Francis Comets 
  
Gregorio Moreno 
email: grmoreno@mat.uc.cl
  
Alejandro F Ramirez 
email: aramirez@mat.uc.cl
  
Random 
  
Alejandro F Ram Írez 
  
Alejandro F Ramírez 
  
  
Random polymers on the complete graph

Keywords: AMS 2000 subject classifications. Primary 60K35; secondary 82B23, 60B20 Directed polymers, random medium, exactly solvable model, stable laws, product of random matrices

come    

Introduction and results

Directed polymers in random environments were introduced in [START_REF] Henley | Pinning and roughening of domain wall in Ising systems due to random impurities[END_REF] as a model for the phase separation line of the 2d Ising model in the presence of impurities. Since then, they have been the subject of an important body of work both in the mathematics and physics communities. On the mathematics side, their study started with the work [START_REF] Imbrie | Diffusion of directed polymers in a random environment[END_REF], shortly followed by [START_REF] Bolthausen | A note on the diffusion of directed polymers in a random environment[END_REF]. An up-to-date account on the mathematical treatment of directed polymers can be found in [START_REF] Comets | Directed polymers in random environments[END_REF]. On the physics side, this model was often studied in connection with growing surfaces. In particular, it was observed that the Kardar-Parisi-Zhang equation [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF] can be considered as a continuum version of directed polymers [START_REF] Kardar | Scaling of Directed Polymers in Random Media[END_REF].

In its usual discrete version, the model can be formulated in terms of two basic ingredients: (i) The polymer paths are given a-priori by the trajectories of a simple symmetric random walk on Z d starting at the origin, whose law we denote by P ; (ii) The environment is given by a family {η(t, x) : t ≥ 1, x ∈ Z d } of i.i.d. random variables with common distribution P. Then, given t ≥ 0, β > 0 and a fixed realization of the environment, we define the polymer measure on nearest-neighbor paths x of length t as the probability measure

µ η t,β (dx) = 1 Z η t,β exp{β t s=1 η(s, x s )}P (dx),
where Z η t,β is the normalizing constant.

In this note, we propose to replace, in the above definition, Z d with its natural graph structure by the complete graph with N sites. The precise definition of the model is deferred Section 1.1.

Alternatively, this can be seen as a polymer with long-range jumps on a finite state space.

Large finite state spaces have been considered in the literature as approximations of infinite systems, for instance [START_REF] Brunet | Probability distribution of the free energy of a directed polymer in a random medium[END_REF] for directed polymers on a cylinder, or directed polymers on n-trees as in [START_REF] Cook | Directed polymers in a random medium: 1/d expansion and the n-tree approximation[END_REF]. In [START_REF] Brunet | Derrida Exactly soluble noisy traveling-wave equation appearing in the problem of di-rected polymers in a random medium[END_REF], a zero-temperature version of our model was introduced to compute the corrections for large finite systems to continuous limit equations of front propagation.

There are several additional reasons to consider polymers on other graphs. First of all, they offer several simplifications compared to the original model on Z d or R d . In this respect, models on the complete graph can be seen as a mean field approximation, much in the same way the Curie-Weiss model relates to the Ising model. When considering mean-field versions of directed polymers it is more common to refer to polymers on the tree [START_REF] Buffet | Directed polymers on trees: a martingale approach[END_REF] [20], but these models show fundamental differences with the original ones [START_REF] Comets | Directed polymers in random environments[END_REF]. Our model on the complete graph preserves some features, and can also be seen as a positive temperature version of the last passage percolation studied in [START_REF] Brunet | Derrida Exactly soluble noisy traveling-wave equation appearing in the problem of di-rected polymers in a random medium[END_REF][START_REF] Comets | Last passage percolation and traveling fronts[END_REF] from where we draw many ideas.

This approximation of infinite graphs by finite ones can be made quantitative. For instance, the paper [START_REF] Eckmann | The largest Lyapunov exponent for random matrices and directed polymers in a random environment[END_REF] considers a particular product of random symplectic matrices corresponding to a random diffusion on the d-dimensional discrete torus. Assuming d ≥ 3 and weak disorder, it is shown that, as the sidelength of the torus goes to infinity, the largest Lyapunov exponent of the product converges to the one of the usual Laplacian on the full lattice.

In a related spirit, models on arbitrary countable graphs are considered in [START_REF] Carmona | Strong disorder for a certain class of directed polymers in a random environment[END_REF] where the a priori law on the path space is an ergodic Markov chain.

Finally, on the complete graph, we are able to find a law on the environment that makes the model solvable in the sense that the law of the properly normalized partition function can be computed explicitly. This is analogous to the zero-temperature version of the model from [START_REF] Brunet | Derrida Exactly soluble noisy traveling-wave equation appearing in the problem of di-rected polymers in a random medium[END_REF][START_REF] Comets | Last passage percolation and traveling fronts[END_REF][START_REF] Cortines | The genealogy of a solvable population model under selection with dynamics related to directed polymers[END_REF]. Exactly solvable models are rare in statistical mechanics, but they yield most informative results. This one seems to be new. In the case of polymers on the lattice, we can however cite [START_REF]Seppäläinen: Scaling for a one-dimensional directed polymer with boundary conditions[END_REF] for the original model on Z and [START_REF] O'connell | Brownian analogues of Burke's theorem[END_REF] for a semi-continuous counterpart.

The study of polymer models on finite graphs falls in the scope of products of random matrices. More precisely, the free energy is related to the top Lyapunov exponent of such products for which a complete theory has been established in the literature initiated in [START_REF] Furstenberg | Products of random matrices[END_REF] and developped in particular in [START_REF] Bougerol | Products of random matrices with applications to Schrdinger operators[END_REF][START_REF] Cohen | The stability of large random matrices and their products[END_REF][START_REF] Furstenberg | Noncommuting random products[END_REF][START_REF] Guivarc'h | Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF][START_REF] Hennion | Stable laws and products of positive random matrices[END_REF][START_REF] Newman | The distribution of Lyapunov exponents: exact results for random matrices[END_REF]. This formalism allows us to derive, for example, the existence of the free energy as well as Gaussian fluctuations for the logarithm of the partition function. In different direction, we mention [START_REF] Arnold | Evolutionary formalism for products of positive random matrices[END_REF] which gives a nice account on Perron-Frobenius theory for product of random matrices together with its relation to thermodynamic formalism.

For "infinite matrices" -i.e. for random positive operators in infinite dimension, limits may fail to exist due to lack of compactness. The authors in [START_REF] Bakhtin | Localization and Perron-Frobenius theory for directed polymers Mosc[END_REF][START_REF] Ya | Sinaï: A random walk with a random potential[END_REF] deal with products of random operators on the whole Z d , but some localization features -a priori embedded in the special models -make them essentially compact.

