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Modeling Stochastic Dynamics of Agents with Multi-leveled Opinions and
Binary Actions

Vineeth S Varma and Irinel-Constantin Morărescu

Abstract— A stochastic multi-agent opinion dynamics model
is proposed and analyzed, in which, the multi-leveled opinion
of each agent is influenced by a random neighbor’s binary
action, determined by its opinion level. This model is shown to
asymptotically produce consensus with a finite number of con-
nected agents. On the other hand, when the number of agents is
large, the time to achieve consensus can become exponentially
high, potentially resulting in other equilibrium points based on
the structure of the connectivity graph. Numerical simulations
validate the proposed analysis, and demonstrate these other
equilibrium points, that exist when a large number of agents
are present.

Index Terms— Opinion dynamics, Markov chains, agent
based models

I. INTRODUCTION

Opinion dynamics in social networks is a challenging
problem that has received a lot of interest in the last decades.
A major issue is related to the development of realistic
models that can capture the behavior of real large scale
social network [1]. There are mainly two classes of models:
those considering that opinions can evolve in a discrete
set and those considering a continuous set of values that
can be taken by each agent. The models in the first class
come from statistical physics, and the most employed are
the Ising [2], voter [3] and Sznajd [4] models. When the
opinions are not constrained to a discrete set, we can find
in the literature two popular models: the Deffuant [5] and
the Hegselmann-Krause [6] models. The last ones are often
identified in the literature as bounded confidence models
and the main difference between them is that the former
suppose that each agent updates its opinion by using only
the opinion of a random neighbor while the later assume that
the update is done by using the opinion of all the neighbors.
It is worth noting here that Hegselmann-Krause model was
adapted in [7] to a model of opinion dynamics with decaying
confidence.

In order to more accurately describe the opinion dynamics
and to model more realistic behaviors, a mix of continuous
opinion with discrete actions (CODA) was proposed in [8].
This model reflects the fact that even if we often face
binary choices or actions, the opinion behind evolves in
a continuous space of values. A multi-agent system that
approach CODA model was proposed and analyzed in [9].
It was shown that this deterministic model leads to a variety
of asymptotic behaviors including consensus.
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Starting from the modeling in [9], we propose in this paper
a stochastic model with discrete opinion and binary actions.
In other words we assume that opinions can be approximated
by a given number of levels between within (0, 1) while the
actions can be only 0 or 1 (see Section II for more details).
As in [9] we consider that extremal opinions (close to 0 or 1)
present more inertia. This corresponds to the fact that people
that strongly believe in one action 0 or 1 are more difficult
to influence. In our opinion, considering stochastic behavior,
instead of deterministic, results in a more realistic model.

Many studies in the literature focus on the emergence of
consensus in social networks [10], [11], [5], [12]. Our goal
here is to analyze the asymptotic behavior of the opinions
in the network under the proposed stochastic dynamics.
Nevertheless, one main result of the paper states that as long
as the network is connected, the opinions will asymptotically
reach consensus. Moreover, the consensus value is close to
one of the extreme opinions 0 or 1.

In this paper we basically reformulate the model from
[9] as an interactive Markov chain. Similar approaches for
the Deffuant and Hegselmann-Krause models have been
considered in literature (see for instance [13], [14]). One
advantage of this approach is that, it also allows analysis
of the behavior of infinite populations partitioned into a
certain number of opinion classes. Even in the Markov chains
approach, the novelty of our paper comes from the fact that
instead of assuming that agents access the opinion of the
neighbors, we only suppose that the quantized and binary
version of the opinion (called action) is accessible.

The contribution of this work can be briefly summarized
as follows. Firstly we propose and analyze the asymptotic
behavior of a novel stochastic model for opinion dynamics
based on binary actions. Secondly we analyze some particu-
lar cases of networks when the number of agents is assumed
to be infinite.

The rest of the paper is organized as follows. Section II
introduces the main notation and concepts necessary for the
model description. The analysis of the asymptotic behavior
of opinions described by this stochastic model is provided
in Section III. The results are valid for generic connected
networks with finite number of agents. Next, in Section
IV, we analyze particular networks with infinite number of
agents. The results of our numerical studies and simulations
are illustrated in Section V. The paper ends with some
concluding remarks and perspectives.



