite termination of read().

• curingi: set used to collect servers running the maintenance() operation. Notice, to keep the code

simple we do not explicitly manage how to empty such set since has not impact on safety properties.

In order to simplify the code of the algorithm, let us define the following functions:

• select d pairs max sn(echo valsi): this function takes as input the set echo valsi and returns, if they

exist, three tuples 〈v, sn〉, such that there exist at least #echoCAM occurrences in echo valsi of such

tuple. If more than three of such tuple exist, the function returns the tuples with the highest sequence

numbers.

• select value(replyi): this function takes as input the replyi set of replies collected by client ci and

returns the pair 〈v, sn〉 occurring at least #replyCAM times (see Table ??). If there are more pairs

satisfying such condition, it returns the one with the highest sequence number.

• delete cured values(echo vals): this function takes as input echo valsi and removes from fw valsi
all values coming from servers that sent an ECHO() message containing ⊥.

The maintenance() operation. Such operation is executed by servers on demand when the oracle notifies

them that are in a cured state. Notice that in the (∗, CAM) models servers knows when a mobile agent

leaves them, thus depending on such knowledge they execute different actions. In particular, if a server si is

not in a cured state then it does nothing, it just replies to ECHO REQ() messages. Otherwise, if a server si is

in a cured state it first cleans its local variables and broadcast to other servers an echo request then, after 2δ
time units it removes value that may come from servers that were Byzantine before the maintenance() and

updates its state by checking the number of occurrences of each pair 〈v, sn〉 received with ECHO messages.

In particular, it updates Vi invoking the select three pairs max sn(echo valsi) function that populates Vi

with d tuples 〈v, sn〉. At the end it assigns false to curedi variable, meaning that it is now correct and the

echo valsi can now be emptied. Contrarily to the (∆S,CAM) case, cured server notifies to all that it has

been Byzantine in the previous δ time period. This is done invoking the awareAll function that broadcast a

default value ⊥ after δ time that a server discovered to be in a cured state.

The write() operation. When the writer wants to write a value v, it increments its sequence number csn
and propagates v and csn to all servers. Then it waits for δ time units (the maximum message transfer delay)

before returning.

When a server si delivers a WRITE, it updates its local variables and sends a REPLY() message to all

clients that are currently reading (clients in pending readi) to notify them about the concurrent write()
operation and to each server executing the maintenance() operation (servers in curingi).

20

function awareAll():
(01) broadcast ECHO(i,⊥)
(02) wait(δ);

(03) broadcast ECHO(i,⊥)
——————————————————————————————————

operation maintenance() executed while (TRUE) :

(04) curedi ← report cured state();
(05) if (curedi) then

(06) curedi ← false;

(07) curing statei ← true;

(08) Vi ← ∅; echo valsi ← ∅; pending readi ← ∅;curingi ← ∅;
(09) broadcast ECHO REQ(i);
(10) awareAll();
(11) wait(2δ);
(12) delete cured values(echo vals);
(13) insert(Vi, select three pairs max sn(echo valsi));
(14) for each (j ∈ (curingi)) do

(15) send ECHO (i, Vi) to sj ;

(16) endFor

(17) curing statei ← false;

(18) endIf

——————————————————————————————————

when ECHO (j, Vj) is received:

(19) for each (〈v, sn〉 ∈ Vj do

(20) echo valsi ← echo valsi ∪ 〈v, sn〉j ;

(21) endFor

——————————————————————————————————

when ECHO REQ (j) is received:

(22) curingi ← curingi ∪ j;

(23) if (Vi 6= ∅)
(24) send ECHO(i, Vi);
(25) endif

Figure 8: AM algorithm implementing the maintenance() operation (code for server si) in the

(ITB,CAM) model.

The read() operation. When a client wants to read, it broadcasts a READ() request to all servers and waits

2δ time (i.e., one round trip delay) to collect replies. When it is unblocked from the wait statement, it selects

a value v invoking the select value function on replyi set, sends an acknowledgement message to servers to

inform that its operation is now terminated and returns v as result of the operation.

When a server si delivers a READ(j) message from client cj it first puts its identifier in the set pending readi
to remember that cj is reading and needs to receive possible concurrent updates, then si checks if it is in a

cured state and if not, it sends a reply back to cj . Note that, the REPLY() message carries the set Vi.

When a READ ACK(j) message is delivered, cj identifier is removed from both pending readi set as it

does not need anymore to receive updates for the current read() operation.

4.2 Preg in the (ITB,CUM)model

Preg Detailed Description The protocol Preg for the (ITB,CUM) model is described in Figures 11 - 13,

which present the maintenance(), write(), and read() operations, respectively. Table 5 reports the parame-

ters for the protocol. In particular nCUM is the bound on the number of servers, #replyCUM is minimum

number of occurrences from different servers of a value to be accepted as a reply during a read() operation

and #echoCUM is the minimum number of occurrences from different servers of a value to be accepted

during the maintenance() operation.