1.1. Directed polymers on the complete graph. We study the following model of directed polymers on the complete graph with N sites: for t ≥ 1 integer and 1 ≤ i, j ≤ N , consider the set of paths starting at location i at time 0 and ending at j at time t,

J N (0, i; t, j) = j = (j 0 , • • • , j t ) : 1 ≤ j s ≤ N, ∀ 1≤s≤t-1 ; j 0 = i, j t = j . (1.1)
Let {ω i,j (t) : 1 ≤ i, j ≤ N, t ≥ 0} be a family of i.i.d. positive random variables defined on some probability space (Ω, A, P). For a fixed realization of the environment and t ≥ 1, we define the point-to-point (P2P) polymer partition function

Z N (0, i; t, j) = j∈J N (0,i;t,j) t s=1 ω j s-1 ,js (s). (1.2)
Viewed as a function of j, its logarithm is referred to as the polymer height function. We denote with a quantities Q( ) which are, depending on the context, unions or sums over locations j ∈ {1, . . . N } of Q(j). For instance, J N (0, i; t, ) = ∪ N j=1 J N (0, i; t, j), and Z N (0, i; t, ) = N j=1 Z N (0, i; t, j) is the so-called point-to-line (P2L) polymer partition function. Similarly, J N (0, ; t, j) = ∪ N i=1 J N (0, i; t, j), and Z N (0, ; t, j) = N i=1 Z N (0, i; t, j) is the line-to-point (L2P) partition function.

Our analysis will rely on a tight relation between our model and products of random matrices which emerges from the following observation: defining the N × N matrix Π(t) as the product

Π(t) = X(1)X(2) • • • X(t),
of the matrices X(t) = [ω i,j (t)] i,j , we see that the P2P partition function (1.2) is the (i, j)-entry of Π(t), Z N (0, i; t, j) = Π(t) i,j .

(1.3) (We do not indicate in the notation the dependence in N of X and Π, although we will let N go to infinity at some stage.) Let us denote by Z N (t) the (column) vector given by the L2P partition functions

Z N (t) = Z N (0, ; t, 1), • • • , Z N (0, ; t, N ) *
where M * denotes the transposed of the matrix M . Our convention in the paper is that all vectors are column vectors, and we write v(j) for the j-th coordinate of v, so that Z N (t, j) ≡ Z N (0, ; t, j). From (1.3), we obtain

Z N (t) * = 1 * Π(t), (1.4) 
where 1 * denotes the N -dimensional row vector with all entries equal to 1. Similarly, the vector of P2L partition functions can be written as Π(t)1. This point of view allows us, among other things, to relate the free energy of the model to the Lyapunov exponent of products of i.i.d. random matrices. In our case the matrices have an additional feature -entries are i.i.d. -but the theory applies to the general case under mild assumptions. At this point, it is convenient to take (1.4) as the starting point of our analysis and consider the slightly more general framework of the recursion

Z N (t) * = Z N (t -1) * X(t) (1.5) allowing general initial conditions Z N (0) ∈ R N + \ {0}..
We follow the formalism of [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF][START_REF] Hennion | Stable laws and products of positive random matrices[END_REF] based on the action of products of random matrices on projective spaces. For v ∈ R N + \ {0} and α > 0, define the α-norm of v as ||v|| α = ( N j=1 v α i ) 1/α . Of course, this quantity is a norm only in the case α ≥ 1. Next, we introduce the α-symplex

Bα = {v ∈ R N + : ||v|| α = 1}, together with the projection Ψ α (v) = v ||v||α from R N + \ {0} onto Bα . For v ∈ R N + \ {0}
and X an N -by-N matrix with positive entries, we define the product α

• by

X α • v := Xv ||Xv|| α ∈ Bα .
We will drop the subscripts and superscripts from the notation when α = 1 and write

B := B1 , X • v := X 1 • v.
Finally, define

X N,α (t) := Ψ α (Z N (t)) = Z N (t) ||Z N (t)|| α ∈ Bα , (1.6) 
and, again, write X N := X N,1 . This leads to the simple decomposition

log Z N (t, i) = log ||Z N (t)|| α + log X N,α (t, i) (1.7)
Note that, by the recursion (1.5) and homogeneity, we have

X N,α (t) = Ψ α X(t) * Z N,α (t -1) = Ψ α X(t) * X N,α (t -1) ,
showing that {X N,α (t) : t ≥ 0} is a Markov chain. We list further important properties of this chain in the next theorem.

1.2. Product of random matrices and polymer model structure. All three results in this subsection come as applications of the general theory of product of independent random matrices. They are overlooked in this context, although they provide a complete understanding of the model for a fixed N . For integers s < t, let Π(s, t) = X(s + 1) . . .

X(t), Π(t, t) = I N , Π(t) = Π(0, t). Theorem 1.1. Let Z N (0) ∈ R N + . (1 
) For all α > 0, the recursion (1.5) with initial condition Z N (0) defines by (1.6) a timeinhomogeneous Markov chain {X N,α (t) : t ≥ 0} with values in Bα . (2) There exists an event Ω 0 with P(Ω 0 ) = 1 such that the (random) limit

V ∞ N,α = lim t→∞ Π(t) α • v, (1.8) 
exists for all α > 0, ω ∈ Ω 0 and does not depend

on v ∈ R N + . Moreover, V ∞ N,α = Ψ α (V ∞ N,β
) for all α, β > 0.

(3) Let m N,α denote the law of V ∞ N,α . The chain (X N,α (t)) t≥0 with initial law m N,α is stationary and ergodic. (4) Denote by θ s the shift on Ω by s ∈ Z, θ s ω(t) = ω(s + t), and set

V ∞ N,α (s) := V ∞ N,α • θ s = lim t→∞ Π(s, t) α • v, (1.9) 
and V ∞ N,α (s, j) the j-th component of this vector. (In particular,

V ∞ N,α (0) = V ∞ N,α .) Then, X(0) α • V ∞ N,α = V ∞ N,α (-1) (1.10)
This is proved in Section 2.1 and the Appendix.

Our next result states the almost sure existence of the free energy as well as Gaussian fluctuations for the logarithm of the partition function. From (1.7), note that the asymptotics of log Z N (t, i) is essentially given by that of the first term. That this limit is independent of α comes from the observation that, for each α > 0, there exists a constant c

N (α) ∈ (1, ∞) such that c N (α) -1 ||v|| 1 ≤ ||v|| α ≤ c N (α) ||v|| 1 , ∀ v ∈ R N + . Theorem 1.2.
Fix N , assume that the ω's are not constant and that E| log ω i,j | 2+δ < ∞ for some positive δ. Then, there exist numbers v N and σ N > 0 such that, for all j = 1, . . . N ,

lim t→∞ 1 t log Z N (t, j) = v N a.s., and 
1 √ t log Z N (t, j) -v N t law -→ N (0, σ 2 N ) as t → ∞. Furthermore, with V ∞ N,α from (1.8), v N = E log ||X(0)V ∞ N,α || α . (1.11)
We give a proof in Section 2.2.

