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RANDOM POLYMERS ON THE COMPLETE GRAPH

FRANCIS COMETS1,5, GREGORIO MORENO2,4,5 AND ALEJANDRO F. RAMÍREZ3,4,5

Abstract. Consider directed polymers in a random environment on the complete graph of
size N . This model can be formulated as a product of i.i.d. N × N random matrices and
its large time asymptotics is captured by Lyapunov exponents and the Furstenberg measure.
We detail this correspondence, derive the long-time limit of the model and obtain a co-variant
distribution for the polymer path.

Next, we observe that the model becomes exactly solvable when the disorder variables are
located on edges of the complete graph and follow a totally asymmetric stable law of index
α ∈ (0, 1). Then, a certain notion of mean height of the polymer behaves like a random walk
and we show that the height function is distributed around this mean according to an explicit
law. Large N asymptotics can be taken in this setting, for instance, for the free energy of the
system and for the invariant law of the polymer height with a shift. Moreover, we give some
perturbative results for environments which are close to the totally asymmetric stable laws.

1. Introduction and results

Directed polymers in random environments were introduced in [26] as a model for the phase
separation line of the 2d Ising model in the presence of impurities. Since then, they have been
the subject of an important body of work both in the mathematics and physics communities.
On the mathematics side, their study started with the work [29], shortly followed by [6]. An
up-to-date account on the mathematical treatment of directed polymers can be found in [14].
On the physics side, this model was often studied in connection with growing surfaces. In
particular, it was observed that the Kardar-Parisi-Zhang equation [31] can be considered as a
continuum version of directed polymers [32].

In its usual discrete version, the model can be formulated in terms of two basic ingredients: (i)
The polymer paths are given a-priori by the trajectories of a simple symmetric random walk
on Zd starting at the origin, whose law we denote by P ; (ii) The environment is given by a
family {η(t, x) : t ≥ 1, x ∈ Zd} of i.i.d. random variables with common distribution P. Then,
given t ≥ 0, β > 0 and a fixed realization of the environment, we define the polymer measure
on nearest-neighbor paths x of length t as the probability measure

µηt,β(dx) =
1

Zη
t,β

exp{β
t∑

s=1

η(s,xs)}P (dx),

where Zη
t,β is the normalizing constant.
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RANDOM POLYMERS ON THE COMPLETE GRAPH 2

In this note, we propose to replace, in the above definition, Zd with its natural graph structure
by the complete graph with N sites. The precise definition of the model is deferred Section 1.1.
Alternatively, this can be seen as a polymer with long-range jumps on a finite state space.

Large finite state spaces have been considered in the literature as approximations of infinite
systems, for instance [9] for directed polymers on a cylinder, or directed polymers on n-trees
as in [17]. In [10], a zero-temperature version of our model was introduced to compute the
corrections for large finite systems to continuous limit equations of front propagation.

There are several additional reasons to consider polymers on other graphs. First of all, they
offer several simplifications compared to the original model on Zd or Rd. In this respect,
models on the complete graph can be seen as a mean field approximation, much in the same
way the Curie-Weiss model relates to the Ising model. When considering mean-field versions
of directed polymers it is more common to refer to polymers on the tree [11] [19], but these
models show fundamental differences with the original ones [14]. Our model on the complete
graph preserves some features, and can also be seen as a positive temperature version of the
last passage percolation studied in [10, 15] from where we draw many ideas.

This approximation of infinite graphs by finite ones can be made quantitative. For instance,
the paper [21] considers a particular product of random symplectic matrices corresponding to
a random diffusion on the d-dimensional discrete torus. Assuming d ≥ 3 and weak disorder, it
is shown that, as the sidelength of the torus goes to infinity, the largest Lyapunov exponent of
the product converges to the one of the usual Laplacian on the full lattice.

In a related spirit, models on arbitrary countable graphs are considered in [12] where the a
priori law on the path space is an ergodic Markov chain.

Finally, on the complete graph, we are able to find a law on the environment that makes the
model solvable in the sense that the law of the properly normalized partition function can
be computed explicitly. This is analogous to the zero-temperature version of the model from
[10, 15, 18]. Exactly solvable models are rare in statistical mechanics, and they result most
informative. This one seems to be new. In the case of polymers on the lattice, we can however
cite [38] for the original model on Z and [35] for a semi-continuous counterpart.

The study of polymer models on finite graphs falls in the scope of products of random matrices.
More precisely, the free energy is related to the top Lyapunov exponent of such products for
which a complete theory has been established in the literature initiated in [24] and developped
in particular in [7, 13, 23, 25, 27, 28, 34]. This formalism allows us to derive, for example, the
existence of the free energy as well as Gaussian fluctuations for the logarithm of the partition
function. In different direction, we mention [1] which gives a nice account on Perron-Frobenius
theory for product of random matrices together with its relation to thermodynamic formalism.
For ”infinite matrices” – i.e. for random positive operators in infinite dimension, limits may
fail to exist due to lack of compactness. The authors in [2, 36] deal with products of random
operators on the whole Zd, but some localization features – a priori embedded in the special
models – make them essentially compact.

1.1. Directed polymers on the complete graph. We study the following model of directed
polymers on the complete graph with N sites: for t ≥ 1 integer and 1 ≤ i, j ≤ N , consider the
set of paths starting at location i at time 0 and ending at j at time t,

JN(0, i; t, j) =
{
j = (j0, · · · , jt) : 1 ≤ js ≤ N, ∀1≤s≤t−1; j0 = i, jt = j

}
. (1.1)

Let {ωi,j(t) : 1 ≤ i, j ≤ N, t ≥ 0} be a family of i.i.d. positive random variables defined on
some probability space (Ω,A,P). For a fixed realization of the environment and t ≥ 1, we
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define the point-to-point (P2P) polymer partition function

ZN(0, i; t, j) =
∑

j∈JN (0,i;t,j)

t∏
s=1

ωjs−1,js(s). (1.2)

Viewed as a function of j, its logarithm is referred to as the polymer height function. We denote
with a ? quantities Q(?) which are, depending on the context, unions or sums over locations
j ∈ {1, . . . N} of Q(j). For instance, JN(0, i; t, ?) = ∪Nj=1JN(0, i; t, j), and ZN(0, i; t, ?) =∑N

j=1ZN(0, i; t, j) is the so-called point-to-line (P2L) polymer partition function. Similarly,

JN(0, ?; t, j) = ∪Ni=1JN(0, i; t, j), and ZN(0, ?; t, j) =
∑N

i=1ZN(0, i; t, j) is the line-to-point (L2P)
partition function.

Our analysis will rely on a tight relation between our model and products of random matrices
which emerges from the following observation: defining the N ×N matrix Π(t) as the product

Π(t) = X(1)X(2) · · ·X(t),

of the matrices X(t) = [ωi,j(t)]i,j, we see that the P2P partition function (1.2) is the (i, j)-entry
of Π(t),

ZN(0, i; t, j) = Π(t)i,j . (1.3)

(We do not indicate in the notation the dependence in N of X and Π, although we will let N
go to infinity at some stage.) Let us denote by ZN(t) the (column) vector given by the L2P
partition functions

ZN(t) =
(
ZN(0, ?; t, 1), · · · ,ZN(0, ?; t, N)

)∗
where M∗ denotes the transposed of the matrix M . Our convention in the paper is that all
vectors are column vectors, and we write v(j) for the j-th coordinate of v, so that ZN(t, j) ≡
ZN(0, ?; t, j). From (1.3), we obtain

ZN(t)∗ = 1∗Π(t), (1.4)

where 1∗ denotes the N -dimensional row vector with all entries equal to 1. Similarly, the vector
of P2L partition functions can be written as Π(t)1.