21

========= Client code ==========

operation write(v):
(01) csn← csn+ 1;

(02) broadcast WRITE(v, csn);
(03) wait (δ);
(04) return write confirmation;

========= Server code ==========

when WRITE(v, csn) is received:

(05) insert(Vi, 〈v, csn〉);
(06) for each j ∈ (pending readi) do

(07) send REPLY (i, {〈v, csn〉});
(08) endFor

(09) for each j ∈ (curingi) do

(10) send ECHO (i, Vi);
(11) endFor

Figure 9: AW algorithm implementing the write(v) operation in the (ITB,CAM) model.

========= Client code ==========

operation read():
(01) replyi ← ∅;
(02) broadcast READ(i);
(03) wait (2δ);
(04) 〈v, sn〉 ← select value(replyi);
(05) broadcast READ ACK(i);
(06) return v;

———————————————————————–

when REPLY (j, Vj) is received:

(07) for each (〈v, sn〉 ∈ Vj) do

(08) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(09) endFor

========= Server code ==========

when READ (j) is received:

(10) pending readi ← pending readi ∪ {j};
(11) if (Vi 6= ∅)
(12) then send REPLY (i, Vi);
(13) endif

———————————————————————–

when READ ACK (j) is received:

(14) pending readi ← pending readi \ {j};

Figure 10: AR algorithm implementing the read() operation in the (ITB,CAM) model.

Local variables at client ci. Each client ci maintains a set replyi that is used during the read() operation to

collect the three tuples 〈j, 〈v, sn〉〉 sent back from servers. In particular v is the value, sn is the associated

sequence number and j is the identifier of server sj that sent the reply back. Additionally, ci also maintains

a local sequence number csn that is incremented each time it invokes a write() operation and is used to

timestamp such operations monotonically.

Local variables at server si. Each server si maintains the following local variables (we assume these

variables are initialized to zero, false or empty sets according their type):

22

• Vi: an ordered set containing 3 tuples 〈v, sn〉, where v is a value and sn the corresponding sequence

number. Such tuples are ordered incrementally according to their sn values.

• Vsafej : this set has the same characteristic as Vj . The insert(Vsafei , 〈vk, snk〉) function places the

new value in Vsafei according to the incremental order and if dimensions exceed 3 then it discards

from Vsafei the value associated to the lowest sn.

• Wi: is the set where servers store values coming directly from the writer, associating to it a timer,

〈v, sn, timer〉. Values from this set are deleted when the timer expires or has a value non compliant

with the protocol.

• pending readi: set variable used to collect identifiers of the clients that are currently reading.

• echo valsi and echo readi: two sets used to collect information propagated through ECHO messages.

The first one stores tuple 〈j, 〈v, sn〉〉 propagated by servers just after the mobile Byzantine agents

moved, while the second stores the set of concurrently reading clients in order to notify cured servers

and expedite termination of read().

• curingi: set used to collect servers running the maintenance() operation. Notice, to keep the code

simple we do not explicitly manage how to empty such set since has not impact on safety properties.

In order to simplify the code of the algorithm, let us define the following functions:

• select three pairs max sn(echo valsi): this function takes as input the set echo valsi and returns, if

they exist, three tuples 〈v, sn〉, such that there exist at least #echoCUM occurrences in echo valsi
of such tuple. If more than three of such tuples exist, the function returns the tuples with the highest

sequence numbers.

• select value(replyi): this function takes as input the replyi set of replies collected by client ci and

returns the pair 〈v, sn〉 occurring occurring at least #replyCUM times. If there are more pairs with

the same occurrence, it returns the one with the highest sequence number.

• conCut(Vi, Vsafei ,Wi): this function takes as input three 3 dimension ordered sets and returns another

3 dimension ordered set. The returned set is composed by the concatenation of Vsafei ◦ Vi ◦ Wi,

without duplicates, truncated after the first 3 newest values (with respect to the timestamp). e.g.,

Vi = {〈va, 1〉, 〈vb, 2〉, 〈vc, 3〉, 〈vd, 4〉} and Vsafei = {〈vb, 2〉, 〈vd, 4〉, 〈vf , 5〉} and Wi = ∅, then the

returned set is {〈vc, 3〉, 〈vd, 4〉, 〈vf , 5〉}.

The maintenance() operation. Such operation is executed by servers every 2δ times. Each time si resets

its variables, except for Wi (that is continuously checked by the function timerCheck()) and the content of

Vsafei , which overrides the content of Vi, before to be reset. Then si choses a random number to associate

to such particular maintenance() operation instance 5, broadcast the ECHO REQ() message and waits 2δ
before to restart the operation. In the meantime ECHO() messages are delivered and stored in the echo valsi
set. When there is value v whose occurrence overcomes the #echoCUM threshold, such value is stored in

Vsafei and a REPLY() message with v is sent to current reader clients (if any).

5Is it out of the scope of this work to describe such function, we assume that Byzantine server can not predict the random

number chosen next. The aim of such number is to prevent Byzantine servers to send reply to maintenance() operations before

their invocation, or, in other words, it prevents correct servers to accept those replies.