II. MODEL

Denote the opinion of agent i as xi(t) ∈ Θ for all i ∈ K,
where K = {1, 2, ..K} and Θ = {θ1, θ2, ..., θN} is the
discrete set of possible opinions, such that θn ∈ (0, 1)\{0.5}
and θn < θn+1 for all n ∈ {1, 2, .., N}, where N is positive
and even and Θ is constructed such that θN/2 < 0.5 and
θN/2+1 > 0.5. Let us introduce some graph notions allowing
us to define the interaction structure in the social network
under consideration.

Definition 1 (Directed graph): A directed graph G is a
couple (K, E) with K being a finite set denoting the vertices
and E ⊆ K × K the set of directed edges. To each edge
(i, j) ∈ E we assign a value ρi,j ≥ 0 representing the
weight/trust that agent j gives to agent i. We say that agent
j is a neighbor of agent i if ρi,j > 0.
Agent i is said to be connected with agent j if G contains
a directed path from i to j, i.e. if there exists at least one
sequence (i = i1, i2, . . . , ip+1 = j) such that ρk,k+1 > 0,
∀k ∈ {1, 2, . . . , p}.

Definition 2 (Strongly connected): The graph G is
strongly connected if any two distinct agents i, j ∈ K are
connected.
In the sequel we suppose the following holds true.

Assumption 1: The graph (K, E) modeling the interaction
in the network is strongly connected.

The action taken by agent xi(t) is given by

qi(t) = bxi(t)e,

where bxi(t)e is the nearest integer function. This means that
if an agent has an opinion more than 0.5, it will take the
action 1 and 0 otherwise. This kind of opinion quantization
is suitable for many practical applications, for example, an
agent may support the left or right political party, with
various opinion levels (opinions close to 0 or 1 represents
stronger opinion), however in the election, the agent can vote
with exactly two choices (left or right).

A. Population shares

Let the total population share of users with opinion θn be
denoted by pn(t) such that

∑
n pn(t) = 1, calculated as

pn(t) =

∑K
i=1 δxi(t),θn

K
(1)

where δ is the Kronecker delta function. Define p−(t) as the
population share corresponding to the action 0, and p+(t) as
the population share corresponding to the action 1, calculated
as

p−(t) =

∑K
i=1 δqi(t),0

K
=

N/2∑
n=1

pn(t) (2)

and

p+(t) =

∑K
i=1 δqi(t),1

K
=

N∑
n=N/2+1

pn(t) (3)

B. Opinion dynamics

In this work, we look at the evolution of opinions of the
agents based on their mutual influence. We also account for
the inertia of opinion, i.e., when the opinion of the agent is
closer to 0.5, he is more likely to shift as he is less decisive,
whereas someone with a strong opinion (close to 1 or 0) is
less likely to shift his opinion as he is more convinced by
his opinion. The opinion of agent j may shift towards the
action of agent i based on the inertia function f(xj) where
f : [0, 1] → [0, 1], for example f(x) = 4x(1 − x). That is,
an agent with an opinion close to 0 or 1 is more likely to
disregard the opinion of the neighbors and keep its opinion
unchanged, while an agent with an opinion close to 0.5 is
highly likely to change its opinion, this behavior is modeled
by the function f . 1

At each time instant t, agent j is influenced by the action
of one random neighboring agent. We introduce

πi,j =
ρi,j∑K
k=1 ρk,j

,∀i, j ∈ K.

such that, the probability of agent j being influenced by
the action of agent i is given by f(xj(t))πi,j . We denote
by X−j(t) = (x1(t), . . . , xj−1(t), xj+1(t), . . . , xK(t)) the
vector of all opinions except that of j. Additionally, by
bX−j(t)e we denote the vector of actions of all agents
except that of j. Notice that bX−j(t)e takes a value ā−j =
(a1, . . . , aj−1, aj+1, . . . , aK) ∈ {0, 1}K−1 .

This results in a stochastic opinion dynamics for agent j
given by:

Pr(xj(t+ 1) = θm|xj(t) = θn, bX−j(t)e = ā−j) =

0 if |m− n| > 1
f(θn)

∑
k∈K\{j} πk,j(1− ak) if m = n− 1

f(θn)
∑
k∈K\{j} πk,jak if m = n+ 1

1− f(θn) if m = n
& 1 < m,n < N

1− f(θn)
[∑

k∈K\{j} πk,jak

]
if m = n = 1

1− f(θn)
[∑

k∈K\{j} πk,j(1− ak)
]

if m = n = N

(4)

for all m,n ∈ {1, 2, . . . , N} and for all j ∈ K. The above
equation can be explained by following the assumptions we
have made on our opinion dynamics. The first line indicates
that opinion levels can not jump by more than one level in a
single time step. The second and third lines indicate the jump
probabilities (to left and right), when the initial opinion of the
agent is a non-extreme opinion. When the initial opinions are
at the extreme right (θN ) or left (θ1), then these probabilities
will be modified as the opinions can’t jump any further to
one side, therefore the modified jump probabilities are given
in the final three lines.