This point of view allows us, among other things, to relate the free energy of the model to the
Lyapunov exponent of products of i.i.d. random matrices. In our case the matrices have an
additional feature – entries are i.i.d. – but the theory applies to the general case under mild
assumptions. At this point, it is convenient to take (1.4) as the starting point of our analysis
and consider the slightly more general framework of the recursion

ZN(t)∗ = ZN(t− 1)∗X(t) (1.5)

allowing general initial conditions ZN(0) ∈ RN
+ \ {0}.

We follow the formalism of [27, 28] based on the action of products of random matrices on

projective spaces. For v ∈ RN
+ \{0} and α > 0, define the α-norm of v as ||v||α = (

∑N
j=1 v

α
i )1/α.

Of course, this quantity is a norm only in the case α ≥ 1. Next, we introduce the α-symplex

B̄α = {v ∈ RN
+ : ||v||α = 1},

together with the projection Ψα(v) = v
||v||α from RN

+ \ {0} onto B̄α.

For v ∈ RN
+ \ {0} and X an N -by-N matrix with positive entries, we define the product

α· by

X
α· v :=

Xv

||Xv||α
∈ B̄α.

We will drop the subscripts and superscripts from the notation when α = 1 and write

B̄ := B̄1, X · v := X
1· v.
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Finally, define

XN,α(t) := Ψα(ZN(t)) =
ZN(t)

||ZN(t)||α
∈ B̄α,

and, again, write XN := XN,1. This leads to the simple decomposition

logZN(t, i) = log ||ZN(t)||α + logXN,α(t, i) (1.6)

Note that, by the recursion (1.5) and homogeneity, we have

XN,α(t) = Ψα

(
X(t)∗ZN,α(t− 1)

)
= Ψα

(
X(t)∗XN,α(t− 1)

)
,

showing that {XN,α(t) : t ≥ 0} is a Markov chain. We list further important properties of this
chain in the next theorem.

1.2. Product of random matrices and polymer model structure. All three results in
this subsection come as applications of the general theory of product of independent random
matrices. They are overlooked in this context, although they provide a complete understanding
of the model for a fixed N . For integers s < t, let

Π(s, t) = X(s+ 1) . . .X(t), Π(t, t) = IN , Π(t) = Π(0, t).

Theorem 1.1. Let ZN(0) ∈ RN
+ .

(1) For all α > 0, the recursion (1.5) with initial condition ZN(0) defines a time-inhomogeneous
Markov chain {XN,α(t) : t ≥ 0} with values in B̄α.

(2) There exists an event Ω0 with P(Ω0) = 1 such that the (random) limit

V ∞N,α = lim
t→∞

Π(t)
α· v, (1.7)

exists for all α > 0, ω ∈ Ω0 and does not depend on v ∈ RN
+ . Moreover, V ∞N,α = Ψα(V ∞N,β)

for all α, β > 0.
(3) Let mN,α denote the law of V ∞N,α. The chain (XN,α(t))t≥0 with initial law mN,α is sta-

tionary and ergodic.
(4) Denote by θs the shift on Ω by s ∈ Z, θsω(t) = ω(s+ t), and set

V ∞N,α(s) := V ∞N,α ◦ θs = lim
t→∞

Π(s, t)
α· v, (1.8)

and V ∞N,α(s, j) the j-th component of this vector. (In particular, V ∞N,α(0) = V ∞N,α.) Then,

X(0)
α· V ∞N,α = V ∞N,α(−1) (1.9)

This is proved in Section 2.1 and the Appendix.

Our next result states the almost sure existence of the free energy as well as Gaussian fluc-
tuations for the logarithm of the partition function. From (1.6), note that the asymptotics of
logZN(t, i) is essentially given by that of the first term. That this limit is independent of α
comes from the observation that, for each α > 0, there exists a constant cN(α) ∈ (1,∞) such
that

cN(α)−1||v||1 ≤ ||v||α ≤ cN(α) ||v||1, ∀ v ∈ RN
+ .

Theorem 1.2. Fix N , assume that the ω’s are not constant and that E| logωi,j|2+δ < ∞ for
some positive δ. Then, there exist numbers vN and σN > 0 such that, for all j = 1, . . . N ,

lim
t→∞

1

t
logZN(t, j) = vN a.s.,

and
1√
t

(
logZN(t, j)− vN t

) law−→ N (0, σ2
N) as t→∞.

Furthermore, with V ∞N,α from (1.7),

vN = E
[
log ||X(0)V ∞N,α||α

]
. (1.10)
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We give a proof in Section 2.2.

We now turn to the asymptotic of the polymer measure. The P2L polymer measure starting at
i with time-horizon T , denoted by P ω

0,i;T,?, is the (random) probability measure on JN(0, i;T, ?)
given by

P ω
0,i;T,?

(
j = (j0, · · · , jT )

)
=

1

ZN(0, i;T, ?)

T∏
s=1

ωjs−1,js(s) . (1.11)

Similarly to Proposition 1.1, there exists an almost-sure limit to the “backwards-in-time” prod-
uct

←−
V ∞N,α(s) = lim

t→−∞
Π(t, s)∗

α· v (1.12)

which does not depend on v ∈ RN
+ . Since X(0)∗

law
= X(0), we have

←−
V ∞N,α(s)

law
= V ∞N,α. (1.13)

Our second set of results states the existence of an infinite volume polymer measure together
with a co-variant law: define the random probability measure νN(t, ·) on {1, . . . N} by

νN(t, j) :=

←−
V ∞N,α(t, j)V ∞N,α(t, j)∑N
k=1

←−
V ∞N,α(t, k)V ∞N,α(t, k)

=

←−
V ∞N (t, j)V ∞N (t, j)∑N
k=1

←−
V ∞N (t, k)V ∞N (t, k)

, (1.14)

since the ratio in the second term does not depend on α, by Theorem 1.1, point 2. In words,
the co-variant law is proportional to the doubly infinite product of weights over polymers (from
times −∞ to +∞) which take the value j at time t.

Theorem 1.3. (1) For almost every environment ω, the polymer measure P ω
0,i;T,? converges

as T →∞ to the (time-inhomogeneous) Markov chain with P ω(j0 = i) = 1 and transi-
tion probabilities given by

P ω(jt+1 = `
∣∣jt = k) =

ωk,`(t+1)V ∞N (t+1, `)∑N
`′=1 ωk,`′(t+1)V ∞N (t+1, `′)

(1.15)

=
1

‖X(t+1)V ∞N (t+1)‖1

× ωk,`(t+1)V ∞N (t+1, `)

V ∞N (t, k)
(1.16)

for t ≥ 0, k, ` ∈ {1, . . . N}.
(2) Let ω ∈ Ω0. For the chain with transition (1.15) starting at time s with law νN(s, ·), we

have for t ≥ s,

P ω(jt = `) = νN(t, `) , ` = 1, . . . N.

This is proved in Section 2.3.

Note that, if ZN(0, ·; t, ?) denotes the vector (ZN(0, 1; t, ?), · · · ,ZN(0, N ; t, ?))∗, then

ZN(0, ·; t; ?) = Π(t) 1, (1.17)

where Π(t) is defined in (1.4). This representation allows us to define a polymer measure with
more general initial conditions. The above theorem can be easily adapted to this setting.

