N

N

Defect measures on graded lie groups

Véronique Fischer, Clotilde Fermanian-Kammerer

» To cite this version:

Véronique Fischer, Clotilde Fermanian-Kammerer. Defect measures on graded lie groups. Annali della
Scuola Normale Superiore di Pisa, Classe di Scienze, 2020. hal-01561499

HAL Id: hal-01561499
https://hal.science/hal-01561499v1
Submitted on 12 Jul 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01561499v1
https://hal.archives-ouvertes.fr

DEFECT MEASURES ON GRADED LIE GROUPS

V. FISCHER AND C. FERMANIAN-KAMMERER

ABSTRACT. In this article, we define a generalisation of microlocal defect measures (also known as
H-measures) to the setting of graded nilpotent Lie groups. This requires to develop the notions
of homogeneous symbols and classical pseudo-differential calculus adapted to this setting and de-
fined via the representations of the groups. Our method relies on the study of the C*-algebra of
0-homogeneous symbols. Then, we compute microlocal defect measures for concentrating and oscil-
lating sequences, which also requires to investigate the notion of oscillating sequences in graded Lie
groups. Finally, we discuss compacity compactness approaches in the context of graded nilpotent

Lie groups.
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Keywords : Analysis on graded Lie groups, pseudodifferential operators, classical pseudodiffer-

ential operators, classical symbol, microlocal defect measure, compacity compactness.

CONTENTS

1 Introdugtiod

bl YT |

|2 4. Rockland oneratorg

|2 5. _Sobolev sr)_a.msl
8 . ia

‘&Z_Diﬂﬁrﬂlce ODM

. :I
E:bmggenmus and principal svmbols, classical calculus

Date: June 2017.

co J Ot Ot N

11
13
14
17
18
19
19

23
23



2 V. FISCHER AND C. FERMANIAN-KAMMERER

4.2. Proof of Proposition @ 25

Consequence of Proposition 29
Homogeneous a i 30
The classical cal 32

L’LJ*— —bpmggﬂnfmls_rfglﬂ.a.uymlmlsl 34

5.1 The Fréchet. space S 34
iZ_AanorMDIﬂammg 36
b.3. _The C*-algebra C*(S% and its Sr)e(’trunl 40
5.4. _The C*-algebra C*(S°(Q)) and it Spm_umJ 42
5.5, The states of C*(S%) and C*(S%(Q 45

b_m&&t_msasums 48
l6.L. Main resul 48

6.2. _Example: spatial (’on(’entratiod 51
(6 xample: oscillation om square integrable representations 53
(6.4 xample: general oscillationd 57
6 onsistency of the description 62
|7 nnlicationsl 64
[7.1. Matrices of a C*—@ebra‘ 64
79 Microlocal def s of —valued L localisati ) | 67
7.3. _Compensated compactness 68
|7 4, Link with div-curl results] 70

|B£Emm&&| 70

1. INTRODUCTION

The aim of this article is to develop a new approach for analysing the lack of compactness of
bounded square integrable families on nilpotent Lie groups. The idea is to generalise the notions
of microlocal defect measures (MDM) which were originally defined and studied in the Euclidean
setting by Luc Tartar and Patrick Gérard independently in the 90’s, see [40] and [30] respectively;
the original definition of [30] is recalled in the next paragraph. These notions have given a new
insight on compensated compactness theorems as developed by Di Perna and Lions [I§] for example.
Such theorems allow one to pass to the limit on quadratic quantities appearing in mechanics for
example and of the form (Auy,vi) for weakly converging subsequences (ug) and (vg) provided
their MDM'’s and the operator A satisfy convenient assumptions. Such descriptions were already
possible in some cases thanks to the Div-Curl Lemma [28]. The analysis of MDM'’s extends the
range of applications of the ideas which are behind this lemma. It happens that the Div-Curl
lemma has recently been studied in the context of Lie groups: see the article [6] in the context of
the Heisenberg group and [7] for Carnot groups. This motivates the investigation of MDM’s and
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of compensated compactness questions on Lie groups. Notice also that the MDM and their semi-
classical counterpart (also called semi-classical or Wigner measures [31]) have also proved useful for
the analysis of pde-s in different context, from quantum chemistry to theory of chaos and analysis
of quantum ergodicity, including control theory [34] [35]. And questions not so far to those of the
latter references are now addressed in the context of sub-laplacians (see [14]).

Before discussing the setting of nilpotent Lie groups in more details, let us recall briefly the
definition of an MDM in the Euclidian case. On an open subset €2 of R™, an MDM of a sequence
(ug)ren of functions converging weakly to a distribution v in L%(€, loc) is a positive measure v on
Q x S"! such that, up to extraction of a subsequence, we have the convergence

(1) (A, = 0., =02 o [ ol dr(,6)

for any test pseudodifferential operator A of order 0 with principal symbol ag; by test pseudo-
differential operators we mean for instance operators in the classical Hormander calculus, properly
supported, defined through inverse Fourier transform by

(1.2) Au(x) = /n ao(z, £)e™Su(e)de, ue S(R™), =R,

(for simplicity, in the formula above, we have assumed that the symbol of A exactly ay and have
no term of lower order) This extends easily to closed manifolds by replacing S*~! x Q with the
spherical co-tangent bundle, and also to vector-valued functions by taking suitable traces. Note
that in the approach of Luc Tartar [40] test operators are the ones which are tensor products of
multiplication operators with Fourier multipliers, which is enough to construct the measure ~.

As we see from the paragraph above, the notion of (Euclidean) MDM relies on microlocal analysis
and the theory of pseudodifferential operators which has been developed since the 70’s in the
Euclidean setting (see [32, 42], or the review books [19, 21]). The development of a pseudo-
differential theory on nilpotent Lie groups has been the purpose of works by several authors, see
e.g. [29, [16, 8, @ 15, [41]. The recent contribution of the second author with her collaborators
n [5] for the Heisenberg group has been followed by the monograph [25] of the first author and
her collaborator, where they have defined a pseudodifferential calculus on graded nilpotent Lie
groups. As in the Euclidean context, they are defined thanks to inverse Fourier transform with the
major difference that the Fourier transform of a function at a (unitary irreducible) representation
is an operator on the space of the representation. Consequently the symbols of pseudo—dlfferentlal
operators introduced in [25] are measurable fields of operators on G X G where G is the unitary
dual, i.e. the set of unitary irreducible representations of G modulo equivalence, that we shall
denote by 7(x), x € G. Then, the operator A whose symbol is the field of operator o(x, ) satisfies

Au(:ﬂ):/atl"(ﬂ'(l‘)d($ m)u(m)) du(m), veS(G), x €,

which is the analogue of (I.2]) (precise definitions are given in sections [2 and B]). It is on this latter
result that relies the construction of MDM’s developed hereafter. However, we shall need to extend
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the theory and we develop in section [l the classes of homogeneous symbols and of classical symbols,
together with the notion of principal symbol.

We will see that the MDM’s on a graded nilpotent Lie group G defined in this paper are non
commutative objects, and this is not surprising since the Fourier transform is operator-valued. More
precisely, a MDM on G consists of a positive measure v on G X (é /RT) and a field v-integrable
field T of trace-class operators on G x (G/R™) (the quotient set G/R™ is defined by use of dilations
and the class of 7 € G will be denote by 7, see section 2.3). Then, the analogue of formula (LI
which is proved in section [6] writes
(1.3) (A(ur; —u),up;, — )2 —j00 /  tr(oo(z, m)(x, 7)) dy(z, ),

Gx(G/R+)
where og is the principal symbol of the operator A, as defined in section 4l Note that operator-
valued measures have been introduced in semi-classical settings since the 90’s [38] [37), 22| 23] and,
more recently, in the context of quantum ergodicity [2 B, 4, B6]. As in the Euclidean case, one can
develop applications to compensated compactness as discussed in section [7

An important difference with the Euclidean context is the lack of Garding inequality, and this
prevents us to adapt the main steps of the proof of existence of Euclidean MDM’s given in [30]. This
is overcome by the use of C*-algebra formalism and the notion of state. More precisely, we prove
that convergent limits of quantities similar to the left hand side of (I3]) in the nilpotent setting
define positive linear functionals on the algebra of homogeneous symbols of order 0, and that these
linear functionals extend to states on certain C* algebras. Understanding the spectrum of these
C* algebras and decomposing these states yield the main result of the paper. Reformulating our
proof in the case of the abelian group R™ (which is trivially a graded Lie group) gives a new proof
of the result in the Euclidean case, albeit too sophisticated. Note also that, although this paper
belongs to the fields of micro-local analysis and non-commutative analysis, many of its tools and
techniques relies on the progress of the last four decades in harmonic analysis on Lie groups: for
instance, in understanding the properties of spectral multipliers in sub-laplacians on nilpotent Lie
groups (or more generally positive Rockland operators), or in describing homogeneous convolution
operators in terms of their kernels.

Finally, we want to emphasize that the nilpotent Lie groups considered in this paper and in
[25] are graded, but this is a natural restriction. Indeed, the class of graded nilpotent Lie groups
contains the class of stratified Lie groups (also called Carnot groups in more geometric contexts),
the prime example being the Heisenberg group. Graded or even stratified groups are the groups
usually appearing in applications of analysis on nilpotent Lie groups, for instance in the study of
operators sums of squares of vector fields, as in [14].

Our article is organised as follows. Section [21is devoted to definitions on graded Lie groups and
to analysis results that we shall use. Then we recall in section [ the definition of pseudodifferential
operators on graded Lie groups and we introduce in section 4] the notion of homogeneous symbols
and of principal symbols. In Section Bl we analyse the C*-algebras formed by 0-homogeneous
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symbols. The core of the paper consists in sections [6l where we prove the existence of MDM and
analyse the fundamental examples of concentrating and oscillating sequences. Then, in section [1]
we link our results with compensated compactness theory and definition of Curl operators on Lie
groups.

Convention: In the paper, if X and ) are Banach spaces, .Z(X,)) denotes the Banach space of
bounded linear applications form X to ). If a linear operator A is densely defined in a Banach
space X and valued in a Banach space ), then writing A € £ (X,)) means that A extends to a
bounded operator X — Y and that we identify the operator A with its bounded extension on X
(which is unique). If X = Y, we write Z(X,X) = Z(X). If X is a Hilbert space, we define by
Z'(X) the trace-class operators on X and we set [|A[| g1 (x) = tr|Al.

Acknowledgements: The authors give deep thanks to Vladimir Georgescu, the exchange they had
with him proved to be determinant for the orientation of their work. They also warmly thank
Philippe Biane and Patrick Gérard for fruitful discussions and they are indebted to the Centre
International de Rencontres Mathématiques for its “Recherche En Binéme” program that has helped

them to close the writing of this article.

2. PRELIMINARIES: GRADED LIE GROUPS

In this section, after defining graded Lie groups, we recall their homogeneous structure, the
definition of the Fourier tranfrom and results on the dual. A complete description of the notions
of graded and homogeneous nilpotent Lie groups may be found in [27, chl] and [25] ch3].

2.1. Graded Lie groups. We will be concerned with graded Lie groups G which means that
G is a connected and simply connected Lie group whose Lie algebra g admits an N-gradation
g = ®y°,9¢ where the gy, £ = 1,2,..., are vector subspaces of g, almost all equal to {0}, and
satisfying [g¢, 9] C gore for any £, ¢' € N. This implies that the group G is nilpotent. Examples of
such groups are the Heisenberg group and, more generally, all stratified groups (which by definition
correspond to the case g; generating the full Lie algebra g).

We construct a basis X, ..., X, of g adapted to the gradation, by choosing a basis {X1,... Xy, }
of g1 (this basis is possibly reduced to 0), then {X,,, 11,...,Xn,4n,} & basis of go (possibly {0} as
well as the others) and so on. Via the exponential mapping exps : ¢ — G, we identify the points
(x1,...,2y) € R™ with the points z = expg(x1 X1 + -+ + 2, X,,) in G. Consequently we allow
ourselves to denote by C(G), D(G) and S(G) etc, the spaces of continuous functions, of smooth
and compactly supported functions or of Schwartz functions on G identified with R"™, and similarly
for distributions with the duality notation (-, ).

This basis also leads to a corresponding Lebesgue measure on g and the Haar measure dz on the
group G, hence LP(G) = LP(R™). The group convolution of two functions f; and fo, for instance

square integrable, is defined via

(1% fo)(x) = /G 1) faly ).
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The convolution is not commutative: in general, f1 * fo # fo * fi.

The coordinate function = (x1,...,2,) € G — x; € R is denoted by x;. More generally we
define for every multi-index o € Nfj, z® := z{'x5? ... 20", as a function on G. Similarly we set

XY = X{"X5?%-- X3 in the (complex) universal enveloping Lie algebra $(g) of g. Let us recall
that a vector of g defines a left-invariant vector field on G and, more generally, that the universal
enveloping Lie algebra $1(g) of g is isomorphic with the left-invariant differential operators; we keep
the same notation for the vectors and the corresponding operators. However if X € g, then X
denotes the corresponding right invariant vector field. More generally, if T' € $l(g), we denote by T
the right-invariant differential operator.

For any r > 0, we define the linear mapping D, : g — g by D, X = ‘X for every X € gy,
¢ € N. Then the Lie algebra g is endowed with the family of dilations {D,,r > 0} and becomes
a homogeneous Lie algebra in the sense of [27]. We re-write the set of integers ¢ € N such that
g¢ # {0} into the increasing sequence of positive integers vy, ..., v, counted with multiplicity, the
multiplicity of gy being its dimension. In this way, the integers vy, ..., v, become the weights of
the dilations and we have D, X; = r%X;, j = 1,...,n, on the chosen basis of g. The associated
group dilations are defined by

D,(z) =rx = (r’*z1,r%xe,...,7"xy,), == (x1,...,2,) € G, r>0.

In a canonical way, this leads to the notions of homogeneity for functions and operators. For
instance the degree of homogeneity of “ and X%, viewed respectively as a function and a differential
operator on G, is [a] = ) ; Ujj. This also leads to the notion of homogeneous distribution.

Ezxample 2.1. The Haar measure is (Q-homogeneous:

(2.1) - /G f(ra)de = /G f(y)dy,

where

Q:zZ@dimgg:vl—k...—i-vn,
£eN

is called the homogeneous dimension of G.

Recall that a homogeneous quasi-norm on G is a continuous function |- | : G — [0,400) homo-
geneous of degree 1 on G which vanishes only at 0. This often replaces the Euclidean norm in the
analysis on homogeneous Lie groups. Any homogeneous quasi-norm | - | on G satisfies a triangle
inequality up to a constant:

A0 =1, VryeG, oyl < O]+ |y)).
Any two homogeneous quasi-norms |- |; and |- |5 are equivalent in the sense that
C > 0, Vze G, C_llaj‘g < ‘.’L”l < C’J}‘Q

There is an analogue of polar coordinates on G:
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Proposition 2.2. Let | -| be a fized homogeneous quasi-norm on G. Then there is a (unique)
positive Borel measure o on the unit sphere & := {x € G : |z| = 1}, such that for all f € L'(G),
we have

(2.2) /G F(2)da = /0 h /b Fry)r@Ydo (y)dr.

There is also an analogue of the mean value theorem:

Lemma 2.3. We fiz |- | a homogeneous quasi-norm on G. Then there exists a constant C > 0
such that for any f € CY(G), = € G, we have

n
() = FO)] < C D |a]” sup | X; f(y)].
=0 yeG
2.2. The dual of G and the Plancherel theorem. Here we set some notations and recall some
properties regarding the representations of the group G (especially the Plancherel theorem) and its
enveloping Lie algebra LU(g).

In this paper, we always assume that the representations of the group G are strongly continuous
and acting on separable Hilbert spaces. Unless otherwise stated, the representations of G will also
be assumed unitary. For a representation 7 of (G, we keep the same notation for the corresponding
infinitesimal representation which acts on the universal enveloping algebra U(g) of the Lie algebra

of the group. It is characterised by its action on g:
(2.3) m(X) = d=om(e¥), X eg.

The infinitesimal action acts on the space H>° of smooth vectors, that is, the space of vectors
v € Hr such that the mapping G 3 = — 7(z)v € H, is smooth.

Ezample 2.4. Vectors of the form 7(¢)v where ¢ € D(G) or S(G) and v € H, are smooth.

Here we have used the usual notation for the group Fourier transform of a function f € L'(QG)

at m:

ﬂnzﬂmzﬁxMﬂ=KJWMMWm

We denote by G the unitary dual of GG, that is, the unitary irreducible representations of G modulo
equivalence and identify a unitary irreducible representation with its class in G. The set G is
naturally equipped with a structure of standard Borel space.

The Plancherel measure is the unique positive Borel measure p on G such that for any f € C.(G),

we have:
(2.4) [ 1@Pde = [ 176 s ).

Here || - || zs(,) denotes the Hilbert-Schmidt norm on H,. This implies that the group Fourier
transform extends unitarily from L(G) N L2(G) to L2(G) onto L*(G) := Ja Hr © Hidp(m) which
we identify with the space of pu-square integrable fields on G. Consequently (2.4) holds for any
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f € L?*(Q); this formula is called the Plancherel formula. Consequently, for any ¢1,¢2 € L*(G),
the quantity [z tr[¢1(m)@2(7)|du(n) is finite and we have the Parseval formula

(2.5) /G 61(z)ba () dz = /@ tr (51(W)$2(w)*>du(w).

The orbit method furnishes an expression for the Plancherel measure p, see [17, Section 4.3].
However we will not need this here.

The general theory on locally compact unimodular group of type I applies (see [20]): let 2 (L%(G))
be the space of bounded linear operators on L?*(G) and let .77, (L*(G)) be the subspace of those
operators T € Z(L*(G)) which are left-invariant, that is, commute with the left translation:

T(f(g)(g1) = (Tf)991), fe€L*G), 9.1 €G.
Then there exists a field of bounded operators T(w) € Z(H,), © € G, such that

-~

Vf e L*G), Fa(Tf)(x)=T(r) f(x) for u— almost all 7 € G.

Moreover the operator norm of 7" is equal to

1Tl 2r2(c)) = sup | T(7)] 2 (3)-

TeG

The supremum here has to be understood as the essential supremum with respect to the Plancherel
measure . We denote by LOO(CA?) the space of fields of operators o, € L (H,), m € G, with

”U”Loo(@) = sup ”UﬂHf(Hﬂ) < o0,

TeG

modulo equivalence under the Plancherel measure y. Conversely, any field in LOO(@) naturally
yields a left-invariant bounded operator on L?(G).