23

operation timerCheck(Wi) executed while (TRUE) :

(01) for each (〈〈v, csn〉, timer〉j ∈ Wi) do

(02) if (Expires(timer) ∧ (timer > 4δ))
(03) Wi ←Wi \ 〈〈v, csn〉, timer〉j ;

(04) endif

(05) endFor

————————————————————————————————————-

operation maintenance() executed while (TRUE) :

(06) echo valsi ← ∅; Vi ← Vsafei
; Vsafe ← ∅;

(07) rand← new rand();
(08) broadcast ECHO REQ(i, rand);
(09) wait(2δ);
——————————————————————————————————

when select three pairs max sn(echo valsi) 6= ⊥
(10) insert(Vsafei

, select three pairs max sn(echo valsi));
(11) for each (j ∈ (pending readi ∪ echo readi)) do

(12) send REPLY (i, Vsafe) to cj ;

(13) endFor

————————————————————————————————————-

when ECHO (j, S, pr, r) is received:

(14) if (rand = r)then:

(15) echo valsi ← echo valsi ∪ 〈v, sn〉j ;

(16) echo readi ← echo readi ∪ pr;

(17) endIf

——————————————————————————————————

when ECHO REQ (j, r) is received:

(18) Seti ← ∅;
(19) for each〈〈v, csn〉, epoch〉j ∈ Wi do;

(20) Seti ← Seti ∪ 〈v, csn〉j ;

(21) endFor

(22) send ECHO(i, Vi ∪ Seti, r) to sj ;

Figure 11: AM algorithm implementing the maintenance() operation (code for server si) in the

(ITB,CUM) model.

Notice that, contrarily to all the previous models, servers are not aware about their failure state and do not

synchronize the maintenance() operation with each other. The first consequence is a that a mobile agent

may leave a cured server running such operation with garbage in server variables, making the operation

unfruitful. Such server has to wait 2δ to run again the maintenance() operation with clean variables, so that

next time it will be effective, which implies γ ≤ 4δ.

The write() operation. When the writer wants to write a value v, it increments its sequence number csn
and propagates v and csn to all servers. Then it waits for δ time units (the maximum message transfer delay)

before returning.

When a server si delivers a WRITE message, it updates Wi, associating to such value a timer 4δ. 4δ it is

a consequence of the double maintenance() operation that a cured server has to run in order to be sure to be

correct. Thus if a server is correct it keeps v in Wi during 4δ, which is enough for our purposes. On the other

side a cured servers keeps a value (not necessarily coming from a write() operation) no more than the time

it is in a cured state, 4δ, which is safe. After storing v in Wi, such value is inserted in REPLY() message to

all clients that are currently reading (clients in pending readi) to notify them about the concurrent write()
operation and to any server executing the maintenance() operation (servers in curingi).
The read() operation. When a client wants to read, it broadcasts a READ() request to all servers and waits

2δ time (i.e., one round trip delay) to collect replies. When it is unblocked from the wait statement, it selects

a value v invoking the select value function on replyi set, sends an acknowledgement message to servers to

24

========= Client code ==========

operation write(v):
(01) csn← csn+ 1;

(02) broadcast WRITE(v, csn);
(03) wait (δ);
(04) return write confirmation;

========= Server code ==========

when WRITE(v, csn) is received:

(05) Wi ←Wi ∪ 〈〈v, csn〉, setTimer(4δ)}〉;
(06) for each j ∈ (pending readi ∪ echo readi) do

(07) send REPLY (i, {〈v, csn〉});
(08) endFor

(09) broadcast ECHO(i, 〈v, csn〉);

Figure 12: AW algorithm implementing the write(v) operation in the (ITB,CUM) model.

inform that its operation is now terminated and returns v as result of the operation.

When a server si delivers a READ(j) message from client cj it first puts its identifier in the set pending readi
to remember that cj is reading and needs to receive possible concurrent updates, then si sends a reply back

to cj . Note that, in the REPLY() message is carried the result of conCut(Vi, Vsafei ,Wi). In this case, if

the server is correct then Vi contains valid values, and Vsafei contains valid values by construction, since it

comes from values sent during the current maintenance(). If the server is cured, then Vi and Wi may contain

any value. Finally, si forwards a READ FW message to inform other servers about cj read request. This is

useful in case some server missed the READ(j) message as it was affected by mobile Byzantine agent when

such message has been delivered.

When a READ ACK(j) message is delivered, cj identifier is removed from both pending readi set as it

does not need anymore to receive updates for the current read() operation.

5 Correctness

5.1 Correctness (ITB,CAM)

To prove the correctness of Preg, we first show that the termination property is satisfied i.e, that read() and

write() operations terminates.

Lemma 11 If a correct client ci invokes write(v) operation at time t then this operation terminates at time

t+ δ.

Proof The claim follows by considering that a write confirmation event is returned to the writer client ci
after δ time, independently of the behavior of the servers (see lines 03-04, Figure 9). 2

Lemma 12 If a correct client ci invokes read() operation at time t then this operation terminates at time

t+ 2δ.

Proof The claim follows by considering that a read() returns a value to the client after 2δ time, indepen-

dently of the behavior of the servers (see lines 03-06, Figure 10). 2

25

========= Client code ==========

operation read():
(01) replyi ← ∅;
(02) broadcast READ(i);
(03) wait (2δ);
(04) 〈v, sn〉 ← select value(replyi);
(05) broadcast READ ACK(i);
(06) return v;

———————————————————————–

when REPLY (j, Vj) is received:

(07) for each (〈v, sn〉 ∈ Vj) do

(08) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(09) endFor

========= Server code ==========

when READ (j) is received:

(10) pending readi ← pending readi ∪ {j};
(11) send REPLY (i, conCut(Vi, Vsafei

,Wi));
(12) broadcast READ FW(j);
———————————————————————–

when READ FW (j) is received:

(13) pending readi ← pending readi ∪ {j};
———————————————————————–

when READ ACK (j) is received:

(14) pending readi ← pending readi \ {j};
(15) echo readi ← echo readi \ {j};

Figure 13: AR algorithm implementing the read() operation in the (ITB,CUM) model.