Remark 1.4. The law mN = mN,1 is the limit law of the endpoint distribution which appears
in [3] as a fixed point. (Of course, for a finite state space, there is no question of localization
and the disorder is always strong.) The previous theorems provide much more information in
this simplified framework.



RANDOM POLYMERS ON THE COMPLETE GRAPH 6

1.3. Case of α-Stable Environments. We consider now the particular cases when the en-
vironment follows a stable law of index α ∈ (0, 1), see [5, 20]. The law Sα is supported on R+

and can be defined via its Laplace transform: if S is distributed according to Sα, then

Ee−λS = e−λ
α

, (1.18)

for all λ ≥ 0. In particular, if S1, · · · , SN are N independent Sα-distributed random variables,
then

N−1/α

N∑
i=1

Si
law
= Sα, (1.19)

and, more generally,
N∑
i=1

aiSi
law
= Sα, (1.20)

provided
∑N

i=1 a
α
i = 1 and ai ≥ 0. The tail of Sα is known to decay polynomially,

P[S > x] ∼ 1

Γ(1− α)
x−α,

as x→∞. Furthermore, Sα is the limit of properly normalized sums of i.i.d. random variables
exhibiting similar decay.

It turns out that this choice of environment makes the model solvable, in the sense that the
law of the (properly normalized) partition function is explicit. The decomposition (1.6) has to
be slightly modified to reveal the rich structure of this version of the model: let

SN(t, j) :=
ZN(t, j)

||ZN(t− 1)||α
, φN(t) := log ||ZN(t)||α, (1.21)

so that

logZN(t, j) = log SN(t, j) + φN(t− 1). (1.22)

There are many reasonable manners to measure the mean height of the polymer. However the
α-norm yields an unexpectedly simple description. The full probabilistic structure of the stable
case is detailed in the next theorem.

Theorem 1.5. Suppose {ωi,j(t) : t ≥ 1, 1 ≤ i, j ≤ N} is an i.i.d. family of Sα-distributed
random variables. Then,

(1) {SN(t, j) : t ≥ 1, 1 ≤ j ≤ N} is an i.i.d. family of Sα-distributed random variables.
Moreover, the terms in the sum (1.22) are independent.

(2) Starting from any state, the Markov chain XN,α(·) reaches equilibrium instantaneously.
In fact, (XN,α(t))t≥1 is an i.i.d. sequence in B̄α for all starting point XN,α(0).

(3) {φN(t) : t ≥ 1} is a random walk with i.i.d jumps {ΥN(t) : t ≥ 1} distributed as

ΥN
law
= log ‖SN‖α, (1.23)

where SN is a N-vector with i.i.d. Sα-distributed coordinates.
(4) vN = E[ΥN ], σ2

N = Var[ΥN ].
(5) The invariant law mN,α has the same distribution as SN

||SN ||α
.

(6) The sequence {(V ∞N,α(t, j))Nj=1}t≥1 is i.i.d. with common distribution mN,α.

This is proved in Section 3.1.
Note that, from the product of random matrices point of view, our results look very close to
[13] in spirit, although only the symmetric stable case is treated there. However, an inspection
of their proofs shows that they do not cover the case of positive totally asymmetric stable laws
studied here.
As the velocity and variance from Theorem 1.2 are now explicit, we can try to obtain their
asymptotics when N grows.
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Proposition 1.6. Assume {ωi,j(t) : t ≥ 1, 1 ≤ i, j ≤ N} is an i.i.d. family of Sα-distributed
random variables. Let

cα := Γ(α)
sin πα

πα
. (1.24)

Then, as N →∞,

vN = α−1
(

logN + log logN + log cα
)

+ o(1), (1.25)

σ2
N =

π2

3α2 logN
+ o(

1

logN
).

This is proved in Section 3.2.
We now state the convergence of the rescaled random walk or polymer height to a Lévy process:

Theorem 1.7. Assume {ωi,j(t) : t ≥ 1, 1 ≤ i, j ≤ N} is an i.i.d. family of Sα-distributed
random variables. Then, for any sequence kN →∞, we have that

φN(kNτ)− γNkNτ
kN/ logNα

→ S(τ), (1.26)

in law in the Skorohod topology, where φN is defined in (1.21) and

γN =
1

α
log

(
N logN

Γ(1− α)

)
+

log kN
α logN

and S(·) is a totally asymmetric Lévy process with exponent

ψ(u) =

∫ ∞
1

(eiux − 1)
dx

x2
+

∫ 1

0

(eiux − 1− iux)
dx

x2
. (1.27)

The proof is very close to the one of the corresponding statement in [15] and is given in Section
3.3.
Finally, we obtain a Poisson-type convergence result for the invariant measure mN,α in the case
of an Sα-distributed environment. This is presented in Section 3.4.

1.4. Perturbative results. We will now study the case of environments that are perturbations
of the Sα laws.
Let α ∈ (0, 1) and suppose {ωij(t) : t ≥ 1, 1 ≤ i, j ≤ N} is an i.i.d. family of random variables
with a common Laplace transform

ϕ(u) = E
[

exp
{
− u ωi,j(t)

}]
, u ≥ 0,

such that
1− ϕ(u) ∼ uα, u→ 0+. (1.28)

We view such an environment as a perturbation of the α-stable distributed environment, since ω
lies in the domain of attraction of the α-stable law. It is important to note that Eωi,j(t) =∞,
therefore the various partition functions are not integrable and cannot be normalized. In
particular, the models we consider are outside the range of application of the main techniques
in the field of directed polymers [14]. Let uα denote the distribution function of the logarithm
of an Sα random variable

uα(x) = P(Sα > ex), x ∈ R, (1.29)

and let UN denote the front profile of the polymer,

UN(t, x) :=
1

N

N∑
j=1

1logZN (t,j)>x , t ∈ N, x ∈ R. (1.30)

The random function x 7→ UN(t, x) is the (inverse) distribution function of the polymer height
function.

Theorem 1.8. Suppose the ω’s satisfy (1.28) for a given α ∈ (0, 1).



RANDOM POLYMERS ON THE COMPLETE GRAPH 8

(1) Then, for all t ≥ 2 and any i ∈ {1, · · · , N}, we have

ZN(t, i)

||ZN(t− 1)||α
law−→ Sα.

Moreover, for each k ≥ 1 and any sequence KN ⊂ {1, · · · , N} with |KN | = k, we have{
ZN(t, i)

||ZN(t− 1)||α
: i ∈ KN

}
law−→ S⊗kα .

(2) Furthermore, for all t ≥ 2, we have, with φN from (1.21) and uα from (1.29)

UN
(
t, x+ φN(t− 1)

)
→ uα(x) a.s.,

as N →∞, uniformly in x.

Comment: Since the polymer is pulled by the largest values, the height function is expected to
grow like a moving front. Roughly, the front behaves like a wave traveling at speed vN , and one
could try to look at it at time t around location vN t. But if the cardinality N of the monomer
state space is large, the actual front can be rather different from vN t, so it is natural to look
at it relative to a suitable random location φN(t− 1). Item (2) in Theorem 1.8 shows that, for
ω close to an α-stable law (i.e., an exactly solvable model), the polymer height function seen
from this location φN(t− 1) converges – without scaling – to the exactly solvable model.

Theorem 1.8 is proven in Section 4.2. In Section 4.1 we will also prove more complete results
in the case of stable environments, including a fluctuation theorem; see Proposition 4.1.

