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Abstract. The interface behaviour between steel and a duate aggregate material
is characterised up to normal pressures of the matmof 100MPa. This article presents a
new test enabling the behaviour of the interfadeetstudied whilst retaining the sample’s
integrity. The experimental configuration havingeheetained consists in sliding a cylindrical
sample of the material inside a steel tube, sdid acting both as a sliding surface and
containment ring. The sample is pushed on oneagiddaces a spring on the other. The axial
compression generates the interface pressure Bgdtoeffect. This originality of this
assembly lies in the simultaneous application ehrab pressure to the interface and of its
relative motion. The assembly is placed in a qgtaic testing machine. The analysis is
made by means of an analytical modelling of the T#ss method enables the identification
of the initial contact conditions (tightening oktBample), the friction coefficient and its
dependence on the pressure. Numerical simulatibtige dest using a finite element method
enables the analytical approach to be validatededisas the set of parameters identified

depending on the normal pressure regimes.



1 Introduction

Certain dynamic tests enable the reactivity of casped explosives (PBX) subjected
to shocks to be tested. These are namely: thewleoght test [8], the Steven-test [11], [24]
and the Taylor shock test. The place and time eptiming of the chemical reaction
particularly depend on the conditions of contadhwine wall [5], [13], [20]. A numerical
simulation of one variant of the Taylor test foransimple illustration of the influence of the
friction conditions upon ignition. This test cortsig projecting a sample of explosive
(cylindrical sample with a diameter and a height®mm) against a steel wall assumed to be
pressure-resistant. The thermomechanical charsiitsrof PBX are given in [21]. Figure 1
shows the influence of the friction coefficidrdan the maximal temperature reached by the
sample during the impact. A very significant diface of around 200K is obtained between

the two cases.

During an impact at these velocities, the normakact pressures and the sliding
velocities between steel and explosive are resgygtof around 100MPa and 10 to 100m/s.
Our aim is to recreate these velocity and pressoméditions, but in a configuration enabling
the friction to be measured. Certain test benchesafly fulfil this aim: tribometer with
explosively-generated friction [17], target-projectissembly with oblique impact [22],
torsional Hopkinson bars [14], [15], [22], [23],ymometrical ring with parallelepipedic
sample launched by a gas cannon or by a hydraalahime [19] and possibly pin on rotating

disk [5].

For the sake of safety, the experiments are deedlaging an inert material, denoted

I1. This material is namely a fine compressed povehixture of barium meal BaSO



29.3%wt -, of melanime -65.2%wt — and a binder%s.i — made of an epoxy resin). Its
mechanical behaviour closely resembles that ofx@gfosive. This behaviour has previously
been studied by carrying out triaxial compressestd [1]. Under compressive loading with
high hydrostatic pressure (which is different frarpurely hydrostatic loading), the material
is able to flow when its plasticity threshold ha&seb attained (here the maximal constraints
obtained using triaxial tests are assimilated péaaticity threshold in order to simplify the
behaviour model). The plasticity threshold thusiideed is of the Drucker-Prager type [1].
That isg, P andonises respectively the stress tensor, the hydrostadsgure and the Von

Mises equivalent stress:

@) p=lelg) ando,.=3e-r1):(o-P)

wheretr is the trace operator ahdhe identity tensor. The criterion is thus giventie

following formula:
(2) 0,.—-aP<C

where the stresS depends on the strain rate. It equals 25MPa astmin rates and exceeds
80MPa at those strain rates attained during compaesests on Hopkinson bars (typically
100sY). The coefficientr is constant and equal to 0.64. In the event cdxial compressive
loading, the criterion corresponds to a maximakptable stress of around 30MPa for low

strain rates and around 100MPa for strain rateshezhon Hopkinson bars [1].