1Note that 1
f(xj)

would be the actual ’inertia’ as a higher f implies a
higher willingness to change its opinion.



III. ASYMPTOTIC BEHAVIOR OF OPINIONS IN FINITE
NETWORKS

We denote the combined states of the overall network
by αm where αm ∈ ΘK for all m ∈ {1, 2, . . . , NK}.
We order αm such that α1 = (θ1, θ1, ..., θ1) and α2 =
(θN , θN , ..., θN ). Now define a sequence of random variables
X(t) = (x1(t), x2(t), .., xK(t)), where the realizations of
X(t) belong to ΘK , such that:

Pr(X(t+ 1) = αm|X(t) = αn, X(t− 1) = αn′ , . . . ) =
ΠK
k=1 Pr(xk(t+ 1) = θmk

|X(t) = αn)
(5)

which by definition, is a Markov process and represents
the opinion dynamics of all the K agents. Here, the term
Pr(xk(t+1) = θmk

|X(t) = αn) can be calculated based on
(4) as

Pr(xk(t+ 1) = θmk
|X(t) = αn) =

0 if |mk − nk| > 1
f(θnk

)Q−k (αn) if mk = nk − 1

f(θnk
)Q+

k (αn) if mk = nk + 1

1− f(θnk
) if m = n ∈ (1, N)

1− f(θnk
)Q+

k (αn) if mk = nk = 1

1− f(θnk
)Q−k (αn) if mk = nk = N

(6)

where Q−k (αn) =
∑K
j=1 πj,k(1 − bθnj

e) and Q+
k (αn) =∑K

j=1 πj,kbθnje.
Let ξ(t) be the probability distribution of the system over the
states (α1, α2, ..) at time t, i.e., ξm(t) = Pr(X(t) = αm).
The Markov process in matrix form can be written as

ξ(t+ 1) = Mξ(t) (7)

where the elements of the transition matrix M are

Mm,n = Pr(X(t+ 1) = αm|X(t) = αn)

and are obtained from (5) and (6).

Definition 3 (Absorbing state): A state α of a Markov
process is called an absorbing state, if and only if

Pr(X(t+ 1) = α|X(t) = α) = 1.

Proposition 1: Under Assumption 1, the Markov process
X(t) defined in (5) has exactly two absorbing states α1 =
(θ1, θ1, . . . , θ1) and α2 = (θN , θN , . . . , θN ) if the graph G
is strongly connected.

Proof in Appendix A.
Based on the results in [15], we could also compute

the probability of reaching absorbing states α1 or α2 by
expanding M and rewriting (7) as

ξ(t+ 1) =

[
I 0

R1 R2

]
ξ(t) (8)

where I is the 2 × 2 identity matrix, and R1 and R2 are
the remaining elements of M (M takes this form as α1 and
α2 are absorbing states).

Corollary 1: Under Assumption 1, the Markov process
X(t) defined in (5) will asymptotically almost surely reach
one of the two defined absorbing states irrespective of the
starting state. The probability to reach a specific absorbing
state can be calculated as B = (I ′ − R1)−1R2, where I ′

is the (NK − 2) × (NK − 2) identity matrix, Bm,n,m ∈
{1, 2}, n ∈ {1, 2, .., NK − 2} is the probability to reach the
absorbing state αm from a non-absorbing state αn.
This result directly follows from [15].

IV. BEHAVIOR OF OPINIONS IN LARGE-SCALE
NETWORKS

Many real social networks contain large number of
individuals/agents. In this case we can approximate the
finite horizon behavior of the agents by the asymptotic
behavior of a network with an infinite number of individuals.
Indeed the convergence in such networks may be very slow
and the transient behavior can be studied by analyzing the
infinite population networks (see [13], [14])). Therefore,
the goal of this section is to provide an approximation
of the transient behavior of large-scale networks. Unlike
the previous section, we can analytically study only
some particular network structures, such as all-to-all
communications and clustered communications. Beside the
two absorbing state emphasized before, in large networks,
we can also reach other population equilibrium points as
defined below, even if the individual opinion of agents vary
in time.