By the Schwartz kernel theorem, any operator T' € .7, (L*(G)) is a convolution operator and we
denote by Ty € S'(G) its convolution kernel: T'f = f x (Tdy), f € S(G). We may call Tdy the
kernel of T or of 7.

We denote by K(G) the space of convolution kernels of operators in .7 (L%(G)) and we define
the group Fourier transform of T'dg as

Fa(Ts) =T.

This extends the previous definition of the group Fourier transforms from L'(G)NK(G) or L?(G)N

K(G) to K(G) onto L>*(G). The group Fourier transform also extends for instance to the space of
convolution kernels K, ,(G) of operators in .27 (L2(G), LZ(G)).

2.3. Dilations on G. Since the group G is a (connected, simply connected) nilpotent Lie group,
one can use the orbit method to construct unitary irreducible representations of G (see e.g. [17]):
with this method, to any linear functional ¢ € g*, one associates a class 7, € G of equivalent
unitary irreducible representation. Any element of G may be realised in this way and two such
classes in G coincide when the linear functionals are on the same orbit for the co-adjoint action
of G on g*. In other words, one obtains a bijection g*/G «— @, known as Kirillov’s map.
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The dilations of G provide an action of RT™ = (0,00) on the Lie algebra g, hence on g* by
duality, and one checks easily that quotienting by the co-adjoint action of G' and by the RT-action
commutes. Hence one obtains an action of RT on g*/G. The dilations also provide an action of R™
on the group G thus on its dual via

(2.6) row(z)=n(rz), v€G, neq, r>0.

One checks that Kirillov’s map g*/G +— G is R*-equivariant.

As usual, G is equipped with the hull-kernel topology and g*/G with the quotient Euclidean
topology. It is known [II] that Kirillov’s map is a homeomorphism. One checks easily that,
quotienting by the R*-actions, the map (g*/G)/R* <— G/RT is a homeomorphism.

If X € gis of degree d, then it follows from (23] that we have
(r-m)(X) = Oho(r - 7) (™) = —om(re™) = _om(ePr)) = Gi_gm (™) = rin(X).
More generally for any o € Nij, we have:
(2.7) (r-m)(X%) = rl¥r(x®), r>o.
If f € LY(G), then so does f o D,—1 and using (Z.1]), we have

(r-m)(f) = /Gf(:z:)r-ﬂ(x)*dx:/Gf(x)w(rzn)*d:E:/GfODr1($)7T(:E)*T_de
Q@

m(foD,-1).

More generally, using the properties of the group Fourier transforms, we obtain

(2.8) (r-m)(f) =7(fe)) where f,) = r~9foD,—1, r>0.
for any f in L(G), L*(G) or Ky (G).

Formula (2.8]) and the Plancherel measure being unique, easily imply that for any positive mea-
surable or integrable function F' on G and any r > 0, we have

(2.9) /@F(r-w)d,u(ﬂ) = T’_Q/GF(ﬂ')d,u(ﬂ').

Let us fix a quasi-norm |- | on G. This yields a map on g* for which we keep the same notation.
We set

[l] = inf{|¢'],¢" € [¢]} = min{|¢'|, ¢ € [¢]},
where [¢] denotes the co-adjoint class of ¢ € g*. Naturally, the map [p]| — |[¢]| is continuous
g* /Rt — [0,00). We set for each m € G,
(2.10) || ;= inf{|¢|,p € g" s.t. T =7, } = min{|p|, ¢ € g" s.t. T =7, },

where 7, is the class of unitary irreducible representations of G' corresponding to the co-adjoint
orbit containing . This mapping is nothing else than the map [¢] +— |[p]| transported by the
Kirillov mapping. There the function 7 +— |7| is continuous G — [0, c0).
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One checks easily that the map [¢] — |[¢]|, and therefore the map 7 — |7| respect the dilations
in the following way:
(2.11) le(r=)]) =7|l¢]| and |r-w| =7z, r>0 7€qG, ¢cg"

Furthermore
lp]l =0 = ¢=0, |r[=0 = 7=1,
where 1 = 7wy denotes the trivial representation of G.
This induces a continuous surjection from the ‘sphere’ in G

(2.12) =% ={red, |r|=1},
onto (G/RT)\{1}. This shows the following property:

Lemma 2.5. The R -quotient of Kirillov’s map is a homoemorphism between the compact spaces
(g*/G)/R* and G/RT.

Remark 2.6. In the case of the Heisenberg group, this sphere is reduced to two points.
Having defined a unit sphere on @, we can state a polar decomposition:

Lemma 2.7. Let |- | be a quasi-norm on G and let | - | be the associated mapping on G and the
sphere ¥y = Xy | defined in 2.12) above.
(1) The linear mapping f +— f(x| 7Y - )|~ Qdu(r), defines a continuous positivity-

1<|n|<e
preserving linear mapping on the Banach space C(X1) of continuous function on the compact

space 31. We denote by ¢ = || the corresponding Radon measure.
(2) For any measurable function F : G — [0,00), we have:

/ F(m)dp = / F(r - m)ds(m)r® tadr,
G 21><(0,oo)
(3) In particular, if u € L*(Q), then
[l m st = .
21><(0,oo)

Proof. One checks easily Part (1). As the Plancherel measure is the unique measure such that the
Plancherel formula holds, it suffices to show Part (3) which follows from simple manipulations and

@3). O

Remark 2.8. Adapting the ideas of the proof of the polar decomposition on a homogeneous Lie group
(see e.g. [25, 3.1.7]), one can show the following property: having fixed | - |, if F € L*(G\{1},loc)
is (—Q)-homogeneous, that is, F(r-7) = r~@F(r), then we have

Vr >0, /1<|7r<r F(p) du(m) = |Inr| /1<|7r<e F(m) du(r).

Furthermore the quantity [| <pr<e F (m) du(m) is independent of |- |. This may shed some light on

our choice of definition for ¢.
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2.4. Rockland operators. Here we recall the definition of Rockland operators and their main
properties. See [25, Ch.4] for proofs and references.

Definition 2.9. A Rockland operator R on G is a left-invariant differential operator which is
homogeneous of positive degree and satisfies the Rockland condition:

(R) for each unitary irreducible representation m on G, except for the trivial representation,
the operator m(R) is injective on HJ°, that is,

Yo e HY, TRv=0 = v=0.

Ezample 2.10. In the stratified case, one can check easily that any (left-invariant negative) sub-
Laplacian, that is

(2.13) L=27¢+.. .+ Zfl, with Z1,..., Z,, forming any basis of the first stratum gy,

is a Rockland operator.

Ezample 2.11. On any graded group G, it is not difficult to see that the operator

n vo 2570
(2.14) D (1)%e X, with ¢ >0,
j=1
is a Rockland operator of homogeneous degree 2, if v, is any common multiple of vy, ..., v,.

Hence Rockland operators do exist on any graded Lie group (not necessarily stratified).

If the Rockland operator R is formally self-adjoint, that is, R* = R as elements of the universal
enveloping algebra $((g), then R and m(R) admit self-adjoint extensions on L?(G) and H, respec-
tively. We keep the same notation for their self-adjoint extension. We denote by F and E, their
spectral measure:

R = /R AE()) and w(R) = /R AE,(N).

Example of formally self-adjoint Rockland operators are the positive Rockland operators, that is,
Rockland operators R that satisfy

vf € S(G), /GRf(:n) F(@)dz > 0.

One checks easily that the operator in (2Z.14]) is positive. This shows that positive Rockland oper-
ators always exist on any graded Lie group. Note that if G is stratified and L is a (left-invariant
negative) sub-Laplacian, then it is customary to privilege —L as a positive Rockland operator.

The next lemma says that the point 0 can be neglected in the spectrum of a positive Rockland
operator and its group Fourier transform.

Lemma 2.12. Let R be a positive Rockland operator with spectral measure E.

(1) Then for any f € L*(G),

[£10,€)fll2 0 and [E(e,+00)fllr2(a) N 2@y as e \0.
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(2) If m is a non-trivial unitary irreducible representation of G, then the spectrum of 7(R) is a
discrete subset of (0,00).

(3) Let v € C®(R) be a scalar valued function satisfying ¥ = 1 on (A, o0) for some A € R.
Then y(tR) and 1 (tm(R)) converges to the identity mapping of L*(G) and H for the strong
operator topology (SOT). Moreover we have

(2.15) Vre@, FIr=ry>0 Vr>r, @ 7(R))=vr'n(R)) =Iy,.

Sketch of the proof. Let us recall that the heat kernel h; of R is by definition the right convolution
kernel of e R and that it satisfies h; = t_%hl o Dt with hy € §(G). This has the two following
consequences. Firstly, it yields classically

_1
v

le R fllo = 1+ lull =0, f € IX(G),

which implies Part (1). Secondly, it implies that the operators m(h;), t > 0, are compact and form
a continuous semi-group. One checks easily that m(R) is its infinitesimal generator, and this yields
Part (2). Part (3) follows easily from spectral properties and Parts (1) and (2). O

Remark 2.13. We can give a value for r in (2.15):

rn = A

where Apin(7) is the minimum eigenvalue of 7(R), see Part 2 of Lemma 2121 In this case, 7, is

€ (0, 00),

v-homogeneous in 7:

)\min(t : 7T) o ty)\min(ﬂ')
A N A i

Vvt > 0, ﬂeé, Tig =
Hence the range of r, as 7 runs over G is (0, 00).

The properties of the functional calculus of R and of the group Fourier transform imply the
following lemma.

Lemma 2.14. Let R be a positive Rockland operator of homogeneous degree v and f : RT™ — C be
a measurable function. We assume that the domain of the operator f(R) = [ f(AAE(X) contains
S(G). Then for any z € G,

(f(r"R)¢) o Dy = f(R) (9o Dy), ¢€S(G),
where v denotes the homogeneous degree of R, and
(2.16) f(r"R)bo(x) = 1~ Cf(R)oo(r 'z), xze€G,

where f(R)dog denotes the right convolution kernel of f(R).
Let 7 be an irreducible unitary representation. Then the domain of the operator f(w(R)) =
Jg FONAER(X) contains Hy® and we have

(2.17) F{f(R)p}(m) = f(x(R)) o(m), ¢ € S(G).
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2.5. Sobolev spaces. The (inhomogeneous) Sobolev spaces L2(G), resp. the homogeneous Sobolev
spaces L2(G), a € R, as the completion of the domain Dom(I 4+ R)¥ of (I+R)7, resp. the domain
Dom(R*) of R¥, for the Sobolev norm

Iz = 10T+ R)¥ fll2,  resp fllizeyr = IR iz
We realise the elements of L2(G) as tempered distributions and we have
S(G) c Dom(I1+R)> C L2(G) Cc S'(G).
We realise the elements of L2(G) as the linear functionals f on Dom(R ™) satisfying
3C >0,  VeeDom(R™¥),  [f(9) < CIR *4llr2c

Each f € Lg(G) defines a unique function Rv f € L?(G) via the continuous linear functional
v f(RVY).

The following lemma implies that the Sobolev spaces defined above do not depend on the choice
of Rockland operators:

Lemma 2.15. Let Ry and Ro be two positive Rockland 0pemt0rs of homogeneous degree v1 and vy
respectively. Then for any a € R, the operators (I1+Rq1)"t v I+ Rg)_”2 and (Rq1)“1 7 (R2) v2 extends
to bounded operators on L?*(G).

The Sobolev spaces defined above satisfy the following natural properties:

Theorem 2.16. (1) The spaces L2(G) and L2(G) are Banach spaces. Different choices of
positive Rockland operators yields equivalent (homogeneous) Sobolev norms.
(2) (Sobolev embeddings) We have the continuous inclusions

Li(G) C C(G), a> Q/2,

where C(G) denotes the Banach space of continuous and bounded functions on G.
(3) If a = 0 then L(G) = L*(G). If a > 0 then Dom(Rv) = Dom(I + R) > S(G), and
L(G) = L*(G) N L2(G) with

1fllrzc) = Iflleza) + 1 2

after a choice of positive Rockland operators to realise the Sobolev norms.

(4) For any a € NZ, X® maps continuously L(G) to Li_[a}(G) and L2(G) to L2_ a]( ), for
any s € R.

(5) Let R be a positive Rockland operator of degree v. Let also a,s € R. Then the operator
(I+R)> maps continuously L2(G) to L2_,(G) and the operator (R)* maps continuously
L3(G) to LT_,(G).

(6) For any s € R, the Banach spaces L% (G) and L? ,(G) are the duals of L2(G) and L%(G)
respectively via the dualities

(fr9)r2xre = (T+R) £, T+ R) v g) p2ur2 (f:9)i2xi2 = (R¥f\R™7g)roxr -
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(7) The Banach spaces L2(G) and L2(G) satisfy the properties of interpolation (in the sense of
Theorem 4.4.9 and Proposition 4.4.15 in [25] ).

In order to distinguish the Sobolev spaces L2(G) on the graded group G and the usual Sobolev
spaces on the underlying R™, we denote by H® the Eulidean Sobolev spaces on R™. The spaces H*®
and L2(G) are not comparable globally (we assume that G is not abelian), but they are locally:

Proposition 2.17. For any s € R and any x € D(R"™), the mapping S(G) > f — xf extends
(uniquely) to a continuous operator of H® — L2, (G) and to a continuous operator of L(G) —

Hs/vn (where v1 < ... < v, are the dilation’s weights in increasing order).

2.6. Bessel potential and Fourier Inversion Formula. Classical considerations on Bessel po-
tentials in this context imply that the convolution kernel of (I 4 72)571 is square integrable when
51 < —Q/2,ie. (I+R)v € LAQG), see [25, §4.3.3]. The Plancherel formula (Z4) then yields

(218) I+ R s () < 0o 51 < ~Q/2
and consequently,
(2.19) /Atr ‘7‘(’(1 + R)STI du(m) < oo for s; < —Q.

G

Naturally, the Plancherel theorem (cf. Section 2.2]) implies a Fourier Inverse Formula, at least
formally. The next proposition gives hypotheses which imply the FIF.

Proposition 2.18 (Fourier Inversion Formula). Let R be a positive Rockland operator of homoge-
neous degree v. Let o = {o(m) : H° — Haq,m € G} be a field of operators on G defined (at least)
on [ HXdu(rm). Let s > Q.

(1) The field of operators {x(I+R)vo(n), 7 € G} is also defined on JaHy du(m). We assume
that sup,__a ||m(1+ R)%U(ﬂ')”g(%w) is finite.

(2) For each 7 € G, the field of operator {r(I+R)> : H® — H=, 7 € G} acts on JaHydu(r).
The field of operators {m(1+R)vo(n),xm € G} is defined on JaHdu(m). We assume that
sup, & [|m(I+ R)sa(ﬂ)Hg(Hﬂ) is finite.

Then o € LQ(CA?) and k = F Lo is in Lg/z, in particular it coincides with a continuous and bounded
function on G. Moreover
/Atr\a(ﬂ)]d,u(ﬂ) < 00 and k(0) = /Atr o(m) du(rm).
G G

We will need the following classical properties for approximations of §y:

Lemma 2.19. Let ¢y € S(G). For e > 0, we set . = (Y1), that is, Pe(z) = e Qi (ex). We
also denote ¢ := [,1 = [ Ve.
(1) As e = 0, we have . — ¢y in S'(G), and if K € S'(G) is continuous and bounded then

ke — ck(0).
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(2) If m is a continuous unitary representation of G, then (121\6(77))90 converges to cly, in the
strong operator topology (SOT) on Hr.

Proof of Lemma [219. Part 1 is classical, see e.g. [25], §3.1.10]. For Part 2, we write

1/16( ) - CIH7r / ¢E d.%' — CIH7r / 1/11 61’) — IH )d

Thus, applying a vector v € H,. and for any R > 0 decomposing the integral as fG = f| o<kt f‘ o[> R
we obtain:
I(e(m)® = e Yol < sup flw(a)o = vl [ or] + 2ol [ fn(o)l
|z'|<eR G |z[>R

And the conclusion follows easily from the continuity of ' — 7(z')v at 0 and the integrability of

¢1 ES(G). O

Proof of Proposition[2.18. Let us assume the hypothesis of Part 1. The membership of ¢ in L2(é)

follows from
ol 26 < 70+ R 12y sup 71+ RYE o) L0
el
since the first term of the right-hand side is square integrable by (ZI8]). We also have

[ erlomldutr) < sup a1+ R) otm) sy [ trl(T+ R)fdu(r)
G TeG G
and the last integral is finite by (2.I9). Hence [5tr|o(m)|du(r) is finite.

Let k= Flo. As o € L2(@), k € L2(G). Moreover
I+ Rkl 2 = [Iw(I+ R)%UHLz g

IN

Ie (T +R)™2 || 1 g sup 7L+ R)v o (m)| 231,
7r€G’

Hence k € Lz /2 The Sobolev embedding, see Theorem [2.16] implies that s is continuous and
bounded on G.

Let ¢ € S(G) with [,4¢1 = 1. We construct the dyp-approximate (1)eso C S(G) as in
Lemma 2191 By the Parseval formula, see (2.5]), we have:

(2.20) /G/{(x)&e(:n)da: = /@tr (O‘(?T)TZ)\E(W)*) dp ().

By Lemma 2.19] the left-hand side of (2.20]) tends to x(0) as € — 0. Note that the right-hand side
of (2.20) is integrable since:

tr (o () Pe(m)) | < Ie(mll gty tr lo] < lnl e ol
Lemma [2.19] and the Lebesgue Dominated Convergence Theorem imply that the right-hand side
of [Z.20) converges to [5tro(m)du(n) as € — 0. Taking the limit in both sides of (2.20) as € — 0
concludes the proof of Proposition 2.I8 under the hypothesis of Part 1.
For Part 2, the fact that {r(I+R)v : H® — HX, 7 € G} acts on JaHdu(r) follows from [25),
Lemma 5.1.2]. We then proceed as above. Another proof is by taking the adjoint. O
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Remark 2.20. In fact, the proof above shows that if 11 € S(G) and 1e = (¥1)(¢) as in Lemma 2.T9]
and if o and x are as in Proposition 2.I8] then

~

/@/@tr ‘0(71) A:(T(')‘ du(m) < oo, and lim [ tr (O’(ﬂ') :(77)> du(m) = crx(0),

e—0 G

where ¢ = fG U1.