One way of subjecting the interface to high presswithout fracturing the sample is

to confine it. For this, a cylindrical sample ofitlencased in a quasi-rigid tube. This



technique is employed to perform compression tggtsquasi-uniaxial strain states [1], [9],
[10]. Friction between the tube interface and thmsle is here perceived as a drawback and
has been studied in [3], [4], [27]. Since the medta behaviour of the tube is known, the
strain measurements made by means of gauges gltieel ¢xternal face enable the stresses
on the interface to be measured. The idea retasntedslide the cylindrical sample into the
tube, which acts as both a sliding surface anchéiriag vessel (given the Poisson effect of
the sample). This principle has already been testda hollow sample, through whose
length a tightening screw [6] passes. Despite thvamtages of this principle, this first device
does not allow the sample to be subjected to highspires. The device being studied in this
article allows us to overcome this drawback aneg&xh pressures of 100MPa at the
interface. Our study here is limited to the caddew relative velocities between the bearing

faces.

The detailed description of the experimental canfidion and the limits linked to the
internal sliding are presented in section 2. A nhed@bling the identification of the friction
parameters based on the measurements is desaribedtion 3. The experimental results on
the test examples using an inert material are pnesented and analysed in section 4. Finally,

section 5 focuses on validating the analysis method

2 Theexperimental layout

2.1 The experimental device

The device proposed has been designed to reaclplaghure levels. Before the test,

the cylindrical sample is confined in a steel tghé Figure 2). It is pushed from top to



bottom by a mechanical machine. The movement difas® is countered by a spring
assembly (of the Belleville type). The stiffnesdlod spring allows the value of the counter-
pressure to be controlled. The originality of thesembly lies in that the normal pressure (by
Poisson effect on the sample) and the slidingraposed simultaneously. This allows the full
pressure range to be covered, with the pressudeigltg increasing along with the
displacement. The inner wall of the steel tube mreasned and the sample was turned on a

sliding lathe. Both have a weak surface roughness.

Figure 3 is a photograph of the device. For pcattieasons, the confinement tube and
the tube enclosing the spring may be screwed tegetlne parts belonging to such fastening
system are neither shown nor modelled in the sinioms by the finite element method

mentioned in section 5.

The values of forcelS,, andF, are measured during the tests (c.f. Figur&g)s the
force exerted by the machine on the sample. livisrgdirectly by the machine’s force sensor.
F, is the force exerted by the aluminium rod on tmgle. It is determined by the gauges

glued to the rod.

Gauges are also glued to the external face afdhnement tube so as to measure the

axial profile of the circumferential strain (c.figkre 2 and Figure 3).

2.2 Sliding without fracture

A prior study of the competition between interslidliing [26] and interfacial sliding is

required to ensure the feasibility of this testlded, further to a fracture, internal sliding of



the sample may well be obtained in addition todliding at the interface. Internal sliding

may even be obtained with some extrusion of mateetveen the tube and the upper piston.

A sliding state (i) described by Coulomb’s lawveeén the 11 sample and the tube and

a quasi-uniaxial strain state (ii) are considefldte sample is assumed to remain in the elastic

domain. On the interface, the stress tensor ieefdllowing form:
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p being the interface pressure (positive compressiesses)y the Poisson coefficient
of the material anélithe friction coefficient at the interface. The esgsions of the hydrostatic

pressurd® and the Von Mises streshi«s are deduced as follows:

The equation (2) must be satisfied if the samgpleoit to be fractured. The limit

friction coefficient may thus be defined as:




If f<fiim, the condition (2) is respected whatever the vafye Forf>fji,, the condition

(2) is respected < piim With pim the limit pressure is defined by:

C

plim= 2
\/(1—21/) v3f2 gtV
v v

pim depends o anda, but a minor variation o may have a great influence.
Experimentally, the Poisson coefficient of thedlsomewhere around 0.4. Figure 5 shows
how this limit pressure varies as a functiorvandf. It is essential for the Poisson coefficient
value v to be known with suitable accuracy. It also shtved with a low Poisson coefficient

value (0.38), pressures approaching 100MPa caobedor.

If >0.45 is measured during the tests, it is almosacethat 100MPa will not be

reached without fracturing the material. Naturaltyall cases, the samples must be checked a

posteriori for any fractures.