Definition 4 (Equilibrium in population): When pn(t′) =
pn(t) for all t′ > t and all n ∈ {1, 2, . . . , N}, then the
system is at equilibrium in population.

We start by analyzing an all-to-all connected network.
Although many real networks are not actually all-to-all
connected, real networks often have communities or clusters
which are locally all-to-all connected, and these clusters can
be studied with the machinery we develop in the following
section.

A. All-to-all identically connected network

Consider an all-to-all connected graph, i.e. ρi,j = 1 for
all i, j. As every agent has identical interactions with the
rest, we can do a large number or mean field approximation
(using the central limit theorem) to study the dynamics of
the population shares. For finite K, the number of agents
that migrate from opinion θm at time t to opinion θn at
time t + 1 is a stochastic variable and can be expressed as
the sum of Kpm(t) independent and identically distributed2

random variables (recall that pm(t) is the population share
of agents with opinion θm). However, as K → ∞, the
total number of agents migrating converges to a deterministic
value (the expectation) if we apply the central limit theorem.
Thus, we transform the agent dynamics given in (6), into a

2Each agent has the same distribution due to the symmetric structure of
the graph.



deterministic population dynamics given by

p1(t+ 1) = p1(t)− f(θ1)p1(t)
(∑N

n=N/2+1 pn(t)
)

+

p2(t)f(θ2)
(∑N/2

n=1 pn(t)
)

pm(t+ 1) = (1− f(θm))pm(t)+

f(θm−1)pm−1(t)
(∑N

n=N/2+1 pn(t)
)

+

f(θm+1)pm+1(t)
(∑N/2

n=1 pn(t)
)

pN (t+ 1) = pN (t)− f(θN )pN (t)
(∑N/2

n=1 pn(t)
)

+

pN−1(t)f(θN−1)
(∑N

n=N/2+1 pn(t)
)

(9)
where the second equation holds for all m ∈ {2, 3, .., N−1}.
With this, we have transformed a stochastic dynamic system
with an infinitely large number of agents into a deterministic
quadratic dynamical system. Define the population share
vector p(t) = (p1(t), ..., pN (t))T (where T is the transpose)
and define the matrix P(t) as

1− f(θ1)p+(t) f(θ2)p−(t) 0 .. 0
f(θ1)p+(t) 1− f(θ2) .. .. 0
0 f(θ2)p+(t) .. .. 0
.....
.. .. .. .. f(θN )p−(t)
0 ... .. .. 1− f(θN )p−(t)


Then, we can rewrite (9) in matrix form as

p(t+ 1) = P(t)p(t) (10)

Since P(t) is time dependent only through p(t), at steady
state, when p(t + 1) = p(t), we have P(t + 1) = P(t)
and so p(t) will be an eigen-vector of P(t) at the steady state.

Theorem 1: When ρi,j = 1 ∀i, j ∈ K and K → ∞, if
at some t, p+(t) = 1 (or 0), i.e., all the agents have the
same action 1 or 0, then p+(t′) = 1 (or 0) for all t′ > t and
asymptotically pN (t′) = 1 (or p1(t′) = 1) as t′ →∞ which
corresponds to the two stable equilibria of the system. When
N > 2, the system also allows for one unstable equilibrium
point at p+(t) = 0.5 with the distribution following

pnf(θn) = pmf(θm),∀m,n ∈ {1, 2, . . . , N}.

See Appendix B.
Special case of N = 2: We observe that when N = 2,

i.e., when there are exactly two opinion levels, equation (9)
can be simplified into

p1(t+ 1) = p1(t)− f(θ1)p1(t)p2(t)+
p2(t)f(θ2)p1(t)

p2(t+ 1) = p2(t)− f(θ2)p2(t)p1(t)+
p1(t)f(θ1)p2(t)

(11)

As f(θ) is symmetric by definition, we get p1(t+1) = p(t)
and p2(t+ 1) = p(t). Therefore, when there are a very large
number of agents and exactly two opinion levels, then any
population distribution becomes an equilibrium.

B. Networks partitioned into clusters

In this section, we introduce the concept of clus-
ter/community that basically illustrates that in a social net-
works we may have groups of agents that strongly interact
with each other and interact less with agents outside the
group.

Definition 5 (Homogeneous cluster): A set of agents C
defines a homogeneous cluster when the following properties
are satisfied:

1) C ⊂ K and ρi,j = 1 for all i, j ∈ C.
2) All agents within the cluster are homogeneously in-

fluenced by agents outside the cluster, i.e. ρi,j =
ρi,k, ∀i ∈ K \ C, j, k ∈ C.