~

Corollary 2.21. Leto € L*°(G). Then for any ¢ € S(G), we have /@tr |J(7T)fg(qz3)(7r)| du(m) < oo

and denoting by k € S8'(G) the kernel of o, i.e. 0 =R, we have:

(221) (5:0) = [ tr (o(mFo(d)(m) dutm)

G
where (z) = ¢(z™1).

Proof. If ¢ € S(G), then ¢ satisfies the hypotheses of Proposition ZI8 since (I+ R)N¢ € S(G) is

integrable for any N € N. For the same reason o Fg(¢) satisfies the hypotheses of Proposition 2.18]
We conclude with (k,¢) = ¢ * £(0) and Fq(¢ * k) = o Fg(9). O

~

Remark 2.22. Corollary [2Z2]] implies that if o € L*°(G) and « € S§'(G) are such that (22I]) holds
for any ¢ € S(G) or D(G) then k is the kernel of o, i.e. 0 =K.

We will also need the following inversion formula:

Proposition 2.23. Let k be a compactly supported distribution on G. Then for each unitary

representation © of G and v,w € H,, we can define
@m0, i, = [ w@)(r(z)" o, whn, do
G

since x — (m(x)*v,w)y, is smooth and bounded on G.
For any smooth and bounded function ¢ on G, we have

[ (7r) 3(m) du(r) = (.0

G

interpreting the left hand side as the limits (in this order) of the absolutely convergent double
integral:

lim lim /N.C/GtrN (R(m)m(x)) p(x)xr(z) dedu(r),

R—oo N—+o0

where x € D(G) with x = 1 on a neighbourhood of 0 and xr(x) := x(R™'z), C a compact neigh-
bourhood of 1 € G such that UnyenN - C = G, and try denotes the trace of the operators projected
on the subspace spanned by the first N vectors, having fixed a fundamental sequence of vector fields.

For instance, having fixed a quasinorm, we can choose C := {|m| < 1}, see Section 23]l The
definition of a fundamental sequence of vector fields may be found in [20, A93].



DEFECT MEASURES ON GRADED LIE GROUPS 17

Proof. Corollary [2.21] implies the result when s € D(G).

Let k be a compactly supported distribution. We consider ¢, € D(G) satisfying ¢(0) = 1, and
Ye(z) := e (e 2). Then ke = k * 1) is in D(G) and we conclude the proof by passing carefully
to the limit using Lemma 219l O

2.7. Operators of type v. The properties of kernels or operators of type v extends from the
Euclidean setting to the case of homogeneous Lie groups, so in particular to graded Lie groups (see
e.g. [27, Chapter 6 A] or [25, §3.2]):

Definition 2.24. A distribution £ € D'(G) which is smooth away from the origin and homogeneous
of degree v — (@ is called a kernel of type v € C on G. The corresponding convolution operator
f € D(G) — fxk is called an operator of type v.

Example 2.25. Let R be a positive Rockland operator of homogeneous degree v. For any a € C,
Ra € [0,Q), the operator R+ is of type a. See [25] §4.3].

The next statement summarise the properties of the operators of type v used in the paper:

Proposition 2.26. Let G be a graded group.

(1) An operator of type v with v € [0, Q) is (—v)-homogeneous and extends to a bounded operator
from LP(G) to LI(G) whenever p,q € (1,00) satisfy % - % = %.

(2) Let k be a smooth function away from the origin homogeneous of degree v with Rv = —Q.
Then k is a kernel of type v, if and only if its mean value is zero, that is, when fe kdo =0
where o is the measure on the unit sphere of a homogeneous quasi-norm given by the polar
change of coordinates, see Proposition [2.2. (This condition is independent of the choice of
a homogeneous quasi-norm.)

(3) Let k be a kernel of type s € [0,Q). Let T be a homogeneous left differential operator of
degree vp. If s —vp € [0,Q), then Tk is a kernel of type s — vp.

(4) Suppose k1 is a kernel of type v1 € C with Rvy > 0 and ko is a kernel of type vo € C with
Rvo > 0. We assume R(v1+12) < Q. Then k1Ko is well defined as a kernel of type vy +vs.
Moreover if f € LP(G) where 1 < p < Q/(R(v1 + 1v2)) then (f * k1) * ko and f * (k1 * K2)

belong to LY(G), % = % — W, and they are equal.

The L2-boundedness of operators of type 0 (see Part () in the case v = 0) and the characteri-
sation of Part (2)) are proved using the classical construction of a principal value distribution and
quasi-orthogonality. The next lemma summarises the result in more detail with the vocabulary of
this paper:

Lemma 2.27. (1) Let k € CHG\{0}) be (—Q)-homogeneous and with vanishing mean value.
Then k extended to a distribution on G which is the kernel of an convolution operator
bounded on L?(G). We fix a homogeneous quasi-norm |- |. For each j € 7, we define the
integrable function k; via k() = k()19 <|z)<2i+1, T € G. Then for each 7 € @, and each
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v € Hy, the limit Z;-WZQ_Ml Kj(m)v converges in Hy as My, My — oo. This defines a field of

operators y .., Kj wich is 0-homogeneous and satisfies:

JEZ

sup | >R (M)l gy <C sup [ Xk(2)],
G ez |2l=1,]al<1

where C' is a constant which depends on the structural constants of the group G and of the
choice of a homogeneous quasi-norm | - |, but not on k.
Let 0 = {o(r) € L(Hx), 7 € G} be a measurable field of operators such that

e o is 0-homogeneous, i.e. o(rr) = o(x) for (almost) all 7 € G and all r > 0,

e o0 is bounded, i.e. sup _a |lo(7)||l .2, < oo,

o the kernel associated with o, i.e. k € S'(G) such that & = o, coincides with a C!

function on G\{0}.

Then the mean value of k vanishes. Using the notation of Part 1, the sum zj Kj converges
in 8'(G) and defines a tempered distribution which coincides with k on G\{0}. We have

K= Z/{j ~+ ¢c5 00,
J

where ¢4 :/ k(2)x(z)dz where x € D(R) is such that x(0) = 1 and x(z) = x1(|z|) for

G
some x1 € C(R). The constant ¢, does not depend on x or |- |.
As a representative of the measurable field o, we may choose the one given via:

+o0o
o(m)u = Z Kj(m)u + cou, e Gu€ Hy

j=—o00

In this case, ¢, = o(1).

Sketch of the proof of Lemma[2.27 See e.g. [25], §3.2.5] for the proof of Part (1). For Part (2),
let & be the kernel associated with the symbol »_ .7 %;. Then £ =3, r; is a (—Q)-homogeneous

tempered distribution. For any ¢ € D(G), the sum } (s}, $) is absolutely convergent and its sum

is (R, ). Hence i coincides with x on G\{0} so the distribution k — & being —Q-homogeneous and
supported at the origin must be a multiple of dy. If there exists ¢; € C(R) such that ¢(z) = ¢1(|z])

then

(kj, @) = / -~ K(2)¢1(|z))dz =0
21 <|z|<27+1

as the mean value of « is zero and (k, ¢) = 0. This together with k = & + ¢,0¢ with ¢, € C implies
the rest of the statement. O

3. PSEUDO-DIFFERENTIAL CALCULUS

Here we outline the pseudo-differentical calculus developed in [25].
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3.1. Quantisation. A symbol is a measurable field of operators o(z, 7) : H° — H°, parametrised
by z € G and 7w € G. We formally associate to o the operator Op(o) as follows

Op(o)f(z) = |

G

tr (w(@)o (e, m) f(m)) du(r),
where f € S(G) and z € G.

Regarding symbols, when no confusion is possible, we will allow ourselves some notational
shortcuts, for instance writing o(x,7) when considering the field of operators {o(z,7) : H® —
He, (x,m) € G X é} with the usual identifications for 7 € G and p-measurability.

This quantisation has already been observed in [41], 5, 25] for instance. It can be viewed as an
analogue of the Kohn-Nirenberg quantisation since the inverse formula can be written as

Fa) = /G ir (w(@)f(m) du(x), [ S(G), zeC.

This also shows that the operator associated with the symbol I = {I, ,(z,7) € G x G} is the
identity operator Op(I) = I.
Note that (formally or whenever it makes sense), if we denote the (right convolution) kernel of
Op(o) by kg, that is,
Op(0)¢(z) = ¢ * Kz, z € G, ¢ €S(G),
then it is given by
7(ky) = o(x,m).

Moreover the integral kernel of Op(o) is

Kle.) = wsly™a), where Oplo)o(e) = [ K(e.n)olud.
We shall abuse the vocabulary and call s, the kernel of o, and K its integral kernel.

3.2. Difference operators. The difference operators are aimed at replacing the derivatives with
respect to the Fourier variable in the Euclidean case. For each o € Nj, the difference operator A
is defined via

~

AYf(m) = Fo(zf)(x), meG.
Here f is in a distributional space on which the group Fourier transform has been defined, i.e.
LYG), L*(G) or Kup(G) ete...
The difference operators satisfy the Leibniz rule:
(3.1) A%(o109) = Z Car,as A 01 A0y,
[o1]+[e2]=[a]
where cq, «, are universal constants. By ‘universal constants’, we mean that they depend only on G

and the choice of the basis {X;}"_;. This comes from the fact that for any a € N, with the same

constants cq, o, as above, we have

(3.2) (zy)* = Z Car T Y2,
[a1]+[az]=[a]
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Note that cpqy = 0a=ay and Co; 0 = 0o =a-
From (3.2)), one also deduces that if ¢ € S(G) and « € S'(G)

(%) x Kk = Z Can,an(—1)*22% ¢ % (2% k).

[a1]+[az]=[e]

Taking the Fourier transform, the following property holds for any ¢ € S(G) and o € L®(G)
satisfying Ao € L>(G) for any o/ € NI with [o/] < [o]:

(3.3) A= N Cayan(—1)PAM{AMG G}
[n]+]az)=[a]

Ezample 3.1. One can prove easily

0 if [a] > [B

Aaﬂ'(X)B = Yo
{ZM#mm%@M@7 if [o] < [B

where cfx,7 a,p are universal constants.
Using (2.8)), if f and z®f are integrable, then
(rem)(@®f) = m(@® )y = n(a f)) = r A .
Hence denoting o = f and o,. = {opp,7 € é}, we have o,.. = f(r) by (28] and we have obtained:
(3.4) A% (o,.) (r) =l (A%) (r-7), r>0, T€G.

One checks easily that ([8.4]) holds as long as it makes sense.
We also have the following integration by parts:

/Atr (A% o9)dp = (—1)l /Atr (o1 A%9) dp,
G G

if 01,09 € FoS(G) and a € Nj. Indeed in this case, using the FIF, see Proposition 2.I8] both sides
are equal to [, Folo(z)a® Folog(z™ )dr. Along the same idea, we have:

Lemma 3.2. Let o be a symbol such that at least one of the two quantities

sup |71+ R)v o (M) zae) » supllo(@ma(l+R)7 | 2p,),
TeG TeG

is finite for some s > Q. Then for any o € Ny\{0}, we have:
[ a%otm) dutr) o
in the sense that if (1e)eso is any dg-approzimate as in Lemma[2.19, then each quantity
[ otm) A% dutm). >0,

is finite and the following limit exists and is zero:

li—rf(l) Gtr (0(77) A%ZJW)) dp(m) = 0.
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By Remark 220, in the case a = 0, the limit above is cx(0) where ¢ = [ 11 and & is the kernel
of 0.

Proof of Lemma[3.2. We set ¢q(x) = 2% (2) and ¢c(x) = e Qpy (e 'z). The statement follows
from 56 = e_[a]Aa{b\E by (4] and by Remark [220]
/Atr (0(71) &(77)) du(m) —e0 cFro(0), with ¢ :/ b1

G

G
g

3.3. The symbol classes S™(G) and the calculus. In this section, we recall the definition and
properties of the symbolic pseudo-differential calculus defined on graded Lie groups in [25, §5].

Definition 3.3. A symbol o = {o(z,7) : H® — HX, (z,7) € G x G} is called a symbol of order
m whenever, for each «, 8 € Njj and v € R we have

(3.5) sup_[|w(1+R) T XE A (o, m)n(1+ R)F gy < 00,
z€G,meG

where R is a (fixed) positive Rockland operator of homogeneous degree v. The symbol class
S™ = S™(@G) is the set of symbols of order m.

By Lemma 2.15] each symbol class S™ is independent of R. The property of interpolation of
Sobolev spaces (cf. Theorem 2.10] (7)) also implies that it suffices to have (3.5]) only for a sequence
(Ve)eez with vp —psq00 £00.

For a chosen positive Rockland operator R of homogeneous degree v, the seminorms

la]=m+~y _a
lollsmape:= max sup|r(I+R)" +  XJA%(z,m)r(I+R)" | 2m),
[¢]<a zelG

[BI<b,1v|<e re@
yield a structure of Frechet spaces on each S™, m € R. One checks that S™ C S§™2 if m; < ms.
We also define the space of smoothing symbols

7= ) 8™,
meR

which is endowed with the topology of projective limit.

The corresponding spaces of operators
U =0"(G) :=0p(S™), meRU{—o0},
yield a calculus:

Theorem 3.4. (1) The set of operators Upy,erS™ is an algebra of symbols in the sense that
product, taking the adjoint and applying spacial and dual derivatives
§mx M2 gmatme gm — sm sm — smlel
{ (01,09) — o109 { o — o and { o — XPA%g

(for any m,my,ma € R and o, B € N ) are continuous operations.
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(2) Furthermore o € S™ if and only if it satisfies (B.5) with v = 0. The seminorms || - |[sm a0
yield an equivalent family of seminorms for the Fréchet topology of S™.

(3) The set of operators Upyer W™ is a calculus in the sense that product, taking the adjoint and
applying spacial and dual derivatives

YL o gmz oy prmatme ym — ym
, and ,
(Tl,Tg) — T1T2 T — T*
(for any m,mi,my € R) are continuous operations, and that any operator in ¥™ maps
continuously L%(G) to L?_, (G).
(4) We have the asymptotic expansions:
Op ™" (Op(01)0p(02)) ~ Y _ caA01 XT3,
[o]
Op~! (Op(0)*) ~ Z XA,
o]

where the constants ¢, and c,,, a« € Nj, are universal with ¢y = ¢ = 1.

In the statement above we use asymptotic expansions of the form

o0

(3.6) o~ Z oy, ope€S™, with my strictly decreasing to — co.
£=0

This means that for any M € N,

o— Z oy € §mMtL
<M
More precisely in Theorem [B4] this was used with

oy = Z CaAY01 X0ag € S™ T2V and oy = Z A XIAY " e g,
[o]=w, [o]=w,
Note that any formal asymptotic yields a symbol modulo a smoothing operator:

Theorem 3.5. Let {oy}en, be a sequence of symbols such that oy € S™¢ with my strictly decreasing
to —oo. Then there exists o € S™, unique modulo S™>°, such that o ~ )", 0.

Naturally the calculus U,,cg U™ contains the left-invariant calculus since we have:
Ezample 3.6. (1) For any a € NI', X* = Op(n(X®)) € wled,
(2) The set ¥° contains any smooth function f : G — C with bounded left-derivatives, that is,
(3.7) VB e Ng, sup | X f(z)] < oc.
zeG
Another important class of symbols in the calculus is given by multipliers in Rockland operators.

The precise class of multipliers that we consider is the following. Let M,, be the space of functions
f € C*°(R™") such that the following quantities for all £ € Ny are finite:

£l = sup (1407
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In other words, the class of functions f that appears in the definition above are the functions which
are smooth on Rt and have the symbolic behaviour at infinity of the H'ormander class STH(R) on
the real line. For instance, for any m € R, the function A — (1 4+ )™ is in M,,.

Proposition 3.7. Let m € R and let R be a positive Rockland operator of homogeneous degree v.
If f € M, then f(R) is in U™ and its symbol {f(m(R)),m € G} satisfies

Vav b,C € N07 A e N7 aC > 07 ||f(7T(R))||a,b,c < CHfHMm,Z,
with £, a,b,c € Ng and C independent of f.

Corollary 3.8. If x € C*°(R) is such that (suppx) N [0,400) is compact, then the symbol
{x(7(R)), 7 € G} is in S=. Moreover its kernel x(R)&y is Schwartz, {x(m(R)), 7 € G} € L2(G)
and

ﬁuMWWWW<m
G

Note that the membership of x(R)dy in S(G) was already proved in [33], and is used to show
Proposition B.7]

We conclude this section with recalling the following properties of the kernel associated with a
symbol in the calculus:

Proposition 3.9. Let 0 € S™ and let k its associated kernel. This means that for each z € G,
ke € S'(GQ) and o(x,m) = Ry(w). Furthermore x — k, € S'(GQ) is smooth on G, and for each x € G,
kg € C®(G\{0}). Furthermore, for any neighbourhood V' of 0, any N € Ny and any o, € Nj,
there exist a constant C > 0 and a seminorm || - ||gm g such that

Ve,z€G, 2¢ V. IXEXZRe(2)] < Cullollsm anell .

The constant C' and the seminorm || - ||sm qp.c may depend on V, N, o, but are independent of o.

4. HOMOGENEOUS AND PRINCIPAL SYMBOLS, CLASSICAL CALCULUS

In this section, we define the notions of homogeneous symbols, classical symbol classes and
principal symbol in a way analogous to the Euclidean case.

4.1. Homogeneous symbol classes S™.

Definition 4.1. A symbol o = {o(z,7) : H® — H, (x,7) € G x G} is said to be homogeneous
of degree m € R or m-homogeneous when

o(x,r-m)=r"o(x,n),

for all x € G and p-almost all m € G and dr-almost all r > 0.
A m-homogeneous symbol o = {o(x, )} is regular if for any o, 8 € N, v € R:

[a] —m+y

(4.1) sup [7(R) ™ 7 XJA% (2, m)m(R)™¥ gy < 00

TeG
zeG




24 V. FISCHER AND C. FERMANIAN-KAMMERER

where R is a positive Rockland operator of degree v
We denote by S™ the space of regular m-homogeneous symbols.

Remark 4.2. (1) As in the inhomogeneous case, Lemma 2.I5 implies that each symbol class S™
is independent of R.
(2) The property of interpolation of Sobolev spaces (cf. Theorem ([@)) also implies that it
suffices to have (41]) only for a sequence (7¢)sez With vy —p— 100 F00.