3 Moddling of thetest

3.1 The mechanical problem

The interface behaviour cannot be deduced bytdmmeasurements. Indeed, a prior
analysis of the test shows that the stress stdle atterface is heterogeneous. A model must
thus be established enabling this data to be aadjoin the basis of measurementgpaind
F: (c.f. Figure 6). For this, it is firstly necessdoy the mechanical state of the sample to be

determined.



Given that there is axial symmetry, the null comgts of the stress tensg(r,z) are
those indicated in relation (3). The corresponditigins are also null. The displacement is
axisymmetrical, the radial (oriented b)) and longitudinal (oriented hy) components

depend om andz

The sample is forced into the tube by using te&rtg machine. Because of the
difference in diametensg;, the sample is subjected to pre-tightening linteethe radial

tube

displacement. It (r=R,2) represents the radial displacement withstood byube at=R,

then we obtain:

@) u(r=Rz)=u""(r=R2z)-u,

That isp(2) and 7(z) the normal and tangential stresses at the ine(@c=R):

p(2)= o (r=R,2) and 1(2)= g:(r=R,z). Conventionally, these are positive in compression

Assuming that the friction at the interface isotordance with Coulomb’s law: the
ratio of 7by p is equal to a coefficieritwhose value is supposed to be little dependempt on
However, the pressure range covered during theriexpets is far-reaching and possible
dependence of the friction coefficidrdt pressur@ must be envisaged [2]. The retained
hypothesis is that a small variationfafs a function op may be approached by an affine

function:

(8)  1(z)= f(p(2))x p(z) with f(p)= f,{1- Bp)



Forces, andF, are expressed in terms of boundary conditionsH@iand atz=L):

9 F =2nfro,(r,z=0)dr

(10) F,=2xfro,(r,z=L)dr

Given the tube’s thickness and the gap betweengltities of the materials in
contact, the confinement tube is very rigid comgaréh the sample. In this case, no
coupling between the behaviours of the two sokdsoinsidered and the presence of the tube

may be modelled by a boundary condition of the isgabdisplacement type. According to

(7):

(11) u*™(r=Rz)=0=u( =R 2z)=-u,

In the event of there being no excess thicknesisarmassembly and when the friction

coefficient is not dependent upon the pressurepadimensional approximate solution may

be established.

(12) u,=0=u(r=Rz)=0

Assuming the sample is in an elastic state, thiibgum equations, Hooke’s law and
the axial symmetry hypothesis are combined to predbie Navier equations:
(13) 2(1—v)(r2u

r + r.l"ll“l' - ur)+ r2l"IZ,I‘Z + rz(l_ 2V)ur,zz = 0

r,r



(24) 2(1— V)rum +U , +ru,, + (1— ZV)(UU +ru,, ) =0

The friction law imposes atR:

(15) 2f |.r (1_ I/)LII"I' + IA'II' + r IA'IZ‘ZJ + r(l_ ZV)(UI“Z + uZ‘l' ) = O

Since the sample is confined, the radial displas#mand its variations are very low

with respect to the other terms and a first orgigar@ximation consists in leaving out certain

terms to eventually obtain the following relations:

(16) 2(1_V)u|"|'|' + uz,rz = O
@an 2(1— V)I’uuz + (1— ZV)(UM +ru,, ) =0

(18)  vfu,, +(1-2v)u, =0 atr=R

A solution is sought after in the following form:

In the event of being low, the above hypothesis is verified (@dpendix), and the

following solution may be found:



u = Fg_(s))z ex R(Zlvizv)j[LR [ 3,(o)do- |, Jo(yp)dp}
Uz

" :¢(O)exp( 2

whereJ is the zero order Bessel function of the firstkandyis defined by:

-%/ 2
@) y= R \([-v)i-2v

The radial profile of the axial displacemes(r) is, in fact, imposed by the relation
(19). The real boundary conditionszat) and atz=L may therefore not be respected exactly.
The form of this solution nevertheless enableswtedimensional effects to be taken into

account.