We now turn to the asymptotic of the polymer measure. The P2L polymer measure starting at i with time-horizon T , denoted by P ω 0,i;T, , is the (random) probability measure on J N (0, i; T, ) given by

P ω 0,i;T, j = (j 0 , • • • , j T ) = 1 Z N (0, i; T, ) T s=1 ω j s-1 ,js (s) .
(1.12)

Similarly to Theorem 1.1, there exists an almost-sure limit to the "backwards-in-time" product ← -

V ∞ N,α (s) = lim t→-∞ Π(t, s) * α • v (1.13) which does not depend on v ∈ R N + . Since X(0) * law = X(0), we have ← - V ∞ N,α (s) law = V ∞ N,α . (1.14) 
Our second set of results states the existence of an infinite volume polymer measure together with a co-variant law: define the random probability measure ν

N (t, •) on {1, . . . N } by ν N (t, j) := ← - V ∞ N,α (t, j)V ∞ N,α (t, j) N k=1 ← - V ∞ N,α (t, k)V ∞ N,α (t, k) = ← - V ∞ N (t, j)V ∞ N (t, j) N k=1 ← - V ∞ N (t, k)V ∞ N (t, k) , (1.15) 
since the ratio in the second term does not depend on α, by Theorem 1.1, point 2. In words, the co-variant law is proportional to the doubly infinite product of weights over polymers (from times -∞ to +∞) which take the value j at time t.

Theorem 1.3.

(1) For almost every environment ω, the polymer measure P ω 0,i;T, converges as T → ∞ to the (time-inhomogeneous) Markov chain with P ω (j 0 = i) = 1 and transition probabilities given by

P ω (j t+1 = j t = k) = ω k, (t+1)V ∞ N (t+1, ) N =1 ω k, (t+1)V ∞ N (t+1, ) (1.16) = 1 X(t+1)V ∞ N (t+1) 1 × ω k, (t+1)V ∞ N (t+1, ) V ∞ N (t, k) (1.17) for t ≥ 0, k, ∈ {1, . . . N }. (2) Let ω ∈ Ω 0 .
For the chain with transition (1.16) starting at time s with law ν N (s, •), we have for t ≥ s,

P ω (j t = ) = ν N (t, ) , = 1, . . . N. This is proved in Section 2.3. Note that, if Z N (0, •; t, ) denotes the vector (Z N (0, 1; t, ), • • • , Z N (0, N ; t, )) * , then Z N (0, •; t; ) = Π(t) 1, (1.18) 
where Π(t) is defined in (1.4). This representation allows us to define a polymer measure with more general initial conditions. The above theorem can be easily adapted to this setting.

Remark 1.4. The law m N = m N,1 is the long-time limit of the endpoint distribution, which appears as a fixed point of a transfer operator on Z d for the nearest neighbor graph in [START_REF] Bates | The endpoint distribution of directed polymers[END_REF], and for long range graphs in [START_REF] Bates | Localization of directed polymers with general reference walk[END_REF]. (Of course, for a finite state space, there is no question of localization and the disorder is always strong.) The previous theorems provide much more information in this simplified framework.

1.3. Case of α-Stable Environments. We consider now the particular cases when the environment follows a stable law of index α ∈ (0, 1), see [START_REF] Bertoin | Subordinators: examples and applications[END_REF][START_REF] Durrett | Probability: theory and examples[END_REF]. The law S α is supported on R + and can be defined via its Laplace transform: if S is distributed according to S α , then

Ee -λS = e -λ α , (1.19) 
for all λ ≥ 0. In particular, if S 1 , • • • , S N are N independent S α -distributed random variables, then

N -1/α N i=1 S i law = S α , (1.20) 
and, more generally,

N i=1 a i S i law = S α , (1.21) 
provided N i=1 a α i = 1 and a i ≥ 0. The tail of S α is known to decay polynomially,

P[S > x] ∼ 1 Γ(1 -α)
x -α , as x → ∞. Furthermore, S α is the limit of properly normalized sums of i.i.d. random variables exhibiting similar decay.

It turns out that this choice of environment makes the model solvable, in the sense that the law of the (properly normalized) partition function is explicit. The decomposition (1.7) has to be slightly modified to reveal the rich structure of this version of the model: let

S N (t, j) := Z N (t, j) ||Z N (t -1)|| α , φ N (t) := log ||Z N (t)|| α , (1.22) 
so that log Z N (t, j) = log S N (t, j) + φ N (t -1).

(

1.23)

There are many reasonable manners to measure the mean height of the polymer. However the α-norm yields an unexpectedly simple description. The full probabilistic structure of the stable case is detailed in the next theorem.

Theorem 1.5. Suppose {ω i,j (t) :

t ≥ 1, 1 ≤ i, j ≤ N } is an i.i.d. family of S α -distributed random variables. Then, (1) {S N (t, j) : t ≥ 1, 1 ≤ j ≤ N } is an i.i.d. family of S α -distributed random variables.
Moreover, the terms in the sum (1.23) are independent. (2) Starting from any state, the Markov chain X N,α (•) reaches equilibrium instantaneously.

In fact, (X N,α (t)) t≥1 is an i.i.d. sequence in Bα for all starting point X N,α (0).

(3) {φ N (t) : t ≥ 1} is a random walk with i.i.d jumps {Υ N (t) : t ≥ 1} distributed as Υ N law = log S N α , (1.24)
where S N is a N -vector with i.i.d. S α -distributed coordinates.

(4) v N = E[Υ N ], σ 2 N = Var[Υ N ]. (5) The invariant law m N,α has the same distribution as S N ||S N ||α . (6) The sequence {(V ∞ N,α (t, j)) N j=1 } t≥1 is i.i.d.
with common distribution m N,α . This is proved in Section 3.1. Note that, from the product of random matrices point of view, our results look very close to [START_REF] Cohen | The stability of large random matrices and their products[END_REF] in spirit, although only the symmetric stable case is treated there. However, an inspection of their proofs shows that they do not cover the case of positive totally asymmetric stable laws studied here. As the velocity and variance from Theorem 1.2 are now explicit, we can try to obtain their asymptotics when N grows.

