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The bacterial genome is organized by a variety of associated proteins inside a structure called
the nucleoid. These proteins can form complexes on DNA that play a central role in various bio-
logical processes, including chromosome segregation. A prominent example is the large ParB-DNA
complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-
Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to
which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent
theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each
other to condense into a coherent 3D complex on the DNA. However, the structural organization of
this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution
of ParB proteins on DNA is lacking. Here, we propose the Looping and Clustering (LC) model,
which employs a statistical physics approach to describe protein-DNA complexes. The LC model
accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is
organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA
complex is determined by a competition between attractive protein interactions and the configura-
tional and loop entropy of this protein-DNA cluster. Indeed, we show that the protein interaction
strength determines the “tightness” of the loopy protein-DNA complex. Thus, our model provides
a theoretical framework to quantitatively compute the binding profiles of ParB-like proteins around
a cognate (parS) binding site.

I. INTRODUCTION

Understanding the biophysical principles that govern
chromosome structure in both eukaryotic and prokary-
otic cells remains an outstanding challenge [1–7]. Many
bacteria have a single chromosome with a length three
orders of magnitude longer than the cell itself, posing a
daunting organizational problem. Owing to recent tech-
nological advances in live-cell imaging and chromosome
conformation capture based approaches, it is becoming
increasingly clear that the DNA is not coiled like a sim-
ple amorphous polymer inside the cell [8–10], but rather
exhibits a high degree of organization over a broad range
of lengthscales [11]. It remains unclear, however, how this
spatial and dynamic organization of the chromosome is
established and maintained inside living bacteria [12]. A
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host of Nucleoid-Associated Proteins (NAPs) have been
shown to play a central role in the spatial organization
of the bacterial chromosome [12–14]. Such NAPs bind
to the DNA in large numbers, and by interacting with
each other and with DNA in both sequence-dependent
and sequence-independent manners they can collectively
structure the DNA polymer and control chromosome or-
ganization.

In many bacterial species, the broadly conserved
ParABS system is responsible for chromosome and plas-
mid segregation [12, 15]. A central component of this
system is the partitioning module, which is formed by
a large protein-DNA complex of ParB proteins that as-
sembles around centromere-like parS sites, frequently lo-
cated near the origin of replication. The ParBS com-
plexes can subsequently interact with ParA ATPases,
leading to the segregation of replicated origins [16–23].
How is this ParBS partitioning module physically orga-
nized on the DNA? ParB is known to bind specifically
to parS, triggering the formation of a large protein-DNA
cluster, which is visible as a tight focus in microscopy
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FIG. 1: Schematic illustration of two recent models pro-
posed to describe the ParB partition complex (left) accom-
panied with a typical distribution of ParB on extended DNA
(middle), and the average distribution profile (right). The
Spreading & Bridging model [29] is shown with (a) strong
coupling JS → ∞, where thermal fluctuations cannot break
the bonds between proteins such that all bridging and spread-
ing interactions are satisfied, and (b) intermediate coupling
where the energetic cost of breaking a spreading bond com-
petes with the configurational and loop entropy. With the
Looping and Clustering approach presented here, we propose
a simple analytic description for this regime. (c) The Stochas-
tic Binding model assumes a spherical region of high concen-
tration of ParB around parS [25]. This model can be seen
as taking the limit of the spreading bond strength to zero
(JS → 0), and thus the formation of loops is not hampered
by protein-protein bonds. In this limit, the binding profile
can be described as the return of the polymer to an origin of
finite size, such that the profile is given by P (s) ∝ (s+C)−dν ,
where d is the dimension, ν is the Flory exponent, and C is a
constant.

images of fluorescently labeled ParB [15, 19, 24, 25]. The
propensity of ParB to form foci around parS has been
exploited in recent studies, which used exogenous ex-
pression of fluorescently labeled ParB along with parS
insertion to label DNA loci for live-cell imaging [26, 27].
In the F-plasmid of Escherichia coli cells, each ParB fo-
cus contains roughly 300 proteins, together representing
90% of all ParB present in the cell [25]. High-precision
ChIP-Seq experiments on this system provide quantita-
tive ParB binding profiles along the DNA, which are
strongly peaked around parS with a broad decay over
a distance of up to 13 kilobasepairs (kb), consistent with
earlier observations [24, 28].

Various models have been introduced to explain the
distribution of ParB along DNA around parS sites. An
early study of the distribution of ParB proposed that
ParB proteins spread from the parS sequence by nearest-
neighbor interactions, forming a continuous filament-like
structure along the DNA [28]. This model was termed
the Spreading model. However, this is effectively a 1D

model with short range interactions. On general statis-
tical physical grounds, such a 1D model cannot be ex-
pected to account for the formation of a large coherent
protein-DNA complex, given physiological protein inter-
action strengths [29]. Furthermore, the number of ParB
proteins available in the cell is not sufficient to allow
enrichment by simple 1D polymerization of ParB along
DNA at genomic distances from parS as large as observed
experimentally [25]. To resolve the puzzle of how ParB
proteins organize around a parS site, we recently intro-
duced a novel theoretical framework to study the collec-
tive behavior of interacting proteins that can bind to a
DNA polymer [29]. This model suggested that ParB as-
sembles into a three-dimensional complex on the DNA,
as illustrated in Figure 1a,b. Single molecule experiments
provided direct evidence for the presence of 3D bridging
interactions between two ParB proteins on DNA [30, 31].
We showed that a combination of such a 3D bridging
bond and 1D spreading bonds between ParB proteins
constitutes a minimal model for the condensation of ParB
proteins on DNA into a coherent complex [29], consistent
with the observation that ParB-GFP fusion proteins form
a tight fluorescent focus on the DNA [15, 19, 24, 25].