3) Denote by λ ∈ [0, 1], the net influence ratio on an
agent inside C by other agents in C, where λ is given
by:

λ =

∑
i∈C ρi,j∑
k∈K ρk,j

∀j ∈ C (12)

which is identical for any j due to (2). Then, C defines a
cluster if and only if λ > 0.5.
With this definition, if |C| → ∞, denote by φn the pop-
ulation fraction of agents inside C sharing the opinion θn.
We define by φ→1(t) ∈ [0, 1] the effective influence on any
agent in C to shift their opinions to 1, i.e.,

φ→1(t) =
∑

k∈K\{j}

πk,jqk(t) j ∈ C

which is identical for any j due to (2) in Definition 5.
Similarly φ→0 ∈ [0, 1] is the effective influence on agents in
C to shift their opinion closer to 0, which is given by

φ→0(t) =
∑

k∈K\{j}

πk,j(1− qk(t)) j ∈ C

which results in φ→1(t) + φ→0(t) = 1. In the sequel, we
keep the time dependence implicit and we will simply use
φ→0 or φ→1 instead of φ→0(t) or φ→1(t). This notation
can be exploited to simplify the transition probabilities for
opinions of agents in C to be

Pr(xk(t+ 1) = θmk
|xk(t) = θnk

, bX−j(t)e = ā−j) =

0 if |mk − nk| > 1
f(θnk

)φ→0 if mk = nk − 1

f(θnk
)φ→1 if mk = nk + 1

1− f(θnk
) if m = n& 1 < m < N

1− f(θnk
)φ→1 if mk = nk = 1

1− f(θnk
)φ→0 if mk = nk = N

(13)

for all k ∈ C, with φ→1, φ→0 evaluated with qk(t) = ak.
Define by φ(t) = (φ1(t), φ2(t), . . . , φN (t))T , and

Φ(φ→1) :=

 1− f(θ1)φ→1 f(θ2)φ→0 0 . . .
f(θ1)φ→1 1− f(θ2) f(θ3)φ→0 . . .
...


(14)



where φ→0 = 1 − φ→1 and Φ is similar in structure to P.
The dynamics of population with common opinions in the
cluster can be expressed as

φ(t+ 1) = Φ(φ→1)φ(t)

in matrix form or as quadratic dynamics:

φ1(t+ 1) = φ1(t)− f(θ1)φ1(t)φ→1 + φ2(t)f(θ2)φ→0

φm(t+ 1) = (1− f(θm))φm(t)+
f(θm−1)φm−1(t)φ→1 + f(θm+1)φm+1(t)φ→0

φN (t+ 1) = φN (t)− f(θN )φN (t)φ→0+
φN−1(t)f(θN−1)φ→1

(15)
This allows us to study the behavior of agents in a well-

connected cluster. In particular, when λ → 1, we can show
that

Proposition 2 (Preservation with λ→ 1): If C is a clus-
ter as per Definition 5, with an interconnection coefficient
λ → 1 and |C| → ∞, the population shares of agents in
C denoted by φ allows for three distinct equilibrium points
irrespective of the actions of agents in K\C. Two of these are
stable equilibrium points, and are given by φ = (1, 0, . . . , 0)
and φ = (0, . . . , 0, 1).

Proof:
For any configuration of actions for agents in K \ C, we

can write
φ→1 = (1− λ)z+(t) + λφ+(t)

and
φ→0 = (1− λ)z−(t) + λφ−(t)

where φ+(t) =
∑N
n=N/2+1 φn(t), φ−(t) =

∑N/2
n=1 φn(t)

and z+(t), z−(t) ∈ [0, 1] denote the perturbation caused by
external agents outside the cluster. This follows from the
property of λ in Definition 5.

Now, the result of the proposition directly follows by
applying the proof of theorem 1 since, if λ→ 1,

lim
λ→1

φ→1 = φ+(t)

Therefore, the opinion dynamics of agents in a ”strongly
connected cluster” (λ→ 1) are identical to that of agents in
an all-to-all connected network.

This result implies that regardless of external opinion,
agents inside C will have their own equilibria, and if all
agents in C start with action 1, they will all continue to
have action 1 regardless of the opinions of external agents,
i.e., the agents inside the cluster preserve their opinion.