Proposition 1.6. Assume {ω i,j (t) : t ≥ 1, 1 ≤ i, j ≤ N } is an i.i.d. family of S α -distributed random variables. Let c α := Γ(α) sin πα πα . (1.25)
Then, as N → ∞,

v N = α -1 log N + log log N + log c α + o(1), (1.26) 
σ 2 N = π 2 3α 2 log N + o( 1 log N ).
This is proved in Section 3.2. We now state the convergence of the rescaled random walk or polymer height to a Lévy process:

Theorem 1.7. Assume {ω i,j (t) : t ≥ 1, 1 ≤ i, j ≤ N } is an i.i.d. family of S α -distributed random variables. Then, for any sequence k N → ∞, we have that φ N (k N τ ) -γ N k N τ k N / log N α → S(τ ), (1.27)
in law in the Skorohod topology, where φ N is defined in (1.22) and

γ N = 1 α log N log N Γ(1 -α) + log k N α log N
and S(•) is a totally asymmetric Lévy process with exponent

ψ(u) = ∞ 1 (e iux -1) dx x 2 + 1 0 (e iux -1 -iux) dx x 2 .
(1.28)

The proof is very close to the one of the corresponding statement in [START_REF] Comets | Last passage percolation and traveling fronts[END_REF] and is given in Section 3.3. Finally, we obtain a Poisson-type convergence result for the invariant measure m N,α in the case of an S α -distributed environment. This is presented in Section 3.4.

1.4. Perturbative results. We will now study the case of environments that are perturbations of the S α laws. Let α ∈ (0, 1) and suppose {ω ij (t) : t ≥ 1, 1 ≤ i, j ≤ N } is an i.i.d. family of random variables with a common Laplace transform

ϕ(u) = E exp -u ω i,j (t) , u ≥ 0, such that 1 -ϕ(u) ∼ u α , u → 0 + .
(1.29) We view such an environment as a perturbation of the α-stable distributed environment, since ω lies in the domain of attraction of the α-stable law. It is important to note that Eω i,j (t) = ∞, therefore the various partition functions are not integrable and cannot be normalized. In particular, the models we consider are outside the range of application of the main techniques in the field of directed polymers [START_REF] Comets | Directed polymers in random environments[END_REF]. Let u α denote the distribution function of the logarithm of an S α random variable u α (x) = P(S α > e x ),

x ∈ R, (1.30) and let U N denote the front profile of the polymer,

U N (t, x) := 1 N N j=1 1 log Z N (t,j)>x , t ∈ N, x ∈ R. (1.31)
The random function x → U N (t, x) is the (inverse) distribution function of the polymer height function.

Theorem 1.8. Suppose the ω's satisfy (1.29) for a given α ∈ (0, 1).

(1) Then, for all t ≥ 2 and any i ∈ {1, • • • , N }, we have

Z N (t, i) ||Z N (t -1)|| α law -→ S α .
Moreover, for each k ≥ 1 and any sequence

K N ⊂ {1, • • • , N } with |K N | = k, we have Z N (t, i) ||Z N (t -1)|| α : i ∈ K N law -→ S ⊗k α .
(2) Furthermore, for all t ≥ 2, we have, with φ N from (1.22) and u α from (1.30)

U N t, x + φ N (t -1) → u α (x) a.s.,
as N → ∞, uniformly in x.

Comment: Since the polymer is pulled by the largest values, the height function is expected to grow like a moving front. Roughly, the front behaves like a wave traveling at speed v N , and one could try to look at it at time t around location v N t. But if the cardinality N of the monomer state space is large, the actual front can be rather different from v N t, so it is natural to look at it relative to a suitable random location φ N (t -1). Item (2) in Theorem 1.8 shows that, for ω close to an α-stable law (i.e., an exactly solvable model), the polymer height function seen from this location φ N (t -1) converges -without scaling -to the exactly solvable model.

Theorem 1.8 is proven in Section 4.2. In Section 4.1 we will also prove more complete results in the case of stable environments, including a fluctuation theorem; see Proposition 4.1.

General environments with fixed N

We note once for all that Ψ α is a continuous bijection from B ≡ B1 to Bα for any α > 0. Hence, it is enough to work with α = 1. The objects constructed on B1 can then be projected on the other α-symplexes yielding the results for general values of α. In particular, the relation

V ∞ N,α = Ψ α (V ∞ N,β
) appearing in part 2 of Theorem 1.1, follows immediately. Hence, we will restrict to α = 1 for the rest of this section. We follow the well-known theory of product of random matrices, see e.g. [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF][START_REF] Hennion | Stable laws and products of positive random matrices[END_REF].

2.1. Asymptotics of the Markov chain and stochastic contractivity. In this section we prove Theorem 1.1, using the following lemma, cf. section I in [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], which is the involved step. We reproduce the proof in the appendix as it contains some crucial ideas, in particular a contraction property. (And, moreover, it is beautiful.) Lemma 2.1. There exists a r.v.

V ∞ N taking values in B such that, for all v ∈ B, Π(t) • v converges a.s. to V ∞ N as t → ∞.
The convergence is a.s. uniform in v ∈ B. This immediately implies the almost sure convergence stated in part 2. of Theorem 1.1. Note that we can conclude that X N (t) converges in law to m N as t → ∞.

Lemma 2.2. The law m N of V ∞ N is the unique invariant probability, i.e., the unique probability measure on B such that, for all bounded continuous f : B → R,

B E f X • v dm N (v) = B f (v)dm N (v).
The law m N is usually called the Furstenberg measure.

Proof. From Lemma 2.1, V = lim t Π(2, t) • x converges a.s., and has the same law m N . The equality X(1)•V = V ∞ N is the claimed invariance property. Moreover, if m N is another invariant law, we get by iterating t times,

B E f Π(t) • x dm N (x) = B f (x)dm N (x).
By dominated convergence, the left-hand side converges to Ef (V ∞ N ), and we can conclude that m is the law of µ ∞ .

Lemma 2.3. The law m N is invariant for the Markov chain (X N (t); t ≥ 0), and the chain X N with initial law m N is ergodic. For any bounded continuous f : B → R and any initial condition X N (0) ∈ B, lim

t→∞ 1 t t s=1 f X N (s) = E f (V ∞ N ) , P-a.s. (2.1)
Proof. We can write (1.10) as X(0)

α • V ∞ N,α = V ∞ N,α • θ -1 .
Transposing this identity and using that (X(0),

V ∞ N , V ∞ N • θ -1 ) law = (X(1), ← - V ∞ N , ← - V ∞ N • θ 1 ), we see that ← - V ∞ N • X(1) = ← - V ∞ N • θ 1 . Since ← - V ∞ N and X(1) are independent and ← - V ∞
N is stationary with law m N , this equality implies that m N is invariant. Ergodicity is shown in Lemma 3.3 in [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]. Finally, the pointwise ergodic theorem (2.1) follows also from the previous and the contraction property, see Appendix A.2.

2.2.

Free energy and Lyapunov exponents. The Perron-Frobenius eigenvalue of the (strictly) positive matrix Π(t) is the r.v.