The statistical properties of the 3D structure of ParB-
DNA complexes determines the binding profile of ParB
on DNA, which can be accurately measured in ChIP-Seq
experiments. However, it is computationally demanding
to simulate these binding profiles with the Spreading &
Bridging model. The protein binding profiles can be eas-
ily calculated analytically in the limit of strong protein-
protein interactions, where the cluster of ParB on the
DNA becomes compact with a corresponding triangu-
lar distribution of ParB along DNA. The protein binding
profiles can also be estimated in the limit of weak protein-
protein interactions with the so-called Stochastic Binding
model, where a sphere of high ParB concentration is as-
sumed to exist within which a DNA polymer freely fluc-
tuates [25] (see Figure 1c). The description of the average
protein binding profile is thus similar to the return statis-
tics of the polymer into the ParB sphere [32], suggesting
a long range (power-law) distribution of ParB proteins
along DNA. Importantly, however, neither of these two
existing approaches provide a simple way of computing
ParB binding profiles around parS sites over the full rele-
vant range of system parameters. In addition, it remains
unclear how the Spreading & Bridging model and the
Stochastic Binding model relate to each other.

Here, we propose a theoretical approach to describe
the distribution of ParB proteins around parS sites on
the DNA in terms of molecular interaction parameters
and protein expression levels. To this end, we develop
a simple model for protein-DNA clusters that explicitly
accounts for the competition between the positional en-
tropy associated with placing the loops on the cluster,
which favours a looser cluster configuration, and both
protein-protein interactions and loop closure entropy,
which tend to favour a compact cluster. This Looping
and Clustering model represents a reduced, approximate
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version of the full Spreading & Bridging model that incor-
porates the key physical ingredients needed to provide a
clearer understanding and at the same time greatly facil-
itates calculations of the distribution profile of ParB (or
other proteins that form protein-DNA clusters). Thus,
our approach can be used to estimate molecular interac-
tions between proteins from experimentally determined
protein binding profiles.

II. THE LOOPING AND CLUSTERING MODEL

To theoretically describe the protein binding profiles of
ParB on DNA, we first consider a DNA polymer of length
L that can move in space on a 3D cubic lattice and with
a finite number of proteins m. Since the number of ParB
proteins in the protein-DNA cluster has been observed
to include the vast majority of proteins in the cell [25],
we employ a canonical ensemble with a fixed number of
ParB proteins m in the ParB complex. These proteins
are able to diffuse along the DNA. Importantly, in this
model the DNA itself is also dynamic and fluctuates be-
tween different three-dimensional configurations, which
are affected by the presence of interacting DNA bound
proteins. When proteins are bound to the DNA, they
are assumed to be able to interact attractively with each
other by contact interactions in two distinct ways: (i) 1D
spreading interactions with coupling strength JS , defined
as an interaction between proteins on nearest-neighbor
sites along the polymer, and (ii) a 3D bridging interaction
with strength JB between two proteins bound to sites on
non-nearest neighbor-sites on the DNA, but which are
positioned at nearest neighbor-sites in 3D space (see Fig-
ure 1a,b). Thus, these bridging interactions couple to the
3D configuration of the DNA, while the 1D spreading in-
teractions do not. Single-molecule experiments provide
evidence for bridging bonds [30], with the bridging va-
lency of a ParB protein limited to one [33, 34]. Even
in this case where each protein can form two spreading
bonds and a single bridging bond, the system has been
shown to exhibit a condensation transition where the ma-
jority of the proteins form a single large cluster that can
be localized by a single parS site on the DNA [29].

While it is possible to perform Monte Carlo simulations
of the Spreading & Bridging model for a lattice poly-
mer, such simulations are computationally demanding.
In this paper, we aim to provide a simple analytical de-
scription for the average binding profile of proteins along
the DNA (see right panels in Figure 1). With this aim in
mind, we can simplify our description by realizing that
the configurations of ParB proteins along the DNA are
more sensitive to JS than to JB , for sufficiently large JB .
While both spreading and bridging bonds are necessary
for the condensation of all proteins into a single cluster,
loop extrusion from the cluster is controlled by JS , and
such loop extrusion strongly impacts the binding profile
of proteins on the DNA. Indeed, a loop can be extruded
from the protein-DNA cluster by breaking a spreading

bond, but without effecting the internal configuration of
the bridging bonds. Therefore, we will assume that JB is
sufficiently large to maintain a coherent 3D protein-DNA
cluster, leaving JS as the main adjustable parameter in
the model.

A contiguous 3D cluster of proteins on DNA with loops
can effectively be represented graphically by a discon-
nected 1D cluster along the DNA, where connections in
3D between the 1D subclusters are implied, and domains
of protein-free DNA within the disconnected 1D cluster
represent loops that emanate from the 3D cluster (see
Figure 1b,c). We can describe this system by a reduced
model for the effective 1D cluster in which we account for
the entropy of the loops that originate from the protein-
DNA cluster. In this model, the spreading bond energy
set by the parameter JS combined with the cost in loop
closure entropy, competes with the positional entropy for
placing loops on the cluster and will therefore play a cru-
cial role in determining the binding profile of ParB on
DNA around a parS site.

To capture these effects, we propose the reduced Loop-
ing and Clustering (LC) model, which offers a simplified
description of 3D protein-DNA clusters with spreading
and bridging bonds. In this model a loop is formed when-
ever there is a gap between 1D clusters. We can make the
connection between the gaps in the 1D cluster and the
number of loops extending from the 3D cluster explicit
by writing down the partition function for this model.
The effective 1D cluster corresponding to a 3D cluster
with m proteins and n loops has a multiplicity:

Ωcluster =
(m− 1)!