Before giving some concrete examples and an equivalent description for symbols in S™, let us
mention some routine properties regarding classes of symbols. Each S™ m € R, is a Frechet vector
space when equipped with the seminorms

[o]—m+y _q
HUHsm,&@CZZ [Ill}?é sggHﬂ(R) v Xana(a:,w)ﬂ(R) vz, a b, c €Ny,
iy X
(BI<b, YIS rel

where R is a positive Rockland operator R of homogeneous degree v. This Frechet structure is
independent of the chosen positive Rockland operator and we will see later in Corollary that
we may assume ¢ = 0. Furthermore taking the product and the adjoint and applying spacial and
dual derivatives
{ Gmox gme Ly gmms { g s { §m s Gmla
, an

(01,09) — 0109 o — o o — XPA%g

(for any m,mi,mg € R and «, 8 € Njj) are continuous operations for this topology.

Ezample 4.3. The symbol m(X)® is homogeneous of degree [o] and regular. (See (2.7) and Exam-
ple B.1))

Ezample 4.4. The symbol given by a function o(z) independent of G is homogeneous of degree 0.
It is regular if the function is smooth with bounded left invariant derivatives, see (3.7)).

Example 4.5. If R is a positive Rockland operator of degree v and if m € R, then the symbol
m(R)% (defined spectrally) is regular and homogeneous of degree m.

Proof for Example[4.5 The homogeneity may be obtained from the properties of the Rockland
operator as in Lemmal[Z.14. The regularity will be a direct consequence of Proposition 4.6l below. [

We now give equivalent properties characterising a symbol in S™. In the abelian case, the
statement boils down to the fact that a regular homogeneous symbol yields a (non-homogeneous)
symbol in S™(R™) once the low frequencies have been cut off.

Proposition 4.6. Let 0 = {o(z,7) : H° — H,(x,7) € G X é} be a homogeneous symbol of
degree m > 0. The following properties are equivalent.

(1) o is in S™
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(2) There exist a positive Rockland operator R and a real-valued function ¢ € C*(R) satisfying
¥ = 0 on a neighbourhood of 0 and » = 1 on (A,00) for some A > 0 such that the two

symbols
{p(x(R))o(z, ), (z,7) € G x G} and {o(z,m)(x(R)), (x,7) € G x G},

are in S™.
(3) Property (2) holds for any such R and .
Moreover the mapping
S™ — ST x §™
{ o+ ((r(R))o,o¢(n(R)))

is continuous, injective and open (i.e. with continuous inverse onto its image).

The proof is given in the next subsection. But first let us notice that using ¥(7(R))o or op(m(R))

is essentially equivalent as we have:

Corollary 4.7. If 0 € 8™, R is a positive Rockland operator and ¢ € C*(R) is a scalar valued
function such that ¥ = 0 on a neighbourhood of 0 and » = 1 on [A,00) for some A > 0, then
Y(m(R))o — op(m(R)) is in ST°.

Proof of Corollary[4.7. We keep the hypotheses of the corollary and denote ¥(w) := ¢)(w(R)). As
U(r) = (1 —¢)(w(R)), by Corollary B8, I — ¥ is smoothing. Since Vo and o¥ are in S™ by
Proposition [4.6] the symbol Vo — oW = Uo(I — ¥) — (I — ¥)o V¥, is smoothing. O

4.2. Proof of Proposition The underlying idea is to find a replacement for the following
property in the Euclidean case: in the case of R", if a cut-off function ¥ (§) on the Fourier side is
constant for |{] > A (A large enough), then its derivatives are 9g9(§) = 0 if [§| > A. In our case,
we can not say anything in general about vanishing derivatives. However, we can show that these
derivatives are smoothing and behaves well enough in the following way:

Lemma 4.8. Let 1 € C*(R) be a real valued function satisfying |z yo0) = 1 for some A € R.
Let R be a positive Rockland operator of homogeneous degree v. Then for any o € Nj\{0}, the
symbol given by A% (w(R)) is smoothing, i.e. is in S™°°. Furthermore for each a,b € R, the fields
of operators given by
b a b a b a

T(R)»A%Y(r(R))m(R)7, w(l+R)»A%(x(R))r(R)¥, =(R)»A%)(x(R))w(I+R)>,
are in L=(G).
Proof of Lemma[{.8 By Example 3.1l A%l = 0 thus A%)(7(R)) = —A%(1 — ¢)(w(R)). Corol-
lary B.8] then implies the first part. If a,b € vNy, the given fields of operators are bounded since
A%(r(R)) € S~ while 7(R)» and 7(I+ R)* are in ¥™ for any m € vNg. Hence this is also
the case for a,b € v(—Np) by duality (see Theorem (@), and then for any a,b € R by interpo-
lation (see Theorem ([@)); indeed the adjoint of (Op (A% (w(R))))* is a linear combination of

(Op (A%y(n(R)))), [8] = [a]. -
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We will also need the following technical lemma.

Lemma 4.9. Let 0 = {o(7) : HX — H 7 € é} be a measurable field of operators which is
0-homogeneous in the sense that o(r - ) = o(w) for anyr >0 and w € G.

(1) If there exist a positive Rockland operator R and a scalar valued function ¢ € C*°(R) such

~

that ¥ = 1 on (A, 0) for some A € R, and {1(7(R))o(x)} € L=(G) then o € L=(G).

Conversely, if o € L™(G), then {(n(R))o(x)} € L=(G) for any positive Rockland
operator R and any scalar valued function » € C*°(R) such that 1» =1 on (A, 00) for some
A € R and we have:

ol ) < 51D (RN () 231 < 510 O] 1ol
TeG A>0

We have the same property with {o(m)(7(R))}.

~

(2) We assume that o € L*°(G) and that there exist a real-valued function ¥ € C*°(R) satisfying
¥ =0 on a neighbourhood of 0 and ¥ =1 on (A, +00) for some A € R, a positive Rockland
operator R of homogeneous degree v and a number m’ € R such that one of the quantities

sup [|7(R) ™ ¢ (m(R))o(m)|| 2,y or  sup [o(m)e(m(R)7(R) ™ || 23,
TelG TeG

is finite. If m' > 0 then o = 0.

Proof of Lemma[{.9 Let 0 = {o(7) € £(Hx)} be a 0-homogeneous symbol. Let us assume that
the quantity
sw lomllemny = s Jo(ul,
TeG TeG
UEvallu”Hﬂ-:l
is finite. Then, for any € > 0, there exists o € G and ug € Hro, luolla,, =1 such that
sup [|o(m)l 2 (31,) < llo(mo)uollpe, + €
TeG

By [.15), for any 7 > rx,, we have ¢(r - mo(R)) = Iy, thus
Y(r - mo(R))o(mo)uo = o(mo)uo-

As o is 0-homogeneous, we have o(mg)ug = o(r - mp)up. Hence
sup [|[U(m(R))o (M) (34,) = 1U(r - mo(R))o(mo)uol| £ (31.,) = sup [lo(m) ||l 22, — €.
sle meG
This is true for any € > 0 and this shows
sup [|o(m)|| 3.y < sup [[Y(7(R))o(m)l| 2 (31,)-
TeG TeG

The rest of Part (1) follows from similar considerations and properties of the functional calculus of
m(R).
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For Part (2), let us assume that the first quantity is finite, that is,

sup [[7(R) % $((R))o(m) | (3, < 0.
TeG

For each r > 0, we use the change of index m — 7 - 7 and this quantity becomes by homogeneity

sup [[r - w(R) ¥ p(r - w(R)o(r - )| 2y = ™ sup [m(R) " ¥ (r*m(R))o(m)| 2 0,)
TeG TeG
™ sup [|7(R) Y o (m)l| 231,

TeG
r>Tr

(4.2)

v

having used (2.10]). Note that the limit

/

(4.3) lim_sup [|7(R) % o (m)l| 23,y = sup I7(R) Y o(m) | 234,
=

is infinite unless either m’ = 0 or ¢ = 0. Indeed, for the same reason as above, we have for any
r1 > 0:

m ! /

sup [7(R) ¥ o (1) |2ty = sup lr-7(R) ¥ o(r - )| 20,
TeG TeG

= " sup |7(R)" o (m) | 23,
TeG
If the limit in (A3]) is infinite, as each side of (£.2) must be finite as r — oo, we then must have
™ — 0 as r — 00, that is, m’ < 0. This conclude the proof of Part (2). O

We can now prove Proposition

Proof of Proposition [{.6. Let R be a positive Rockland operator of homogeneous degree v. Let
1 € C*(R) be a real valued function satisfying ¢ = 0 on (—00,€,) and 1» = 1 on (A, o0) for some
0 < e, <A.

Let us assume Property (1), that is, let o € S™m. We will prove that for any «, 8 € Njj,

(4.4) sup (I +R) 5" XEAG(r(R))o(w, 1)} 3,) < 0.

r€G,meCG

The case a = 0 of (£4]) follows from
7 (L+R) > XPp(m(R))o (x, 7). 30,
< I+ R) ¥ (r(R)NT(R)™ 7 |lgmn IT(R) T XPo(z, 7l 230
< sup|(1+ A) 7 BAT T [7(R) 7 XPo (@, )| 2, < 0.
>
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Let o € Nij be such that |a| = 1. Using the Leibniz rule (3.1]), we obtain

(1 + R)“F XBA {3 (x(R)) (&, ™) Hl .2 (30,
S+ 7(R) 7 (A% (r(R))) XPo(z, m) | 2 e,
[o]-m

HIT+ 7(R)) = (x(R)) (A“XPo(2,m)) | 200r)

For the second term on the right hand-side, we proceed as above. We modify the argument for

the first term using Lemma .8 Recursively we prove (44 with the same arguments. The case
of o(x,m)y(m(R)) are handled in a similar way, the details are left to the reader. We have proved
(1) = (2) and (1) = (3).

Since (3) = (2), it only remains to prove that (2) = (1). We assume that {¢(7(R))o(z, )}
and {o(z, 7)Y (m(R))} are in S™ and we want to prove that

sup[7(R) 5 XEA b (R))o (, 1) be(R)F oty < 00
zeG,meG
for any o, € Ny and for a sequence (y¢)eez With v —/ 400 Foo0 (see Remark (2)), and
similarly for oy(m(R)). Clearly it suffices to show it for 5 = 0. Using recursively the Leibniz rule
(see (BI)) and Lemma [£§] it suffices to show

[a] —m+~y

sup [[7(R)" 7 (m(R)A o (w, m)}m(R) ¥ || ) < o0,
zeG,meCG
for any a € Nj} and for a sequence (y¢)eez wWith 7y =y 1o F00 (see Remark 2] (2)), and similarly
for A*{o(z,m)} ¥ (m(R)). By homogeneity of the operator A% (see ([3.4]), it suffices to prove the
case o = 0 which we now do.
The field of operators {ﬁ(R)%ﬂd(ZE,ﬂ')ﬂ'(R)_%,ﬂ € G} is 0-homogeneous. Thus by Lemma
49 (1) and functional analysis

—mty _ —m+y _
sup [ 7(R) ™7 o (2, m)m(R) || 23,y < sup [[$(m(R)m(R) ™5 0w, m)m(R) ™% | o,
meG TeG
—m+y

<C sug [m(I+R)" v {p(r(R))o(z,m)}r(l+ R)_% 235

with a constant

m—y

.
1+ X v A9 ez
c=cC = sup < > sup ( > ,
T e U AL A2>0 \ 1+ Ag

finite for v > 0. We apply the same argument to ¢* and obtain

sup [7(R)~% XPo(z, m)m(R) ™% [l 2,y = sup |7(R) 5
TeG TeG
< Csup |n(I+R) % X {(n(R))o(x, ) ya (I + R) v || )
TeG

XPo(z,m)m(R) ™V || 234

=Csup|r(I+R) =5
WE@

X o (z, Ty (n(R)) (1 + R) 7| 2 u,)-

This concludes the proof of (2) = (1). The rest of the proof follows easily. O
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4.3. Consequence of Proposition and of its proof. The proof of Proposition[4.6] especially
the implication (1)==(2), together with Proposition B.7] imply

Corollary 4.10. Let R be a positive Rockland operator. Then for any seminorm || - ||sm qp.c of
S™_ there exist a seminorm || - Hsm,a',b',c' of S™, C >0, and k € N such that for any o € S™ and
for any real-valued function ¥ € C*°(R) satisfying v = 0 on a neighbourhood of 0 and ¥ =1 on
(A, 00) for some A >0, we have:

e[ ((R))o 50 aper [ (xR s ane) < € sup (14 X) (56N ol g g
0=0,....k

Note that the constant C' and the integer k are independent of o or .

In Section [ we will analyse more precisely the homogeneous symbols of degree 0. From Propo-
sition and Corollary T0] we can already prove the following regularity of their kernel. If
o € S0, then, for cach z € G, o(x,-) € L®(G) has a kernel k, € §'(G) such that o(z, ) = R, sce
Section The regularity of the symbol implies that this distribution coincides with a smooth

function:

Proposition 4.11. Let o € S° and let k, € S'(G) be its kernel, i.e. w(k,) = o(z, ).

Then for each x € G, the distribution k, is (—Q)-homogeneous:
Vr > 0, Kz (ry) = 1" 9ka ().

For each x € G, the distribution k, coincides with a smooth function away from the origin and
the function (x,z) — Kk(z) is smooth on G x (G\{0}). Furthermore, for any compact subset S of

G\{0} and any o, 8 € N§, there exist a constant C' > 0 and a seminorm || - || go such that

7a7bvc

sup [ X2 X7 ko (2)] < Cillo]|go

vel ,a,b,c’
zeS
The constant C' and the seminorm || - | go ,, . may depend on S and o, 3 but are independent of o.

Proof of Proposition [{.11] Let R be a positive Rockland operator of homogeneous degree v. Let
1 € C®(R) be a real-valued function satisfying ¥» = 0 on a neighbourhood of 0 and ) = 1 on
(A, 00) for some A > 0.

Let o € S0 and let s, be its associated kernel. For each t > 0, we set o (r,7) = oz, m)P(tr(R)).
By Proposition L6} this defines a symbol o) in .S 0 and we denote by K(p) its kernel. Lemma 2.12] (3)
and the L?-boundedness of Op(S?) imply that for each z € G, Op(o)(z,-)) = Op(a(z,-))Y(tR)
converges to Op(o(z,-)) as t — 0 for the strong operator topology of L?(G). This implies that K(t)x
converges to k; in §'(G) for each x € G as t — 0. More generally, for each z € G and each € N7,
X7 K(t),z converges to X2 ke in 8’(G) as t — 0. The statement now follows from the convergence
in distribution, Proposition and Corollary [4.10 O

Another consequence of Proposition and its proof is that as in the inhomogeneous case (see
Theorem [3:4] Part (2)), we can simplify the conditions on the regularity of the symbol:
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Corollary 4.12. Let o be a homogeneous symbol of degree m € R. Then o is in S™ if and only if

[a] —m o o [a]—m
sup [[7(R) 5 XEA (2. 24y« sup |XEA (2, 1)m(R) T | e,
e TeG
zeG zeG

are finite for all o, B € Nij. Here R is a fized positive Rockland operator of degree v. Furthermore,
for a fixed positive Rockland operator, these quantities yield an equivalent family of seminorms for
the Fréchet topology of S™.

Finally, we observe that Proposition implies the following property:

Corollary 4.13. Let x € D(R) with support in (0,00). Let R be a positive Rockland operator. Let
o € 8™ Then o x(n(R)) and x(7(R)) o are smoothing, i.e. in S~°°. Consequently if o does not
depend on x then its kernel is Schwartz.

Proof. The first part follows from Proposition and Corollary 3.8l The consequence follows from
[25, Theorem 5.4.9]. O

4.4. Homogeneous asymptotic and principal part. In this subsection, we give a meaning to
a homogeneous asymptotic sum

o
(4.5) o~ Z op, oy € 8™, with my strictly decreasing to — oo,
=0

which is different to the (inhomogeneous) asymptotic sum in (B.6). This will enable us to define
the principal part oy of such an expansion. In order to give a meaning to (4.5]), we show:

Proposition 4.14. Let {oy}ien, be a sequence of homogeneous symbols such that oy € S;n§ with my
strictly decreasing to —oo. If R is any positive Rockland operator and ¢ € C*°(R) is any real-valued
function satisfying v = 0 on a neighbourhood of 0 and ¥ =1 on (A, 00) for some A > 0, then the
two sums

Y owb(x(R)) and Y P(w(R))or,
l l

define the same symbol in S™° modulo S™°.
Moreover, this symbol modulo S™°° does not depend on the choice of R and . And, if this
symbol is in S™ with m < myg, then the first term in the homogeneous expansion is oo = 0.

The proof of Proposition .14 relies on the following property:

Lemma 4.15. If Ry and Ry are two positive Rockland operators and if 1» € C*°(R) is a real-valued
function such that ¥ = 0 on a neighbourhood of 0 and ¢ = 1 on (A,+00) for some A € R, then

{((7(R2)) — Y(n(Ry)),m € G} € §~°.

This Lemma is proved in [24].
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Proof of Proposition[{.1] Let {o/}sen, be as in the statement. The two sums ), opt)(7(R)) and
Yo (m(R))o, make sense as symbols in S™° modulo S™°, see ([B.6) and Theorem 3.5l They yield
the same symbol modulo S~ by Corollary L7l

We need to show that if Ry and Rg are two positive Rockland operators and 1,19 € C*(R)
are two real-valued functions satisfying ¥; = 0 and ¥ = 0 on a neighbourhood of 0 and ¥ = 1
and ¥9 =1 on (A, c0) for some A > 0 then

21/11 (R1))oe — sz (R2))op € S™°°.

It suffices to show this in the case of Ry = R9 and two (different) functions v, 12 and in the case of
11 = 9 and two (different) R, Re. This follows from Corollary B.8 and Lemma respectively.

Now let us assume that the symbol defined by ), o (m(R)) is in S™ with m < mg. We may
assume that m; < m < mg. Then ogyp(7(R)) € S™. Denoting v the homogeneous degree of R, we

have ¢(m(R))m(R)™» € 8™ and

m m m/

% 3 opi(r(R))(r(R)m(R)™ ¥ = oom(R)™ % ¢*(m(R))m(R)™

with m’ := —m + mg > 0. For each z € G, the 0-homogeneous field {0'0(117,71')71'(72)_@,71' € G}
satisfies the hypotheses of Lemma L9 (2) and thus must be zero. This conclude the proof of
Proposition E.141 O

Proposition [.14] allows us to give a meaning to a homogeneous expansion as in (4.3)):

Definition 4.16. Let {oy}sen, be a sequence of homogeneous symbols such that o, € Sme with
my strictly decreasing to —oo. Then ) ;2 0, denotes the symbol o in S modulo S~ given by
the asymptotic sum >, ¥(7(R))o, or >, opp(m(R)) in the sense of (B.6]) where R is any positive
Rockland operator and ¢ € C°°(R) any real-valued function satisfying ¢» = 0 on a neighbourhood
of 0 and 1) =1 on (A, 00) for some A > 0. We then write (4.3]).