λ PF N (t) = min x∈(R * + ) N max 1≤i≤N Π(t)x i x i = max x∈(R * + ) N min 1≤i≤N Π(t)x i x i .
We start by stating that all coefficients of the matrix Π(t) grow like the Perron-Frobenius eigenvalue.

Lemma 

x i (Π(t)1) i ≤ Π(t)1 ∞ and x * Π(t)1 = i≤N x i (Π(t)1) i ≥ min i (Π(t)1) i x 1 = min i (Π(t)1) i (2.3) ≥ min i,j≤N ω i.j (1) max i,j≤N ω i.j (1) × max i (Π(t)1) i
Then the claim follows using that

N -1 |y| 1 ≤ |y| ∞ ≤ |y| 1 with y = Π(t)1 ∈ R N .
We are now able to show the existence of the free energy and the Gaussian fluctuations of the logarithm of the partition function.

Proof of Theorem 1.2. For a N × N -matrix χ, set χ 1 = N i,j=1 |χ i,j |. Since the norm • 1 is submultiplicative, we see that the doubly indexed sequence log Π(s, t) 1 (0 ≤ s ≤ t) is subbadditive and, by the subbadditive ergodic theorem (see e.g. the nice proof in [START_REF] Steele | Kingman's subadditive ergodic theorem[END_REF]), it follows that t -1 log Π(t) 1 converges a.s. to a limit v N , and similarly for the entries t -1 log Π i,j (t) 1 by Lemma 2.4. Moreover, from Theorem 3 in [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], a central limit theorem holds. It then suffices to recall that Z N (t, j) = (Π(t) * 1) j . Strict positivity of the variance follows from two results in [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]. By Corollary 3 therein, σ N = 0 implies that (e -tv N Π(t) 1 ) t≥1 is a tight sequence in (0, ∞). By Theorem 5, this is equivalent to a certain geometric property of the support of the law of X, which is clearly not satisfied for X with non-constant, i.i.d. entries. It remains to prove (1.11). By Lemma 2.4, we have

v N = lim t→∞ 1 t log Z N (t) 1 = lim t→∞ 1 t t s=1 log Z N (s) 1 Z N (s -1) 1 (1.5) = lim t→∞ 1 t t s=1 log X(s) * X N (s -1) 1 ergodic th. = E log X(1) * X N (0) 1 ,
which is equal to the RHS of (1.11).

Infinite volume measure.

In this section we prove the existence of the infinite volume polymer measure and of a co-variant measure.

Proof of Theorem 1.3. Recall the definition (1.12) of the finite horizon P2L polymer measure. It is well known, and easily checked, that P ω 0,i;T, is a time-inhomogeneous Markov chain on {1, . . . , N }, with 1-step transitions given for 0 ≤ t < T by

P ω 0,i;T, (j t+1 = j t = k) = ω k, (t + 1)Z N (t + 1, ; T, ) 1≤m≤N ω k,m (t + 1)Z N (t + 1, m; T, ) = ω k, (t + 1) Z N (t+1, ;T, ) Z N (t+1, ;T, )
1≤m≤N ω k,m (t + 1) Z N (t+1,m;T, )

Z N (t+1, ;T, )
But, a.s.,

Z N (t + 1, ; T, ) Z N (t + 1, ; T, ) N =1 = Π(t + 1, T ) • 1 -→ V ∞ N (t + 1)
3.1. The random walk representation. This section is devoted to the proof of Theorem 1.5 which summarizes the probabilistic structure of the model. Let by F t be the σ-field generated by the ω i,j (s) for s ≤ t and all i, j. Property (1.21) directly implies that for each j, conditionally on F t , S N (t + 1, j) has law S α , for all 1 ≤ j ≤ N . To deal with the N -vector, we fix λ j > 0 for 1 ≤ j ≤ N and we compute,

E[e -N j=1 λ j Z N (t+1,j) |F t ] = N i,j=1
E[e -λ j Z N (t,i)ω i,j (t+1

) |F t ] = exp{- N j=1 λ α j N i=1 Z N (t, i) α } (by (3.1)). (3.2)
Then

E[e -N j=1 λ j S N (t+1,j) |F t ] = exp{- N j-1 λ α j }, (3.3) 
which shows that, conditionally on F t , S N (t + 1, j) with 1 ≤ j ≤ N ) have law S α for all 1 ≤ j ≤ N and are conditionally independent. As a consequence, the random variables

{S N (t + 1, j) : t ≥ 1, j = 1, • • • , N } are i.i.d.
with common law S α . This proves Proposition 1.5, part 1. Now, recall the identity (1.23)

log Z N (t, j) = log S N (t, j) + φ N (t -1), (3.4) 
where φ N (t) denotes the height of the polymer at time t:

φ N (t) = log Z N (t) α . (3.5)
By definition of the α-norm,

φ N (t + 1) = α -1 log( N i=1 Z(t + 1, i) α ) = α -1 log N i=1 Z(t + 1, i) α Z N (t) α α + log Z N (t) α = α -1 log N i=1 S N (t + 1, i) α + φ N (t) (3.6) = log S N (t + 1) α + φ N (t). (3.7)
where S N (t) denotes the vector (S N (t, 1), • • • , S N (t, N )). From the independence observed above, the sequence {Υ N (t) : t ≥ 1} defined by

Υ N (t) = log S N (t) α is i.i.d.
, and (φ N (t)) t is a random walk with jumps Υ N (•). The identity (3.4) shows that {log Z j (t) : j = 1, • • • , N } is an independent N -sample of the α-stable law with an independent shift by φ N (t -1). The above discussion proves Theorem 1.5, part 3 and readily implies part 5.

We now turn to the proof of part 5 and 6 in Theorem 1.5. Let S = (S 1 , • • • , S N ) be a vector with i.i.d. entries following the law S α and let X = S ||S|| 1 . Then,

X(0) • X = X(0) • S = X(0) S ||X(0) S|| 1 = S || S|| 1 ,
where S = X(0) S ||X(0) S||α . By the conditioning argument above, we see that S has the same distribution as S. Hence, X and X(0) • X have the same distribution and the law of X is indeed the unique invariant measure for the system. 3.2. Asymptotic of the Lyapunov exponent for large N : We will prove Proposition 1.6, namely,

αv N = log N + log log N + log c α + o(1), α 2 σ 2 N = π 2 3 log N + o( 1 log N ),
with c α from (1.25). Recall from Theorem 1.5 that

v N = EΥ N = E log S N α = α -1 E log N j=1 S α (j),
for S N = (S(j); j = 1, • • • , N ) an N -sample of S α independent random variables, and

σ 2 N = E (Υ N -v N ) 2 (3.8) Note that P[S α 1 > x] ∼ 1 
xΓ(1-α) so that the S(j) α 's are in the domain of attraction of the totally asymetric stable law of index 1 that we will denote by S. This is the stable law of index α = 1, with characteristic function given for u ∈ R by

Ee iuS = exp ∞ 1 (e iux -1) dx x 2 + 1 0 (e iux -1 -iux) dx x 2 (3.9) 
= exp iCu -

π 2 |u| 1 + i 2 π sign(u) ln |u|
for some real constant C defined by the above equality. It takes real values, not only positive ones. We can then appeal to a general fluctuation result:

Proposition 3.1. Suppose (X i ) i is a family of i.i.d. positive random variables such that P [X 1 > x] ∼ x -1 L(x), with L(x) a slowly varying function. Let

a N = inf{x : P [X 1 > x] ≤ 1/N } and b N = N E[X 1 1 X 1 <an ]. (3.10) Then, N i=1 X i -b N a N law -→ S. (3.11) 
Proof. This is a particular case of [21, Th. 3.7.2].