Theorem 2 (Termination) If a correct client ci invokes an operation, ci returns from that operation in finite

time.

Proof The proof follows from Lemma 11 and Lemma 12. 2

Validity property is proved with the following steps:

• 1. maintenance() operation works (i.e., at the end of the operation n−f servers store valid values). In

particular, for a given value v stored by #echo correct servers at the beginning of the maintenance()
operation, there are n− f servers that may store v at the end of the operation;

• 2. given a write() operation that writes v at time t and terminates at time t+δ, there is a time t′ > t+δ
after which #reply correct servers store v.

• 3. at the next maintenance() operation after t′ there are #reply − f = #echo correct servers that

store v, for step (1) this value is maintained.

• 4. the validity follows considering that the read() operation is long enough to include the t′ of the last

written value before the read() and V is big enough to do not be full filled with new values before t′.

Before to prove the correctness of the maintenance() operation let us see how many Byzantine agent

there may be during such operation. Since the cured server run it as soon as the mobile agent mai leaves

it, then mai movement are aligned to such operation, this agent contribution is 2δ
∆ = k. All the others

f − 1 mobile agent are not aligned, thus their contribution is MaxB̃(t, t + 2δ) = k + 1. Thus there are

k + (k + 1)× (f − 1) Byzantine servers during the 2δ time maintenance() operation.

26

Lemma 13 (Step 1) Let Ti = t be the time at which mobile agent mai leave sc. Let v be the value stored

at #echoCAM servers sj /∈ B(t, t + δ) ∧ sj ∈ Co(t+ δ), v ∈ Vj∀sj ∈ Co(t+ δ). At time t+ 2δ, at the

end of the maintenance(), v is returned to sc by the function select d pairs max sn(echo valsc).

Proof The proof follows considering that:

• the maintenance() employs a request-reply pattern and during such operation, by hypothesis, there

are #echoCAM servers that are never affected during the [Ti, Ti + δ] time period and are correct at

time Ti+δ. i.e., there are #echoCAM servers that deliver the ECHO REQ() message (the can be either

correct or cured) but are correct at time Ti + δ such that the reply is delivered by sc by time Ti + 2δ.

• during the maintenance() operation there are k + (k + 1) × (f − 1) Byzantine servers, and (k2)f
servers that were Byzantine in [t− δ, t] time period, thus they could have sent incorrect messages as

well.

• each cured servers, invokes AWAREALL() function, sends a ⊥ message twice: when they are aware to

be cured and δ time after. Thus by time t+2δ server running the maintenance removes from echo vals
the (k2)f messages sent by those servers. In the end there are k + (k + 1)× (f − 1) = (k + 1)f − 1
messages coming from Byzantine servers in the echo valsc set.

#echoCAM = (k+1)f > (k+1)f−1 thus Byzantine servers can not force the select d pairs max sn(echo valsc)
function to return a not valid value and select d pairs max sn(echo valsc) returns v that occurs #replyCAM

times, concluding the proof. 2

Lemma 14 (Step 2.) Let opW be a write(v) operation invoked by a client ck at time tB(opW) = t then at

time t+ δ there are at least #replyCAM servers sj /∈ B(t+ δ) such that v ∈ Vj .

Proof The proof follows considering that during the write() operation, [t, t+δ], there can be at most (k2+1)f

mobile agents. Thus, during such time there are n−(k2+1)f = 2(k+1)f+1−(k2+1)f = (k+ k
2+1)f+1

servers sj that being either cured or correct, execute code in Figure 9, line 05, inserting v in Vj . Finally,

(k + k
2 + 1)f + 1 > (k + 1)f + 1 = #replyCAM concluding the proof.

2

For simplicity, for now on, given a write() operation opW we call tB(opW) + δ = twC the completion

time of opW , the time at which there are at least #replyCAM servers storing the value written by opW .

Lemma 15 (Step 3.) Let opW be a write() operation occurring at tB(opW) = t and let v be the written

value and let twC be its completion time. Then if there are no other write() operations after opW , the value

written by opW is stored by all correct servers forever.

Proof Following the same reasoning as Lemma 14, at time t+δ, assuming that in [t, t+δ] there are (k2+1)f ,

then there are at least (k + k
2 + 1)f + 1 servers sj that being either cured or correct, execute code in Figure

9, line 05, inserting v in Vj . Now let us consider the following:

• Let B1 = B̃(t, t + δ) be the set containing the (k2 + 1)f Byzantine servers during [t, t + δ], so that

there are (2k + 1)f + 1− k
2 = (k + k

2 + 1)f + 1 ≥ #replyCUM non faulty servers storing v;

27

– there are (k2)f Byzantine servers in B1 that begin the maintenance() operation . At that time

there are #replyCAM non faulty servers storing v, being #replyCAM > #echoCAM , for

Lemma 13 at the end of the maintenance() operation, by time t + 3δ, those servers obtain v
a result of select d pairs max sn(echo vals) invocation, whose is stored in V since there are no

other write() operation and since v has the highest associated sequence number.