By combining the relations (20) with Hooke’s landawith the boundary conditions

(9)-(10), we obtain:

This equation demonstrates that it is possibevauate from the measurements of
Fm andF, when the geometry of the problem and the Poiseefficient of the sample are

known. The form of the stresses at the interfacg afso be obtained (c.f. appendix):



(1-v)= R(1-v)
23) (2)= Fl o [{ 2f (z- L)]
(1-v) R(1-v)

This confirms the heterogeneity of the interfatesses mentioned above.

3.2 An approximate solution adapted to the test

The idea is now to simplify the model to obtaisadution that takes into account the
effect of the initial excess of thickness of thenpée and the dependency of the friction on the

normal pressure.

The approach used is similar to that of Jansséh [tlis based on two hypotheses: (i)
the tube is assumed to be perfectly rigid andtg)axial, radial and circumferential stresses
and strains do not depend 01T his enables the problem to be approached bya on

dimensional incremental analysis, which is easigyerform.

The equilibrium equation (13) is no longer necgssad only the equilibrium
equation (14) needs to be taken into account. Wessé ,2)= o0(z) and i (r,2)=p(2). The

equilibrium equation is thus:

a[rarz(r,z)]+ da(z)_
(24) or ' dz =0

By integrating (24) from=0 tor=R, we obtain:



(25) r(z)=§d2—£2) ando,(r,z)= —LRT(Z)

The components, andegg are positive in compression and assumed to beamtent

of r. Their values are:

By applying Hooke’s law, we then obtain:
27)  S=-v)p(d)-vold

whereE is the Young’s modulus of the sample. It is eqod@GPa.
The relations (9)-(10) become:
(28) F =ma(z=0)
(29) F, =mRo(z=1)
Because of the pre-tightening, a non-null fdfgas required to make the assembly

slide, even if, is null. This force is written aSo. It is expressed as a function of the other

parameters in the following form:



|
el fod 2 ettt

Ao dt i)

(1-v)R?

By combining the equilibrium equation, the lawdragtion, Hooke’s law and the

boundary conditions, we obtain the following affiedation betwee®r andF;:

(32) QF = QFO +QF‘F, x Fr

By adding the boundary conditions, we finally abtg2). This shows that the radial
independence hypothesis with respect to the a&dial and circumferential stresses and
strains has no incidence on the simultaneous evakibfF,, andF, and thus no incidence on

the processing method.

The evolutions oF,, andF, obtained during the tests have enabled three unksig,

[ andu; to be identified. Only, andg are really of interest since these are the pamenset



which control the behaviour of the interface. Hoeg\it is important fou,; to be known

thereafter in order to be able to accurately siteulae test.

Lastly, the normal and tangential stresses aintieeface are determined using the

following formulae:

X{Zf i)
2fv(z- L T 1-v)r?
ﬁ{ ’{ Rl l/ } TREU, +F
f{,,iEJ)i’i; —ﬂ}ex{zkffi;;’J

2f|/z |_ -v)r |
+
Rl v TREU, +VF,

(33)

Similarly, when the boundary conditions are introeld into the expression of the

interface stresses, equality (23) is obtained.

4 Experimental results

4.1 Performed tests

Two types of tests were performed, during one oty the strains along the tube
were measured by the eight circumferential gaugésHigure 2 and Figure 3). For practical
reasons, this test was performed at low pressine other test was performed up to a high
pressure of 100MPa. Hereatfter, the first test beltermed "lower pressure test" and the
second "higher pressure test". The sample is mprediied on the spring by the testing

machine (c.f. Figure 2) as the measurements aemtdkus, the normal pressure (by Poisson



effect on the sample) and the sliding are impogadlsaneously thanks to the spring stiffness

(c.f. section 2.1). Both tests were carried ouhwlite same tube and the same sample.

The measurements allow the values of the fofgesndF, to be accessed during
loading. The raw results for both tests are preskmt Figure 7. 11 properties do not vary a lot
from a sample to another and friction tests arectioee reproducible. These data are then

typical of several measurements.