In our case, we can replace a N , b N by their leading order (denoting them with the same symbol for simplicity): with a N = N Γ(1-α) and b N = N log N Γ(1-α) , we have

S N := Γ(1 -α) N × N j=1 S(j) α - N log N Γ(1 -α) law -→ S, (3.12) 
as N → ∞. In particular,

N j=1 S(j) α N log N → 1 Γ(1 -α) , (3.13) 
in probability, as N → ∞. The asymptotics for v N follows from next proposition:

Lemma 3.1. lim n→∞ E log N j=1 S(j) α N log N = -log Γ(1 -α). (3.14) 
Proof. To derive convergence of moments from the convergence in probability above, we prove uniform integrability, following arguments of [14, proof of Prop. 2.8]. It suffices to show that sup

N E Σ N /(N log N ) a < ∞ (3.15)
both for some for a > 0 and some a < 0, where Σ N = N i=1 S(i) α . For the first purpose, let ΣN = N i=1 S α i 1 {S α i ≤N u} and note that

P(Σ N = ΣN ) ≤ N P(S α i > N u) ∼ Γ(α)
sin(πα) πu as N → ∞. Use Markov inequality and bound, for u > 0,

P(Σ N /(N log N ) > u) ≤ u -1 E ΣN /(N log N ) + P(Σ N = ΣN ) = O(u -1 log u),
which implies (3.15) for a ∈ (0, 1). We now treat the case a = -1: write by Fubini's theorem

E Σ N /(N log N ) -1 = ∞ 0 Ee -tΣ N /(N log N ) dt = ∞ 0 g t/(N log N ) N dt,
where

g(t) = E exp{-t(S α ) α } ≤    1 -C 1 t| log t| t ∈ (0, 1/2], C 2 t ∈ [1/2, log N ], t -γ , t > log N, (3.16) 
for some C 1 > 0, C 2 ∈ (0, 1) and γ > 0. The bound for t ∈ (0, 1/2) follows from the explicit rate of decay of the tails of S α , whereas the one for t > 2 follows from the fact that the density of S α at s is O(s). Plugging the bounds (3.16) into the above integral, we get (3.15) for a = -1.

This ends the proof of Proposition 1.6 and yields αv N ∼ log N + log log N -log Γ(1 -α).

As for the variance, first note that, by [14, Lemma 2.6] (or even the arguments in the proof above), log N j=1 S(j) α has finite variance. Now, with Σ N as in the proof of the previous lemma,

log Σ N c α N log N = log 1 + 1 log N S N = F N (S N ), (3.17) 
where S N is defined in (3.12), c α = 1/Γ(1 -α) and F N (x) = log(1 + x log N ). Let L > 0 and observe that the functions log N × F 2 N (x) are uniformly bounded and uniformly continuous on {x ≤ L √ log N }. Assume that, on our probability space, S N → S almost surely. Then, Proof. Theorem 1.7. In this section, we proceed as in [START_REF] Comets | Last passage percolation and traveling fronts[END_REF], Theorem 3.2. We first expand Υ N from (1.24). Recall that

log N E F 2 N (S N )1 |S N |≤L √ log N ∼ log N E F 2 N (S)1 |S N |≤L √ log N (3.18) ∼ log N ∞ 0 F 2 N (y)
Υ N = 1 α log N j=1 S α j ,
A more familiar formulation is that { S i N 1/α } converges to a PPP with intensity proportional to s -(1+α) . Accordingly, it is tempting to rewrite

X ∞ N,α (t) = N -1/α S N (t) N j=1 (N -1/α S N (t, j)) α 1/α , (3.25) 
but the denominator diverges, as

N j=1 S N (t, j) α N log N → 1 Γ(1 -α) , (3.26) 
so that it is not unreasonable to expect

(log N ) 1/α × X N,α (t) = N -1/α S N (t) N j=1 S N (t,j) α N log N 1/α (3.27)
to converge in some sense. Since the limit would have infinitely many points in the neighborhood of 0, we perform a non-linear transformation on the point process, and consider σ i = -log τ i .

Proposition 3.2. Assume ω i,j ∼ S α . We have the convergence of the point process

N i=1 δ α log X ∞ N,α (i)+log 2 N law -→ i≥1 δ σ i (3.28)
with (σ i ) i a Poisson point process with intensity e -σ dσ on R. (log 2 = log log.)

We make a comment on localization: Directed polymers on the lattice in strong disorder regime have macroscopic atoms, in the sense that the favorite sites at the ending time have mass bounded away from 0 [START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF][START_REF] Bates | The endpoint distribution of directed polymers[END_REF][START_REF] Bates | Localization of directed polymers with general reference walk[END_REF]. Here, the largest mass vanishes at order (log N ) -1/α . Localization is thus rather weak in our model.

Perturbative results

As a preliminary, we show an additional result when the environment is distributed as the stable law. 

U N t, x + φ N (t -1) → u α (x), uniformly in x. (2) As N → ∞, log N × U N t, x + (t -1) v N + φ N (0) -u α (x) law -→ u α (x)Z.
where Z is distributed as a sum of t -1 independent S random variables (see definition (3.9)) i.e., equal in law to (t -1)S up to a shift.