• Let B2 = B̃(t+ δ, t+2δ) be the set containing Byzantine servers in the next δ period. Those servers

are k
2f (it is not k

2f + 1, otherwise we would count the Byzantine servers at t + δ twice). Thus, at

t+2δ there are (k+ k
2 +1)f +1− k

2f = (k+1)f +1 = #replyCAM non faulty servers storing v;

– there are (k2)f Byzantine servers in B2 that begin the maintenance() operation during [t+ δ, t+
2δ] time interval. There are #replyCAM non faulty servers storing v, being #replyCAM >
#echoCAM , for Lemma 13 at the end of the maintenance() operation, by time t + 4δ, those

servers, get v invoking select d pairs max sn(echo vals), whose is stored in V since there are

no other write() operation and since v has the highest associated sequence number.

• Let B3 = B̃(t+2δ, t+3δ) be the set containing Byzantine servers in the next δ period. Those servers

are k
2f . At t + 3δ there are (k + 1)f + 1 − k

2f < #replyCAM non faulty servers storing v and

the there are (k2)f servers in B1 that terminated the maintenance() operation storing v. Summing up

there are (k + 1)f + 1− k
2f + k

2f = #replyCAM servers storing v.

Thus, after t + 3δ period there are servers becoming affected that lose v, but there are other f servers that

become correct storing v, so that all correct servers store v. Since there are no more write() operation, this

reasoning can be extended forever, concluding the proof. 2

Lemma 16 (Step 3.) Let opW0
, opW1

, . . . , opWk−1
, opWk

, opWk+1
, . . . be the sequence of write() opera-

tions issued on the regular register. Let us consider a particular opWk
, let v be the value written by opWk

and let tEwk be its completion time. Then the register stores v (there are at least #replyCAM correct

servers storing it) up to time at least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 15 if there are no more write() operation then v, after twC , is in the register forever.

• any new written value is store in an ordered set V (cf. Figure 9 line 05) whose dimension is 3.

• write() operations occur sequentially.

It follows that after the beginning of 3 write() operations, opWk+1
, opWk+2

, opWk+3
, v it may be no more

stored in the regular register. 2

Theorem 3 (Step 4.) Any read() operation returns the last value written before its invocation, or a value

written by a write() operation concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval [tB(opR), tB(opR)+δ].
Since such operation lasts 2δ, the reply messages sent by correct servers within tB(opR) + δ are delivered

by the reading client. For δ ≤ ∆ < 3δ during [t, t + δ] time interval there are n − k
2 − 1 ≥ #replyCAM

correct servers that have the time to deliver the read request and reply. Now we have to prove that what

28

those correct servers reply with is a valid value. There are two cases, opR is concurrent with some write()
operations or not.

- opR is not concurrent with any write() operation. Let opW be the last write() operation such that

tE(opW) ≤ tB(opR) and let v be the last written value. For Lemma 15 after the write completion time tCw
there are #replyCAM non faulty servers storing v. Since tB(opR) + δ ≥ tCw, then there are #replyCAM

non faulty servers replying with v (Figure 10, lines 11-12). So the last written value is returned.

- opR is concurrent with some write() operation. Let us consider the time interval [tB(opR), tB(opR)+δ].
In such time there can be at most two write() operations. Thus for Lemma 16 the last written value before

tB(opR) is still present in #replyCAM non faulty servers. Thus at least the last written value is returned.

To conclude, for Lemma 1, during the read() operation there are at most (k + 1)f Byzantine servers, being

#replyCAM > (k+1)f then Byzantine servers may not force the reader to read another or older value and

even if an older values has #replyCAM occurrences the one with the highest sequence number is chosen.

2

Theorem 4 Let n be the number of servers emulating the register and let f be the number of Byzantine

agents in the (ITB,CAM) round-free Mobile Byzantine Failure model. Let δ be the upper bound on

the communication latencies in the synchronous system. If n = nCAM according to Table ?? then Preg

implements a SWMR Regular Register in the (ITB,CAM) and (ITU,CAM) round-free Mobile Byzantine

Failure model.

Proof The proof simply follows from Theorem 2 and Theorem 3 and considering ∆ = 1 in the case of

(ITU,CAM) model. 2

Lemma 17 Protocol Preg for δ ≤ ∆ < 3δ is tight with respect to γ ≤ 2δ.

Proof The proof follows from Theorem 4 and Theorem 1, i.e., upper bound and lower bound match. In

particular Lower bounds are computed using the values in Table 3 to compute nCAMLB
as defined in Table

2 for γ ≤ 2δ (cf. Lemma 13). 2

5.2 Correctness (ITB,CUM)

To prove the correctness of Preg we demonstrate that the termination property is satisfied i.e, that read() and

write() operations terminates. For the validity property we follow te same four steps as defined in Section

5.1.

Lemma 18 If a correct client ci invokes write(v) operation at time t then this operation terminates at time

t+ δ.