(m− n− 1)!n!
, (1)

which counts the number of ways in which one can parti-
tion m proteins into n+ 1 subclusters in 1D. This multi-
plicity leads to a positional entropy of mixing, Scluster =
ln Ωcluster, for placing n loops at m − 1 possible posi-
tions (in units of kB). Note, we do not explicitly include
the number of ways in which the bridging bonds can be
formed, since loop formation is not expected to substan-
tially affect the possible configurations of bridging bonds.
However, creating n loops will require breaking n spread-
ing bonds, and the probability at equilibrium for this
to occur will include a Boltzmann factor ∼ exp (−nJS),
where the interaction energy is expressed in units of kBT .
Within our simple description, we do not consider how
the formation of a loop affects the full internal entropy
of the protein-DNA cluster, but this can be expected to
be a fixed number per loop that can be absorbed into JS.
Furthermore, the loops that are formed are assumed to
be independent, and thus contribute to the loop closure
entropy (in units of kB) as [32]:

Sloop = −dν
n∑
i=1

ln(`i) , (2)

where d is the spatial dimension, ν is the Flory exponent,
and the loop length is measured in units of the lattice
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spacing of the polymer a, which we take to be equal to the
footprint of a ParB protein, e.g. 16 bp for the exogenous
ParABS system of E. coli [25].

This entropy is obtained by considering both the loops
formed within the protein cluster and the protein-free
segment of DNA outside the cluster. Indeed, the number
of configurations associated with loop i for a Gaussian
polymer is given by z`i`−dνi [32, 35], where z is the lat-
tice coordination number. Therefore, there is also an ex-
tensive contribution to the entropy given by kB`i log(z).

However, when a loop of length `i forms, the same length
of polymer is removed from the DNA outside of the clus-
ter, which also results in a reduction of the entropy by
kB`i log(z). Thus, there is a precise cancelation between
the extensive contribution to the entropy associated with
the loop inside the cluster and the extensive contribution
due to effectively shortening the DNA outside the clus-
ter [39].

It is now straightforward to write down the partition
function of the Looping and Clustering model:

ZLC =

m−1∑
n=0

(m− 1)!

(m− n− 1)!n!
exp(−nJS)

∫ `max

`0

d`1`
−dν
1 ...

∫ `max

`0

d`n`
−dν
n

−→
`max→∞

[1 + exp(−J ′S)]
m−1

. (3)

where J ′S = JS + ln
[
`dν−1
0 (dν − 1)

]
> JS is a renor-

malized loop activation energy that includes the cost in
loop closure entropy). All lengths are measured in units
of the protein’s footprint a, `0 is the lower cutoff of loop
sizes and approximately represents the persistence length
of DNA, and the bond interactions are in units of kBT .
In the partition function, we conveniently set the upper
boundary of integration, `max, to infinity. Strictly speak-
ing, the upper boundary for `j should be L− (m + Lj),

where Lj =
∑j−1
i=1 represents the total accumulated loop

length before loop j. In practice, however, for chromo-
somes, but arguably also for plasmids, L � m and the
probability to have a large loop is very small. For in-
stance, if we consider the F-plasmid of E. coli with a
length of 60 kbp, we have L = 3750 in units of the ParB
footprint of 16 bp [25, 36]. For this system, Monte Carlo
(MC) simulations (see Appendix A) of the LC model,
with m = 100 reveal that the average cumulated loop
size is ≈ 500 for small couplings (JS = 1) down to ≈ 25
for large couplings (JS = 4), which in both cases is much
less than the DNA length. Thus, for biologically relevant
cases it is reasonable to assume that the length of the
DNA polymer is much larger than the footprint of the
whole protein complex on the DNA.

The LC model constitutes a simple statistical mechan-
ics approach to describe how proteins assemble into a
protein-DNA cluster with multiple loops. Next, we will
include a parS site on the DNA, to which ParB proteins
bind with a higher affinity than the other non-specific
binding sites on the DNA. Our central aim is to compute
the binding profile of ParB around this parS site.

III. PROFILE OF PAR B FOR FIXED NUMBER
AND SIZES OF LOOPS

With our approach, we aim to quantitatively describe
average ParB binding profiles, which are directly mea-
surable by ChIP-Seq experiments. By fitting our model
to such ChIP-Seq data, it would be possible to extract
microscopic parameters such as the number of proteins
in the ParB clusters and the protein-protein interaction
parameters such as JS . In this section, we will describe
how to compute the ParB binding profile around this
parS site given a fixed number of loops with specified
loop lengths. Then we will use the statistical mechanics
framework provided above, to perform a weighted aver-
age over all possible loop numbers and sizes to arrive at
a simple predictive theory for the ParB binding profile.

A. 1-loop binding profile

It is instructive to start our analysis of ParB binding
profiles by first calculating the probability of ParB occu-
pancy as a function of distance from the parS site for the
case of a protein-DNA cluster with only one DNA loop
(n = 1) with fixed loop length `. We will assume a fixed
number m of ParB proteins in this 1-loop protein-DNA
cluster, and that one of these proteins is bound to the
parS site at any time, as illustrated in Figure 2. Thus, to
calculate the 1-loop ParB binding probability, P1(s, `),
at a distance s from parS, we need to consider all possi-
ble configurations of proteins in the protein-DNA cluster
subject to these constraints.