Proof. Let X N (t, j) (3.4) ≡ log S N (t, j) := log Z N (t, j) -φ N (t -1) Recall from Theorem 1.5 that the random variables {X N (t, j) : t ≥ 1, 1 ≤ j ≤ N } are i.i.d. with common law log S α . Hence, conditionally on F t-1 , U N (t, x + φ N (t -1)) is a sum of independent Bernoulli random variables with parameter u α (x). Pointwise convergence in item (1) then follows from the law of large numbers. Further, pointwise convergence of monotone functions to a continuous limit is uniform on compact by Dini's theorem; in fact, the limit is even uniform on R because the functions are bounded. All this yields item (1). To prove item (2), first observe that

U N (t, x + (t -1) v N + φ N (0)) = N j=1 1 {X N (t,j)>x-[φ N (t-1)-φ N (0)-(t-1)v N ]}
is, conditionally on F t-1 , a binomial r.v.. By (1.22) and (1.24),

α[φ N (t -1) -φ N (0) -(t -1)v N ] = α t-1 l=1 [Υ N (l) -v N ] = t-1 l=1 [log S N (l) α α -αv N ]
Since the i.i.d. variables S(l, j) α belong to the domain of attraction of S, we can write

S N (l) α α = N j=1 S(l, j) α =: c α N log N + c α N S N (l)
where the variable S N (l) defined by this equality is such that S N (l)

law -→ S as N → ∞ (see (3.12)). Since e αv N = c α N log N (1 + o(1)) by (1.26), we have α φ N (t) -φ N (0) -tv N = t l=1 log 1 + 1 log N S N (l) + o(1) .
From this, we deduce that α log N × [φ N (t -1) -φ N (0) -(t -1)v N ] converges in law to the sum of (t -1) independent S random variables. Moreover, for any sequence z N → 0, the central limit theorem for binomial variables implies,

N 1/2 × 1 N N j=1 1 {αX N (t,j)>αx-z N } -u α (x -z N ) law -→ N (0, u α (x)[1 -u α (x)]).
Together with a suitable Taylor expansion, we see that the Gaussian fluctuations vanish at the relevant scale,

log N × 1 N N j=1 1 {αX N (t,j)>αx-z N } -u α (x) + u α (x) • z N → 0. Taking z N = α[φ N (t -1) -φ N (0) -(t -1)
v N ] and recalling the stable limit for z N log N , we complete the proof of the second statement.

4.2.

Wave front for perturbations of the α-stable case. We give the proof of Theorem 1.8. It is plain to see that hypothesis (1.29) is equivalent to

ϕ(u) = exp{-u α (1 + ε(u))} with lim u→0 + ε(u) = 0 , (4.1) 
by considering the function ε

(u) = -u -α log ϕ(u) -1 for positive u. Define ZN (t, j) := Z N (t, j) ||Z N (t -1)|| α = N i=1 a N,i ω ij (t), (4.2) 
where a N,i = Z N (t-1,i) ||Z N (t-1)||α . Note that that a N,i are functions of X(1), . . . X(t -1) and that

N i=1 a α N,i = 1. Now, E[exp{-u ZN (t, j)}|F t-1 ] = N i=1 ϕ(ua N,i ) = exp - N i=1 (ua N,i ) α 1 + ε(ua N,i ) (by (4.1)) = exp -u α 1 + N i=1 a α N,i ε(ua N,i
) .

In the next section we will prove the following Lemma 4.1. Under the above hypothesis (1.29),

sup i≤N { a N,i ∞ } ≡ sup{a N,i ; 1 ≤ i ≤ N, X(1), . . . , X(t -1)} = o(1)
in probability as N → ∞ when t ≥ 2.

With the lemma at hand, we finish the proof. Then, the computation above yields

E[exp{-u ZN (t, j)}|F t-1 ] = exp -u α 1 + o(1) -→ exp {-u α } = E[exp{-uS α }]
for all u ≥ 0. This implies (e.g., [START_REF] Feller | An introduction to probability theory and its applications[END_REF] theorem 2, p.431) that ZN (t, j) law -→ S α , which is the first claim of the theorem. Conditionally on F t-1 , the variables (Z N (t, i)/||Z N (t -1)|| α : i ∈ K N ) are i.i.d., so the second claim follows directly. We end by proving item [START_REF] Bakhtin | Localization and Perron-Frobenius theory for directed polymers Mosc[END_REF]. From the law of large numbers for triangular arrays of i.i.d. random variables, the claim follows for all real x. Then, uniformity is obtained similarly to the proof of Proposition 4.1. This ends the proof of Theorem 1.8.

4.3.

Proof of Lemma 4.1. We start with a simple proof under a stronger assumption, because the coupling argument there makes things transparent. In a second step, we give the proof under our general assumption. 4.3.1. Coupling. In this section we present the proof under more restrictive hypothesis: We assume there exist constants a < b such that

u α (x -b) ≤ P log ω i,j (t) ≤ x ≤ u α (x -a) , x ∈ R. (4.3) 
with u α from (1.30). This allows to couple the environment ω at time t -1 with i.i.d. α-stable random variables s i,j on a larger probability space in such a way that

c -1 s ij ≤ ω ij (t -1) ≤ cs ij , 1 ≤ i, j ≤ N, (4.4 
)

with c = max{a -1 , b} > 1. Define ZN (t -1, j) = N i=1 Z N (t -2, i)s ij (4.5)
Then, for some constant C, we have

a N,i ≤ C ZN (t -1, i) || ZN (t -1)|| α = C S i N j=1 S α j 1/α , (4.6) 
where the random variables S j = Z(t-1,j) || Z(t-1)||α , j = 1, • • • , N are now independent and S αdistributed. As noted above, the S α j 's are in the domain of attraction of S, so that the denominator is O((N log N ) 1/α ). Recall that the sum of the S i 's is O(N 1/α ), we conclude that N i=1 a N,i = O 1 (log N ) 1/α in probability. The estimate is uniform on F t-1 . 4.3.2. Proof completed. In this section we present the proof under the standing hypothesis (1.29). First, recall a well-known relation on tails of distribution and Laplace transform of a positive r.v. V : The equivalent hypothesis (4.1), Ee -uV = exp{-u α (1 + ε(u))} with lim u→0 + ε(u) = 0, is itself equivalent, by the Tauberian theorem (Corollary 8.1.7 in [START_REF] Bingham | Encyclopedia of Mathematics and its Applications[END_REF]) to

P[V ≥ x] ∼ 1 x α Γ(1 -α) , x → ∞. (4.7) 
We note that ZN (t, i) defined in (4.2), satisfies (4.1) (equivalently, (1.29)). Indeed, E(exp{-u ZN (t, j)}|F t-1 ) = exp -u α 1 + N i=1 a α N,i ε(a N,i u) ,

where we can bound the sum uniformly by max{ε(v); v ∈ [0, u]}, which vanishes as u → 0. Then, we apply the above to V = ZN (t -1, i), which obeys the tail estimate (4.7). Thus, we can apply the theory of extreme statistics for triangular arrays of i.i.d. real variables, which implies that the maximum of ZN (t -1, i) over i normalized by N -1/α converges to a Frechet law. In complete details, we have (e.g., [START_REF] Bovier | Gaussian processes on trees. From spin glasses to branching Brownian motion[END_REF], Th. 2.28) 1 ZN (t -1, i)

N 1/α : i ≤ N law -→ PPP with intensity α Γ(1 -α) x -(1+α) 1 R + .
This point process has a finite right-most point and the sum of the α-powers of its terms diverges. Hence, log a N,i ≤ max (iv) For the product of two positive matrices g, g , c(gg ) ≤ c(g)c(g ) ;

(v) c(g * ) = c(g).