Proof The claim simply follows by considering that a write confirmation event is returned to the writer

client ci after δ time, independently of the behavior of the servers (see lines 03-04, Figure 12). 2

Lemma 19 If a correct client ci invokes read() operation at time t then this operation terminates at time

t+ 2δ.

29

Proof The claim simply follows by considering that a read() returns a value to the client after 2δ time,

independently of the behaviour of the servers (see lines 12-15, Figure 13). 2

Theorem 5 (Termination) If a correct client ci invokes an operation, ci returns from that operation in finite

time.

Proof The proof simply follows from Lemma 18 and Lemma 19. 2

To easy the next Lemmas let us use state the following result.

Lemma 20 Let [t, t+ 2δ] be a generic interval, then there are always at least #replyCUM correct servers

that reply during the [t, t+ δ] time interval.

Proof This follows considering the definition of minimum number of correct replies during a time interval

(cf. Corollary 2). Since does exist a tight protocol P solving a regular register in the (∆S,CAM) model,

then for Lemma 10, is it possible to apply values from Table 3 to compute the minimum number of correct

replies during the considered time interval, substituting values in each case the result is always at least

#replyCUM . 2

Lemma 21 (Step 1.) Let Ti be the time at which mobile agent mai leave sc and let t ≤ Ti + 2δ the time

at which sc run the second maintenance() operation. Let v be the value stored at #echoCUM servers

sj /∈ B(t, t+ δ), v ∈ Vj∀sj /∈ B(t, t+ δ). At time t+ 2δ, at the end of the maintenance(), v is returned to

sc by the function select three pairs max sn(echo valsc).

Proof The proof follows considering that:

• the maintenance() employs a request-reply pattern and during such operation, by hypothesis, there

are #echoCUM servers that are never affected during the [t, t + δ] time period and are storing v at

time t+ δ. i.e., there are #echoCUM servers that deliver the ECHO REQ() message (the can be either

correct or cured) but are storing v in V at time t + δ such that the reply is delivered by sc by time

t+ 2δ.

• during the maintenance() operation can incorrectly contribute (k+1)f Byzantine servers, and (2k)f
servers that were Byzantine in [t− 4δ, t] time period, thus they could be still in a cured state 6.

• when the ECHO REQ() message is sent, sc uses a random number in order to be able to accept only

ECHO() message sent after t.

#echoCUM = (3k)f+1 > 3kf thus Byzantine servers can not force the select three pairs max sn(echo valsc)
function to return a not valid value so it returns v that occurs #replyCUM times, which is true since there

exist #echo CUM non faulty servers that reply to the ECHO REQ() message sending back v, concluding

the proof. 2

In the sequel we consider γ ≤ 4δ. In the previous Lemma we proved that cured servers sc can get valid

values in 2δ time. Contrarily to all the previous model, the maintenance() operation is triggered each 2δ.

Thus a mobile agent, just before to leave could leave sc with the timer just reset and garbage in the echo setc

6We prove hereafter that γ ≤ 4δ, but to prove it we have first to prove that the maintenance() lasts 2δ time.

30

and Vc sets, which does not allow sc to correctly terminate the operation. Thus sc has to wait 2δ before to

effectively starts a correct maintenance() operation. In the sequel we refer to the first maintenance as the

operation that may be ineffective and we refer to the second maintenance as the operation that allows a

cured server to retrieve and store valid values. It is straightforward that γ ≤ 4δ and the next Corollary just

follows.

Corollary 7 Protocol P implements a maintenance() operation that implies γ ≤ 4δ.

Lemma 22 (Step 2.) Let opW be a write(v) operation invoked by a client ck at time tB(opW) = t then at

time t+ δ there are at least n− 2f > #replyCUM non faulty servers si such that v ∈ Wi (so that when si
invokes conCut(Vi, Vsafei ,Wi) v is returned).

Proof When the WRITE() message is delivered by non faulty servers si, such message is stored in Wi and

a timer associated to it is set to 4δ, after that the value expires. For Lemma 1 in the [t, t + δ] time interval

there are maximum 2f Byzantine servers. All the remaining n − 2f non faulty servers execute the correct

protocol code, Figure 12 line 05 inserting v in Wi. Since write() operations are sequential, during [t, t+ δ]
there is only one new value inserted in Wi, which is returned by the function conCut() by construction. 2

For simplicity, for now on, given a write() operation opW we call tB(opW) + δ = twC the completion

time of opW , the time at which there are at least #replyCUM servers storing the value written by opW .

Lemma 23 (Step 3.) Let opW be a write() operation and let v be the written value and let twC be its time

completion. Then if there are no other write() operation, the value written by opW is stored by all correct

servers forever (i.e., v ∈ conCut(Vi, Vsafei ,Wi)).