2. General environments with fixed N

We note once for all that Ψα is a continuous bijection from B̄ ≡ B̄1 to B̄α for any α > 0.
Hence, it is enough to work with α = 1. The objects constructed on B̄1 can then be projected
on the other α-symplexes yielding the results for general values of α. In particular, the relation
V ∞N,α = Ψα(V ∞N,β) appearing in part 2 of Theorem 1.1, follows immediately. Hence, we will
restrict to α = 1 for the rest of this section.
We follow the well-known theory of product of random matrices, see e.g. [27, 28].

2.1. Asymptotics of the Markov chain and stochastic contractivity. In this section
we prove Theorem 1.1, using the following lemma, cf. section I in [27], which is the involved
step. We reproduce the proof in the appendix as it contains some crucial ideas, in particular a
contraction property. (And, moreover, it is beautiful.)

Lemma 2.1. There exists a r.v. V ∞N taking values in B such that, for all v ∈ B̄, Π(t) · v
converges a.s. to V ∞N as t→∞. The convergence is a.s. uniform in v ∈ B̄.

This immediately implies the almost sure convergence stated in part 2. of Theorem 1.1. Note
that we can conclude that XN(t) converges in law to mN as t→∞.

Lemma 2.2. The law mN of V ∞N is the unique invariant probability, i.e., the unique probability
measure on B̄ such that, for all bounded continuous f : B̄ → R,∫

B̄

E
[
f
(
X · v

)]
dmN(v) =

∫
B̄

f(v)dmN(v).

The law mN is usually called the Furstenberg measure.

Proof. From Lemma 2.1, V ′ = limt Π(2, t) · x converges a.s., and has the same law mN . The
equality X(1)·V ′ = V ∞N is the claimed invariance property. Moreover, if m′N is another invariant
law, we get by iterating t times,∫

B̄

E
[
f
(
Π(t) · x

)]
dm′N(x) =

∫
B̄

f(x)dm′N(x).
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By dominated convergence, the left-hand side converges to Ef(V ∞N ), and we can conclude that
m′ is the law of µ∞.

Lemma 2.3. The law mN is invariant for the Markov chain (XN(t); t ≥ 0), and the chain
XN with initial law mN is ergodic. For any bounded continuous f : B̄ → R and any initial
condition XN(0) ∈ B̄,

lim
t→∞

1

t

t∑
s=1

f
(
XN(s)

)
= E

[
f(V ∞N )

]
, P−a.s. (2.1)

Proof. We can write (1.9) as X(0)
α· V ∞N,α = V ∞N,α ◦ θ−1. Transposing this identity and using that

(X(0), V ∞N , V ∞N ◦ θ−1)
law
= (X(1),

←−
V ∞N ,

←−
V ∞N ◦ θ1), we see that
←−
V ∞N · X(1) =

←−
V ∞N ◦ θ1.

Since
←−
V ∞N and X(1) are independent and

←−
V ∞N is stationary with law mN , this equality implies

that mN is invariant.
Ergodicity is shown in Lemma 3.3 in [27]. Finally, the pointwise ergodic theorem (2.1) follows
also from the previous and the contraction property, see Appendix A.2.

2.2. Free energy and Lyapunov exponents. The Perron-Frobenius eigenvalue of the (strictly)
positive matrix Π(t) is the r.v.

λPF
N (t) = min

x∈(R∗+)N
max

1≤i≤N

(
Π(t)x

)
i

xi
= max

x∈(R∗+)N
min

1≤i≤N

(
Π(t)x

)
i

xi
.

We start by stating that all coefficients of the matrix Π(t) grow like the Perron-Frobenius
eigenvalue.

Lemma 2.4. [28, Lemma 2.1] Fix N . We have for all t ≥ 2,

0 ≤ log
maxi,j≤N Πi.j(t)

mini,j≤N Πi.j(t)
≤ log

maxi,j≤N ωi.j(1)

mini,j≤N ωi.j(1)
+ log

maxi,j≤N ωi.j(t)

mini,j≤N ωi.j(t)
, (2.2)

and for all y ∈ (R∗+)N ,

1 ≤ maxi≤N(Π(t)y)i
mini≤N(Π(t)y)i

≤ maxi,j≤N ωi.j(1)

mini,j≤N ωi.j(1)
. (2.3)

Moreover,

sup
t≥1

∣∣ log λPF
N (t)− log ‖Π(t)1‖1

∣∣ <∞ a.s. (2.4)

Proof. By positivity, we see that for all m,m′, n, n′ ≤ N ,

Πm,n(t) =
∑
k,`≤N

ωm,k(1)Πk,`(1, t− 1)ω`,n(t) ≤ maxi,j≤N ωi.j(1)

mini,j≤N ωi.j(1)
× Πm′,n(t)

Πm,n(t) ≤ maxi,j≤N ωi.j(t)

mini,j≤N ωi.j(t)
× Πm,n′(t).

This implies (2.2)–(2.3). By Perron-Frobenius theorem, ∃x > 0 with ‖x‖1 = 1 and x∗Π(t) =
λPF
N (t)x∗. Then, on the one hand,

x∗Π(t)1 = λPF
N (t)x∗1 = λPF

N (t),

while we can estimate

x∗Π(t)1 =
∑
i≤N

xi(Π(t)1)i ≤ ‖Π(t)1‖∞
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and

x∗Π(t)1 =
∑
i≤N

xi(Π(t)1)i ≥ min
i

(Π(t)1)i ‖x‖1

= min
i

(Π(t)1)i

(2.3)

≥ mini,j≤N ωi.j(1)

maxi,j≤N ωi.j(1)
×max

i
(Π(t)1)i

Then the claim follows using that N−1|y|1 ≤ |y|∞ ≤ |y|1 with y = Π(t)1 ∈ RN .

We are now able to show the existence of the free energy and the Gaussian fluctuations of the
logarithm of the partition function.

Proof of Theorem 1.2. For a N × N -matrix χ, set ‖χ‖1 =
∑N

i,j=1 |χi,j|. Since the norm ‖ · ‖1

is submultiplicative, we see that the doubly indexed sequence log ‖Π(s, t)‖1(0 ≤ s ≤ t) is
subbadditive and, by the subbadditive ergodic theorem (see e.g. the nice proof in [37]), it follows
that t−1 log ‖Π(t)‖1 converges a.s. to a limit vN , and similarly for the entries t−1 log ‖Πi,j(t)‖1

by Lemma 2.4. Moreover, from Theorem 3 in [27], a central limit theorem holds. It then suffices
to recall that ZN(t, j) = (Π(t)∗1)j.
Strict positivity of the variance follows from two results in [27]. By Corollary 3 therein, σN = 0
implies that (e−tvN‖Π(t)‖1)t≥1 is a tight sequence in (0,∞). By Theorem 5, this is equivalent
to a certain geometric property of the support of the law of X, which is clearly not satisfied for
X with non-constant, i.i.d. entries.
It remains to prove (1.10). By Lemma 2.4, we have

vN = lim
t→∞

1

t
log ‖ZN(t)‖1

= lim
t→∞

1

t

t∑
s=1

log
‖ZN(s)‖1

‖ZN(s− 1)‖1

(1.5)
= lim

t→∞

1

t

t∑
s=1

log ‖X(s)∗XN(s− 1)‖1

ergodic th.
= E log ‖X(1)∗XN(0)‖1,

which is equal to the RHS of (1.10).