The idea is to analytically link (using relatiof®0)-(31)-(32)) the friction parameters
and other unknowns to magnitudes identifiable ftbmevolution of the two forces. This,

firstly, enables the coherence of the analyticatlehdo be verified.

An order off relative uncertaintyAf—]c can be calculated froff, relative uncertainty

AF, and fromF;, relative un(:ertaintyAFi by introducingu;=0 and=0 in relations (30)-

m

(31)-(32), which leads to:

(34)

According to Figure 7, th(le:FL ratio is around 0.4 for both tesk, is measured by the

m

testing machine sensors (accuracy approx. INFamldeduced from strain gauges (c.f.



section 2.1). As the machine sensors are very ata:ﬁlfpm can be neglected in (34%i is

therefore of the order o%:i i.e. around 1%.

4.2 Analysis of the lower pressure test

Given thatFp=2.81kN is obtained by the linear extrapolationie blue curve in

Figure 7, the evolution dr is drawn as a function & (c.f. Figure 8).
TheQr ratio seems constant and independefi; oft can thus be assimilated to its

mean valueQr=0.41. Eliminating the dependency of this ratid-f@omes down to equating

£=0in (32), which becomes:

(35) f,=- R(1"'”)|n( )

(30) can thus be written as:

- FQ
B0 v = rei-q)

There are still two parameters remaining to batified: u,; andf,. Since the other
parameters are known, identification is made ugiegneasured values Qf andFno. We

deduce from (35) and (36) tha{=0.0124mm and=0.167.



4.3 Analysis of the higher pressure test

For this test, the first measuring point corregisotoF, and gived,0=900N. The

experimental evolution dPr may thus be drawn as a functionFef(c.f. Figure 9).

The relations (30)-(31)-(32) enable the identiima of the parameteffs, £ anduy;
based on the experimental values of the slgpe and the interce®ro of the linear
regression line and on the experimental valué.gf Since the system is difficult to be
solved, an approximation is added: the initial &fgo being relatively low with respect to
the values attained by the fordggsandF,, u;; is neglected with respect to the other terms in

(32). The following equations are thus obtained:

(37) f,=- R(1"'”)|n( )

Q-v)rQ.,,

pe V(]'_QFOj

(38)

A linear regression leads @ro=0.339 andQ, . =0.00223kN". Since the other

parameters are knowfa=0.203 angs=0.00159MP# can be deduced.

In relation (30), the second order termsi,aaire neglected and by taking relation (37)

into account, we obtain:

- Q
(39) u, " REL-0.)



(39) givesu=0.00294mm.

The system of relations (33) and the numericalfations (c.f. section 5.1) enable the
contact pressures to be estimated at the intenfduereas these are not able to be measured. It

is thus possible to account for the pressure racgesred during this test (c.f. Figure 10).

The friction coefficients identified during theawests are not quite equal. At a
pressure of 30MPa, the first test gives a coefiitced 0.17 and the second one a coefficient of
0.19. The interface conditions change over timéigpmg of the sample, smoothing of any
asperities of the steel, etc) since these testgeafermed successively with the same tube and
the same sample, the assembly being simply putib&zkosition after each test. The lower
pressure test being performed after the highespredest, the reduction in friction between
the two tests can be explained by the changingfade conditions. Moreover, the sliding
rates imposed during the lower pressure test aaenmdignitude of a mm/h whereas they are of

a magnitude of a mm/min for the high pressure st change may also have an effect.

The value of the friction coefficient reduces whka contact pressure increases, as

suggested by certain authors [2]. For the exantpd&s here, this value goes from 0.2 at very

low contact pressure to 0.16 at contact pressutd@¥Pa.

5 Simulations and discussion

The tests were numerically simulated to validatednalysis and the friction

parameters thus identified.