Practically, λ→ 1 implies that the number of connections
from K \ C to C is finite, while |C| and K are arbitararily
large and all agents inside C are connected to each other.
However, if |K|, |C| are finite, but large, and λ ≈ 1, then
φ ≈ (1, 0, . . . , 0) is still an equilibrium. This is stable when
|C| → ∞. For |C| finite, the only absorbing state of the
finite Markov chain is with φN = 1 (all agents in K have
identical opinion, not just agents in C). The equilibrium point
with φ1 ≈ 1 is referred to as a metastable state, and this
kind of phenomenon is often seen in epidemic dynamics
[16]. The metastable persists for an arbitrarily long duration

with an arbitrarily large number of agents. In the finite (but
large) number of agents case, the study of metastable states
is still highly relevant, as this can approximate the transient
behavior well, and we study this behavior in our simulations.

(a) Symetric starting conditions with p1(1) = 0.5 and p4(1) = 0.5.
The simulation with finite agents breaks away from the unstable
equilibrium for the infinite K case and achieves one of the two stable
equilibria.

(b) Symetric starting conditions with p1(1) = 0.5 and p4(1) = 0.5.
Here, the simulations achieves the other stable equilibrium.

(c) Asymetric starting conditions with p1(1) = 0.6 and p4(1) = 0.4,
here the simulation and the analytic prediction are quite close and
both lead the same stable equilibrium.

Fig. 1: Population share with the action 0, i.e., p−(t) plotted
against t for a graph with all to all identical connections with
ρi,j = 1∀i, j ∈ K.

V. NUMERICAL RESULTS

For our simulations we take Θ = {0.2, 0.4, 0.6, 0.8} and
f(θ) = 4θ(1− θ).

In Fig. 1, we consider an all-to-all connected network, with
the connections being of same degree of influence ρi,j =
1∀i, j ∈ K. Therefore, Fig. 1 represents the case as treated in
Section IV-A. We set the initial configuration of the network
to be of two opinion type sets, one set with xi(1) = 0.2



(a) Population of agents with action 1 in a cluster with 50 agents.

(b) Population of agents with action 1 in a cluster with 1000 agents.

Fig. 2: In both figures, there are 1000 agents outside the
cluster with xi(t) = 0.2 for all i ∈ K \C at all t, i.e., these
agents always pull the agents in the cluster to action 0. With
a large λ, even a small cluster can preserve its opinion for
a large period of time, but with a large cluster, preservation
of opinion can hold even for smaller, but sufficiently high λ
regardless of external opinion.

and the second set with opinion xi(1) = 0.8. The initial
population of each type can be inferred based on the figure.
Fig. 1a and 1b shows that even for large K, the system
reaches consensus at either q = 0 or q = 1 for all agents.
On the other hand, if we use the large K approximation as in
Section IV, we predict the system to converge to an unstable
equilibrium. As the simulations are always with finite K
(in this case 2000), the approximation of large K causes
perturbations (from the randomness) that result in the system
collapsing to global consensus. (Note that when p+ = 0.5,
there is no global consensus.) Note that when we start with
asymmetric initial conditions as in Fig. 1c, the simulation
results for K = 2000 and the analytic results for K → ∞
match.

For the next simulation (Fig. 2), we look at the case where
the agents are divided into a clusters C and many external
agents with a weaker influence on the cluster, specified by
λ. Here, we do simulations with |C[= 50 and |C| = 1000
with all agents in the cluster starting with opinion 0.2, and
all other agents (i.e. agents in K\C) having opinion 0.8 for
all time. Fig. 2a shows that for small |C|, the system quickly
converges to an absorbing state when the cluster coefficient is
not large enough. However, Fig. 2b shows that when a large
number of agents are taken, we see that the system stays
in the special meta-stable equilibrium as predicted using the

large number approximation in Section IV-B and does not
end up converging to an absorbing state (in a reasonably
large enough window of time) even for λ = 0.815. From
Fig. 2 it can be seen that the random perturbations caused
due to finite K does not destabilize the system and the system
stays at this equilibrium even at t = 500.

Remark: Note that in Fig. 2, global consensus is not
achieved when λ is sufficiently large as agents outside the
cluster have a contradicting opinion. Even within the cluster,
for λ = 0.815, about 90% of the agents in C have action 1
but the remaining 10% are with action 0.