We denote by Si0,,,, the set of symbols o € S™° which admits such an homogeneous expansion.

The last part of Proposition £.14] also shows that the first term of an expansion o ~ >~;2 oy is
unique (hence, proceeding recursively and up to writing zero terms, the expansion itself is unique).
This allows us to define the principal part of a symbol:

Definition 4.17. If 0 ~ 2 o/ is in S then its first term o is called its principal part and

asymp’

we write:

princ,, (o) := 0.

Example 4.18. If 0 = )" co(x)m(X)® where (cq)aenn is a sequence of functions in C*°(G) such
that ¢, and all the left derivatives X?¢, are bounded while all but a finite number of ¢, are zero,
then o € ST

wsymp Where m = max{[a], ¢, # 0} and

o= Z Om—¢ With o,y = Z ca(z)m(X)™ € §° N §°
=0 [a]l=m—¢
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Moreover the principal part coincides with the top part of the left-invariant differential operator:
princ,, (o) = Z Col(z)m(X)“.
[a]=m

The asymptotic expansion and the principal part satisfy the analogue properties to its Euclidean

counterpart:
Proposition 4.19. The set Sgy, ., is a linear subspace of S™ and the mapping princ,, : Sgeym, —
S™ s linear. Moreover if o € Sesymp and o' € S;’;;/mp with asymptotic expansion o ~ Y ,0, and

/ . . .
o' ~ Y pop then o € Sit,, and oo’ € SPUE with asymptotic expansions
o~ E oy and oo’ ~ E ooy
¢ o

In particular,
princ,, (¢*) = princ,,(0)* and princ,, v (00’) = princ,, (o)princ,,/ ().

Proof. The linearity of S and of princ,, is easy to check. The property regarding the adjoint

asymp
follows from Theorem B4 (3). Let o and o’ be as in the statement. We fix a positive Rockland
operator R and a real-valued function i) € C°°(R) satisfying ) = 0 on a neighbourhood of 0 and

1 =1 on (A,oc0) for some A > 0. Then we can develop

S owE®) | | X wrR)ol

(<M <M’

on one hand as (see Proposition [4.14] (1))
(0 mod S™M) <0/ mod Sm/M) = 00’ mod SM
where M := max(m + mhym' + mar, mpr,my,), and on the other hand by Corollary E.1]

Z cop*(m(R))oy = Z V?(n(R))ogo) mod S~

<M <M
o<M’ o<M
Hence o0’ = E V3 (n(R))ogol mod SM.
<M <M
my+my>M
This implies oo’ ~ 0; where 65 := ooy € 8™, and in particular 69 = ogoh. O
p 7 7 14 , p 0
Z me-i-my:mz

4.5. The classical calculus U,,, ¥} (£2). We can now define the classical classes of symbols and of
operators.

Definition 4.20. Let 2 C G be an open subset. We denote by S7}(€) the class of symbol o €
S such that the integral kernel of Op(o) is compactly supported in Q x Q. The corresponding

asymp

class of operators is denoted by
e (€2) == Op(Sg' ().

cl
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The operation of taking the principal part is denoted by princ,,:
princ,,(Op(c)) = Op(princ,, (o)), o€ ST (Q).
If Q = G we may allow ourselves the shortcuts S7'(G) = S7} and ¥} (G) = 7. Naturally the

differential operators in the calculus with support in 2 are classical:

Ezample 4.21. If (cq)aenn is a sequence of functions in D(€2) and all but a finite number of ¢, are
zero, then ) cq(x)X® is in U7(Q) where m = max{[a],c, # 0}. Indeed the (right convolution)
kernel is ), ca(a:)d(()a) which is supported in {0}. Moreover

princ,, (Z ca(a:)Xa> = Z Colz) X

[a]=m

We will often use the following easy lemma without referring to it.

Lemma 4.22. Let Q C G be an open subset. If A € \I!(C)I(Q) then the operator A extends uniquely
into a continuous mapping L*(Q, loc) — L*(Q).

As is customary, L2((2, loc) denotes the space of distribution f € D’(€2) such that for all y € D(1),
fx € L3(2). Later on, we will need the more general definition:

Definition 4.23. Let Q C G be an open subset. We denote by L2((2,loc) the space of distribution
f € 8'(Q) such that for all x € D(Q), fx € L3(G). Tt is endowed with its natural structure of
Fréchet space.

Proof of Lemma[].23 Let A € W9(Q). Its integral kernel is supported in a compact K C 2. We
can always find x € D(Q) such that x = 1 on K. Hence if ¢ € D(Q), then Ap = A(x).

Let f € L%(Q,loc). Then fx € L*(Q) C L*(G) and we define Af := A(fx), as A € U9, it is
bounded on L?(G) (see Theorem [B4]). Tt is easy to show that this does not depend on the choice
of x and that we have:

VfeL*(Qloc)  Afllr26) < Al zz@enlfxlizzc)-

Since f € L?(Q,loc) +— fx € L*(G) is continuous, the operator A : L?(Q,loc) — L*(Q) is continu-
ous. O

We now state and prove a theorem which in the Euclidean setting is a consequence of Rellich’s
theorem.

Theorem 4.24. Let Q2 C G be an open subset. If A € U7 () with m < 0 then the operator
A L3(Q,loc) — L*(Q)
s compact, i.e. if uy ké u in L*(Q, loc) then Auyjy —> Au in the L?-norm after extraction of a
—00

j—0o0
subsequence k(j).
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The notation wug LU in L?(£2,loc) means that the sequence (uy) of distributions in L?(, loc)
converge towards u for the Fréchet topology of L%(€,loc). Consequently, uy, k:oou in L2(,loc) if
and only if for every v € L?(2) compactly supported, (uy,v)2 kjo(u, v)re2.

Let us recall that Rellich’s Theorem states that if t < s and K C R™ a compact subset, then the
inclusion map H*(K) — H' is compact.

Proof of Theorem [4.24] As A € UT}(Q), its integral kernel is supported in a compact K C Q x 2
that we can assume of the form K = Kj x Ko. We can always find y € D(£2) such that x = 1 on K.
As the integral kernel of A is supported in K, we have A¢ = A(x®), for any ¢ € L*(Q,loc). Let R
be a (fixed) positive Rockland operator of homogeneous degree v. As A € U™, A(I+R)""/" € ¥°
is bounded on L?(G). Let (uy) be a sequence in L?(£2,loc) with uy, U We have

m
v

IAGur = xw)lpz = AT+ R)™ T+ R) ¥ (xu, — xu)|2
JAT+R)™ [l z2@p | T+ R) ¥ (xu — xu)|| -

[ Aug, — Aul|

IN

By Proposition 2.17]

1T+ R) > (xur — xu)llre = Ix (e — w2, @) < Comllx (k= )] gmsen -

As ukk4 u in L%(Q,loc) and m/v; < 0, by Rellich’s Theorem, we can extract a subsequence
—00

XUk () J:O xu converging in the Sobolev norm of H™/V1. Therefore
| Aug(jy — Aullre < AT+ R) ™ |22 Crmllx (ung) — w)ll grm/o: o 0,

and Auy;y — Au in the L?-norm. O
) oo

5. C*-ALGEBRAS GENERATED BY 0-HOMOGENEOUS REGULAR SYMBOLS

In this section, we study the regular 0-homogeneous symbols, that is, the symbols in S°, and the
C*-algebra it generates. A particular attention will be given to the ‘invariant’ symbols in S°, that
is, those that do not depend on x.

5.1. The Fréchet space S°. In this section, we study the invariant regular 0-homogeneous sym-
bols, or in other words the symbol in 59 independent of z. They form the space SO,

Definition 5.1. We denote by SO the set of symbols o = {o(7) : H® — HZ, 7 € G} satisfying
(1) o is 0-homogeneous, i.c. o(r-7) = o(x) for all r > 0, 7 € G,
(2) if R is a positive Rockland operator of degree v and o € Njj and v € R, then

sup [ 7(R)“ = A% (m)m(R)“F || < o
TeG

Naturally, the second condition is independent of R and it suffices to show it for a sequence

(Ve)eez with limy_, o, = +00. This equips naturally the vector space SO with a Fréchet topology
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which is the same as the one obtained with viewing S° as a closed sub-vector space of S9. Note
that SO is also an algebra, in fact a sub-algebra of S°.

By Corollary B1Z] a 0-homogeneous symbol o = {o(7)} is in S™ if and only if for each a € Ng,
the following suprema are finite

e, o @ o]
(5.1) sup [m(R) v A% ()| 2(3,), and  sup [A%(7) 7(R) v || 2(3,)-
TeG TeG

Here R is a fixed positive Rockland operator of degree v.

Proposition ELIT] implies that the kernel associated to a symbol o in S, i.e. k € S'(G) such that
K = o, is smooth on G \ {0}. Lemma [5.2] below shows the converse in the following way:

Lemma 5.2. Let 0 = {o(n) € Z(Hqx), 7 € G} be a measurable field of operators such that

e o is 0-homogeneous, i.e. o(rr) = o(x) for (almost) all 7 € G and all r > 0,
e o0 is bounded, i.e. sup _a |lo(7)||l .2, < oo,
e the kernel associated with o coincides with a smooth function on G\{0}.

Then o € S°.

Note that the proof of Lemma given below does not produce any bounds for the suprema in

(1) in terms of k or 0. The main ingredient is the analysis of operator of type v, see Section 271

Proof of Lemma 522 If K is any tempered distribution, then T}, denotes the convolution operator
with right-convolution kernel k1, i.e. Ty, (¢) = ¢ * k1, ¢ € S(G). Recall that X1,..., X, is a basis
of g.

Let o, r satisfying the hypotheses of the statement. We fix a € Nj, a # 0. By Lemma [2.15]
we may replace R by one of its power and thus we assume that v > [a]. The operator R is a
linear combination of X# with [8] = v. Let us write one X# as Y,...Y; with V; € {Xy,...,X,,}
for j =1,...,7. We also denote by [Y;] the homogeneous degree of Yj, so that v = [3] = [Y1] +

.+ Y] > [a]. Let v’ € Ng, 0 < v’ < r, be such that [o] — ([Y1] + ... + [Yv]) > 0 but [a] —
(Y] + ... + [Yr41]) < 0, with the convention that [Yi] + ...+ [Y«] = 0 if ¥/ = 0 and in this
case Y, ...Y; = 1. By Proposition (@), the operator Y, ... Y1T o) = Ty, y,zex is of type

o] = (Y114 +[Y,s 4 1))

[a]—([Y1]+. .. +[Y]) € (0,Q). As the operator R v is of type [Y1]+.. .+ [Yi1]—[a] €
o] =([Y1]+- -+ [V D

(0,Q), see Example 2.25] the operator Y,/ ... Y1Tpa R v = s of type [Y;41]. Thus the

(o]~ (Y114 A Yy 4 1)) (o~ (Y1) 4+ [V, o))
operator Y1 ... Y1TakR v is of type 0. Then Y,ry1...Y1Tpa,R v

[a]=(Y1]4+-+[Y,r 5D
is of type [Yr19] and Yiriio... Y1TpaR v == s of type 0. Proceeding recursively, we
obtain that
v—l[o] Y]+ +1Yr]—[o]
XPTpeuR™ 0 =Y. . ViTpauR™ ¥

v—[a]
is of type 0. Thus RTe,R~» is bounded on L?(G). We can apply the same reasoning to

Tr., = (=1)|*Tha.- where s*(z) = R(z~!). This shows that Tya, and its adjoint 7%
L2

v—=la]

. map

— L2 continuously. By duality and interpolation (see Theorem [ZI6]), we obtain that Tya,
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maps L? — L[za} and Lz_[a] — L2 continuously. The Plancherel theorem, see Section 22 now
implies that the suprema in (5.0]) are finite. This concludes the proof of Lemma O

We can now describe the symbols in SO via their kernels:

Corollary 5.3. We denote by F the Fréchet vector space of smooth functions on G\{0} which
are (—Q)-homogeneous and with zero mean value. If o € SO we denote by ks € F the smooth
function obtained by restriction of the associated symbol to G\{0} and c, € C the number defined
in Lemma[2.27 The map

o { 50 — FxcC

' o +— (Kg,Co)
18 an isomorphism of Fréchet vector spaces.
Consequently, the Fréchet space 50 is separable.

Proof of Corollary[5.3 The fact that the map © is well defined, linear, continuous, and injective
follows easily from Proposition £.11] and Lemma Let us show that © maps S° onto F x C.
Given (x,¢) € F x C, we want to construct o € S° such that (o) = (k,c). Defining ; as in
Lemma 227, we then set o(m) := 3 ;5 K;j + ¢oly,. The proof of Lemma shows that this
defines a field of operators {o(7), 7 € H,} which is bounded by:

sup [|o(m)l| 2(34,) < leo| +C sup | Xk(z)|

red |2[=1,|e|<1
One checks easily that ¢ is 0-homogeneous and that the kernel associated with o coincides with
x on G\{0} and that ¢, = ¢. By Lemma[5.2l ¢ € S°. Thus © is surjective. As the map © is a
linear and continuous bijection between Fréchet spaces, it is an isomorphism by the open mapping
theorem.

Note that F is a closed subspace of the Fréchet space of smooth functions on G\{0} which are
(—Q)-homogeneous. The latter is isomorphic to the Fréchet space of smooth function on the unit
sphere given by a smooth quasi-norm, and this latter Fréchet space is well-known to be separable.
Note that by a smooth quasi-norm, we mean a quasi-norm which is smooth away from 0; such
a quasi-norm exists. Hence F is separable. As © is an isomorphism of Fréchet space, S° is also
separable. O

5.2. An important example. This section is devoted to a more concrete example of a symbol
in S°, more precisely to the symbol o defined and studied in Lemma [5.4l It will be useful later.

Lemma 5.4. We fix a quasi-norm |-| on G. Let |-| be the associated mapping on é, see Section[2.3.
For any f € 8(@), 5° contains the symbol oy defined via

op(m) = f(ln|™t @), weG\{1}.

Strategy of the proof of Lemmal[5.7. Since f € S(G), for each 7 € é, the operator f(w) maps H>®°
to itself and has operator norm < || f||;1. Moreover the field of operators f is a measurable. Since
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the map 7 — |7~} - 7 is continuous G\{1} — G, see Section [Z3, we have of € L>=(@) with
sup_cc llop(m)ll.2@e.) < [ fllzr. One checks easily that oy is O-homogeneous.

We denote by k € S'(G) the kernel of o € LOO(CA?), ie. oy =K. Let ¢ € S(G). By Lemma [5.2]
it suffices to show that its kernel k € §’(G) is smooth away from 0. And for this, it suffices to
show that for every M € Ny there exist N € Ny and C = C(0, M) > 0 such that for any ¢ € D(G)

satisfying |7~V ¢ € D(G), we have:

(5.2) (5, RMP)| < C (|ollriay + 18]z + Nzl N dllr2(q)) -
Indeed (5:2) will imply that X%« is locally square integrable on G\{0} for any a € Nf}, and thus
that it is smooth away from 0. g

Proof of (5.2)) in the case M = 0. We fix x € D(R) such that 0 < x < 1, x = 1 on [-1,1] and
X(A) =0 for |\| > 2. Let ¢ € D(G). Since x(R)dy € S(G), see Corollary B8 x(R)p = ¢ * x(R)dg
is Schwartz and so is (1 — x)(R)¢. As k € §'(G), we can write:

(r, @) = (. x(R)9) + (£, (1 = X)(R)9).

Note that if v € S(G), then aszw(I +R)N € L*(G) for any N € N, and O'f?Z satisfies the
hypotheses of Proposition [ZI8 So the Fourier inversion formula yields

(0) = [ &5 (os(m)FW)() du(r),
G
where (x) = ¥(z~1), and
001 < o (e @y [ o0 D) < sy [, e F NIt
Applying this to ¥ = x(R)¢ € S(G) implies that

[{r X(R)O) < I f vl /@trlx(W(R))ldu(ﬂ),

and the last integral is finite, see Corollary 3.8
We now turn our attention to (k, (1 — x)(R)¢). For the same reason as above,

[t ko1 = 0 R)Fo)| du(m) < o

G

and (x, (1 - )(R)P) = / e {op(m)(1 — x)(r(R))F(m)} dpu(r)

e

= /: /ez tr {Uf(r ) (1= x)(r - 7(R))Fo(r - 77)} dg(ﬂ_)rQ_ldr’

having used the polar decomposition on é, see Lemma 2,71 We now write:

00 1 0o
/ :/ +/ — L+ D
r=0 r=0 r=1
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~

We have r-7n(R) =r*m(R) and of(r-m) = f(m), ™ € ¥4, so fixing Ny € N

op(r-m)(1=x)(r-7(R)) =r"MR
where xn, (A) = (1 — x(A\)A~, and

1

If S/ / tr
r=0JmweX
N 0

= N, _ 3
IRl / ) / o I m Ry |76 s s (m)r
r= TEX]

< IR £l e (R 2 ) 19 2

—_—
= N

R ()X (T (R))F(r - m)| ds (m)rNor+Q=1gy

by the Cauchy-Schwartz inequality. The Plancherel formula yields H(;ASH 26 = 9l 22(c) and, to-
gether with the functional calculus of R,

1+ 2\ _
o (TR @y = ews (R < sup1 =300 (5 10+ R) Mol

This last quantity is finite when Nov > @Q/2 since (I 4+ R)%&) € L%(Q) for 51 < —Q/2, see [25,
§4.3.3].
For the second integral, we see

I, = /T: /7TGE1 tr {f(ﬂ)(l —X) ("7 (R))Fo(r - 77)} ds(m)rQtdr.