Modelling was performed using the finite elememtinod. The software used was
ABAQUS CAE / Standard (implicit). The performed @alations were two-dimensional and
axisymmetric. Quadrangular elements with quadiaterpolation were used. All the normal
contacts were defined by "hard contact" "directtaott (no interpenetration), separation
being allowed (no bonding). The tangential conbettveen the confinement tube and the
sample obeys a Coulomb's law (the coefficient bam@ffine function of the pressure)
imposed using the method of Lagrange multiplietse ®ther tangential contacts are without

friction.

The mechanical properties selected for the stegttlze aluminium were respectively a
Young's modulus of 210GPa and a Poisson coefficie0t33, and a Young's modulus of
74GPa and a Poisson coefficient of 0.3. The satmghaviour is assumed to be perfectly
elastic with a 2GPa Young’s modulus (c.f. sectid?) &nd a 0.4 Poisson coefficient (c.f.

section 2.2). This assumption will be checked rttisa 5.4.

The finite elements are squares of 1mm in lenbitlere are therefore 10 elements in

the radius of the sample.

5.1 Validity of the analysis method

The test was simulated with the parameters deteaniuring the analysis. Numerical
simulation enables the evolutionskgf andF, (and thus of)¢) to be obtained as well as the
interface stress profiles (which is to §iy) and 7(z)). Thereatfter, the results were compared

with those obtained experimentally.



For the lower pressure test, loading was simulaigtlFy, rising up toFm " >=17kN
(which is equal to the maxim&l, experimentally reached). The parameters identffieh
the model allow the finite element evolution@f as a function oF, to be very close to the
experimental one (c.f. Figure 8). The friction pa&der identification technique is thus
validated. Figure 11 shows that our approach cab@aised to predict boundary effects, but

this has no incidence on the identification of fiietion parameters.

For the higher pressure test, loading was simailaith Fy, rising up toF,""*=75kN
(which is equal to the maxim&l, experimentally reached). The conclusions regarttieg
numerical simulation of the higher pressure testexactly the same as previously (c.f. Figure

9 and Figure 11).

Figure 12 displays (for the higher pressure tibst) the radial pressure field is
homogenous in the radial direction everywhere engample but near the top and bottom

boundaries.

Despite its imperfections, the model enables ittnellsaneous evolutions of the
magnitude®)r andF, to be accurately obtained, and this for both t€3tsandF,o are both
calculated witHy=0.167,4=0 andu,;=0.0124mm using relations (30)-(31)-(32), using the
simulation of the lower pressure test and usingdtitional simulation considering a rigid
tube. The results (c.f. Table 1) show that thehsldgviations between the model and the
simulations are actually due to the flexibilitytbe tube which is not taken into account in the
model. Indeed, the relative deviations betweemtbdel and the simulation are higher than

those between the model and the simulation consglarrigid tube.



The numerical simulations enable the validityled ainalysis, and thus the validity of

the friction parameters thereby defined, to be etsu

5.2 Consistency of superabundant measurements

During a test, the circumferential strain profileng the tubegsz) was measured at
several steps during the loading, that is to s@gwa¢ral values of the forég,. A discrete
experimental profile was obtained and compared thighnumerically obtained profile so as
to verify their consistency. Figure 13 shows thsifian and width of each of the gauges as

well as their measurements.

With the exception of the values obtained=t, a satisfactory correspondence is to

be noted between the experimental and numerical psofiles (c.f. Figure 13).

The higher pressure test was performed at a highding rate. For practical reasons,

only the strain of the gauge gluedza0.5L was measured (c.f. Figure 14).
Despite some imperfections, no significant dewiaiwere observed between the
simulated strains and the measured ones, therebidprg an additional guarantee with

regard to the consistency of the method.

5.3 Influence of the friction at the top and bottom bdaries




The interface conditions at the top and bottormioawmies (located a=0 and atz=L)
may have an influence on the behaviour of the sapmplparticular during the tests on the
Hopkinson bars [12], [18], [25]. It is thus neceyda ensure that these effects remain

negligible with the selected configuration (slensample with radial confinement).