First, we note that P1(s, `) = 0 for s > m + `, be-
cause the 1D cluster can maximally extend to a distance
m + `, which occurs when the 1D cluster adopts a con-
figuration that lies entirely on one side of the parS site.
For a binding site at a distance s < m + `, the ParB
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FIG. 3: Protein occupation probability, P1(s, `), for a site a
genomic distance s from the parS site for different loop lengths
` and a fixed cluster size of m = 200 proteins. Solid curves
represent analytic calculations from Eqs. (4), (8), and (??),
and dashed curves represent data obtained from exact numer-
ical enumeration for comparison to our analytical approxima-
tions. We note that for ` = 0, we recover the triangular profile
of the S&B model in the strong coupling limit JS →∞ [29].

binding probability is reduced, either by configurations
where this site is located on the DNA loop within the
1D cluster, or by states where the 1D cluster adopts a
configuration around the parS site that does not extend
to the binding site at s, placing this site outside the 1D
cluster. To capture these effects, it is helpful to express
P1(s, `) in terms of conditional probabilities:

P1(s, `) = P1(s, `|loop(s))ploop(s) + P1(s, `|loop(s))ploop(s)

= P1(s, `|loop(s))ploop(s), (4)

where “loop(s)” represents a condition with probabil-
ity ploop(s) corresponding to site s being part of a loop

extruding from the cluster, i.e. an unoccupied site on
the DNA within the protein cluster, as depicted in Fig-
ure 2. The overbar here represents the complementary
condition, and the expression above simplifies because
P1(s, `|loop(s)) = 0 by construction.

We can proceed to calculate the conditional probabil-
ity, P1(s, `|loop(s)), by decomposing this contributions
as a sum of probabilities of mutually exclusive configu-
rations, which are conditioned by the location s′ of the
right edge of the 1D ParB cluster denoted as “end(s′)”
(see Figure 2). Then, we will take a continuous limit
for the binding profile assuming m� 1, and express the
binding profile P1(s, `|loop(s)) in terms of probabilities,
pend(s′), for the condition describing the position of the
right edge of the cluster. Thus, we first write the con-
ditional probability P1(s, `|loop(s)) for s ≥ 0 (the case
s < 0 is obtained by symmetry) as:

P1(s, `|loop(s)) =

m+∑̀
s′=0

P1(s, `|loop(s), end(s′))pend(s′),

≈
∫ m+`

0

ds′Θ(s′ − s)pend(s′). (5)

Clearly, P1(s, `|loop(s), end(s′)) = 1 when s < s′ and
zero otherwise, and thus we have replaced this term by
the Heaviside step function Θ(s′ − s) and approximated
the sum by an integral in the second line above.

To calculate pend(s′), it is convenient to introduce two
subclusters, 1 and 2, with m1 and m −m1 proteins re-
spectively (0 < m1 < m), such that cluster 1 with m1

proteins is overlapping with parS, as shown in Figure 2.
Given two such subclusters, two equally likely situations
can occur: (i) the leftmost cluster overlaps with parS, i.e.
m − m1 + ` ≤ s′ < m + ` or (ii) the rightmost cluster
overlaps with parS, i.e. 0 ≤ s′ < m1. This directly al-
lows us to construct the conditional probability to find
the right edge of the whole system, such that one of the
m1 proteins in the cluster overlaps with parS:

pend(s′|m1) = 1
2m1

[Θ(s′ − (m−m1 + `))Θ(m+ `− s′)
+ Θ(m1 − s′)] , (6)

where the prefactor 1/2 comes from the equal probabili-
ties to find the system in one of the two cases (i) and (ii).
The conditions (i) and (ii) are encoded with a product of
two unit step functions for (i) and a single step function
for (ii). Each single realization can be obtained by shift-
ing the position of the site in cluster 1 overlapping with
parS and is equally likely, giving rise to an overall prefac-
tor 1/m1. From this, we can obtain the full probability
pend(s′) by integrating over m1:
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pend(s′) ≈
∫ m−1

1

dm1 pend(s′|m1)p(m1)

=
Θ(m+ `− s′)
m(m− 2)

[Θ(1− (m+ `− s′))(m− 2) + Θ(m+ `− s′ − 1)Θ(s′ − `− 1)(s′ − `− 1)

+ Θ(1− s′)(m− 2) + Θ(s′ − 1)Θ(m− 1− s′)(m− 1− s)] (7)

where we used p(m1) = 2m1/(m(m − 2)), since the
number of configurations to place cluster 1 is ∝ m1 and
m1 ∈ [1,m−1]. Using this expression for the normalized

probability distribution for the right edge of the 1D clus-
ter to be positioned at s′, we can compute the conditional
probability in Eq. (5):

P1(s, `|loop(s)) ≈ Θ(`+m− s)
(m− 2)m

[
(m− 2)2

2
Θ(`− s+ 1) + (m− 2)Θ(`+m− s− 1)

+ (m− 2)(m+ `− s)Θ(s−m− `+ 1) + (m+ `− s− 1)m− `+ s− 3)Θ(s− `− 1)

+ Θ(1− s)
(

(m− 2)2

2
Θ(m− s− 1) + (m− 2)(1− s)

)
+

(s−m+ 1)2

2
Θ(s− 1)Θ(m− s− 1)

]
(8)

To obtain the full 1-loop protein distribution (Eq. (4)),
we first need to compute the probability for a site to not
be part of loop,

ploop(s) = 1− ploop(s). (9)