Proof From Lemma 22 at time twC there are at least n− 2f > #replyCUM non faulty servers sj such that

v ∈ Wi. For sake of simplicity let us consider Figure 14. Let us consider that:

• for Lemma 22, all non faulty servers si have v in Wi at most at twC ;

• when si runs the next maintenance(), v is returned by select three pairs max sn(echo valsi) func-

tion at the end of such operation, and since it is the value with the highest sequence number (there

are no other write() operation) then v is inserted in Vsafei (cf. Figure 11 line 10), thus such value is

present in the ECHO() message replies for the next 2δ time;

• this is trivially true up to time t′ = t + 4δ, for the timer associated to each v in Wi. In [t, t′] there

are 2k + 1 Byzantine servers, thus v ∈ Wj at n − (2k + 1) non faulty servers, and n − (2k + 1) =
(3k + 1)f + 1 = #replyCUM ≥ #echoCUM ;

• for each non faulty server the next maintenance() operation opM can happen either in [t′, t′+ δ] or in

[t′ + δ, t′ + 2δ] (cf. Figure 14)s10 and s11 respectively:

– tB(opM) ∈ [t′, t′ + δ] (cf. s10 Figure 14): s10 starts opM1
before t′ + δ, let us name it server

type A. This means that tB(opM−1
)+ δ < t′− δ, thus for Lemma 21, at the end of the operation

v ∈ Vsafe10 and during opM1
v ∈ V10;

– tB(opM) ∈ [t′+ δ, t′+2δ] (cf. s11 Figure 14): s11 starts opM1
after t′+2δ let us name it server

type B. This means that tB(opM−1
)+ δ > t′, thus at the end of the operation we can not say that

v ∈ Vsafe10 but at least during opM−1
v ∈ V11.

31

If all non faulty servers are type A, during opM1
all non faulty servers have v ∈ V and insert v in the ECHO()

message. The same happens if all non faulty servers are type B, during opM−1
, all of them inter v in the

ECHO() message and the maintenance() operation terminates with such value. If the situation is mixed, then

servers type B, when run opM−1
, deliver ECHO() messages from both type A and type B servers. Thus if

there are enough occurrence of v they can store v ∈ Vsafeb and during opM1
v ∈ Vb. During such operation

both servers type A and type B have vinV . Again, if there are enough occurrences of v, the operation ends

with v ∈ Vsafeb . It follows that servers type A, when run opM1
delivers ECHO() messages containing v

from both type A and type B servers. During the time interval [t′, t′ + 2δ] there are k correct servers that

are affected by mobile agent, cf. Figure 14, s5 and s6. At the same time there is server s0, type A, that

terminate its maintenanace() with v ∈ Vsafe0 , and thus compensates s5, allowing s1, type B, to terminate

the maintenanace() operation with v ∈ Vsafe1 , which compensates s6. This cycle, between type A and

type B servers can be extended forever. By hypothesis there are no more write() operation, thus all correct

servers have v ∈ Vsafe or V , and v is returned when servers invoke function conCut(). 2

Lemma 24 (Step 3.) Let opW0
, opW1

, . . . , opWk−1
, opWk

, opWk+1
, . . . be the sequence of write() operation

issued on the regular register. Let us consider a generic opWk
, let v be the written value by such operation

and let twC be its completion time. Then v is in the register (there are #replyCUM correct servers that

return it when invoke the function conCut()) up to time at least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 23 if there are no more write() operation then v, after twC , is in the register forever.

• any new written value eventually is stored in an ordered set Vsafe and then V (cf. Figure 11 line 06 or

line 10) whose dimension is three.

• write() operation occur sequentially.

It follows that after three write() operations, opWk+1
, opWk+2

, opWk+3
in V Vsafe and W there are three

values whose sequence number is higher than the one associated to v, thus by construction conCut() does

not return v anymore, v is no more stored in the regular register. 2

Theorem 6 (Step 4.) Any read() operation returns the last value written before its invocation, or a value

written by a write() operation concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval [tB(opR), tB(opR)+δ].
Since such operation lasts 2δ, the reply messages sent by correct servers within tB(opR) + δ are delivered

by the reading client. During [t, t + δ], for Lemma 20 there are at least #replyCUM correct servers that

reply. Now we have to prove that what those correct servers reply with is a valid value. There are two cases,

opR is concurrent with some write() operations or not.

- opR is not concurrent with any write() operation. Let opW be the last write() operation such that

tE(opW) ≤ tB(opR) and let v be the last written value. For Lemma 23 after the write completion time twC

there are at least #replyCUM correct servers storing v (i.e., v ∈ conCut(Vj , Vsafej)). Since tB(opR)+2δ ≥
tCw, then there are #replyCUM correct servers replying with v (cf. Lemma 20), by hypothesis there are no

further write() operation and v has the highest sequence number. It follows that the last written value v is

returned.

32

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

. . .

write(v) t′

v ∈ Vsafe5

v ∈ Vsafe6

v ∈ Vsafe7

v ∈ Vsafe8

v ∈ Vsafe9

v ∈ Vsafe10

v ∈ Vsafe11

v ∈ Vsafe12

v ∈ Vsafe13

t′ + 2δ

v ∈ Vsafe0

v ∈ Vsafe1

opM
−1

opM1

opM
−1

opM1

Figure 14: maintenance() operation opM1
analysis after a write() operation, t′ = t+ 4δ. White rectangles

are maintenance() operation run by correct servers. In particular s10 runs such operation during the first δ
period after t′, while s11 runs it during the second δ period.