For this, the numerical results obtained for twtreane cases were compared. The
results presented in sections 5.1 and 5.2 werénglokdy modelling the contacts at the top
and bottom boundaries without friction (the frictiooefficient being assumed to be null). The
simulations were performed again but with changaehdary conditions: instead of imposing
a null friction stress at the boundaries, contadtis null relative displacement were imposed

(friction coefficient being assumed to be infinite)

We observed that the friction coefficient valuehet top and bottom boundaries has

no influence (relative deviation of less than 2%)tlee evolution of)r as a function oF;,

and thus no influence on the parameters identdigthg the analysis.

5.4 Verification of the elasticity hypothesis

The elasticity hypothesis of the sample had tedydied to ensure the consistency of
the analysis. The criterigiorises- aP) was calculated in the sample during the numerical
simulations and this after the loading when thedsrwere maximal. Thereafter, the

fulfilment of the condition Grisess aP)<C (Wherea=0.64 andC=25MPa) is verified.



The numerical results obtained for the two extreames at the boundaries (null
friction coefficient, infinite friction coefficierjtwere compared. These calculations were

performed only for the higher pressure test forohhhe stresses are the highest.

The value of the criterion was at most 13MPa; teimains therefore within the elastic

domain (c.f. Figure 16).

The simulations were performed once again butiposing an infinite friction
coefficient at the top and bottom boundaries. Logdvas also simulated with, rising up to

Fr A= 75KN.

The value of the criterion was at most 5.1MP& thimains therefore within the

elastic domain (c.f. Figure 17).

The values attained by the criteri@m.iss-aP) depend on the contact conditions at the
boundaries. In the two envisaged extreme casespserved that the elastic linGtwas
never attained. Our analysis, which uses an elastidion, is therefore valid. Significantly,

the criterion(dniss-a@P) is only positive in very localized areas.
The sample is forced into the tube by using tegrtg machine. Numerical
simulations of this insertion display that (2) rensasatisfied for the lower and the higher

pressure test. As a result, no plastic deformatiakes place during insertion.

6 Conclusion



This article presents a new experimental tesfriction between steel and a brittle
material. A technique from the compacting of granwhaterials is used so as to maintain the

integrity of the brittle material under high intack pressures.

The analysis, performed analytically and numelycanables the friction parameters
to be obtained and shows that pressures of arcd@dIRa are reached. The simulations also
show that the sample does not fracture under t tio which it is subjected. The developed
assembly thus enables pressures with higher malgsitilnan in [5] and [13] to be attained
without any deterioration of the material. The siglrates imposed at the interface are of an
order of magnitude of a mm/min (higher pressurt tasd a mm/h (lower pressure test). The
measured friction coefficient is of around 0.2. Tewice enables the variation of this

coefficient to be quantified when the contact puessncreases.

The device enables something to be made to stiderthigh contact pressure, and the

method has been validated. Test campaigns maydextaken on inert or reactive materials.

The dispersion aspect of the parameters identifiag be understood.

One alternative to the analysis technique woulthbaused of an inverse method. The

feasibility of such a method is shown in [7].

The next stage of the study is to mount the erpamntal device on a system of

Hopkinson bars so as to reach sliding rates ofrderaf magnitude of 10m/s.

Appendix



By using the form ofi, defined in relation (19), relation (18) producles solution:

f'(R)1-2v)

(A1) ¢(2)=¢(0)ex _sz

and then, relation (17) becomes:

(A2) f'(r)”f"(r):_(1-V)(1—ZV)[f'(R)T

rf(r) wf?