2.3. Infinite volume measure. In this section we prove the existence of the infinite volume
polymer measure and of a co-variant measure.

Proof of Theorem 1.3. Recall the definition (1.11) of the finite horizon P2L polymer measure.
It is well known, and easily checked, that P ω

0,i;T,? is a time-inhomogeneous Markov chain on
{1, . . . , N}, with 1-step transitions given for 0 ≤ t < T by

P ω
0,i;T,?(jt+1 = `

∣∣jt = k) =
ωk,`(t+ 1)ZN(t+ 1, `;T, ?)∑

1≤m≤N ωk,m(t+ 1)ZN(t+ 1,m;T, ?)

=
ωk,`(t+ 1) ZN (t+1,`;T,?)∑

`′ ZN (t+1,`′;T,?)∑
1≤m≤N ωk,m(t+ 1) ZN (t+1,m;T,?)∑

`′ ZN (t+1,`′;T,?)

But, a.s., (
ZN(t+ 1, `;T, ?)∑
`′ ZN(t+ 1, `′;T, ?)

)N
`=1

= Π(t+ 1, T ) · 1 −→ V ∞N (t+ 1)
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as T →∞, so the above transition converges,

P ω
0,i;T,?(jt+1 = `

∣∣jt = k) −→ ωk,`(t+ 1)V ∞N (t+ 1, `)∑N
`′=1 ωk,`′(t+ 1)V ∞N (t+ 1, `′)

.

This proves that the finite horizon P2L polymer measure converges to the Markov chain P ω

given by the transition probabilities (1.15). In order to obtain (1.16), one can use a shifted
version of (1.9),

X(t+ 1) · V ∞N (t+ 1) = V ∞N (t),

to rewrite the denominator in the RHS of (1.15) as

N∑
`′=1

ωk,`′(t+ 1)V ∞N (t+ 1, `′) = V ∞N (t, k)‖X(t+ 1)V ∞N (t+ 1)‖1.

We end by proving the second part of Theorem 1.3. Note that (1.14) writes

νN(t, j) :=

←−
V ∞N (t, j)V ∞N (t, j)
←−
V ∞N (t)∗V ∞N (t)

, (2.5)

where
←−
V ∞N (t)∗V ∞N (t) =

∑N
k=1

←−
V ∞N (t, k)V ∞N (t, k), so that, with (1.16),

νN(t, k)P ω(jt+1 = `
∣∣jt=k) =

←−
V ∞N (t, k)× ωk,`(t+1)× V ∞N (t+1, `)

‖X(t+1)V ∞N (t+1)‖1 ×
(←−
V ∞N (t)∗V ∞N (t)

) . (2.6)

Summing over k and using (1.12) we get

N∑
k=1

νN(t, k)P ω(jt+1 =`
∣∣jt = k) =

←−
V ∞N (t+1, `)× ‖X(t+1)∗

←−
V ∞N (t)‖1 × V ∞N (t+1, `)

‖X(t+1)V ∞N (t+1)‖1 ×
(←−
V ∞N (t)∗V ∞N (t)

) (2.7)

Summing now over ` we derive the identity

‖X(t+1)V ∞N (t+1)‖1

(←−
V ∞N (t)∗V ∞N (t)

)
= ‖X(t+1)

←−
V ∞N (t)‖1

(←−
V ∞N (t+1)∗V ∞N (t+1)

)
(2.8)

Using (2.8) back in the RHS of (2.7) we see that it is equal to νN(t+ 1, `), proving the claim.

Remark 2.1. We have in fact a time-reversal property. Define the (time-inhomogeneous)

transition probability
←−
P ω on {1, 2, . . . N} by

←−
P ω(jt+1 =k

∣∣jt = `) =
ωk,`(t+ 1)

←−
V ∞N (t, k)

←−
V ∞N (t+ 1, `)‖X(t+1)∗

←−
V ∞N (t+1‖1

Then, by (2.8), the equality (2.6) writes

νN(t, k)P ω(jt+1 =`
∣∣jt = k) = νN(t+ 1, `)

←−
P ω(jt+1 =k

∣∣jt = `),

from which stationarity follows immediately. The time-reversed of the chain discussed in item

2) of Theorem 1.3 is the chain with transitions
←−
P ω and starting at time 0 from the law νN(0, ·).

3. Exact solution for stable laws

We consider the particular cases when ωi,j(t)
law
= Sα, the stable law of index α ∈ (0, 1), see

[5, 20]. We recall that it is supported by R+ and that, for λ > 0,

E[e−λSα ] = e−λ
α

. (3.1)
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3.1. The random walk representation. This section is devoted to the proof of Theorem 1.5
which summarizes the probabilistic structure of the model.
Let by Ft be the σ-field generated by the ωi,j(s) for s ≤ t and all i, j. Property (1.20) directly
implies that for each j, conditionally on Ft, SN(t+ 1, j) has law Sα, for all 1 ≤ j ≤ N . To deal
with the N -vector, we fix λj > 0 for 1 ≤ j ≤ N and we compute,

E[e−
∑N
j=1 λjZN (t+1,j)|Ft] =

N∏
i,j=1

E[e−λjZN (t,i)ωi,j(t+1)|Ft]

= exp{−
N∑
j=1

λαj

N∑
i=1

ZN(t, i)α} (by (3.1)). (3.2)

Then

E[e−
∑N
j=1 λjSN (t+1,j)|Ft] = exp{−

N∑
j−1

λαj }, (3.3)

which shows that, conditionally on Ft, SN(t + 1, j) with 1 ≤ j ≤ N) have law Sα for all
1 ≤ j ≤ N and are conditionally independent. As a consequence, the random variables
{SN(t + 1, j) : t ≥ 1, j = 1, · · · , N} are i.i.d. with common law Sα. This proves Proposition
1.5, part 1.
Now, recall the identity (1.22)

logZN(t, j) = log SN(t, j) + φN(t− 1), (3.4)

where φN(t) denotes the height of the polymer at time t:

φN(t) = log ‖ZN(t)‖α. (3.5)

By definition of the α-norm,

φN(t+ 1) = α−1 log(
N∑
i=1

Z(t+ 1, i)α)

= α−1 log
N∑
i=1

Z(t+ 1, i)α

‖ZN(t)‖αα
+ log ‖ZN(t)‖α

= α−1 log
N∑
i=1

SN(t+ 1, i)α + φN(t) (3.6)

= log ‖SN(t+ 1)‖α + φN(t). (3.7)

where SN(t) denotes the vector (SN(t, 1), · · · , SN(t, N)). From the independence observed
above, the sequence {ΥN(t) : t ≥ 1} defined by

ΥN(t) = log ‖SN(t)‖α
is i.i.d., and (φN(t))t is a random walk with jumps ΥN(·). The identity (3.4) shows that
{logZj(t) : j = 1, · · · , N} is an independent N -sample of the α-stable law with an independent
shift by φN(t − 1). The above discussion proves Theorem 1.5, part 3 and readily implies part
5.
We now turn to the proof of part 5 and 6 in Theorem 1.5. Let S = (S1, · · · , SN) be a vector
with i.i.d. entries following the law Sα and let X = S

||S||1 . Then,

X(0) ·X = X(0) · S =
X(0)S

||X(0)S||1
=

S̃

||S̃||1
,
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where S̃ = X(0)S
||X(0)S||α . By the conditioning argument above, we see that S̃ has the same distri-

bution as S. Hence, X and X(0) ·X have the same distribution and the law of X is indeed the
unique invariant measure for the system.