~ —

For each r > 0, we define g, := (1 — x)(r*R)f € L*(G) so that §,(7) = f(7)(1 — x)(r*n(R)) also
defines an operator for each 7 € G with g, € L>®(G) N L%(G). We observe that if a; € Ng, az # 0,
then

A% (1 = x)((R)) = =A% x((R)) € FaS(G).
This together with the Leibniz formula easily implies that for any o € N}, A%g,.(7) is a well defined
bounded operator on H, for each 7 € G and that A%g, € L>®(G).
Let N € Ny. For any = € G\{0}, we set ¢n(x) = |z| N ¢(x) and assume ¢y € D(G). We may
‘N

assume that the integer N and the quasi-norm |- | are such that |- |" is a polynomial in 2, which

is then necessarily homogeneous of degree N. One checks readily that ¢ = |z|V¢n and by (3.4),
Fo(r-m) =rNA L wF (b)) (7).
From (3.3]), we have
tr { F(m)(1 =0 7 RNFr-m) ) =1~ Ntr {Ge(m) A F (o) (7)}

=N Z Can e tt A% {A2G, (1) F(dn) () (7))
o ]+[az]=N

= Y cCapatr A% {oa, F(oN)} (r-7)

[1]+[az]=N
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where o4, (r - ) = 170211, A%2G,(7) (r > 0, 7 € %) is in L(G). By Lemmata 2.7 and B2,

— > ay 7 . Q-1
P Z Canan /r:O /7TGE1 tr A {00, F(on)} (- m)ds(m)r® dr

[ca]+[aa]=N
= Coa,oez/ / tr A {Uaz ¢N } ) ( )
[a1]+[a2] N r=0JreX;
= 3 o [ {oen o)} (M)
[a2]=N

So we have obtained:

’12‘< Z /tr |00l2 (bN‘ ) ( ) Z ”Ucvz”L2(§)”-7:(<23N)HL2(§)~

[az]=N [az]=N

By the Plancherel formula, || F(¢x) = ¢~ llr2(@)- We have with ag € Nij, [ag] = N:

)

loaaliay = [ [ IARG s drds(m)
r=1JreX;
and by the Leibniz formula

1A% sy S S 1A% FR) A% (1 - ) (R s
[o]+[a1]=N

In the sum above, for ay # 0, we have

1A% F(m) A% (1= 0 7R lisirae) < 179070 | ) |AT X (7 (R 150
whereas for a; = 0, we have

A% F(m) (1= )" 7R mse) < ™V IFERN2 FHm)xv (7w (R) | 1500

When Ngv < 2N, these estimates yield

. loaslzg S |z F (m D@ Y, 1A X@ R 2

[aal=N [ao]<N 0<[on] <N
+ Y IF{RN 2 FH ooy X6 (F(R))| 12
[ao]=N

SIA+ DYl + ) x (R)doll e

+ Z RNz £l 16y Ixnve (R)Soll 2 () -
[Ol()}:N

Recall that x(R)dy € S(G) and we have already seen that xn, (R)(50 € L*(G) when vNy > Q/2.
This implies that I is bounded up to a constant of f by ||¢n | 12(z). Hence (5.2)) is proved in the
case M = 0. 0
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Proof of (B.2)) for M € N. If M € N, then we modify the proof above. We write
(5, RM ) = (5, RYx(R)¢) + (5, RM (1 = x)(R)9).

First the first term, we have
RN = [ i o (mn(RY X (x(R))Fir)} du(r)
(5 x(R)9)| < (I fllzllollz /Eétr |(AMX) (7 (R))| dus()

and this last integral is finite since (AMx)(m(R)) is the Fourier transform of a Schwartz function
by Hulanicki’s theorem. For the second term, we have:

(r, RM(1 = x)(R)9)
- / {Fmyr M a(RIM (= ) (R)Fé(r - m) } ds(m)r®ar,
r=0Jmwed

We decompose again f —0 f + fr 1» and a modification of the argument yields:

1 = ~
| < IR sl (R 2 6y 181

and fr0:01 < lon 2y Iz with

mrs ¥ /leMOfGUéMf(w)} AL (1 — )7 (R) gy 2N drd ().

[@o]+[a1]=N

This implies (5.2]) for M € N and concludes the proof of Lemma [5.4] . O

5.3. The C*-algebra C*(S°) and its spectrum. In this section, we study the closure of S for
sup_ca |l - |2, It is denoted by C*(S%). More precisely, we prove:

Proposition 5.5. The closure of S° for sup_.a | - HJZ(HW) is a separable C*-algebra denoted by
C*(SY). It is of type 1.
If mg € @, then the mapping

SO — L(Hay)

o +— o(m)
extends to a continuous mapping pPr, : C*(SY —» & (Hr,) which is an irreducible representation
of C*(S‘O). For any r > 0, we have pr, = pr.r,- Denoting by 7y the class of representations
{r - mp,r > 0}, the mapping

r. ) GRT — Cx(50)
7:"0 — Pro

s a homeomorphism.
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Consequently, we may identify the spectrum of C' *(50) with G /RT. Recall that G is the spectrum
of the C*-algebra C*(G) of the group. Here we view C*(G) as the completion of S(G) or L'(G)

~

for the norm f — sup__a Hf(7~r)Hcg(Hﬂ).
One checks easily that C*(S°) is a C*-algebra. Its separability follows easily from Corollary [5.3l

The essential point in the proof of Proposition is the following lemma:
Lemma 5.6. Let p be a representation of the C* algebra C*(S’O). For any f € S(G), we set

mo(f) = plos™),

where the symbol o5 € SO is defined as in Lemmal[57) (we assume that a quasi-norm on G has been
fized). Then the mapping 7, : S(G) — L (H,) extends to a continuous representation 7, of C*(G).

If p is (non-zero) irreducible, then m, is (non-zero) irreducible, i.e. 7, € G. Furthermore for
any symbol o € S°, we have p(c) = o(m,).

Proof of Lemma[5.6. We keep the notation of the statement. Omne checks easily that for any
fs f1, f2 € S(G), we have:

lofllpoo@ < W@y Ohsp =0 0ps and of" =ope.

Let p be a representation of C*(S°). One checks easily that the mapping 7, : S(G) — Z(H,)
defined via 7,(f) = p(0s*) extends to a continuous representation of C*(G).

We assume that p is irreducible and non-zero. Let us show that =, is irreducible and non-zero.
We will need the following preliminary step. Let x1 € D(R)\{0} be supported in [1/2,2] and
valued in [0, +00). We set xc(A) = x1(e\) for each € > 0, A € R. The properties of R implies that
Xe(R)(SO = (XI(R)CSO)(E) € S(G) Since

cim [ xR = [ ) = VTR ) >0,
we may replace y1 with ¢ !y, and assume ¢ = 1. Let us show that
(5.3) Tp(xe(R)do) = P(Jxe(R)éo) —es0 I, in SOT on H,.
By Lemma 2.19] if 7 is a continuous unitary representation of G, then
(5.4) Xe(m1(R)) = m{Xxc(R)do} —>e—0 Iz, in SOT on H,.

For any v € H,, the representation 7, restricted to the closure of the subspace m,(C*(G))v can be
identified with a continuous unitary representation of G when 7,(C*(G))v # {0}, see [20, §13.9.3];
we can then apply (5.4) to this representation. By [20, Proposition 2.2.6], the space H,, = H, of the
representation 7, decomposes into Hr, o @L”H#WO where Hr, o denotes the closure of the subspace of
v € H, satisfying 7,(C*(G))v = {0}. Hence we have obtained that, as € = 0, m,(x(R)dy) — Iﬂip,o
in SOT on H, = H,, and on ’H#mo. Ifve 7'[#,3,0 and o € S, then m,(x(R)do)p(c)v is in 7-[#,%0
and converges to p(o)v which is necessarily in H#mo. Thus the closed subspace ’H#mo is invariant
under p. As p is irreducible and non-zero, we must have 7'[#,3,0 = H,. Thus we have obtained (5.3]).
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Let us now show that (5.3) implies the irreducibility of 7,. Let 7 be a symbol in S0, For every
e>0and 7 € G, we set fo(m) := xe(n(R))7(n). By Corollary @13} f. is Schwartz. We check easily
that oy, = o\ (Rr)s, 7 thus

(5.5) Tp(fe) = p(oy.) = p(oy. (R)s)P(T) —em0 p(T) in SOT on H,,.

This convergence implies easily that any m,-invariant subspace of H, is also invariant under p.
Thus the representation 7, of C*(G) is irreducible.
We keep the same notation for the corresponding representation (class) 7, € G of G. We observe
that
7p(f) = Fmy) = xemp(R)) ()
and, for SOT on H,, the left-hand side converges to p(7) by (5.5]) whereas the right-hand side tends
to 7(m,) by (G4). Hence p(r) = 7(m,) for any 7 € S°. This concludes the proof of Lemma 56l O

We can now prove Proposition

End of the proof of Proposition [5.3. We fix my € G. By Lemma 227, if o € S°, we can consider
o(m9) € L (Hy,). One checks readily that pr, : o — o(m) is a representation of the algebra S°
which extends to a continuous representation pr, of C*(S‘O). This defines an injective mapping
R : g — pn, which is continuous. By Lemma [5.6] R is surjective. As @/R+ is compact, see
Lemma 2.5] ) Ris a homeomorphism.

If p € C*(SY), then p(C*(S°)) contains 7,(C*(G)) having used Lemma and its notation.
As C*(G) is of type 1, by [20, Theorem Dixmier 9.1], 7,(C*(G)) contains the space of compact
operators in £ (H,) thus so does p(C*(SY)). Again by [20, Theorem Dixmier 9.1], this shows that

C*(SY) is type 1. This concludes the proof of Proposition O

5.4. The C*-algebra C*(S°(Q)) and it spectrum. We can use the results in Section [5.3] on
invariant symbols to analyse x-dependent 0-homogeneous regular symbols with support in an open
set of G.

Definition 5.7. Let Q be an open set of G. We denote by S°(Q) the space of symbols o =
{o(z, ) : H® — HX, (z,7) € Q x G} satisfying

[o]+y

Vo, € Nj, v €R sup |[7(I+R)»
:(:EQ,WE@

XEA“o (2, m)m(I+ R) ™7 ||l 3, < 00,

where R is a (fixed) positive Rockland operator of homogeneous degree v.

This condition does not depend on a particular choice of R. The space SO(Q) has a natural
topology of Fréchet space with semi-norms

[o]+y a e
HUHSO(Q),a,b,c = : ]ina[gckbsgg SHEHF(I +R) v XfA o(z,m)Tr(I1+ R) Z”g(HW).
alsa, SO0g - G
[vI<e €

Remark 5.8. (1) Note that one can view S°(€2) as the set of symbols in S obtained by restric-
tion to €2, when one identifies two symbols which have the same restriction.
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(2) Moreover if € is bounded, a symbol ¢ in S°(Q) is in fact defined for z € Q and in this case
o(x,7) € L (Hy) for almost every 7 € G.

As in the invariant case (see Corollary [B.3), we can describe the elements of S°(Q) in terms of
their kernel and this implies that S°(£2) is separable:

Proposition 5.9. Let Q be a bounded open subset of G and Q its closure.
We now denote by Fo the space of (k,c) € C®(Q x (G\{0})) x C>®(Q) such that the function
(z,y) = Kk(x,y) = ke (y) is (—Q)-homogeneous and has zero mean value iny. It is a closed subspace

of the Fréchet space C* (2 x (G\{0})) x C*(R2). Moreover Fy is separable.
The map

18 an isomorphism of Fréchet vector spaces and the Fréchet space SO(Q) s separable.

Note that above, the Fréchet structure of C*°(£2) is given by the semi-norms f — sup,cq |Xf f(@)];
note that f € C* also yields a continuous function on Q. Moreover, if F; is a Fréchet space,
C>(Q2, F1) denotes the Fréchet vector space of Fi-valued smooth functions f : Q — F; with the
seminorms f — Sup,cq p(Xffx), p seminorm of Fi, 8 € Nj.

Proof. By Corollary (.3 (keeping its notation), © induces a continuous mapping C®(£, S%) —
C>®(Q, F x C),

The Fréchet vector space C*(€, F x C) of smooth functions from  to F x C is naturally
identified with Fy which is clearly a closed subspace of C*° (2 x (G\{0})) xC>(€2). It is also a closed
subspace of C(’fQ)_hom(Q x (G\{0})) x C>*(Q2) where C(’fQ)_hom(Q x (G\{0})) denotes the space
of function k € C*(Q x (G\{0})) such that the function 2 x (G\{0})) > (z,y) — k(x,y) = K(y)
is (—@)-homogeneous in y. Adapting the proof that the Fréchet space of smooth function on
the closure of a bounded open subset of a Euclidean space is separable, one proves easily that
C(’fQ)_hom(Q x (G\{0})) is separable. Therefore so is Fy.

The Fréchet space C*(£, S°) of smooth functions from Q to S° is naturally identified with the
space of symbols S(Q). It is therefore separable. O

Definition 5.10. We denote by C*(S%(Q2)) the closure of S9(Q) for

T sup ||T(11777'T)||$(7-Lﬂ) :
(z,7)eQx (G/RT)

Note that if o € $°(Q), zg € Q and 7y € G, then o(z, ™) makes sense by Part 2 of Remark
5.8 for zg, and by Lemma 227 for my. Moreover, one can view C*(S%(€2)) as a space of fields on
Q) x G/RT. Let us summarise its properties:

Proposition 5.11. The space C*(S°(Q)) is a separable C*-algebra of type 1.
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If mg € G and xg € 2, then the mapping

Q) — L(Ha)
o —  o(xg, 7o)

extends to a continuous mapping pPuymx, - C*(8°(Q)) — L (Hr,) which is an irreducible repre-
sentation of C*(S°(Q)). For any r > 0, we have Paomo = Paorm- Denoting by o the class of

representations {r - mo, > 0}, the mapping

R:{ Qx (G/RY) — O*(59(Q)
(xO’ﬁO) > Pxo,mo

1s @ homeomorphism.
Proposition B.11] is the non-invariant version of Proposition whose proof we adapt.

Proof. First, let us show the analogue of Lemma Given a representation p of the C*-algebra
C*(5°()), we consider

To(0 f) = p(ooy) = p(P)p(o}) ¢ € C=(Q), feS(G).

Proceeding as in Lemmal[5.6}, we see that 7, extends to a representation of the C*-algebra C(Q2; C*(G))
of continuous function valued in C*(G). We may identify these with symbols {7(z,7) € L (Hx) :
(z,7) € © x (G/R*)} which depends continuously on z. Note that C(€; C*(G)) may be obtained
as the tensor of C(€) with C*(G) and that its spectrum is Q x G.

We now assume that p is irreducible.

As for any ¢ € C(Q), the operator p(¢l) € £ (H,) commutes with any p(7), 7 € C(£;C*(G)),

it must be scalar, i.e. p(¢l) € Cly ,- This yields the one-dimensional representation C Q) 3¢~
p(¢l) € Cly,. It can not be zero since p(I) = 0 would imply that p be zero. Hence it is given by

xo € Q, i.e.
Vo eCQ)  p(ol) = d(w0)Ts,.

This implies that the P10+ (50)> that is, the restriction of p to 1QC*(5' 0), yields an irreducible repre-
sentation of C*(S?), denoted by (p, C*(S°)). Clearly Tp|150+(G) coincides with (7T(p7c*(go)), C*(G))
defined in Lemma and may be identified with an irreducible representation of C*(G), i.e.
Tol1a0%(G) ~ To € G. This easily implies

p(1) = 7(x0, m0)-

And we have obtained that any irreducible representation of C(€; C*(G)) is of the form d,, ® 7.
Conversely, if p = §,, ® m, then it is an irreducible representation of C(Q; C*(Q)).

The rest of the proof is obtained easily by adapting the arguments given in the proof of Propo-
sition O
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5.5. The states of C*(S°) and C*(S°(Q). In Propositions 5.5 and 511, we described the spectra
of the C*-algebras In this section, we show that this allows us to describe the states (i.e. the

continuous positive forms) of these C*-algebra in terms of objects depending on G. We start with

C*(S9):

Proposition 5.12. (1) If £ is a state of C*(SY), then there exists a positive measure vy on
é/]RJr and a measurable field of self-adjoint positive trace-class operators I' = {I'(7) €
L(Hy) : 7 € G/RY} satisfying

(5.6) / tr (D(#)) dy() = 1,

G/R+

and

(5.7) Vo e (5% (o) = /A tr (o ()T (7)) (7).
G/R+

(2) Conversely, given a positive measure y on G/RJr and a measurable field of self-adjoint
positive trace-class operators T' = {T(7t) € L(Hy) : 7 € G/RT} satisfying (.0), the linear
form € defined via (&) is a state of C*(S‘O). Furthermore, if v' and T are a positive
measure and a measurable field of self-adjoint positive trace-class operators satisfying (5.0))
and (B1) for the same state ¢, then there exists a measurable positive function f on C?/RJr
such that

dy (%) = f(#)dy(®) and T'(x) = —

Proof of Part 1 of Proposition [5.12. Let £ be a state of the C*-algebras C*(S°). The GNS con-
struction [20, Proposition 2.4.4] yields a representation p of C*(S°) on the Hilbert space Hy =
C*(89) /{0 : £(c0*) = 0} and

Uo) = (p(0)€,E)n, , 0 €C* (S,

where the unit vector ¢ is the image of I € S via the canonical projection C’*(SO) — Hy. We then
decompose [20, Theorem 8.6.6] the representation p (taking into account the possible multiplicities)
as

(p, He) ~ (p1, H1) ® 2(p2, H2) @ ... B No(poos Hoo)s

and each p,, r € NU {oco}, may be disintegrated as

C*(59)

—

furthermore, the positive measures y1,72, ...,V are mutually singular in C*(S°). Consequently
we can write £ € Hy as

€~ (&,62,...,80), with & = (& 5)1<s<r for each r € NU {o0}, and &, 5 € H,.
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Note that

L=leZ, = S SI6sZ, with (€, = /CAS €O de(C):
reNU{oc} s=1 (59

—

By Proposition 55, we may identify C*(50) with G/R*:

e~ wrdye (70), H, ~ Hrdry, (70), / ()3, dyy(70) = 1.
oo [ ) D 9 DY M R PREACY

G/R* r=1 s=1

Hence I'y := Y"1, &, ® & 5" is a y,-measurable field on G /R of positive traceclass operators of

rank 7. We have obtained:

(o) = (e = 3 3 /G/R;a(msr,s(ﬁ),@,s(ﬁ)mdw(fr)

reNU{oo} s=1
= > /A tr (o(7)0, (7)) dy (7).
reNU{oco} G/R*
We now define the positive measure v := ) _~,. As the measures 7, are mutually singular, the
field I' := ) T', is measurable and satisfies

trI'(7)dy(7) = 1.