If we set:

__|a-v)a-2v) 1'(R)
A3 = TR

The form off(r) is deduced from (A2) and this gives:

(A%) uz(r,z)=¢(o)ex{yJ%xz}o(m+uo

whereJ, is the zero order Bessel function of the firstckin

The relation (16) enables(r,z) to be determined in the form defined by (19). Tgki

(12) into account, we then obtain:

(A5)  u(d)= (0) \/1—2v ex;{yJ 1-2v XZ]

2(1—v) 2(1—V) 2(1—v)



(A6) ofr)= LRIOR 3,(w)do - [ 3,(w)de

The equation (A3) enables the value/td be determined. To solve this equation, a
hypothesis is first posed, then verified a postertbe terms af)R)" wheren>3 are assumed
to be negligible and the Bessel functiongfaaind atyr can be assimilated to their limited

development of the second order. In this case veirab

2

(A7) ff((;‘)) - ‘f%{) =-L () +ofjRF)=- LT

wherel, is the first order Bessel function of the firshdi

The equation (A3) is thus easily solved, and wiob

To ensure the consistency of the approach, theracy of the approximation (A7)
must be evaluated. For this, we must calculatedlative erroerr committed as a function

of the value of the friction coefficieft

)
(A9) er=>
)




By substituting the expression given by (A8), vixtamn:

(A10) ar:j;(zm\/mj_w\/m
3]1[2” (1)32)]

According to Figure 18, the approximation (A7) eens valid for the usual values of

the friction coefficient.

The formulae (23) are determined on the basisoufidd's law, neglecting andu,

and applying the approximation (A7).
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relations (30)-(31)-(32

simulation (rigid tube

simulation

Qr (relative deviation)

0.410

0.408 (-0.49%)

0.421 (2.7%)

Fro (relative deviation

2.80kN

2.83kN (1.1%)

2.68kN (-4.39

Table 1: Qrp andFnp calculated withy=0.167,5=0 andu,;=0.0124mm and relative

deviations between analytical relations and sinmuhast



TEMPERATURE

+6.728e+02
+6411le+02
+6.095e+02
+5.778e+02
+5.462e+02
+5.145e+02
+4.82%e+02
+4.512e+02
+4.196e+02
+3.879%+02
+3.563e+02
+3.246e+02
+2.930e+02

Figure 1: Numerical simulation of the heating of an explesprojected at 100m/s against a

rigid wall. Temperature in Kelvin 30us after impadien the friction coefficiertis 0.0 and

0.5.
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Figure 2: Diagram of the device placed in a testing machlime sample is 20mm in diameter
and 40mm in height. The external diameter of the tis of 34mm. The radial clearance

between the steel plugs and the steel confinernbetis roughly equal to Ténm.

steel plug
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\ wires of the gauges
2\ glued on the rod
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Figure 3: Photograph of the device placed in a testing mmach

Force applied by the machine, I,

Friction force, F F

i
|
| \
!

T

I
Force transmitted in the rod, ;.

Figure 4: Definition of the forces on the assembly.
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Figure 6: Definition of the mechanical problem.
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Figure 7: Comparison of the evolutions Bf as a function oF, during the two tests.
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Figure 8: Experimental evolution d@r as a function oF, for the lower pressure test (blue).

Result of the finite element simulation (red) diein section 5.
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Result of the numerical simulation detailed in getb (red).
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Figure 11: Comparison of the analytical and numerical pesfibf pressurp(z) for both tests

when the force is maximaF{=Fmn"™).
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Figure 12: Value of the radial pressupan MPa for the higher pressure test.



160 ——

140 —

+
120 \

£ (1)

M”»Mm‘—“ﬁ-” — T

10 20 30 40
Z {mim)
numetical (Frre1 TEM) m  experimental Fre1TkR)
R a0 g =T = W g T ® experimental F ek
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Fm during the lower pressure test.
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Figure 14: Comparison of the experimental and numerical @iahs ofggf(z=0.5L) as a

function ofF, for the lower pressure test.
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Figure 15: Comparison of the experimental and numerical @uamhs of&g(z=0.5L) as a

function of Fp, for the higher pressure test.
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Figure 16: Value of the criteriorf{onisss-aP) in MPa after the loading for the higher pressure

test and in the hypothesis of a null friction caréint at the top and bottom boundaries.
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Figure 17: Value of criterion(dgmises-aP) in MPa after the loading for the higher pressest t

and in the hypothesis of an infinite friction coeiiént at the top and bottom boundaries.
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Figure 18: Evolution of the relative errarr as a function of the friction coefficieht