Finally, we study the opinion dynamics when the graph
has a very specific structure, i.e., a lattice graph. Agents are
arranged into a 20×20 lattice, such that if i is at coordinates
(m,n) in the lattice, where m,n ∈ {1, 2, . . . , 20}, its
neighbors are the agents with the coordinates (m + 1, n)
(m−1, n) (m,n+1) or (m,n+1). The connection ρi,j = 1
if i and j are neighbors in the lattice, and ρi,j = 0 otherwise.
For such a graph, we run simulations to observe the transient
behavior, and this is shown in Fig. 3. Fig. 3a shows the
initial opinion levels at each agent coordinate in the lattice,
while Fig. 3b shows the opinions after a short amount of
time has passed. Fig. 3c and 3d show the population shares
for each opinion evolving in time (short term and long term
respectively). We observe that although global consensus is
eventually achieved, the structure of the graph results in a
large time to achieve consensus.

VI. CONCLUSION

We have proposed and studied a stochastic multi-agent
opinion dynamics model. This model features multi-leveled
opinions of each agent that are influenced by the binary
action of a random neighboring agent. We show that for
a finite number of connected agents, global consensus is
asymptotically achieved at either all agents with the lowest
opinion θ1 or at all agents with the highest opinion θN . On
the other hand, when the number of agents is infinitely large,
the time to achieve consensus may become exponentially
high as illustrated in both our analytic results and numerical
simulations with a large number of agents. Of particular
interest is the case case of multiple clusters where we identify
stable equilibrium points that are not at global consensus as
seen in Fig 2b. As most social networks have very large
number of agents, these results are very relevant. Although
we observe that some of the equilibrium points are stable
and unstable via numerical studies, proving such properties
analytically is a relevant extension to this work.

APPENDIX

A. Proof of Proposition 1

Proof: We can verify that α1 and α2 are absorbing
states by evaluating Pr(xk(t + 1) = θmk

|X(t) = αn)
through equation (6). We know Q−k (α1) = 1, Q+

k (α1) = 0,
Q−k (α2) = 0 and Q−k (α2) = 1 for any k and for any graph
G. This results in

Pr(xk(t+ 1) = θ1|X(t) = α1) = 1, ∀k ∈ K.



(a) Starting opinions of agents. (b) Transient opinions

(c) Population share evolution for each opinion (short term).

(d) Population share evolution for each opinion (long term).

Fig. 3: Simulations with a lattice structured graph.

Similarly

Pr(xk(t+ 1) = θN |X(t) = α2) = 1, ∀k ∈ K.

Consequently, α1, α2 are absorbing states. Now take any
state β 6= α1, α2, then;
Case 1: β is such that there exists at least one k for which
xk(t) 6= θ1, θN . This agent by (6) has a non zero probability
to shift its opinion (towards either θ1 or θN ) as the graph is
connected resulting in either

0 < Q+
k (β) < 1 or 0 < Q−k (β) < 1.

As agent k also has a non-zero probability to stay, β is
therefore a non-absorbing state.
Case 2: Some of the agents have opinion θ1 while the other
agents have the opinion θN (any agent with a non-extreme
opinion will result in Case 1). Now, since G is a strongly
connected graph, there exists at least one agent with opinion
θ1 influenced by another agent with opinion θN resulting in
a non-absorbing state.

Therefore there are exactly two absorbing states for the
Markov process defined in (5) which are α1 and α2.

B. Proof of Theorem 1

Proof: If p+(t) = 1, it can be verified that

pN (t+ 1) = pN (t) + pN−1(t)f(θN−1),

which is an increasing function. Similarly, as p+(t) = 1
one obtains that that pn(t) = 0, ∀n < N/2. Moreover
pn(t), ∀n < N/2 are decreasing functions as

pn(t+ 1) = (1− f(θn))pn(t).

We can also see that pN/2+1(t′) becomes a decreasing
function when p+(t) = 1 as

pN/2+1(t+ 1) = (1− f(θm))pN/2+1(t) + f(θm−1)pN/2(t)
(16)

and pN/2(t) = 0. Therefore, pN/2+1(t′) → 0 and from this
we can inductively show that pN/2+m(t′) become decreasing
and pN/2+m(t′)→ 0 for all m < N/2.

Finally, as pN (t′) is the only function that indefinitely
preserves its increasing property, we conclude that the pop-
ulation distribution will become pN (t′) = 1 as t → ∞,
and the system will asymptotically converge to it. Similarly,
we can show that when p+(t) = 0, the system maintains
p+(t′) = 0, ∀t′ > t and asymptotically converges to
p1(t′) = 1. These results are in fact the same absorbing
states identified in Section III.

