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In this paper, we present the model experiments in order to study the magnetic flux distortion of a

two-phase liquid metal flow excited by an AC magnetic field in a range of pulsation where

Faraday induction and Lorentz force effects are significant. These experiments realized with solid

aluminum rods allow to characterize the effects of flow velocity (0 � U � 1 ms�1), void fraction

(0 � a � 6:9 %), pulsation of the AC magnetic field (1:5� 103 � x � 12:5� 103 rad s�1), and of

two different void geometries. The results are analyzed on the basis of a first order expansion of

magnetic flux in U and a. Despite the strong coupling between Faraday induction and Lorentz

force effects, the results show that the contributions of U and a on a magnetic flux distortion

can be well separated at both low magnetic Reynolds number and a values. These results are

independent of void geometry.

[http://dx.doi.org/10.1063/1.4950792]

I. INTRODUCTION

The fundamental question of how the magnetic flux is

perturbed by a non-conducting dispersed phase in liquid

metal flow is an open question. This problem arises in

industrial processes as in nuclear engineering of Sodium

Cooled Fast Reactors or in metallurgy. In the presence of a

variable magnetic flux density ~B, the Lorentz force in mo-

mentum conservation equation depends on the electrical

current density ~J that results from the Faraday and flow

induced Eddy currents: ~J ¼ rð~E þ ~U � ~BÞ, where the elec-

tric field ~E comes from the Maxwell-Faraday equation

r� ~E ¼ �@~B=@t, and ~U is the fluid velocity. The Eddy

currents generate a perturbation in the magnetic fields that

modify the total magnetic flux, / ¼
Ð
~B � d~s. In the pres-

ence of two-phase flow, / is affected by the void volume

fraction a of the non-conducting phase with the coupling

effects involving the electrical conductivity, the flow

velocity, and the electromagnetic field distribution. Indeed,

due to the strong coupling between the Maxwell’s equa-

tions, hydrodynamic equations and the Ohm’s law, the

presence of void modifies all the field quantities both at the

local scale and at the / integrated scale.

In the literature, we find different approaches to model

the a and velocity effects on the magnetic flux. Historically,

Maxwell established by homogenization, the equivalent

electrical conductivity of a static two-phase medium at

small a.1 This model is based on the multipolar expansion

of the electrical potential of small spheres diluted in a con-

tinuous medium of electrical conductivity r0 and gives at

first order rðaÞ � r0 1� 3
2
a

� �
. This model predicts a linear

dependence in a, which has been confirmed experimen-

tally.2 However, experiments point out that the magnetic

flux is strongly perturbed by a diluted bubbly flow and cannot

be modeled by the Maxwell approach.3,4 This result has been

confirmed by numerical simulations.5 Using the reciprocity

theorem and an expansion of magnetic vector potential,

Bowler et al. have estimated the perturbation in impedance

due to a single small defect in a conducting medium.6,7 This

result is only valid for small skin depths and does not allow to

predict the perturbation in magnetic flux due to the distribu-

tion of voids in the core of a conducting flow. For single

phase conducting flow in a circular cylinder at constant or

very slowly varying magnetic fields (i.e., x � 100 rad s�1),

the electrical potential is given by a Poisson equation:

r2V ¼ r � ð~U � ~BÞ.8,9 In the presence of voids, some

authors have extended this approach and showed for axisym-

metric two-phase flow (homogeneous bubbly or annular flow)

that the electrical potential varies as V � 1=ð1� aÞ.10,11 In

the literature, a is generally defined as the relative flow rate of

gas and not as the real volumic fraction, which is difficult to

measure experimentally in liquid metal.3,10,12

The effects of Lorentz and buoyancy forces on the

deformation and the velocity of a single gas bubble rising in

a liquid metal column are well described in the literature.

Indeed, for static and rotating magnetic fields, experiments

and numerical simulations point out that the hydrodynamic

forces are modified by the Eddy current distribution around

the bubble, which consequently affects the trajectory, the

velocity, and the shape of the bubble.13–20 On the other hand,

for AC magnetic fields at moderate frequencies for which

induction is not negligible in the core of the flow, the effects

of void on Eddy current distribution are not well explained.3

In this paper, we present model experiments that show

coupling effects between the Lorentz force and the Faraday

induction on the Eddy current distribution in a model two-

phase liquid metal flow. In these experiments, we study the

effects of velocity U, pulsation x, and the void fraction a ata)Electronic mail: philippe.tordjeman@imft.fr
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room temperature. The magnetic field ~B is generated by a

primary coil through which the liquid metal flows at constant

velocity. The magnetic flux is then measured with two

coaxial secondary coils and integrates the distortion of the

induced Eddy currents due to the presence of void in the con-

ducting medium. All the results will be analyzed on the basis

of a perturbation expansion model of the magnetic flux.21

The experimental results show that, at small magnetic

Reynolds number Rem (Rem ¼ rl0Ud, where d is the pene-

tration depth of the magnetic flux in the medium) and at

small a, / is well approximated by a linear expansion.