If the loop density, ρ, were uniform, we would simply
have puni

loop(s) = `ρuni(m, `) = `
m+` , since the 1D cluster

has a total length of m+ ` with a single loop of length `.
This uniform condition would only apply if we randomly
choose ` sites to be part of the loop and ignore the re-
quirement that all these loop sites need to be neighbor-
ing. In a real cluster, however, we expect the loop density
ρloop(s) to be higher in the bulk of the 1D cluster than
close to the parS site or the edges, because fewer loops
can be formed near the parS site or near the boundaries
of the 1D cluster, at which a protein must be bound by
construction. In particular, we expect the loop density,
ρ(s,m, `) ∝ min(s, `,m+`−s), which measures the num-
ber of ways a site at s can be part of a loop. This results
in the normalized probability:

ploop(s) = `ρ(s,m, `) (10)

=
`min(s, `,m+ `− s)

Θ(m− `) [`2 + `(m− `)] + Θ(`−m)
(
m+`

2

)2
In the normalization of this expression we distinguish

the cases where the loop is either smaller or larger than
the number of proteins in the cluster. With Eqs. (8)
and (10), we have all the elements to calculate the 1-loop
protein binding profile P1(s, `) from Eq. (4).

We investigated the binding profiles P1(s, `) predicted
by this model for a selected set of parameters, as shown

in Figure 3. We only show s > 0 because of the sym-
metry of the binding profile. It is instructive to contrast
these profiles with the triangular profile (black curve) for
a cluster with no loops. As expected, the addition of
loops widens the profile, allowing the tail of the distribu-
tion to extend out to a distance m+ `. The widening of
the binding profile is accompanied by a faster decay of
the profile in the vicinity of parS, which crosses over to a
flatter profile at distances s > ` due to additional contri-
butions from configurations where the loop lies between
the parS site and site s.

Interestingly, for large loop size the profile can even
become non-monotonic with a slight increase near the
far edges of the domain. These features of the profile
reflect the reduced loop density near parS and near the
far edges of the cluster. Note that the integral under
this curve remains constant for varying ` to conserve the
number of particles in the cluster. To verify the validity
of the analytical approximations leading to P1(s, `), we
used exact enumeration as a benchmark. Overall, the nu-
merics (dashed lines) and the analytics (solid lines) are in
good agreement for the 1-loop case, as shown in Figure 3.
In the next section, we employ the approximate analyt-
ical expressions obtained above, to efficiently calculate
the full binding profile averaged over all configurations.
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FIG. 4: (a) Average number of loops, 〈n〉, as a function of
spreading coupling strength JS obtained from Eq. (12). The
different curves correspond to protein number m = 50 (black)
m = 100 (red), m = 200 (green), and m = 400 (blue), with
loop-size cutoff `0 = 10. We observe an exponential decrease
〈n〉 ∝ e−JS in accordance with Eq.(12). Inset: Same data
replotted with expected dependence of average loop number
on m scaled out. (b) Average number of loops 〈n〉 as a func-
tion of m for JS = 1, 2, 3, and 4. The behaviour is linear
as expected from Eq.(12). The prefactor that determines the
vertical shift between the different curves scales with e−JS , as
demonstrated in the inset of panel (b). (c) Average loop prob-
ability as a function of the genomic coordinate with m = 200
and L = 4000 for protein-DNA clusters with fluctuating loop
number and loop lengths. Different curves correspond to dif-
ferent spreading couplings JS = 1, 2, 3, and 4. The analytic
approximation using Eq.(15) for the loop density, averaged
over different loop configurations with the appropriate Boltz-
mann factor as in Eq. (14) is compared to MC simulations
(dashed curves) of the LC model (see Appendix A).

IV. PROTEIN BINDING PROFILES AND
STATISTICS OF THE LOOPING AND

CLUSTERING MODEL

Above we defined the Looping and Clustering model
and calculated the binding profile of proteins around a
parS site for a cluster with 1 loop with fixed length. Real
protein-DNA clusters, however, are expected to fluctuate
with new loops forming and disappearing continuously.
To capture such fluctuations, we will use the expressions
for the binding profile of a static cluster with fixed loop
length together with a statistical mechanics description
of the LC model to obtain average binding profiles for dy-
namic clusters, including an ensemble average over both
the number of loops and the loop lengths.

To obtain a full binding profile averaged over all real-
izations, it is useful to investigate the statistics of loops
that extend from the protein-DNA cluster and how these
statistics are determined by the underlying microscopic
parameters of the model. We start by considering the
number of loops that extend from the cluster. Using the
partition function in Eq. (3), it is possible to calculate
the basic features of the LC model. For instance, the
moments of the distribution of the number of loops are
given by:

〈nα〉 =
1

ZLC

m−1∑
n=0

nα
(m− 1)!

(m− n− 1)!n!
e−nJS

[
`1−dν0

dν − 1

]n
.

(11)
From this, we find the the average loop number is given
by:

〈n〉 = (m− 1)
1

1 + eJ
′
S

∼
m,J′

S�1
me−JS , (12)

where J ′S is the renormalized loop activation energy in-
troduced in Eq. (3). The average loop number 〈n〉 is
depicted in Figure 4a, demonstrating the exponential de-
pendence on the spreading energy JS . In Figure 4b, we
plot 〈n〉 as a function of the total number of proteins m
in the protein-DNA cluster. Indeed, we observe the ex-
pected linear dependence of the average loop number 〈n〉
on m over a broad range of parameters. These results
illustrate how the average number of loops is determined
by the competition between the effective renormalized
loop activation energy, J ′S (including the cost in loop
closure entropy), and the gain in the positional entropy
of mixing (see Appendix B).