A.2. Stochastic contractivity. We present the proof of Lemma 2.1. Recall our principal task consists in showing the existence of a B-valued r.v. V ∞ N such that, Π(t) • x → V ∞ N a.s. for all x ∈ B as t → ∞. The random sequence c(Π(t)) decreases and hence has a limit for all ω. By item (iv) of Proposition A.1, c(Π(t)) ≤ t-1 s=0 c(X(s)). By item (iii), each term is strictly less than 1, and by independence, we have a.s. lim sup t→∞ t -1 log c(Π(t)) ≤ E log c(X) < 0. (In fact, by subadditivity, the lim sup is an a.s. limit, and the value is inf t t -1 E log c(Π(t)).) Then, the random polygons K(t, ω) = {Π(t) • x; x ∈ B} form a decreasing sequence of compact subsets of B, so that they have a limit,

K(ω) = t≥1 K(t) = ∅.
If x, y ∈ K(ω), we have for all t, d(x, y) ≤ sup{d(Π(t) • x , Π(t) • y ); x , y ∈ B} ≤ c(Π(t)), so the distance is 0. Finally, K(ω) reduces to a random point, say V ∞ N of B. In particular, V ∞ N ∈ K(t) implies that d(Π(t) • x, V ∞ N ) ≤ c(Π(t)) → 0, so that Π(t) • x → V ∞ N in the d-distance as well as in the Euclidean distance by item (i) of Proposition A.1.

dy y 2 . ( 3 . 19 )= π 2 3 . 3 . 3 .

 2319333 By a simple change of variable, the last quantity equals ∞ 0 log 2 (1 + y) dy y 2 Scaling of the polymer height.

  , N → ∞.(4.8) This proves the lemma. which belongs to B for all x ∈ B. The set B can be equipped with a convenient metrics d(x, y), which relates to the Hilbert distance (see[START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] Remark below Prop. 3.1]). For x, y ∈ B let m(x, y) = sup{λ ≥ 0 :λy i ≤ x i , ∀i ≤ N } ∈ [0, 1],and define, with φ(s) = (1 -s)/(1 + s), d(x, y) = φ m(x, y)m(y, x) .Proposition A.1 (Sect. 10 in[START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]). The map d : B × B → [0, 1] defines a distance on B, and we have: (i) The topology of (B, d) is the topology on B induced by the usual topology on R N . For x ∈ B \ B and y ∈ B, we have m(x, y) = 0 and then d(x, y) = 1. Also, x -y 2 ≤ 2d(x, y), x, y ∈ B. Define the contraction coefficient c(g) of a positive N × N matrix g as c(g) = sup{d(g • x, g • y); x, y ∈ B} ∈ [0, 1]. Then, (ii) ∀x, y ∈ B, d(g • x, g • y) ≤ c(g)d(x, y) ; (iii) If g has strictly positive entries, c(g) < 1 ;

  4.1.Wave front in the α-stable case. Recall U N (t, x), u α and φ N from (1.31), (1.30) and (1.22) respectively. Proposition 4.1. Assume ω i,j ∼ S α , and fix t ≥ 1 arbitrary.(1) Conditionally on F t , we have a.s., as N → ∞,
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as T → ∞, so the above transition converges, P ω 0,i;T, (j t+1 = j t = k) -→ ω k, (t + 1)V ∞ N (t + 1, )

.

This proves that the finite horizon P2L polymer measure converges to the Markov chain P ω given by the transition probabilities (1.16). In order to obtain (1.17), one can use a shifted version of (1.10), X(t + 1) • V ∞ N (t + 1) = V ∞ N (t), to rewrite the denominator in the RHS of (1.16) as

We end by proving the second part of Theorem 1.3. Note that (1.15) writes

where

Summing over k and using (1.13) we get

Summing now over we derive the identity

Using (2.8) back in the RHS of (2.7) we see that it is equal to ν N (t + 1, ), proving the claim.

Remark 2.1. We have in fact a time-reversal property. Define the (time-inhomogeneous) transition probability ← -

from which stationarity follows immediately. The time-reversed of the chain discussed in item 2) of Theorem 1.3 is the chain with transitions ← -P ω and starting at time 0 from the law ν N (0, •).

Exact solution for stable laws

We consider the particular cases when ω i,j (t) law = S α , the stable law of index α ∈ (0, 1), see [START_REF] Bertoin | Subordinators: examples and applications[END_REF][START_REF] Durrett | Probability: theory and examples[END_REF]. We recall that it is supported by R + and that, for λ > 0,

for S 1 , • • • , S N independent S α -distributed random variables. From (3.12), we get

with S N converging to S, the totally asymmetric stable law of exponent 1 given by (3.9) . Hence,

so that, for all t ≥ 1,

with

. This gives the scaling limit of the jumps of the walk φ N . To get the scaling limit for the walk itself, we use basic convergence theorems of independent increments processes. We apply Theorems 3.2 in [START_REF] Jacod | Théorèmes limite pour les processus[END_REF], taking Y n m , γ n (t) in formula (3.1) in that paper equal S N (m), k N t respectively. We derive the desired convergence (1.27) after a few manipulations.

Asymptotics of the invariant measure. Recall the definition

where we recall that {S N (t, j) : t ≥ 1, 1 ≤ j ≤ N } is an i.i.d. family of S α -distributed random variables.

We borrow a (basic) version of Theorem 5.7.1 from [START_REF] Leadbetter | Rootzén: Extremes and related properties of random sequences and processes[END_REF]:

Lemma 3.2. Let (X i ) i be i.i.d. random variables with common distribution function F and let

Then, the point process

converges weakly to the Poisson point process (PPP) on R + with intensity measure the Lebesgue measure.

In our setting, 1 -F (u) ∼ cu -α as u → +∞ with c = Γ(1 -α) -1 so that we can choose

Let (S i ) i be an i.i.d. family of S α -distributed random variables. Then, according to the above result, the point process

converges weakly to a Poisson point process (τ i ) i with intensity dτ on R + .

Appendix A. Projective space and stochastic contractivity

For the sake of completeness, we give a proof of Lemma 2.1 and expose the principal ideas leading to it.

A.1. Contraction in the projective space. When studying random matrix products, it is convenient to introduce the projective action of these matrices. See, e.g., [START_REF] Bougerol | Products of random matrices with applications to Schrdinger operators[END_REF] for invertible matrices, and [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] for positive matrices. Projectively, that is, when only the directions are considered, the elements of the positive N - uniformly over F t-2 . This is all what we need in the i.i.d. case to apply the theorem.