Hence, the U and a contributions on / are separated in two

terms which in addition are found to be independent at first

order.

The paper is organized as follows. In Section II, the per-

turbation magnetic flux model is recalled. The experiments

are detailed in Section III and the results are discussed in

Section IV. Conclusions are given in Section V.

II. THEORY

In this section, we recall the model that gives the perturba-

tion of the magnetic flux, which can be measured with an

Eddy current flowmeter (ECFM).21 This apparatus is well

adapted to experiment the coupling between the Lorentz force

effects and Faraday induction in a two-phase flow. Fig. 1

presents a sketch of the physical system which is modeled

below.

A two-phase liquid metal with a void volume fraction a
and characteristic velocity U flows through a primary coil P.

This coil is excited by an AC I ¼ I0 cos xt. Two coaxial sec-

ondary coils (S1 and S2) measure the perturbation of the

induced magnetic flux due to the Faraday and Lorentz force

effects. The emf difference between the two secondary coils

DV measures the total perturbed flux. In this problem, the

magnetic Reynolds number Rem is based on the penetration

depth of the magnetic field in the medium, d ¼
ffiffiffiffiffiffiffiffi

2
rl0x

q
.

Assuming a low Rem and coil diameter D larger than d, ~B is

weakly perturbed and the amplitude of the net magnetic flux

crossing coils S1 and S2 is given at first order,

/ ¼
ð
~B � ~ds � /0 þ Rem/u þ /aðtÞ: (1)

All the fluxes are spatially averaged over the length of the

secondary coils. Ideally, / ¼ 0 for the well balanced S1 and

S2 without motion and without void. /0 is defined as the time

average when U vanishes: /0 ¼ lim
U!0

U
L

Ð L=U
0

/dt
h i

, where L is

the length large enough for the integral to be independent of

L. In this condition, the fluid properties become continuous.

/u is the average flux due to the Lorentz force effects, and /a

is the perturbation of the total flux due to the dispersed phase

and is related to the distortion of the induced Eddy currents.

In case of periodic distribution of the dispersed phase, this

term can be expanded in Fourier series,

/aðtÞ ¼ wa cosðxatþ hÞ þ � � � ; (2)

where the amplitude wa depends on a, and xa � x charac-

terizes the spatial distribution (xa ¼ Uka, where ka is the

wave number characteristic of the dispersed phase). The con-

stitutive equation of the liquid is ~J ¼ rð~E þ ~U � ~BÞ. Based

on the coupling between Maxwell-Faraday and the Maxwell-

Ampere equations, the magnetic field in the medium has two

contributions, one in phase and one in quadrature with I.
Hence, the total flux can be decomposed as /ðtÞ ¼ /k cos xt
þ/? sin xt, where

/jj � /0;jj þ Rem/u;jj þ wa;jj cosðxatþ hÞ; (3)

/? � /0;? þ Rem/u;? þ wa;? cosðxatþ hÞ: (4)

DVðtÞ is obtained by time derivation of /ðtÞ: the square

of the modulus is jjDVjj2 ¼ DV2
k þ DV2

?. Considering the

first terms in OðRemÞ (Rem � 1),

jjDVjj2 �x2 h/0j/0i þ
hwajwai

2
þ 2h/0jwai cos xatþ hð Þ

�

þhwajwai
2

cos 2xatþ 2hð Þ

þ 2Rem h/0j/ui þ h/ujwai cos xatþ hð Þ
� �o

: (5)

In this formula, /i is defined as a vector, /i ¼ ½/i;k;/i;?	.
h/ij/ji represents the scalar product between the two vectors

i and j. In Equation (5), jjDVjj2 is expressed as a function of

the dominant term in Fourier expansion. The last term in

Rem corresponds to the magnetic flux component perturbed

by the motion. We note that h/0j/0i and hwajwai appear at

zero order. The terms h/0jwai; h/0j/ui, and h/ujwai repre-

sent the coupling effects of Faraday induction, Lorentz force,

and dispersed phase. The term h/uj/ui, which appears at

second order in Rem has been neglected.