3.2. Asymptotic of the Lyapunov exponent for large N : We will prove Proposition 1.6,
namely,

αvN = logN + log logN + log cα + o(1), α2σ2
N =

π2

3 logN
+ o(

1

logN
),

with cα from (1.24). Recall from Theorem 1.5 that

vN = EΥN = E log ‖SN‖α = α−1E log
N∑
j=1

Sα(j),

for SN = (S(j); j = 1, · · · , N) an N -sample of Sα independent random variables, and

σ2
N = E

[
(ΥN − vN)2] (3.8)

Note that P[Sα1 > x] ∼ 1
xΓ(1−α)

so that the S(j)α’s are in the domain of attraction of the totally

asymetric stable law of index 1 that we will denote by S. This is the stable law of index α = 1,
with characteristic function given for u ∈ R by

EeiuS = exp

{∫ ∞
1

(eiux − 1)
dx

x2
+

∫ 1

0

(eiux − 1− iux)
dx

x2

}
(3.9)

= exp

{
iCu− π

2
|u|
{

1 + i
2

π
sign(u) ln |u|

}}
for some real constant C defined by the above equality. It takes real values, not only positive
ones. We can then appeal to a general fluctuation result:

Proposition 3.1. Suppose (Xi)i is a family of i.i.d. positive random variables such that P [X1 >
x] ∼ x−1L(x), with L(x) a slowly varying function. Let

aN = inf{x : P [X1 > x] ≤ 1/N} and bN = NE[X11X1<an ]. (3.10)

Then, ∑N
i=1Xi − bN
aN

law−→ S. (3.11)

Proof. This is a particular case of [20, Th. 3.7.2].

In our case, we can replace aN , bN by their leading order (denoting them with the same symbol
for simplicity): with aN = N

Γ(1−α)
and bN = N logN

Γ(1−α)
, we have

SN :=
Γ(1− α)

N
×

{
N∑
j=1

S(j)α − N logN

Γ(1− α)

}
law−→ S, (3.12)

as N →∞. In particular, ∑N
j=1 S(j)α

N logN
→ 1

Γ(1− α)
, (3.13)

in probability, as N →∞. The asymptotics for vN follows from next proposition:

Lemma 3.1.

lim
n→∞

E

[
log

∑N
j=1 S(j)α

N logN

]
= − log Γ(1− α). (3.14)
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Proof. To derive convergence of moments from the convergence in probability above, we prove
uniform integrability, following arguments of [13, proof of Prop. 2.8]. It suffices to show that

sup
N

E
(
ΣN/(N logN)

)a
<∞ (3.15)

both for some for a > 0 and some a < 0, where ΣN =
∑N

i=1 S(i)α.

For the first purpose, let Σ̂N =
∑N

i=1 S
α
i 1{Sαi ≤Nu} and note that

P(ΣN 6= Σ̂N) ≤ NP(Sαi > Nu) ∼ Γ(α)
sin(πα)

πu

as N →∞. Use Markov inequality and bound, for u > 0,

P(ΣN/(N logN) > u) ≤ u−1E
(
Σ̂N/(N logN)

)
+ P(ΣN 6= Σ̂N)

= O(u−1 log u),

which implies (3.15) for a ∈ (0, 1).
We now treat the case a = −1: write by Fubini’s theorem

E
[(

ΣN/(N logN)
)−1
]

=

∫ ∞
0

Ee−tΣN/(N logN)dt =

∫ ∞
0

g
(
t/(N logN)

)N
dt,

where

g(t) = E exp{−t(Sα)α} ≤

 1− C1t| log t| t ∈ (0, 1/2],
C2 t ∈ [1/2, logN ],
t−γ, t > logN,

(3.16)

for some C1 > 0, C2 ∈ (0, 1) and γ > 0. The bound for t ∈ (0, 1/2) follows from the explicit rate
of decay of the tails of Sα, whereas the one for t > 2 follows from the fact that the density of
Sα at s is O(s). Plugging the bounds (3.16) into the above integral, we get (3.15) for a = −1.

This ends the proof of Proposition 1.6 and yields αvN ∼ logN + log logN − log Γ(1− α).

As for the variance, first note that, by [13, Lemma 2.6] (or even the arguments in the proof

above), log
∑N

j=1 S(j)α has finite variance. Now, with ΣN as in the proof of the previous lemma,

log

(
ΣN

cαN logN

)
= log

(
1 +

1

logN
SN
)

= FN(SN), (3.17)

where SN is defined in (3.12), cα = 1/Γ(1 − α) and FN(x) = log(1 + x
logN

). Let L > 0 and

observe that the functions logN × F 2
N(x) are uniformly bounded and uniformly continuous on

{x ≤ L
√

logN}. Assume that, on our probability space, SN → S almost surely. Then,

logN E
[
F 2
N(SN)1|SN |≤L

√
logN

]
∼ logN E

[
F 2
N(S)1|SN |≤L

√
logN

]
(3.18)

∼ logN

∫ ∞
0

F 2
N(y)

dy

y2
. (3.19)

By a simple change of variable, the last quantity equals
∫∞

0
log2(1 + y) dy

y2
= π2

3
.

3.3. Scaling of the polymer height.

Proof. Theorem 1.7. In this section, we proceed as in [15], Theorem 3.2.
We first expand ΥN from (1.23). Recall that

ΥN =
1

α
log

N∑
j=1

Sαj ,
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for S1, · · · , SN independent Sα-distributed random variables. From (3.12), we get

N∑
j=1

Sαj =
N logN

Γ(1− α)

{
1 +

SN
logN

}
with SN converging to S, the totally asymmetric stable law of exponent 1 given by (3.9) .
Hence,

ΥN =
1

α
log

(
N logN

Γ(1− α)

)
+

SN
α logN

+ o(1/ logN)

so that, for all t ≥ 1,

SN(t) := α logN {ΥN(t)− log βN} → S, (3.20)

with βN =
(
N logN
Γ(1−α)

)1/α

. This gives the scaling limit of the jumps of the walk φN . To get the

scaling limit for the walk itself, we use basic convergence theorems of independent increments
processes. We apply Theorems 3.2 in [30], taking Y n

m, γ
n(t) in formula (3.1) in that paper equal

SN(m), kN t respectively. We derive the desired convergence (1.26) after a few manipulations.

3.4. Asymptotics of the invariant measure. Recall the definition

XN,α(t) =
ZN(t)

||ZN(t)||α
=

ZN(t)(∑
j ZN(t, j)α

)1/α
.

Letting SN(t, j) := ZN (t,j)
||ZN (t−1)||α and SN(t) = (SN(t, 1), · · · , SN(t, N)), we get

XN,α(t) =
SN(t)(∑

j SN(t, j)α
)1/α

,

where we recall that {SN(t, j) : t ≥ 1, 1 ≤ j ≤ N} is an i.i.d. family of Sα-distributed random
variables.
We borrow a (basic) version of Theorem 5.7.1 from [33]:

Lemma 3.2. Let (Xi)i be i.i.d. random variables with common distribution function F and let
un = un(τ) be such that

n[1− F (un(τ))]→ τ. (3.21)

Then, the point process
n∑
i=1

δu−1
n (Xi)

(3.22)

converges weakly to the Poisson point process (PPP) on R+ with intensity measure the Lebesgue
measure.