G/R+
This shows Part 1. O

[(7) >0, tr(7) < oo, /

Proof of Part 2 of Proposition [7.12. Given a positive measure v on G /R* and a measurable field
of self-adjoint positive trace-class operators I' = {['(#) € Z(H,) : 7 € G/R*} satisfying (5.0)), one
checks easily that the linear form ¢ defined via (5.7) is a state of C*(S?).

To prove the last part of the statement, we consider a positive measure 7' and a measurable
field of self-adjoint positive trace-class operators I satisfying (5.6 and (5.7)) for the same state £.
It suffices to consider the case of v and I' obtained as in Part 1; in particular v and I' have the
same support in G /R*. We may also assume that 4" and I have the same support in G JR*. For
each r € NU {00}, let B, be the measurable subset of G/RT where I (7) is of rank r a.e. We may
assume these subsets disjoint. We define the measure /. = 15,7 and the field I, := 15 I as the
restrictions of 7/ and I” to B,. As I') is a measurable field of positive operators of rank r, there
exists a measurable field of orthogonal vectors (&, 5)5—; such that T, =77, &  ® & ;" We have
el =231 1€ 2. ~

We define the representation p’ of C*(S°) and the vector & of p’ via

p= GBTENU{OO}T/A @ d%(ﬁ), and ¢ = DreNu{oo} SEJ /A
G/R+ G/

We observe that £’ is a unit vector:

|£,|2 = Z ET: |£7/gs|2 = Z /A trF;n d%'n = /A trIV dy/ = 1.

reNU{oo} s=1 reNU{oco} G/R* G/R*
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Moreover for any o € C*(5°):

Ve = 3 Y A

reNU{oo} s=1

= /A tr (oI") dy' = {(0).
G/R+

In other words, the state associated with p’ and & coincides with ¢. This implies that p’ and p

Ofr S? gr S d’Yr - Z /G der

G/R* reNU{oco} /R*

are equivalent [20, Proposition 2.4.1], therefore the measures 7. and ~, are equivalent for every
r € NU{oco} [20, Theorem 8.6.6]. In other words, there exists a measurable positive function f,
supported in B, such that dv.(7) = f.(7)dv. (7). As & corresponds to & via the (p/, p)-equivalence,
we must have I'.(7) = f,.(7)[.(7). This concludes the proof of Part 2. O

From the proof of Proposition [5.12] we can determine easily the pure states, that is, the states
corresponding to the irreducible representations:

Corollary 5.13. The pure states of the C*-algebra C’*(SO) are the functionals { = U, ., of the
form:

6(0') = (0(7%0)”077)0)7{@7 oS C*(So)v
where my € G and vo € Hr, s a unit vector. The states { = Uy, ., where my € G and vo € Hyo s a
smooth unit vector, form a dense subset of the set of states of C*(S’O).

We observe that (., corresponds to () = 0z, (7) and I'(7g) = vo ® v{.
We also have a similar description of the states of C*(S°(Q)):

Proposition 5.14. Let Q be a bounded open set of G.

(1) If € is a state of C*(SO(Q)), then there exists a positive measure v on Q x G/RY and
a measurable field of self-adjoint positive trace-class operators T' = {I'(z,77) € L(Hx) :
(z,7) € QO x G/R*Y} satisfying

(5.8) /Qx@/R+ tr (O(x, 7)) dy(x,7) =1,
and

(5.9) Vo e C*(5°(Q)) (o) = /Qxé/R+ tr (o(z,m)I(x, 7)) dy(z, 7).

(2) Conwersely, given a positive measure v on Q x G/RJr and a measurable field of self-adjoint
positive trace-class operators T' = {D(z,7) € L(Hyz) : (x,7) € Q x G/RT} satisfying B,
the linear form £ defined via (5.9) is a state of C*(S°(Q)).

Furthermore, if v and T are a positive measure and a measurable field of self-adjoint
positive trace-class operators satisfying (5.8]) and ([B.9) for the same state £, then there exists
a measurable positive function f on £ x CA}/]RJr such that

dy (z,7) = f(x,7)dy(x,7) and T'(z,7)=
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(3) The pure states of the C*-algebra C*(S°(Q)) are the functionals £ = lyy o0 Of the form:
(o) = (20, T0)v0, 00) 2y, 0 € C*(SY),

where xg € Q, Ty € G and vo € Hr, @5 a unit vector. The states £ = Ly ro 0, Where o € Q,
o € G and vg € HZ, is a smooth unit vector, form a dense subset of the set of states of

C*(5°(2)).

Proof. The proof of Proposition [5.14] is a simple modification of the proof of Proposition .12} in-
deed, it suffices to replace the characterisation of the spectrum of C*(S°) with the one of C*(S%())
given in Proposition B.IT1 It is left to the reader. ([l

We observe that gz, v, corresponds to y(z, ) = 0z, (z) @ 64, (7) and I'(zg, 70) = vo @ v§.

6. DEFECT MEASURES

In this section, we state and prove our main results, that is, the existence of defect measure. We
also give example of such measures and prove the consistency of our description.

6.1. Main result. Before stating our main result, let us define the type of object a microlocal

defect measure will be

Definition 6.1. Let  be a Borelian set of G with non-empty interior.

o A positive trace-class-valued measure on €} x @/}RJF is a pair (v,I') where « is a positive
Radon measure on  x G/RT, and {T'(z,7) € Z(Hx), (z,7) € Q x G/RT} is a measurable
field of positive traceclass operators satisfying for all C' compact subset of 2

/  tr (D(z, 7)) dy(z,7) < oo, and ~(C x G/RY) < co.
CxG/Rt

e Two positive trace-class-valued measures (7,I") and (7/,T") are equivalent when there exists
a measurable positive function f on Q x G/R™ such that

dv/(x,fr) = f($,7T)d’7($,7T) and F/(l‘,ﬂ') =
The equivalence class of (v,T") is denoted by I'd~y.
We can now state our main theorem:

Theorem 6.2. Let 2 be a non-empty open set of G. Let (uy) be a sequence in L*(€,loc) and
u € L2(Q,loc). We assume that up —jp—oo v a.c. in L*(Q,loc). Then there erist a subsequence
(uk(j))jen of (ur) and a positive trace-class-valued measure (7,T') on  x G/R* such that for any
A € ¥9%(Q), we have the convergence

]liglo (A(Uk(]) - ’LL), (uk(J) - u))LZ(Q) = /Qx(@/RJr) tr (prinCO(A) (‘/Ev 7:‘-) F(l‘, ﬂ-)) d7($7 7:‘-) ’
Moreover, once the subsequence (k(j)) is fized, the positive trace-class-valued measure (I',7) is

unique up to equivalence.
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Definition 6.3. We keep the notation of Theorem A sequence (ug) is pure when the subse-
quence is trivial, i.e. k(j) = j. In this case, the equivalence class I'dy is called the microlocal defect
measure, or MDM, of (uy).

The definition of pure sequence follows the vocabulary set in [30]; it bears no relation with pure
states.

Let us turn our attention to the proof of Theorem It suffices to prove the case u = 0.
Furthermore an argument of diagonal extraction over a suitable sequence of bounded open subsets
exhausting ) shows that it suffices to prove:

Proposition 6.4. Let Q) be a non-empty bounded open set of G. Let (uy,) be a sequence in L?(£2)
converging weakly to 0. Then there erist a subsequence (uy(;))jen of (ur) and a positive trace-
class-valued measure (v,T') on Q x é/R*, such that for any A € \Ifgsymp, we have the following
convergence:

j—o0

i (Aueg k) 20y = |, oy (PrIBCO(A) ) Do) ).

Moreover once the subsequence (k(j)) is fized, the trace-class-valued positive measure (I, 7y) is unique
up to equivalence.

Remark 6.5. As the sequence (uy) converges weakly to 0, it is bounded in norm. If (ux) converges
to 0 for the L?-norm, then limy_, o (Aug, ug) 2 = 0 since A is bounded on L?(€2). Therefore, in the
proof of Proposition [6.4], up to extraction of a subsequence, we may assume

(6.1) sup [[ugl|L2() = lim |lugl[z2@) = 1.
k k—o00

Furthermore, Rellich’s theorem (cf. Theorem [4.24] and its proof) shows that it suffices to consider

0

only operators A € W, .., with one term (the 0-homogeneous one) in their homogeneous expansion.

The proof of Proposition relies on the following lemma:

Lemma 6.6. Let Q be a non-empty bounded open set of G. Let (uy) be a sequence in L?(£2)
converging weakly to 0 and satisfying [©1)). If R is a positive Rockland operator, ¥ € C*(R) a
function such that ¥ = 0 on a neighbourhood of 0 and b = 1 on a neighbourhood of +oco, and

o€ Sgomp, we set

o) = (Op(o(m(R)) )k, ) o g -

(1) The sequence (v,(f))keN is bounded.

(2) We can extract a subsequence (kj)jen such that the sequence (U;gj))jeN has a finite limit
in C.

(3) If (k;) is as in Part (2), then the limit is independent of 1 and R and it is the same with
Op((w(R)o) or with Op(¢(n(R)o(n(R)) instead of Op(cp(n(R)).
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(4) If (k;) is as in Part (2), then the sequence (U/(g*))jeN has also a finite limit and

= lim v,(;;) .

(o)
J j—00

lim v,
Jj—o00

(5) If o is of the form o = 7*7 with 7 € S°(Q) then any limit obtained as in Part (2) is

non-negative.

Proof of Lemma[6.4. Part (1) follows from Op(c¢)(7(R))) € ¥° being bounded on L?(G). Indeed,

we have
(6.2) 7| < 0p(aw (m(R) L (z2(cy) 5P llur 122
k'eN

and the supremum above is assumed to be equal to 1. This proves Part (1) and thus Part (2).
By Proposition .14] and its proof together with the properties of the pseudo-differential calculus,
Op(c*y(m(R))) = Op(P(n(R))o”) modW™>(Q,)
= Op(ay(n(R)))" + E,
where F is an error term in =(Qy,). Using Rellich’s theorem as in Theorem and its proof
shows Part (4).

If o = 77 with 7 € S°(Q), then, extending o and 7 to symbols on S°, by Proposition Z.I14] and
its proof together with the properties of the pseudo-differential calculus,
Op(o(n(R))) = Op(¢(m(R))oyp(w(R))) mod¥™> ()
= Op(y(n(R)7")Op(7¢(m(R))) mod¥ ™" Q).
= Op(¢(n(R))7)"Op(r¢(n(R))) + E,
where E is an error term in W=1(Qy,). Thus we have
o = O (r(R))T)ur |2y + (Bug, ur) 120
The first term of the right-hand side is non-negative for all k¥ € N whereas the second term tends
to 0 as k — oo by Theorem and its proof. This shows Part (5). O
We can now prove Proposition

Proof of Proposition[67. Let (uj) be a sequence in L?*(Q) converging weakly to 0 and satisfying
equation (G.I). By Proposition (.9 there exists a dense and countable (Q + iQ)-subspace Vj of
SO(Q). By diagonal extraction, we may assume that the subsequence obtained in Lemma [6.0] is the
same for any element of Vj and we set

{(o) := lim v,(:) , oeW.

J—oo

Using the density of Vj and the proof Part (1) of Lemma [6.6] we extend ¢ to a continuous linear
functional on the Fréchet space SO satisfying for any o € SO(Q)

()| <o (TR 212G S Noll$0(@),a,6,e
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having kept the same notation for ¢ and its extension.

Note that we can construct the subspace Vp of S°(Q) as follows. We consider V a dense and
countable (Q+iQ)-subspace of S° and V; a dense and countable (Q+iQ)-subspace of C*(£2). Then
the tensor product of V' and V; yields Vf, the set of symbols which are finite linear combinations
over (Q +iQ) of ¢(z)o(7) with ¢ € Vi, 0 € Vj. Then Vj is a dense countable subset of the
Fréchet space S°(€2). The proof of Proposition [5.9] shows that Vj is also dense in the Banach space
C*(S°(Q)) whose norm satisfies

sup  lo(@, )|l 24 = inf{z sup |73l (3. Suplfz ro= me}-

(z,7)€Qx (G/R+) . 7€G/RT

If the symbol 7 is of the form f(x)o (%), with f € Vi, 0 € V, then 7 € $°(Q2) and
o7 = (Op(ew(m(R))ur, Fur) 2o

w7 < 10p(e (r(R))) L2 lurll 2 | Furll 2
< HUHLoo(é)WHLw(R) SllipHukH%%Q)HfHL‘X’(Q)
thus
D) < Nloll @ Il = sup (@ @)l )

(z,7)eQx(G/RT)
Hence ¢ admits a unique continuous extension to a linear functional of C*(S°(Q)). Lemma
implies that £ is a state of the C*-algebra C*(S°(Q)). The application of Proposition [5.14] (see also
Remark [6.5]) concludes the proof of Proposition [6.4] and so of Theorem [6.2] O

6.2. Example: spatial concentration. In this section, we study the example of a sequence of

functions whose mass in concentrating in 0:

Proposition 6.7. Let u; € S(G). We define

ug(x) = k%ul(k‘x), r€G, keNg.
Then uy k:OOO in L?(G,loc) and this sequence is pure. Its MDM is given (with the notation of
Section [2.3) by

Y(x,m) = S0 R¢(mw), T'(m)= /: Gy (r - )y (r - 7))@ dr for x| = 1.

Recall that ¥ = {|r| = 1} and that Remark 2.8 then implies that the measure 7 is independent
on a choice of quasi-norm. Besides, Lemma [2.5] shows that v may be viewed as a measure on
G x (G/RT \{1}). Note also that I'(7) > 0 and

/21 tr (%) ds(m) = /Zl/r a1 (- ) 1453,y 79 i de()

- /§||a1<w>||%fsmﬂ)du<w> — w2 < -

One checks easily that I on Gisa (—Q)-homogeneous field of operators.
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Proof of Proposition [6.7. By Rellich’s theorem (cf. Theorem and its proof), we may assume
that A = Op(6¢) where 69 = ogtp(m(R)). Using (2I]), the group Fourier transform of wy, is

() = k= Fa (k71 - 7).
Hence we have:
() = [ [ or (rla)ou(e,m) () du(m)n o)
/@tr (m(z)60(z, m)uy (k71 - 7)) dp(m)a (k) ds
_ / o (7 @)d0 (k- ) () (Y (2! ) e
GJG

after the change of variables o' = kx and 7/ = k! - 7, using (Z.I) and (Z3). We are going to prove
that the following expression tends to 0 as k — oc:

(Aouk,uk) - /Atr (al(ﬂ/)*ao(o,ﬂ'/)al(ﬂ'/)) du(ﬂ'/)

/ / tr ( (0 (k™lz, k- 7) — 00(0, k - 7)) U1 (m)) du(m)uy (@) ds
=T, + 15,

T, = / / tr (7(2) (oo(k ™z, k- 7) — 00(0,k - ) (k- 7(R)) 1 (7)) dp(m) s (z)d,
T, - / / tr (w(2)00(0, 7)(1 = ) (k - 7(R)) @i (1)) dpa(m)iin () dee
= /étr (00(0, m)(1 = ) (k - 7(R)) U (m)ur(m)*) du(r),

and the function v is chosen as usual, ¥» = 0 on a neighbourhood of 0 and ¢» = 1 on (A, c0) for
some A > 0.

For Ty, we use that by (ZI5), for each 7 € G, there exists kr € N such that (1—)(k-7(R)) =0
for all £ > k,. Hence for k > k;, we also have

tr ((1—)(k-7(R))oo(0,m) uy(m)ur(m)*) = 0.

Since we have

jtr (1 =) (k- 7(R))a0(0,7) @r(m)ar (m)*)] < Copo i1 (1) 1530,

with Cy 5 = supxso |1 — ¥ (N)] sup,ca l00(0,7") || 2(32) € (0,00) and

LV s i) = [ < .

the Lebesgue dominated convergence theorem yields that 75 tends to 0 as & — oo.
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Let us now study 7;. The mean value theorem stated in Lemma 2.3] extends to Banach value
functions. Hence fixing a homogeneous quasi-norm | - |, there exists a constant C' > 0 such that for
any 0 € 8% z € G and r > 0, we have

n

sup [loo(ra, m) — 00(0, )Lz gey < €3 rals sup [ X;o0(y, 7))

TeG j=0 yeG,meG
We obtain
‘tr (7T(:17) (k- m(R)) (O‘o(k’_1$, k-m)—00(0,k - 7T)) Uy (7T)) ﬁl(:n)‘
< CCY polun ()] Y [k ] tr [y ()|
§=0
where Cy, . := sup [¢)(N)]| sup X 00(y, M)l 2(3,.) € (0,00). Since ug € S(G), we have
A> yeG,weé,j:L...,n

/|u1(:1:)|2|x|”jdx<oo and /Atr|ﬂ1(7r)|d,u(7r)<oo,
G . G
7=0

and the Lebesgue dominated convergence theorem yields again that 77 tends to 0 as k — oo.
We have shown that 77 and 75 tend to 0 as £ — oo and this implies
(Auk, uk)L2(G) — R tr (al (71'/)*0'0(0, 7'('/)@1 (71'/)) du(ﬂ'/),
k—o00 G
which gives the result by use of the polar decomposition for the Plancherel measure, see Section 2.3]

O

6.3. Example: oscillations from square integrable representations. We now study another
example, which may be viewed as a spectral or dual concentration. We consider a graded group G
which admits a (unitary irreducible) representation mp which is square integrable modulo its centre.

o0

We also fix a smooth unit vector vy € HZ, and consider the associated matrix coefficient:

eo(x) = (mo(x)vo, v0)#,,, =€ G.

We may assume that the basis {Xy,..., X, } of the Lie algebra g has been chosen so that a subset
{Xj,..., X g }, form a basis for the centre 3 of g. Therefore we can write any element x as

z=expg(@1 Xy + ... + 2, X,) = 2'z; = 27/,

where ; = expg(zj, Xj, + ... +2n,Xp,) and 2’ =expg Z x;X; | . Naturally, we iden-

jgé{jlv-"vjné}
tify the centre of the Lie algebra 3 and the centre of the group Z := exp 3 with R™. Note that

we still consider anisotropic dilations in those directions. The quotient group G’ := G/Z is also
graded and we denote by @’ its homogeneous dimensions, also given by

Q, = Z Uy.

j%{jlw"’j’f%}
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Finally, we denote by dr, the formal degree of my for which we have for any vy, w;,ve, w2 € Hr,:

(6.3) dr /G/ (0 (2" )v1, 1) 3, (0 (2 )2, w23, d’” = (v1, w130, (V2, W),
z

see [I7, p. 169 and theorem 4.5.11].