From the experiments and based on this model, the con-

tributions of the dispersed phase and of the velocity on the

net magnetic flux can be measured by the Fourier analysis of

the jjDVjj2 signal. The amplitude of xa term at zero velocity

h/0jwaið Þ gives the perturbation due to Faraday induction

effects. The second xa term, which depends on Rem h/ujwaið Þ,
exhibits the coupling effects between the velocity and the void

fraction on the induced Eddy currents. Finally, the amplitude

of 2xa term hwajwaið Þ characterizes the influence of the dis-

persed phase and is independent of the Lorentz force effects.

FIG. 1. Magnetic flux distortion system with a two-phase medium. P is the

primary coil excited by an AC current I, S1 and S2 are the two secondary

coils, and U is the velocity of the two-phase flow.



III. EXPERIMENTAL SET UP

The experimental set up is shown in Fig. 2. The primary

coil P of outer radius 20 mm and length 30 mm consists of

70 turns of copper wires wrapped around a non-conducting

non-ferromagnetic structure. A frequency generator excites

the P coil by an AC I ¼ I0 cos xt. The pulsation x varies

between 1:5� 103 rad s�1 and 12:5� 103 rad s�1. This dis-

tortion in magnetic flux is monitored using the two coaxial

secondary coils S1 and S2 of outer radii 20 mm and length

20 mm each. They consist of 50 turns of copper wires. The

three coils constitute a standard ECFM sensor. The differ-

ence voltage DV ¼ V2 � V1 between S1 and S2 can be meas-

ured with an oscilloscope. In order to understand the

physical origin and the nature of the Eddy current distortion

due to U and a, we used a Lockin Amplifier (HF2LI-MF,

Zurich Instruments), which samples the in-phase and quadra-

ture components of distorted flux with respect to the imposed

current of the P coil. The Lockin signal has a very high sig-

nal to noise ratio that allows to measure the nV range signals.

A uniaxial displacement controller translates the coils at

a given constant velocity U in the range of 10�3 � 1 ms�1.

The conducting fluid is modeled by an aluminium rod along

which the coils are moved. These experiments are analogous

to a plug flow of a conducting liquid. In order to control

the void fraction a, grooves and holes are machined on the

surface of the rod with spatial periodicity ka ¼ 2p=ka. Nine

types of aluminium rods were used in the experiments to

vary a between 0% and 6:9% and also to understand the

effects of void geometry. All the dimensions are controlled

after machining with a vernier caliper of precision 0.01 mm.

The reference plain aluminium rod (a ¼ 0%) has an

outer radius of 19.25 mm.

For groove-type rods which represent the geometrical

void fractions a ¼ 0:3%; 2%; 4:5%, and 6.9%, respectively,

ka ¼ 18.00 mm, 18.00 mm, 18.00 mm, and 16.85 mm, respec-

tively; the depths of the grooves are 0.38 mm, 1.80 mm,

3.20 mm, and 4.23 mm, respectively; the lengths of the grooves

are 1.40 mm, 2.00 mm, 2.60 mm, and 3.00 mm, respectively;

the outer radii of aluminium cylinder are 19.25 mm, 19.00 mm,

19.00 mm, and 19.25 mm, respectively.

For hole-type (cylindrical bore-hole on outer surface) rods

which represent the geometrical void fraction a ¼ 0:06%;
0:22%; 0:54%, and 1.62%, respectively, the spatial frequen-

cies of holes ka ¼ 17.45 mm each; the depths of the holes

are 2.00 mm each; the diameter of the holes are 2.06 mm,

3.88 mm, 6.03 mm, and 10.21 mm, respectively; the outer radii

of aluminium cylinder are 19.25 mm each. The number of

holes are fixed to achieve the given a values.

The experiments were realized at room temperature for

which the electrical conductivity of the aluminium rod is

r ¼ 3:8� 107 S/m. The skin depth is then comprised

between 5.2 mm and 1.8 mm for the experimental pulsation

range. The amplitude of current intensity for all the experi-

ments is in the range of 200�400 mA. All the experimental

results are given for a normalized intensity amplitude of 1 A.

Moreover, we have checked that the current remains constant

within 0:1% during an experiment.