In our setting, 1− F (u) ∼ cu−α as u→ +∞ with c = Γ(1− α)−1 so that we can choose

un(τ) = c1/αn1/ατ−1/α, u−1
n (x) = cnx−α. (3.23)

Let (Si)i be an i.i.d. family of Sα-distributed random variables. Then, according to the above
result, the point process

PN :=
N∑
i=1

δcNS−αi (3.24)

converges weakly to a Poisson point process (τi)i with intensity dτ on R+.
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A more familiar formulation is that { Si
N1/α} converges to a PPP with intensity proportional to

s−(1+α). Accordingly, it is tempting to rewrite

X∞N,α(t) =
N−1/αSN(t)(∑N

j=1 (N−1/αSN(t, j))
α
)1/α

, (3.25)

but the denominator diverges, as∑N
j=1 SN(t, j)α

N logN
→ 1

Γ(1− α)
, (3.26)

so that it is not unreasonable to expect

(logN)1/α ×XN,α(t) =
N−1/αSN(t)(∑N
j=1 SN (t,j)α

N logN

)1/α
(3.27)

to converge in some sense. Since the limit would have infinitely many points in the neighborhood
of 0, we perform a non-linear transformation on the point process, and consider σi = − log τi.

Proposition 3.2. Assume ωi,j ∼ Sα. We have the convergence of the point process

N∑
i=1

δα logX∞N,α(i)+log2N
law−→

∑
i≥1

δσi (3.28)

with (σi)i a Poisson point process with intensity e−σdσ on R. (log2 = log log.)

We make a comment on localization: Directed polymers on the lattice in strong disorder regime
have macroscopic atoms, in the sense that the favorite sites at the ending time have mass
bounded away from 0 [16, 3]. Here, the largest mass vanishes at order (logN)−1/α. Localization
is thus rather weak in our model.

4. Perturbative results

As a preliminary, we show an additional result when the environment is distributed as the
stable law.

4.1. Wave front in the α-stable case. Recall UN(t, x), uα and φN from (1.30), (1.29) and
(1.21) respectively.

Proposition 4.1. Assume ωi,j ∼ Sα, and fix t ≥ 1 arbitrary.

(1) Conditionally on Ft, we have a.s., as N →∞,

UN
(
t, x+ φN(t− 1)

)
→ uα(x),

uniformly in x.
(2) As N →∞,

logN ×
[
UN
(
t, x+ (t− 1) vN + φN(0)

)
− uα(x)

]
law−→ u′α(x)Z.

where Z is distributed as a sum of t− 1 independent S random variables (see definition
(3.9)) – i.e., equal in law to (t− 1)S up to a shift.

Proof. Let

XN(t, j)
(3.4)
≡ logSN(t, j) := logZN(t, j)− φN(t− 1)

Recall from Theorem 1.5 that the random variables {XN(t, j) : t ≥ 1, 1 ≤ j ≤ N} are i.i.d.
with common law logSα. Hence, conditionally on Ft−1, UN(t, x + φN(t − 1)) is a sum of
independent Bernoulli random variables with parameter uα(x). Pointwise convergence in item
(1) then follows from the law of large numbers. Further, pointwise convergence of monotone
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functions to a continuous limit is uniform on compact by Dini’s theorem; in fact, the limit is
even uniform on R because the functions are bounded. All this yields item (1).
To prove item (2), first observe that

UN(t, x+ (t− 1) vN + φN(0)) =
N∑
j=1

1{XN (t,j)>x−[φN (t−1)−φN (0)−(t−1)vN ]}

is, conditionally on Ft−1, a binomial r.v.. By (1.21) and (1.23),

α[φN(t− 1)− φN(0)− (t− 1)vN ] = α
t−1∑
l=1

[ΥN(l)− vN ]

=
t−1∑
l=1

[log ‖SN(l)‖αα − αvN ]

Since the i.i.d. variables S(l, j)α belong to the domain of attraction of S, we can write

‖SN(l)‖αα =
N∑
j=1

S(l, j)α =: cαN logN + cαNSN(l)

where the variable SN(l) defined by this equality is such that SN(l)
law−→ S as N → ∞ (see

(3.12)). Since eαvN = cαN logN(1 + o(1)) by (1.25), we have

α
[
φN(t)− φN(0)− tvN

]
=

t∑
l=1

[
log

(
1 +

1

logN
SN(l)

)
+ o(1)

]
.

From this, we deduce that α logN × [φN(t − 1) − φN(0) − (t − 1)vN ] converges in law to the
sum of (t− 1) independent S random variables.
Moreover, for any sequence zN → 0, the central limit theorem for binomial variables implies,

N1/2 ×

[
1

N

N∑
j=1

1{αXN (t,j)>αx−zN} − uα(x− zN)

]
law−→ N (0, uα(x)[1− uα(x)]).

Together with a suitable Taylor expansion, we see that the Gaussian fluctuations vanish at the
relevant scale,

logN ×

[
1

N

N∑
j=1

1{αXN (t,j)>αx−zN} − uα(x) + u′α(x) · zN

]
→ 0.

Taking zN = α[φN(t − 1) − φN(0) − (t − 1)vN ] and recalling the stable limit for zN logN , we
complete the proof of the second statement.

4.2. Wave front for perturbations of the α-stable case. We give the proof of Theorem
1.8. It is plain to see that hypothesis (1.28) is equivalent to

ϕ(u) = exp{−uα(1 + ε(u))} with lim
ε→0+

ε(u) = 0 , (4.1)

by considering the function ε(u) = −u−α logϕ(u)− 1 for positive u. Define

Z̄N(t, j) :=
ZN(t, j)

||ZN(t− 1)||α
=

N∑
i=1

aN,i ωij(t), (4.2)
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where aN,i = ZN (t−1,i)
||ZN (t−1)||α . Note that that aN,i are functions of X(1), . . .X(t − 1) and that∑N

i=1 a
α
N,i = 1. Now,

E[exp{−uZ̄N(t, j)}|Ft−1] =
N∏
i=1

ϕ(uaN,i)

= exp

{
−

N∑
i=1

(uaN,i)
α
(
1 + ε(uaN,i)

)}
(by (4.1))

= exp

{
−uα

(
1 +

N∑
i=1

aαN,iε(uaN,i)

)}
.

In the next section we will prove the following

Lemma 4.1. Under the above hypothesis (1.28),

sup
i≤N
{‖aN,i‖∞} ≡ sup{aN,i; 1 ≤ i ≤ N,X(1), . . . ,X(t− 1)} = o(1)

in probability as N →∞ when t ≥ 2.

With the lemma at hand, we finish the proof. Then, the computation above yields

E[exp{−uZ̄N(t, j)}|Ft−1] = exp
{
−uα

(
1 + o(1)

)}
−→ exp {−uα} = E[exp{−uSα}]

for all u ≥ 0. This implies (e.g., [22] theorem 2, p.431) that Z̄N(t, j)
law−→ Sα, which is the first

claim of the theorem. Conditionally on Ft−1, the variables (ZN(t, i)/||ZN(t− 1)||α : i ∈ KN)
are i.i.d., so the second claim follows directly.
We end by proving item (2). From the law of large numbers for triangular arrays of i.i.d.
random variables, the claim follows for all real x. Then, uniformity is obtained similarly to the
proof of Proposition 4.1. This ends the proof of Theorem 1.8.

4.3. Proof of Lemma 4.1. We start with a simple proof under a stronger assumption, because
the coupling argument there makes things transparent. In a second step, we give the proof under
our general assumption.