The linear dependence on m in Eq. (12) reflects that
loops are assumed to be able to form anywhere in the
cluster in the Looping and Clustering model. However,
one would naively expect that loops can only form at
the surface of a 3D cluster, resulting in a dependence
〈n〉 ∼ m2/3 for a compact, spherical cluster. However,
Monte Carlo simulations of the full S&B model have
revealed that the protein-DNA clusters are not com-
pact [29], but rather have a surface that scales almost
linearly in m, close to the behavior of the simplified LC
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FIG. 5: Binding profiles of ParB from Eq. (14) plotted ver-
sus the genomic distance s to parS for (a) m = 100, (b) 200,
and (c) 400. In Eq. (14), the loop size integrals were calcu-
lated with a lower cutoff `0 = 10 and an upper cutoff of 10`0;
summations were truncated at n = 15. The dark grey circles
in panel (c) show experimental ChIP-Seq ParB enrichment
data from the F-plasmid of E. coli extracted from [25]. The
inset in panel (a) shows the binding profile of ParB versus ge-
nomic distance s to parS for JS = 1, ν = 0.588 (self-avoiding
polymer). The results in this inset were obtained by Monte
Carlo simulations of the LC model (see SI for details). The
data are plotted in log-log scale, we observe the power law
decay PLC ∼ s−dν as expected in the limit of low JS , where
the LC model becomes conceptually similar to the Stochastic
Binding model.

model presented here. The non-compact nature of the
protein-DNA cluster is perhaps not surprising because
each protein can form only one bridging bond.

A closely related statistic is the average accumulated
loop length 〈`〉. From the LC partition function, we no-
tice that the loop length is completely decoupled from
the coupling constant JS and depends only on the up-
per cutoff `max. Therefore, the cumulated average loop
length becomes:

〈`〉 =
`max�`0

dν − 1

2− dν
`2−dνmax

`1−dν0

〈n〉, (13)

where the factor in front of 〈n〉 represents the average
length per loop. This prefactor induces a small algebraic
dependence on `max, in contrast to 〈n〉 which depends
only on the lower cutoff `0.

The loop statistics of protein-DNA clusters are not eas-
ily accessible in experiments. Instead, the most relevant
results for which this model can provide insight come
from ChIP-Seq experiments. These experiments yield
data for the enrichment of bound ParB as a function of
genomic position on the DNA, providing a measure of the
average protein binding profile of ParB on DNA [24, 25].
In the LC model, the ParB density profile along DNA
can be calculated from:

PLC(s) =
1

ZLC

m−1∑
n=0

(m− 1)!

(m− n− 1)!n!
exp(−nJS) (14)∫ ∞

`0

d`1`
−dν
1 ...

∫ ∞
`0

d`n`
−dν
n Pn (s, {`i})

where ZLC is given in Eq. (3). Here, Pn (s, {`i}) repre-
sents the multiloop ParB binding profile with n loops of
length {`i} = {`1, ..., `n}. For simplicity, we approximate
this multiloop profile by the analytical 1-loop conditional
probability, P1(s, `|loop(s)), with the loop length equal to
the accumulated loop length, i.e. `→∑

i `i, weighted by
the loop probability ploop(s, {`i}) ≈

∑n
i=1 `iρ(s,m, `i, `).

In the expression for the loop probability, ρ(s,m, `i, `) is
defined as the contribution to the loop density of a loop
of length `i in a cluster of m proteins with a total ac-
cumulated loop length `, and we neglected correlations
between contributions from different loops. Furthermore,
we approximate ρ(s,m, `i, `) by using a generalization of
the 1-loop expression in Eq. (10),

ρ(s,m, `i, `) ≈
min(s, `i,m+ `− s)

Θ(m+ `− 2`i) [`2i + `i(m+ `− 2`i)] + Θ(2`i − (`+m))
(
m+`

2

)2 . (15)

In the analysis above, we aimed to capture the effects of multiple loops in a simple way by assuming statisti-



9

cal independence of the loops, and by using the analyti-
cal 1-loop expressions to approximate the impact of loop
formation on the loop density and the ParB binding pro-
file of the protein-DNA complex. To test the validity of
these approximations, we performed MC simulations of
the complete LC model. We find that the numerically
obtained average loop probability is in reasonable agree-
ment with our approximate expression for the multiloop
density, as shown in Figure 4c. Thus, despite the simplic-
ity of our approach, the analytical model provided here
captures the essential features of looping in protein-DNA
clusters.

The protein binding profile PLC(s) around a parS site
is calculated by averaging the static binding profile for
different total loop numbers and loop lengths using the
Boltzmann factor (see Eq. (3)) from the Looping and
Clustering model as the appropriate weighting factor.
The resulting expression in Eq. (14) for the protein bind-
ing profile of a protein-DNA cluster is the central result
of this paper. We use this expression to compute bind-
ing profiles for the full Looping and Clustering model,
which are shown in Figure 5 as a function of the dis-
tance s to parS for m = 100, 200, and 400. By con-
struction, the site s = 0 corresponding to parS is always
occupied, and thus P (s = 0) = 1 for all values of the
spreading energy JS . This feature of the LC model cap-
tures the assumed strong affinity of ParB for a parS bind-
ing site. For JS = 4, the binding profile converges to a
triangular profile, implying a very tight cluster of pro-
teins on the DNA with almost no loops. The triangular
profile in this case results from all the distinct config-
urations in which this tight cluster can bind to DNA
such that one of the proteins in the cluster is bound to
parS, and therefore the probability drops linearly to 0
at s ≈ m. The same triangular binding profile was ob-
served for the S&B model in the strong coupling limit
JS → ∞ [29]. Interestingly, as JS becomes weaker, we
observe a faster decrease of the binding profile near parS
together with a broadening of the tail of the distribution
for distances far from parS. This behavior results from
the increase of the number of loops that extrude from
the ParB-DNA cluster with decreasing spreading bond
strength JS . The insertion of loops in the cluster allows
binding of ParB to occur at larger distances from parS.
Thus, the genomic range of the ParB binding profiles is
set by smax ≈ m + 〈`〉, where the average cumulated
loop length 〈`〉 is controlled by JS (see Eq. (13)) and m.
These results illustrate how the full average binding pro-
file is controlled by the spreading bond strength JS : the
weaker JS , the looser the protein-DNA cluster becomes,
which results in a much wider binding profile of proteins
around parS. In the limit JS → 0, the LC model quanti-
tatively reduces to the statistics of non-interacting loops,
as shown in the inset of Figure 5. In this case, the bind-
ing profiles exhibit asymptotic behaviour PLC(s) ∝ s−dν
for large s, as in the Stochastic Binding model [25]. In-
terestingly, we observe a weaker scaling PLC(s) with s
at intermediate genomic distances, which we attribute to
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FIG. 6: Scaling function of the ParB binding profile for dif-
ferent total protein numbers m (same data as Figure 5). The
data for different total protein numbers m are plotted ver-
sus the dimensionless genomic distance s/m from parS (main
graph: JS = 3, inset: JS = 2).