Next, assume that p+(t) = 0.5 and pnf(θn) =
pmf(θm), ∀m,n ∈ {1, 2, . . . , N}. Substituting these values
into (9) we obtain that pn(t + 1) = pn(t), ∀n, resulting in
another equilibrium. This is an unstable equilibrium since
the system does not converge to it while the state is in its
neighborhood. This can be proven by a linear analysis of the
dynamics around this equilibrium and studying the Jacobian
matrix.

First, we evaluate the Jacobian of the discrete dynamical
system (9). Denote by gi(p) the dynamics of the population
with opinion θi, i.e. pi(t + 1) = gi(p). If we denote the
Jacobian elements by Ji,j , where Ji,j = ∂gi

∂pj
, then for all

1 < i ≤ N
2 , and for all N

2 < j < N , we have:

J11 = 1 + f(θ2)p2 − f(θ1)
(∑N

n=N/2+1 pn(t)
)

Ji,i = 1− f(θi) + f(θi+1)pi+1

Jj,j = 1− f(θj) + f(θj)pj−1

JNN = 1 + f(θN−1)pN−1 − f(θN )
(∑N/2

n=1 pn(t)
)

We also have ,

∀ 2 < i ≤ N/2, J1i = −f(θ1)p1

∀N/2 < i ≤ N − 2, J1i = f(θ2)p2

and
∀ 2 < i ≤ N/2, JNi = f(θN−1)pN−1

∀N/2 < i ≤ N − 2, JNi = −f(θN )pN .

For all i, j ∈ {2, 3, . . . , N−1} such that |i−j| > 1 we have

Jij = f(θi+1)pi+1



when j ≤ N/2 and

Jij = f(θi−1)pi−1

when j > N/2. Finally, we have

J12 = f(θ2)

p2 +

N/2∑
n=1

pn(t)


JN−1,N = f(θN−1)

pN−1 +

N∑
n=N/2+1

pn(t)


and for all i, j ∈ {2, 3, . . . , N − 1} such that |i− j| = 1 we
have

Ji,i+1 = f(θk)pk + f(θi+1)

N/2∑
n=1

pn(t)


where k = i + 1 if i + 1 ≤ N/2 and k = i − 1 otherwise;
and

Ji,i−1 = f(θk)pk + f(θi−1)

 N∑
n=N/2+1

pn(t)


where k = i+ 1 if i− 1 ≤ N/2 and k = i− 1 otherwise.

We can study the stability of an equilibrium point by
looking at the eigenvalues of Jacobian matrix evaluated at the
equilibrium points. The Jacobian matrix at the equilibrium
p1 = 1, pn>1 = 0 writes

1 f(θ2) 0 . . .
0 1− f(θ2) f(θ3) . . .
0 0 1− f(θ3) . . .
...


which is a triangular matrix. This matrix therefore has the
eigenvalues 1, 1−f(θn) for all n ∈ {1, 2, . . . , N} (assuming
f(θn) = f(θN−n)). This can be easily verified by evaluating
the determinant of the J(1, 0, . . . ) − λI. Therefore this
equilibrium is stable. By symmetry we can also show the
same for the equilibrium with pN = 1.

Now, we study the Jacobian at the other equilibrium at
pnf(θn) = pmf(θm) for all m,n. Let pnf(θn) = K. Then,
the Jacobian at this point can be evaluated, and its first
column is given as

(1 +K − f(θ1)

2
,K +

f(θ1)

2
,K, . . . ,K,−K)T

The columns j for 2 ≤ j ≤ N/2 are of the form

(K, . . . , 1+K+
f(θj)

2
,K−f(θj),K+

f(θj)

2
, . . . ,K,−K)T

where 1 + K +
f(θj)

2 is the diagonal term of the Jacobian.
The j-th column where N/2 < j ≤ N − 1 is of the form

(−K,K, . . . , 1+K+
f(θj)

2
,K−f(θj),K+

f(θj)

2
, . . . ,K)T

Finally, the N -th column is given by

(−K,K, . . . ,K,K +
f(θ1)

2
, 1 +K − f(θ1)

2
)T

The above matrix is such that each column has exactly one
element which is −K either at the first row (after column
index is more than N/2) or at the last row. We can show that
one of the eigenvalues of the matrix above is 1 +K(N −2).
Using the property that adding a scalar times a row to another
row does not change the determinant, we replace the first
row with the sum of all rows and this results in the first row
becoming all zeroes. (sum of each column is 0). Therefore,
we see that this point is unstable when N > 2.
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