33

- opR is concurrent with some write() operation. Let us consider the time interval [tB(opR), tB(opR)+δ].
In such time there can be at most two write() operations. Thus for Lemma 24 the last written value before

tB(opR) is still present in #replyCUM correct servers and all of them reply (cf. Lemma 20) thus at least

the last written value is returned. To conclude, for Lemma 1, during the read() operation there are at most

(k + 1)f Byzantine servers and 2k cured servers 7, being #replyCUM = (3k + 1)f + 1 > (3k + 1)f then

Byzantine servers may not force the reader to read another or older value and even if an older values has

#replyCUM occurrences the one with the highest sequence number is returned, concluding the proof. 2

Theorem 7 Let n be the number of servers emulating the register and let f be the number of Byzantine

agents in the (ITB,CUM) round-free Mobile Byzantine Failure model. Let δ be the upper bound on the

communication latencies in the synchronous system. If n ≥ (5k + 2)f + 1, then Preg implements a SWMR

Regular Register in the (ITB,CUM) round-free Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 5 and Theorem 6. 2

Lemma 25 Protocol Preg is tight in the (ITB,CUM) model with respect to γ ≤ 4δ.

Proof The proof follows from Theorem 7 and Theorem 1, i.e., upper bound and lower bound match. In

particular Lower bounds are computed using the values in Table 3 to compute nCUMLB
as defined in Table

2 for γ ≤ 4δ (cf. Corollary 7). 2

6 Concluding remarks

We proposed lower bounds and matching upper bounds for the emulation of a regular register in the round

free synchronous communication model under unsynchronized moves of Byzantine agents. The computed

lower bounds are significantly higher than those computed for synchronized Byzantine agents model. Inves-

tigating other classical problems in the same fault model is a challenging path for future research.

References

[1] Noga Alon, Hagit Attiya, Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil.

Practically stabilizing SWMR atomic memory in message-passing systems. J. Comput. Syst. Sci.,

81(4):692–701, 2015.

[2] N. Banu, S. Souissi, T. Izumi, and K. Wada. An improved byzantine agreement algorithm for syn-

chronous systems with mobile faults. International Journal of Computer Applications, 43(22):1–7,

April 2012.

[3] Rida A. Bazzi. Synchronous byzantine quorum systems. Distributed Computing, 13(1):45–52, January

2000.

7Servers where affected in the previous 4δ time period, thus they are still running the two maintenance() operations, that last

at most 4δ.

34

[4] François Bonnet, Xavier Défago, Thanh Dang Nguyen, and Maria Potop-Butucaru. Tight bound on

mobile byzantine agreement. In Distributed Computing - 28th International Symposium, DISC 2014,

Austin, TX, USA, October 12-15, 2014. Proceedings, pages 76–90, 2014.

[5] Silvia Bonomi, Antonella del Pozzo, and Maria Potop-Butucaru. Tight self-stabilizing mobile

byzantine-tolerant atomic register. In Proceedings of the 17th International Conference on Distributed

Computing and Networking, ICDCN ’16, pages 6:1–6:10, New York, NY, USA, 2016. ACM.

[6] Silvia Bonomi, Shlomi Dolev, Maria Potop-Butucaru, and Michel Raynal. Stabilizing server-based

storage in byzantine asynchronous message-passing systems. In Proceedings of the ACM Symposium

on Principles of Distributed Computing (PODC 2015), Donostia San-Sebastian, Spain, July 2015.

ACM Press.

[7] Silvia Bonomi, Maria Potop-Butucaru, and Sébastien Tixeuil. Byzantine tolerant storage. In Proceed-

ings of the International Conference on Parallel and Distributed Processing Systems (IEEE IPDPS

2015), Hyderabad, India, May 2015. IEEE Press.

[8] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien Tixeuil. Optimal mobile

byzantine fault tolerant distributed storage. In Proceedings of the ACM International Conference on

Principles of Distributed Computing (ACM PODC 2016), Chicago, USA, July 2016. ACM Press.

[9] H. Buhrman, J. A. Garay, and J.-H. Hoepman. Optimal resiliency against mobile faults. In Proceedings

of the 25th International Symposium on Fault-Tolerant Computing (FTCS’95), pages 83–88, 1995.

[10] J. A. Garay. Reaching (and maintaining) agreement in the presence of mobile faults. In Proceedings

of the 8th International Workshop on Distributed Algorithms, volume 857, pages 253–264, 1994.

[11] Leslie Lamport. On interprocess communication. part i: Basic formalism. Distributed Computing,

1(2):77–85, 1986.

[12] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–

213, October 1998.

[13] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In Proceedings

of the 16th International Conference on Distributed Computing, DISC ’02, pages 311–325, London,

UK, UK, 2002. Springer-Verlag.

[14] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Small byzantine quorum systems. In

Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, pages

374–383. IEEE, 2002.

[15] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In Proceedings

of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC’91), pages 51–59,

1991.

[16] R. Reischuk. A new solution for the byzantine generals problem. Information and Control, 64(1-

3):23–42, January-March 1985.

[17] T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita. Mobile byzantine agreement on arbitrary

network. In Proceedings of the 17th International Conference on Principles of Distributed Systems

(OPODIS’13), pages 236–250, December 2013.

35

[18] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.

ACM Computing Surveys, 22(4):299–319, December 1990.

[19] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo.

Highly available intrusion-tolerant services with proactive-reactive recovery. IEEE Transactions on

Parallel & Distributed Systems, (4):452–465, 2009.

36