For each measurement, the ECFM was translated forward

at a constant velocity, stopped, and translated back at the same

velocity. This is repeated several times. Experiments with this

system are very reproducible because the system is highly

deterministic. Finally, we have verified that the electromag-

netic background noise is not significant at these frequencies.

Fig. 3 displays a typical demodulated DVjj signal. This

kind of signal can be obtained for in phase and quadrature

components and also for jjDVjj. Experimentally, /0 is meas-

ured as the average value of the signal when there is very

slow motion, typically U ¼ 10�3 m/s (inset of Fig. 3). In this

case, the Lorentz force can be neglected. In motion at constant

U, the average value of the signal is shifted with a value

proportional to Rem. In the presence of voids (a 6¼ 0%), this

signal oscillates around this value. The amplitude of this oscil-

lation gives wa. An example of the FFT spectrum of the

fluctuations of jjDVjj2 signal is displayed in Fig. 4. For our

experiments, all the FFT signals exhibit the two first promi-

nent harmonic peaks in xa. This result validates the expansion

at first order in Rem of the magnetic flux and also the Fourier

FIG. 2. Experimental set-up.



series of the void fraction perturbation on the Eddy currents,

Equations (1)–(2). The amplitude of the peak at 3xa gives the

first residue of Equation (5). The amplitude of the first peak is

x2A1 ¼ x2½h/0jwai þ 2Remh/ujwai	 and the amplitude of

the second peak is x2A2 ¼ x2 hwajwai
2

. We have verified that

the value of
ffiffiffiffiffiffiffiffi
2A2

p
is equal to the norm of wa, which has been

obtained from the direct FFT of /a signal.

In summary, the experimental results were treated by two

approaches: first, the in-phase and quadrature phase compo-

nents of /0; /u, and /a are directly measured from DVðtÞ;
second, A1, A2, and xa were measured from the FFT of

jjDVjj2. We have checked that the second approach is still

valid for the non-periodic void distribution as long as xa can

be measured. By machining a specific rod with aperiodic

grooves, we have observed that the intensity and the width of

the two first harmonic peaks decreases and increases, respec-

tively, when the spatial distribution of the grooves widens.

IV. RESULTS AND DISCUSSION

Fig. 5 compares /0;jjðxÞ and /0?ðxÞ for a ¼ 0%; a ¼
0:3% and a ¼ 6:9%. We observe that /0;jj and /0;? are

weakly dependent on a. Furthermore, the results show that

/0;jj > /0;?, whatever x. The frequency dependence of /0;?
obeys to an approximate power law, x�1=2. We observe that

the deviation to this power law is larger at high pulsations.

For /0;jj, if the power law x�1=2 seems to be valid at low pul-

sations, the deviations are very large at higher pulsations.

As an example, Fig. 6 shows the frequency dependence

of /u;jj and /u;? at a constant velocity U ¼ 1 ms�1. This

time, we note that /u;jj < /u?. These two fluxes exhibit two

different power laws with pulsation, /u;jj � x�1 and /u;?
� x�3=2. As for /0, the effect of a can be neglected. Finally,

we verify the linearity of the two components of Rem/u with

velocity at constant pulsation x ¼ 3142 rad s�1 (inset of

Fig. 6). This result has been confirmed for different pulsa-

tions in the considered range of this study. We verified that

the slopes /u;jjðUÞ and /u;?ðUÞ are independent of a.

The study of the pulsation dependence of wa for differ-

ent a values at constant velocity has shown a non-power law

behavior for the two components wa;jj and wa;? (Figs. 7 and

8). First, we measure that waðxÞ curves are the function of a.

The variations with the pulsation of the two components at

FIG. 4. FFT spectral density of fluctuations of jjDVjj2 vs the modulating pul-

sation xM for a ¼ 6:9% and U¼ 0.001 m/s at 6283 rad/s (data from [21]).

FIG. 5. /0 vs x at U ¼ 0:001 ms�1 for a¼ 0% (�, �), 0.3% (�, �), 6.9%

(�, �); where /0;jj: unfilled symbols and /0;?: filled symbols. Lines repre-

sent the power law in x�1=2.

FIG. 6. Rem/u vs x at U ¼ 1 ms�1 for a¼ 0.0% (�; �), 0.3% (�; �),

2.0% (�; 	), 4.5% (
; �), 6.9% (�, �), where Rem/u;jj: unfilled symbols

and Rem/u;?: filled symbols. (—) represents x�1=2 and ð��Þ represents

x�3=2. Inset Rem/u vs U.