the reduced loop density near parS (see Figure 4c).
To investigate how the functional shape of the binding

profile is determined by the total number of proteins in
the cluster, we plot the binding probability versus the
scaled variable s/m for m = 100, 200, and 400, as shown
in Figure 6. For fixed JS , the data approximately collapse
onto a single curve as a function of the scaled distance
s/m. This implies that the functional shape of the ParB
binding profile is largely determined by the spreading
bond strength JS , while the number of proteins in the
cluster determines the width of the profile.

V. DISCUSSION

The Looping and Clustering model introduced here
allows us to access the average binding profile of pro-
teins making up a large 3D protein-DNA complex. In
our model, the formation of a coherent cluster of ParB
proteins is ensured by a combination of spreading and
bridging bonds between DNA bound proteins, which to-
gether can drive a condensation transition in which all
ParB proteins form a large protein-DNA complex local-
ized around a parS site [29]. We do not assume, however,
that this protein-DNA cluster is compact. Indeed, loops
of protein-free DNA may extend from the cluster, which
strongly influences the average spatial configuration of
proteins along the DNA. In the LC model, the forma-
tion of loops in the protein-DNA cluster is controlled by
the strength of spreading bonds, i.e. the bond between
proteins bound to nearest neighbor sites on the DNA.
Specifically, for every protein-free loop of DNA that ex-
tends from the cluster, a single spreading bond between
two proteins within the cluster must be broken. Thus, if
the spreading interaction energy, JS , is sufficiently small,
thermal fluctuations will enable the transient formation
and breaking of spreading bonds, thereby allowing mul-
tiple loops of DNA to emanate from the protein cluster
(See Figure 1).

Conceptually, the spreading bond interaction deter-
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mines how “loose” the protein-DNA cluster is, which
directly impacts the ParB binding profiles. When JS
is large, loop formation is unlikely, resulting in a com-
pact protein-DNA cluster with a corresponding triangu-
lar protein binding profile centered around parS [29]. At
intermediate JS , the protein-DNA cluster becomes looser
with the formation of loops, resulting in a binding pro-
files that are more strongly peaked around parS but with
far-reaching tails. Importantly, the LC model enables
us to establish a link between the Spreading & Bridging
model and the Stochastic Binding model [25]. The first
used a microscopic approach based on the types of in-
teractions between proteins on the DNA polymer, while
the second employed a more macroscopic approach based
on the polymer configurations around a dense sphere of
proteins. In the limit JS → 0, the LC model is consistent
with the Stochastic Binding model with a profile of the
form [25] given by P (s) ∝ s−dν(inset Figure 5a). Thus,
the LC model offers a description for a broad parameter
regime, connecting two limits investigated in preceding
studies [25, 29].

The Looping and Clustering model, which we intro-
duce to calculate the binding profile of ParB-like proteins
on the DNA, is a simple theoretical framework similar to
the Poland-Scheraga model for DNA melting [37, 38].
An important difference in the LC model with respect to
the homogeneous Poland-Scheraga model, is that trans-
lational symmetry is broken due to the presence of a
parS site at which a protein is bound with a high affinity.
Thus, the protein-DNA cluster can adopt a wide range of
configurations as long as one of the proteins is bound to
the parS site. As a result, loops are effectively excluded
in the vicinity of parS. The central new result of this work
is a simple way of computing the protein binding profiles
around such a parS site in terms of molecular interactions
parameters. We show that the binding profiles predicted

by this model are sensitive to both the expression level
of proteins and the spreading interaction strength, which
directly controls the formation of loops in the protein-
DNA cluster. The LC model predicts a profile in good
quantitative agreement with binding profiles measured
with ChIP-Seq on the F-plasmid of E. coli, as shown in
Fig. 5c. Importantly, from this analysis we extract the
spreading interaction strength JS ≈ 1kBT and the num-
ber of proteins in the cluster m ≈ 400.

Our results also have implications for experiments that
employ fluorescent labelling of DNA loci by exogenous
ParBs [26, 27]. Indeed, our model can be used to inves-
tigate how the protein interaction strengths determine
the 3D structure and mobility of the ParB-DNA cluster,
as well as the tendency of multiple ParB foci to adhere
to each other. This model thus provides an insightful
quantitative tool that could be employed to analyze and
interpret ChIP-Seq and fluorescence data of ParB-like
proteins on chromosomes and plasmids.