4.3.1. Coupling. In this section we present the proof under more restrictive hypothesis: We
assume there exist constants a < b such that

uα(x− b) ≤ P
(

logωi,j(t) ≤ x
)
≤ uα(x− a) , x ∈ R. (4.3)

with uα from (1.29). This allows to couple the environment ω at time t− 1 with i.i.d. α-stable
random variables si,j on a larger probability space in such a way that

c−1sij ≤ ωij(t− 1) ≤ csij, 1 ≤ i, j ≤ N, (4.4)

with c = max{a−1, b} > 1. Define

Z̃N(t− 1, j) =
N∑
i=1

ZN(t− 2, i)sij (4.5)

Then, for some constant C, we have

aN,i ≤ C
Z̃N(t− 1, i)

||Z̃N(t− 1)||α
= C

Si(∑N
j=1 S

α
j

)1/α
, (4.6)

where the random variables Sj = Z̃(t−1,j)

||Z̃(t−1)||α
, j = 1, · · · , N are now independent and Sα-

distributed. As noted above, the Sαj ’s are in the domain of attraction of S, so that the
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denominator is O((N logN)1/α). Recall that the sum of the Si’s is O(N1/α), we conclude

that
∑N

i=1 aN,i = O
(

1
(logN)1/α

)
in probability. The estimate is uniform on Ft−1.

4.3.2. Proof completed. In this section we present the proof under the standing hypothesis
(1.28).
First, recall a well-known relation on tails of distribution and Laplace transform of a positive
r.v. V : The equivalent hypothesis (4.1), Ee−uV = exp{−uα(1 + ε(u))} with limε→0+ ε(u) = 0,
is itself equivalent, by the Tauberian theorem (Corollary 8.1.7 in [4]) to

P[V ≥ x] ∼ 1

xαΓ(1− α)
, x→∞. (4.7)

We note that Z̄N(t, i) defined in (4.2), satisfies (4.1) (equivalently, (1.28)). Indeed,

E(exp{−uZ̄N(t, j)}|Ft−1) = exp
{
− uα

(
1 +

N∑
i=1

aαN,iε(aN,iu)
)}
,

where we can bound the sum uniformly by max{ε(v); v ∈ [0, u]}, which vanishes as u → 0.
Then, we apply the above to V = Z̄N(t, i), which obeys the tail estimate (4.7).
Thus, we can apply the theory of extreme statistics for triangular arrays of i.i.d. real variables,
which implies that the maximum of Z̄N(t, i) over i normalized by N−1/α converges to a Frechet
law. In complete details, we have (e.g., [8], Th. 2.28) 1{

Z̄N(t, i)

N1/α
: i ≤ N

}
law−→ PPP with intensity

α

Γ(1− α)
x−(1+α)1R+ .

This point process has a finite right-most point and the sum of the α-powers of its terms
diverges. Hence,

log aN,i ≤ max
j≤N

log
Z̄N(t, j)

N1/α
− 1

α
log
∑
j

(
Z̄N(t, i)

N1/α

)α
→ −∞, N →∞. (4.8)

This proves the lemma.

Appendix A. Projective space and stochastic contractivity

For the sake of completeness, we give a proof of Lemma 2.1 and expose the principal ideas
leading to it.

A.1. Contraction in the projective space. When studying random matrix products, it is
convenient to introduce the projective action of these matrices. See, e.g., [7] for invertible
matrices, and [27] for positive matrices. Projectively, that is, when only the directions are
considered, the elements of the positive N -dimensional orthant are represented by points of the
open and closed polygons

B = {x ∈ (R∗+)N ; ‖x‖1 = 1}, B̄ = {x ∈ (R+)N ; ‖x‖1 = 1}. (A.1)

If g is a N ×N matrix with (strictly) positive entries, we denote the projective action of g on
B by the notation ·,

g · x =
gx

‖gx‖1

,

1(4.7) implies that the solution vN (τ) of NP(Z̄N (t, j) ≥ vN (τ)|Ft−1) = τ is such that

vN (τ) ∼ N

Γ(1− α)uα

uniformly over Ft−1. This is all what we need in the i.i.d. case to apply the theorem.
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which belongs to B for all x ∈ B̄. The set B can be equipped with a convenient metrics d(x, y),
which relates to the Hilbert distance (see [27, Remark below Prop. 3.1]). For x, y ∈ B̄ let

m(x, y) = sup{λ ≥ 0 : λyi ≤ xi,∀i ≤ N} ∈ [0, 1],

and define, with φ(s) = (1− s)/(1 + s),

d(x, y) = φ
(
m(x, y)m(y, x)

)
.

Proposition A.1 (Sect. 10 in [27]). The map d : B̄ × B̄ → [0, 1] defines a distance on B̄, and
we have:

(i) The topology of (B, d) is the topology on B induced by the usual topology on RN . For
x ∈ B̄ \B and y ∈ B, we have m(x, y) = 0 and then d(x, y) = 1. Also,

‖x− y‖2 ≤ 2d(x, y), x, y ∈ B̄.

Define the contraction coefficient c(g) of a positive N ×N matrix g as

c(g) = sup{d(g · x, g · y);x, y ∈ B̄} ∈ [0, 1].

Then,

(ii) ∀x, y ∈ B̄, d(g · x, g · y) ≤ c(g)d(x, y) ;

(iii) If g has strictly positive entries, c(g) < 1 ;

(iv) For the product of two positive matrices g, g′, c(gg′) ≤ c(g)c(g′) ;

(v) c(g∗) = c(g).

A.2. Stochastic contractivity. We present the proof of Lemma 2.1. Recall our principal
task consists in showing the existence of a B-valued r.v. V ∞N such that, Π(t) · x→ V ∞N a.s. for
all x ∈ B̄ as t→∞.
The random sequence c(Π(t)) decreases and hence has a limit for all ω. By item (iv) of
Proposition A.1, c(Π(t)) ≤

∏t−1
s=0 c(X(s)). By item (iii), each term is strictly less than 1, and

by independence, we have a.s.

lim sup
t→∞

t−1 log c(Π(t)) ≤ E log c(X) < 0.

(In fact, by subadditivity, the lim sup is an a.s. limit, and the value is inft t
−1E log c(Π(t)).)

Then, the random polygons K(t, ω) = {Π(t) ·x;x ∈ B̄} form a decreasing sequence of compact
subsets of B, so that they have a limit,

K(ω) =
⋂
t≥1

K(t) 6= ∅.

If x, y ∈ K(ω), we have for all t,

d(x, y) ≤ sup{d(Π(t) · x′,Π(t) · y′);x′, y′ ∈ B̄} ≤ c(Π(t)),

so the distance is 0. Finally, K(ω) reduces to a random point, say V ∞N of B. In particular,
V ∞N ∈ K(t) implies that

d(Π(t) · x, V ∞N ) ≤ c(Π(t))→ 0,

so that Π(t) · x → V ∞N in the d-distance as well as in the Euclidean distance by item (i) of
Proposition A.1.
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Z. Wahrsch. Verw. Gebiete 69 (1985) 187–242.

[26] D. Henley, C. Huse: Pinning and roughening of domain wall in ising systems due to random impurities,
Phys. Rev. Lett. 54 (1985), 2708–2711.

[27] H. Hennion: Limit theorems for products of positive random matrices. Ann. Probab. 25 (1997) 1545–1587.
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Cedex 13, France
E-mail address: comets@math.univ-paris-diderot.fr

(Gregorio Moreno, Alejandro F. Ramı́rez) Facultad de Matemáticas, Pontificia Universidad Católica
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