FIG. 3. Typical demodulated voltage difference of the two secondary coils,

DVjj measured vs time for a ¼ 0:3% at x¼ 4712 rad/s and U¼ 0.1 m/s

(inset: U¼ 0.001 m/s).



constant a are really different. All the curves for wa;?ðxÞ
collapse to a vertical asymptote at about 12600 rad s�1.

Consequently, wa;? tends to zero beyond this critical pulsa-

tion. On the other hand, wa;jjðxÞ at a constant a increases

with the pulsation and reaches a plateau value at high pulsa-

tion. Hence for x > 7000 rad s�1; wa;jj is independent of x.

The two wa components are on the same order of magnitude

at low pulsations and differ by more than one decade at high

pulsations. This behavior is really different than those of /0

and /u. The velocity dependence of wa are presented in the

inset of Figs. 7 and 8. For both components, we observe the

remarkable result that wa is independent of U. All the curves

presented before have been obtained for rod with groove-

type rods. They have been confirmed with hole-type rods but

these results are not presented here for the sake of brevity.

Combining the results obtained with holes and grooves

geometries, the plot of jjwaðaÞjj at a constant U and x is given

in Fig. 9. We observe that the results obtained with both geo-

metries are consistent. This is remarkable because it appears

that hwajwai depends only on a values and not on the geometry

of the voids. The experiments show that wa � a for a < 4%

and saturates for higher values in the range of a studied. This

result is in agreement with literature where the authors obtained

a similar curve for the fluctuations of the emf signal.12

In order to study the coupling between the Lorentz force

and the Faraday effects, we analyze the Fourier transform of

jjDVjj2. For all cases, we measured xa and we verified that

xa ¼ kaU at a constant pulsation, in agreement with our

model (Fig. 10). Furthermore, we check that xa is independ-

ent of x at constant U. In Fig. 11, A1 is plotted with different

a at x ¼ 6283 rad s�1. As predicted, we observe that A1 is a

linear function of the velocity. The intercept with the vertical

axis gives h/0jwai which increases linearly with a at low a.

The slope is h/ujwai. We note that the coupling between U
and a increases with a and saturates as observed previously

for wa. This last effect has been confirmed by Fourier analy-

sis and Fig. 12 shows the independence of hwajwai with ve-

locity. For all the experiments the values of fluxes obtained

by direct processing and by Fourier transform are similar.

The analyses of all the results show clearly the validity

of the model presented in Section II. In the first point, the

property that the perturbed magnetic flux is independent of

the void geometry confirms the validity and robustness of

the model at first order. In the second point, all the experi-

mental FFT spectra are characterized by the two first har-

monic peaks, this result proves the relevance of the first

order development in Rem.

FIG. 8. Dwa;? vs x at U ¼ 1 ms�1 for a¼ 0.3% (�), 2.0% (	), 4.5% (�),

and 6.9% (�). Inset wa;? vs U.

FIG. 9. jjwajj ¼ hwajwai1=2
vs a at x ¼ 6280 rad s�1. �: grooves, and �:

holes.

FIG. 10. xa vs U for a ¼ 6:9% and x ¼ 6280 rad s�1.

FIG. 7. Dwa;jj vs x at U ¼ 1 ms�1 for a¼ 0.3% (�), 2.0% (�), 4.5% (
),

and 6.9% (�). Inset wa;jj vs U.



In the model, the choice of the characteristic length is

determining. In this work where d < D, the natural charac-

teristic length, which can be derived from the Stoke’s circu-

lation theorem for the electric field, is dðxÞ. This length can

be obtained independently from the dimensional analyses of

Rem/u and /0 based on the Maxwell equations. Indeed,

considering that the magnetic field can be expressed as
~B ¼ ~B0 þ ~Bu þ ~Ba, where Bu and Ba are the perturbation in

the magnetic field due to the velocity and void fraction,

respectively, we found that the ratio Bu=B0 � Rem. We recall

that Rem is defined in this study with the characteristic length

scale d.