Acknowledgments

This project was supported by the German Excellence
Initiative via the program NanoSystems Initiative Mu-
nich (NIM) (C.P.B.), the Deutsche Forschungsgemein-
schaft (DFG) Grant TRR174 (C.P.B), and the National
Science Foundation Grant PHY-1305525 (N.S.W.). We
also thank J.-Y. Bouet for helpful comments on the
manuscript. The authors acknowledge financial support
from the Agence Nationale de la Recherche (IBM project
ANR-14-CE09-0025-01) and from the CNRS Défi In-
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Appendix A: Monte Carlo simulations and
numerical integration procedures

1. Monte Carlo procedure

Using the partition function, we can formulate an effec-
tive 1D Hamiltonian for the LC model, which explicitly
accounts for the balance between spreading bonds and
loop entropy:
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FIG. 7: The binding profile obtained with the analytic ap-
proach (symbols) are compared to MC simulations (dashed
lines) for m = 100, `0 = 10, and JS = 1, 2, 3 and 4.

HLC = −JS
L−1∑
i=1

φiφi+1 + dν
n∑
i=1

ln(`i + `0) . (A1)

This effective Hamiltonian is useful to perform Monte
Carlo simulations of the model as a benchmark for the
approximations performed in the analytical approach
(see Fig.7). The proteins are modelled as particles that
bind/unbind onto sites of a one-dimensional lattice with
free boundary conditions. The lattice size L = 4000 is
chosen to prevent finite size effect for the range of pro-
teins considered. Note that, in these MC simulations, the
total size of the loops is limited to L−m.

The simulations are performed with the standard
Metropolis rules:

1. Propose a move of a particle randomly chosen to
a random empty site of the lattice (conserved or-
der parameter). A MC iteration step consists of m
attempts of move.

2. Calculate the difference of energy ∆H = Hf − Hi
between final and initial configurations.

3. If ∆H < 0, the move is accepted with proba-
bility 1, otherwise it is accepted with probability
exp(−β∆H).

The system is set initially with all particles in a single
cluster (JS =∞), and then thermalized to the actual JS
of the simulations ranging from 1 to 4 (see Fig. 7). The
sampling starts after thermalization of the system (40000
MC iterations). A sampling of the systems configuration
is performed every 100 MC iterations. All MC averages
have been performed over 107 configurations, ν = 0.588,
L = 4000 and `0 = 10. The numerical results of this
Monte Carlo simulation are in good agreement with our
approximate analytic results, as shown in Fig. 7.

2. Numerical integration

To evaluate the binding profile PLC(s), we proceeded as
follows. We carried out the evaluation of the simplified
expression in Eq. (14) using numerical summation and
integration. We truncated the summation at n = 15,
instead of going up to m−1, based on the corresponding
average number of loops of Fig. 5. Finally, we introduced
an upper cutoff for the loop-length, `max = 100, instead
of going up to infinity. We confirmed that shape of the
binding profiles does not change significantly for higher
values of `max = 100.

The numerical evaluation of the multidimensional in-
tegrals in Eq. (14) have been performed with an accuracy
and precision of respectively 2 and 3 effective digits in the
final results. We have carried out convergence tests of the
curve shapes in order to assess our parameters choice and
rule out numerical instabilities. All computations have
been performed by routines written in the Wolfram Lan-
guage and executed by the Mathematica software suite
(version 10 and 11).

Appendix B: Formal connection between the LC
model and a Lattice Gas with renormalized coupling

For m and n � 1 (thermodynamic limit), we can for-
mulate a saddle point approximation to evaluate the par-
tition function and 〈n〉, by approximating the entropic
(factorial) term in Z (Eq.(11)) using the standard en-
tropy of mixing for placing n loops on m−1 possible sites.
This approach gives physical insight into how the loop
entropy contributes to a renormalized protein-protein in-
teraction and how the competition between this renor-
malized interaction and the entropy of mixing controls
〈n〉. Taking the thermodynamic limit leads to a parti-
tion function:

Z ′ =

∫ ∞
0

dρ` exp [−(m− 1)Feff(ρ`)] , (B1)

where ρ` = n/(m− 1) is the concentration of loops (0 ≤
ρ` ≤ 1) and

Feff(ρ`) = ρ`J
′
S + {[1− ρ`] ln[1− ρ`] + ρ` ln[ρ`]} (B2)

an effective free energy where J ′S = JS+lnα0 is a loop ac-
tivation energy renormalized by the cost in loop entropy
with α0 = `dν−1

0 (dν − 1). In the limit m → ∞, the ap-
proximate partition function Z ′ becomes exact and can
be evaluated exactly in the saddle point approximation
by minimizing Feff . The solution, ρSP, to the saddle point
equation, dFeff(ρ`)/dρ` = 0, is

ρSP =
1

1 + eJ
′
S

. (B3)

The entropic contribution to Feff (second term) vanishes
at ρ` = 0 and 1, and reaches a minimum at ρ` = 1/2,
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which is the exact result for ρSP at vanishing renormal-
ized loop activation energy J ′S because the entropy of
mixing is then maximized. For J ′S > 0, ρSP decreases

from 1/2 to vanish in the limit J ′S →∞ as ρSP → e−J
′
S .

In this limit only the no and one loop states contribute
and the asymptotic behavior can be simply obtained by a
series expansion of the partition sum and the correspond-
ing expression for 〈n〉. The saddle point result leads to

nSP =
m− 1

1 + eJ
′
S

, (B4)

which turns out to be the exact result, thanks to compen-
sating errors, for 〈n〉 for finite m (which can be obtained
by differentiating the exact Z with respect to JS , see
Eq.(12)). For example, for `0 = 10, d = 3, and ν = 0.588,
α0 = 4.437 and ln(α0) = 1.49, which is not negligible if
JS = O(1).
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