At this stage, a similar analysis based on the Maxwell

equations can provide that the in-phase and quadrature-phase

components are of the same order for B0 and Bu, respec-

tively. This analysis cannot predict the exact ratio of the two

components. Numerical simulations with COMSOL
VR

have

shown that the average magnetic field in the penetration

depth has an amplitude independent of the frequency. On the

other hand, the effective surface for the integration of the

flux is at first order pDd. A dimensional analysis based on

the Maxwell’s equations show that /0;? � x�1=2 and /u;jj
� x�1 are in agreement with the experiments. These scaling

laws have been obtained directly by considering Faraday

induction and Lorentz force effects for /0 and /u separately

for an exciting magnetic field in phase with the current. It is

noteworthy that the scaling laws for /0;jj and /u;? cannot be

obtained by the same approach due to the strong coupling

between Maxwell-Ampère and Maxwell-Faraday equations

for /0;jj, and also the Lorentz force for /u;?.

For small a values, r ¼ r0 þ r0a (following a Taylor

expansion). Consequently, wa � a. This linearity was

observed experimentally for a � 4%. For groove depth

smaller than d and for small a values, a scales as 1=dðxÞ.
This relation yields to a pulsation independence of wa that is

observed experimentally at high pulsations.

The whole results show that the Lorentz force effects

and Faraday induction effects are intimately coupled. This

leads to complex properties of the total magnetic flux, which

arises from the fact that the characteristic length of the mag-

netic flux and that of the flow are not sufficiently separated.

In this work, d is neither very small nor very large when

compared to D. Even if the coupling effects are strong, we

were able to separate U and a effects because /u is inde-

pendent of a and wa is independent of U at first order. This is

valid only for small Rem and a values.

From a practical point of view, the Fourier analysis of

jjDVjj2 is sufficient to measure simultaneously the velocity

and the void fraction of a conducting liquid in large number

of applications, as long as xa can be defined.

V. CONCLUSION

In this paper, we experimentally studied the magnetic

flux distortion in the two-phase liquid metal flow excited by

an AC magnetic field. A specific experimental setup with a

moving ECFM has been designed. The two-phase liquid

metal was modeled by aluminium rods along which ECFM

translates at constant velocity. The voids were simulated by

machining holes and grooves on the rods. In these experi-

ments, a varies between 0% and 6.9%. The coil lengths are

larger but comparable to ka.

We have studied the effects of pulsation of exciting

electrical current (1:5� 103 � x � 12:5� 103 rad s�1), of

the flow velocity (0 � U � 1 ms�1), and of the void volume

fraction on the magnetic flux distortion. In this configuration,

the relative motion of aluminium simulates a plug flow. In

all the experiments, the magnetic flux was demodulated with

a Lockin amplifier in order to characterize its in-phase and

quadrature-phase components.

The results clearly show that the distortion in the mag-

netic flux results from a strong coupling between Lorentz

force effects and Faraday induction. They have been

analyzed on the basis of a perturbative model, where the

total magnetic flux is expanded at first order in a and U:

/ � /0 þ Rem/u þ /a.

The study of the pulsation dependence of the magnetic

flux points out that /0;jj and /u;? result from a strong cou-

pling between Faraday induction and Lorentz force effects.

On the other side, /0;? and /u;jj seem to depend mainly on

FIG. 11. A1ðWb1 A�2Þ ¼ 2h/0jwai þ 2Remh/ujwai vs U for a¼ 0.3% (�),

2.0% (�), 4.5% (
), 6.9% (�), and x ¼ 6280 rad s�1.

FIG. 12. 2A2ðWb1 A�2Þ ¼ hwajwai vs U for a¼ 0.3% (�), 2.0% (�), 4.5%

(
), 6.9% (�), and x ¼ 6280 rad s�1.



the Faraday induction for the first and on Lorentz force for the

second. Indeed, the scaling laws /0;? � x�
1
2 and /u;jj � x�1

can be deduced directly from the Maxwell-Faraday and

Maxwell-Ampere equations, respectively. An important result

is that Rem/u is linear in U and independent of a. wa is inde-

pendent of U and linear in a. This experimental result can be

justified theoretically because Rem and a are small. It has

been obtained for all the void geometries.

For practical applications, the Fourier analysis of the

demodulated voltage difference between the two secondary

coils jjDVjj2 allows to measure the velocity and the void

fraction. Indeed, the first peak of jjDVjj2 FFT increases line-

arly with U. Hence, the second peak is proportional to a2.

This approach can be used after calibration.

At this stage, the coupling between Faraday induction

and the Lorentz force effects is not well understood. A theo-

retical model should be developed to calculate the Eddy

current distortions due to the flow and the void at the local

scale and their contributions on the magnetic flux at the

flow scale.
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