Proposition 6.8. Let ug € S(R™). For each k € N, let up, : G — C be the square integrable
function given by

ug(z) = k%/eo(k$)uo(x5), x € G.
Then |luglr2cy = lleoll 2 llwoll2(zy < oo and uy k:OOO in L*(G,loc). This sequence is pure and
its MDM 1is given by

2
Y(z,7) = (W(Lgiﬂd% ® 0 /:0) ® Osr=rrg
0

with T'(7g) = vy ® v§ being the orthogonal projection on Cuy.

The Schwartz function on the centre is needed to contain the oscillations, as in the abelian case.

Indeed, on the one hand, on the centre Z of the group, my coincides with the character e’

, i.e.
m(z;) = 0% where we identify x; with an element of R™ and where Agz; denotes the standard

scalar product of the two elements \g and x; of R™. Thus for any = z’z; in G we have
eo(x) = (mo(2'2;)v0,v0) 3., = eihoTs (m0(x")v0, v0)#y, = €M%y (2.
On the other hand, 60|G, € S(G). See again [17, p. 169 and theorem 4.5.11].

Before starting the proof, let us describe the more concrete case of the Heisenberg group and the
matrix coefficient given by the bounded spherical functions, see e.g. [5]. More precisely, we realise
the Heisenberg group as H; = {(z,y,t) € R?} with law

(z,y, )"y ) = (x+ 2"y +y' t+1' + %(wy’ —a'y)).
Let my be the representation of H; determined (up to equivalence) by the fact that it coincides
with the character ¢ — e on the centre of H;. For the smooth vector, we choose the ¢-th Hermite
function (with L?(R)-normalisation) if we realise this representation in the Schrodinger model, or
equivalently, the (suitably normalised) monomial of degree ¢ in the Bergman-Fock model. In this
case, the matrix coefficient is given by
2 +y?

]
where £; is the (-th Laguerre function, that is, L¢(r) = €2 Ly(r) and Ly is the ¢-th Laguere
polynomial. Note that the ey in this particular case is of the form described above.

60(-’1’, Y, t) = eitﬁﬁ(

Proof of Peoposition [6.8. First let us show that each function wy is square integrable:
Q' /
gl 22y = /G / leo (ke ko (e, )k Y [Pdayda’ = /G leo(ka') k@ d:n’/ o (2 2de,
r JR"s ’ n

R™3
= . leo(z")[2dx” /Rng \uo(azz)lzd%,
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having used the change of variable 2"/ = kz’. As the functions ey and ug are Schwartz on G’ and R
respectively, the quantity above is finite, and u;, € L?(G) with lukllz2qy = lleoll 2y lluoll 2 (z)-
For any ¢1 € D(R™), ¢o € D(G’), we have

/ / uk(azéazl)él(mz)ég(azl)d%dm/:/ ei’\o(kmﬁ)uo(a:')gbl(aza)dazé/ eo(kx’)(ég(a:’)k%/dx/.
' JR™ R"™s G’

By the Riemann-Lebesgue theorem, the integral over R™ tends to zero as k — oco. After the change

of variable 2 = kx’, the integral over G’ becomes
/ / Q I =9 " -1,/ / =9 " /
eo(kx" o ()b 2 da’ = k2 eo(x")p2 (k™ 2" )dz' ~poo k72 ¢2(0) [ eo(z”)da’,

thus this integral tends to zero as k — co. Hence wuy o 0 in L2(G, loc).
—00

Let us now compute the MDM of (u¥). Let A = Op(c) € ¥9(G). Let x € D(G) be real valued
and such that the support of the integral kernel of A isin {x =1} x {x = 1}.

(Aug,up)r2@@y = (Alxur), xur)L2(a)

= //tr x)oo(z, m)(mo(R))m(xuk)) (xux)(z)dxdu(r);

here we understand the double integral over G as in Proposition 2.23] that is, as the limit of the
absolutely convergent double integral:

lim /Nc/trNtrN x)oo(x, ™) (mo(R))m(xuk)) (xuk)(z)dxdu(r),

N—+o0

where C a compact neighbourhood of 1 € G such that U NenlN-C = é, and try denotes the trace of
the operators projected on the subspace spanned by the first N vectors, having fixed a fundamental
sequence of vector fields. Hence we are led to study:

[ [ o ot mimtan)) () )it
= [ [t ot min)®) i) o) s ),

having expanded m(yug). This multiple integral is again convergent. Applying the change of

-1

variables first y — w = y~ '« and using the properties of the trace, the integral above becomes

/ / / tr (m(z)o (e, m)m(wa™")) (xar)(x) (xur)(@w™")drdwdp(r)
= /A / / tr (m(w)o(z, 7)) (xtx)(z) (xur)(@w™")dedwdp(r)
///tr ()o@, k- a')) () (@) (xup)(@ b~ o'~ )dedu! du(x'),
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after the change of variable (7,w) + (7,w’) = (k7! - 7, kw), whose Jacobian is 1 by I and
29). Let us write

(xix) (@) (xur) (@ k' ™) = k9 x(@)x(@ k') éolka)eo(ka w' ™) oz )uo((@ k' w' ™))
= kX (@) uo* () @0 (k)eo (kr w' ™) + ex(z, w').

We claim that for any 7 € LOO(@) such that L7 is a compactly supported distribution on G,
we have for any x € G

(6.4) / / trw(y)7(m)eo (zy ™ dydu(r) = (ﬂo(m)T(ﬂo)fuo,vo)Hm.
Indeed by the Fourier inversion formula, the limit is equal to
/ Fg'r(y) eolwy")dy

interpreted in the sense of a compactly supported distribution at a smooth bounded function, and
this is equal to the right hand side of @4). We can apply this to 7 = {o(z,7),7 € G} since
F~lo(z,-) is the convolution kernel of A which is compactly supported (as the integral kernel of A
is compctly supported). Hence the claim in (6.4]) is proved and we may apply it to obtain:

(Aug, ug) 2@y = T(k) + (k)

where
T(k) = / K9 |2 (@) o (2o (k) (o (K)o (e, K - 70) v, 00) ez i,
g(k) = REIEOO/ e //tr "(Who(z, k- 7)ep(x,w')) dedw'dp(x’).

Let us show that &(k) tends to zero as k — oo. It is easy to see that in the Sobolev space L2 for
any s > /2, we have the uniform convergence:
sup |lex (2, )| 2(¢) — k00 O-
zeG

From Section 2.6], we have

Vo € L2(@), T € L™(G)

/étr <T(7T)¢A5(7T)) dp(m)

From the two properties above, we obtain easily

< Cullrl e 16l 200

BI< [ 1060 e gy en( 2@y e~ 0

as the integrand has compact support in z € G.
For T'(k), as we have

Golko)mo(ka) = e gy (ka') o) mg (ko)
— o(ha')mo(ka'),
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the change of variable z” = ka’ whose Jacobian is k=9 yields:
T(k) = / / K9 X (@) o[ () @0 (k') (mo (k' )or (2327, k - mo)vo, Vo) a¢,., devyda’
1 JR™s

= // \X\2(x3k_1az”)\uo]2(333)éo(x”)(Wo(x”)a(a;ék_laz”,k-ﬂo)vo,vo)ﬂﬂodazéd:ﬂ”.
G/ né

We claim that, by the Lebesgue theorem, this converges towards

65 10 = [ [ Pl a)e () m (e, mo, v, drds

k—o0

where op = princ(A). Indeed we fix a positive Rockland operator R (of homogeneous degree 1)
and ¢ € C*°(R) a smooth function such that ¢ = 0 on a neighbourhood of 0 and ) =1 on [A, c0).
We know that the symbol

p =0 —oop(m(R)),
is in 8™ with my < 0. We may write
(p(z, k - m0)v0, v0)yy, = (Ph ks 00 )y,
where py . = p(x, k- 7o)k - mo(I + R)_% and v := k- mo(I+ R)%vo. The operator pj, is uni-
formly bounded:

~ _m1
1okall 2(ng) < sup_lp(z, m)m T+ R)™ 7 [ 2(1.,) < llollsm00m:,
zeG,mEeG

and so is the vector wvy:

il < - mo(T+R)%

iy 0lo < s (L OVESE
Here Apin (7o) is the smallest eigenvalue of my(R), see Lemma (2), 50 Amin(m0) € (0,00) and
||vgll, tends to 0 as k — oco. It is now a routine exercise left to the reader to apply the Lebesgue
theorem and obtain the convergence in (6.3]).

As A is compactly supported in {x = 1} x {x = 1}, we may assume that o is compactly
supported in z, and that this support is included in {x = 1}. Hence we have obtain that the

(Aug, ug)r2 (i) has the same limit as T'(k) which can be rewritten as

dim) <(/Gprinco(A)(x3,7ro) \uo(azg)!2dx3>vo, vo)

Horg
O

6.4. Example: general oscillations. In Section [6.3] we constructed a pure sequence associated
with a square integrable representation. In this section, we generalise the idea to any irreducible
representation of G. If the representation is finite dimensional, then it is of dimension 1 (see [17])
and we may proceed as in the Euclidean case. Let us consider my an irreducible representation of
infinite dimension. We will replace the properties of square integrability with the general results
on representations of nilpotent Lie groups due to Pedersen [39].
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Unfortunately, the notation adapted to the presence of dilations is in conflict with the conven-
tional notation for Jordan-Holder bases. Indeed, our canonical basis Xi,..., X, of g, that is, a
basis adapted to the gradation (see Section [2.1]), is adapted to the Jordan-Hélder sequence:

0=0,Cgn-1C...C g1 Cgo:=1{0}, where gp:=RX,, 1®...0RX,, k=1,...,n—1,

except for the order of the labels in the basis; for instance X € g,_r. We denote by J the set of
jump indices of my:
Ji={1<k<n : dro(Xy) ¢ dmo(gn—k-1)}-

We observe that the set of jump indices is the same for r - g, for any r > 0. We set
g7 = PreJRX} and gJje 1= @k¢JRXk.

The natural Haar measures on g; and gje are e dz; and ¢ ;dr; respectively; we will denote
them by dx, or any other letter representing the variable of integration.
For any Schwartz function ¢ € S(gs) on the vector space g7, we define:

b= /Z‘Z(Z‘k)kejeg(] o) o <eXp <Z :Eij))) "

keJ

This is a smooth operator on Hy, i.e. ¢ € L (Hnry)oo- Moreover (cf. [39]), ¢ — ¢ is an isomorphism
between the Fréchet spaces S(gs) and .2 (Hr,)oo; its inverse is given by

(6.6) L (Hry)oo D A fa oexp‘ge, where fa(x) :=tr (mo(z)A), =€ G.

Any element in £ (Hr,)co is trace-class. An example of an element of .2 (Hr,)oo is v @ w* where
v and w are two smooth vectors of #,. For any ¢ € S(gy) the operator ¢ is traceclass with [39]
(6.7) tro = di¢(o).
7o
Here dr, > 0 is a computable constant depending on 7y and on the choice of Jordan-Hélder basis,
but not on ¢.

We can now state and prove the following generalisation of Proposition

Proposition 6.9. Let my be an irreducible representation of G of infinite dimension. We define
its jump set J and the subspaces gy, 9jc of g as above. We set
QJ = Z V.-
keJ
Let ug € S(gje). Let A € L (Hnry)oo and define fa as in (6.6]). For each k € N, let up : G — C be
the function given by
Qr
up(z) = k72 fa(kx) uo(xge).
Then ||ug||r2 = d;01/2\|A||HS(H lwollr2(g,e) and ug, — 0 in L?(G,loc). This sequence is pure and
o J k—o00
its MDM is given by

y(x, ) = <Wd$]c ® 50(xJ)> ® Oz (70), () = AA™.
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In the statement, we have used the following notation:
if x =exp Za;] € G, then wjc := (x))j¢5c € gJe, Ty = (T5)jes € 9J-

In the proof, we will use the following properties:

Lemma 6.10. Let my be an irreducible representation of infinite dimension of G. We define as
above its jump set J, the subspaces gy, gjec.

(1) There exists a linear function F : gy X gje — g5 such that

FO(.Z') = Tg (exp (XJ + F(XJ,XJc))) ,

where r = exp Zx] )G, XJ—Z$JX egy, Xje = Z:EijEQJc.
k=1 keJ k.J
Furthermore, for any Xje, the change of variable X; — X, = X; + F(X;,Xje) is a

diffeomorphism of gy with determinant 1.
(2) Let A€ L (Hry)oo and define fa as in ([©6). We have

/ fa(z) mo (exp (Za;ij>> dx = iA.
(zK)keT€BT keJ A,

(3) Let o € L>( G) be such that ]:G o is a compactly supported distribution on G. Then

/ / tr (o) m(w)) falw ™ e)du(m)dw = tr (x(mo)mo(x)A)

interpreting the left hand side as in Proposition [2.23, that is, as the limits (in this order)
of the absolutely convergent double integral:

R—oo N—+o0

lim lim /Nc/trN (w)) fa(w ™ z)xr(w) dwdp(r),

where x € D(G) with x = 1 on a neighbourhood of 0 and xg(z) := x(R™'x), C a compact
neighbourhood of 1 € G such that UnenV-C = é, and try denotes the trace of the operators
projected on the subspace spanned by the first N vectors, having fized a fundamental sequence
of vector fields.

Proof. Part (1) is a simple consequence of the definition of a jump set, it is left to the reader. Part
(2) is in [39]. For Part (3), we apply Proposition 2:23] to obtain:

//tr (w)) fa(w™ z)du(r) dw—/]—" (w) fa(w™ z)dw
= /Gtr (]:C_;la(w)ﬂo(w)*wo(:n) A) dw = tr (o(m)mo(z)A),

since A is traceclass and o(my) € L (Hnr,)- O
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The arguments to show Proposition [6.9] follow the ones for Proposition 6.8 The main modifi-
cations come from replacing the properties of the centre with Lemma [6.10] Part (1). We will only
outline the ideas, the technical details being very similar to the ones in the proof of Proposition

Sketch of the proof of Proposition[6.9. Let x € D(G) and o € SY(G).
Op() v g = K [ [ [ o (ot m)m(w) () w™) wore)dudadum
= k@ r (olz, k- m)m(w ug)(z k™ w ™) g (x) dwdzdp(r
k0 [ ] (ot myre) (e ko) Sar(e) dudsduz),

after the change of variable (7, w) — (k- 7, k~lw). For k large,
Ocur) (@ k™ ™) ~ (xuo) () fa((kz)w™).
Lemma [6.10] Part (3) implies
/ / tr (o(z, k- m)m(w)) fal((kz)w™ ) dwdp(r) = tr (mo(kz)o(z, kmg)A).

Let us define ug(z) = uo((xg)kese) when x = exp(d>_j_; 2;X;) € G. Therefore
(Op(e)xe) xue) 6y ~ K [t (o). ko) 4) Fallo) o )

:/ / tr (ﬂo(eXJJrkXJc)a(ekilXJ+XJc,kWO)A) fA(eX‘]J'_kXJC)’XU0‘2(€I€71X‘I+X‘IC)dXJdXJc,
gjc v 8J

having written 2 = exp(X; + X c) and then performed the change of variable X; > k=1X ;. We
have k~'X; — 0, so

(Op(o) (xuk), xuk) L2(q)

~ / / tr (WO(eXJ‘i‘kXJC)O,(eXJC’kﬂ.O)A) fA(eXJ+kXJc)’XU0’2(6X]c)dXJdXJC
gjc 7 8J

_ / / tr (mo(e¥)o (X ko) A) Fa(e¥D) (X9 dX ) dX g,
ggc J8J

after having used the change of variable X; — X/, = X;+ F(X 7, kX jc), see Lemma [6.10 Part (1).
Applying Lemma [6.10] Part (2) on the integral over g; concludes the (sketch of the) proof. O

In the next section, we will need the following limits which follow from similar computations to
the ones above:

Corollary 6.11. (1) Let mg, A, up and uy as in Proposition [64. If xo # x1 and ug has a
compact support small enough then

Jim (Op(a) (xur (1)), Xtk (2o-)) 12y = 0.

(2) Let mg and ug as in Proposition[6.9 and A, B be in L (Hnry)oo- We construct (ug) and (vy)
as in Proposition [6.9 for A and B respectively. If AB* = 0 then

dim (Op(o) (xuk), xvk) 12(c) = 0-
—00
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(3) Let mp, A and ug as in Proposition and consider 71, € G with 7, % 79, and vy and B
in L (Hr,)oo- We construct (ux) and (vg) as in Proposition [6.9 for ug, my, A and vy, 71, B
respectively. Then

lim (Op(0) (x(ur, + ok)), x(uk +vg)) 2 = lim (Op(a) (xur), xur) g2 + lim (Op(o) (xvr), xvr) L2-

k—o0

Proof of Part (1). An argument of translation shows that it suffices to prove the case z; = 0.
Proceeding as in the proof of Proposition [6.9] we obtain:

(Op(0) (vt ). Xuur(0-)) () ~ K97 /G tr (o (K)o (z, ko) A) Falk(@om)) (xuo) () X5 (o) e

Now ug(x)ug(xoz) = 0 for any & € G when ug as a support small enough and zg # 0. O

Proof of Part (2). Proceeding as in the proof of Proposition [6.9] we obtain:

(Op(o) (xur), X0k ) L2(G) Nk‘Q"/Gtr (mo(kx)o(z, kmo) A) fi (k) xuol*(z)dx

N/ / tr <7To(eXlJ)a(eXJc,/<;7ro)A> fB(eXfl)lxu0]2(eXJC)de]dXJc
gjec Y 8J

1
:/ tr (—B*J(eXJc,kmo)A> Ixuo|*(eX7¢)d X" dX je.
gse

™0

Hence this is zero when AB* = 0. O

Proof of Part (3). Proceeding as in the proof of Proposition [6.9] we obtain:

(Op(0) (xur); x0r) L2(G) NkQ"/Gtr (mo(ka)o(x, kmo) A) fr (k)| xuol* (z)dx

~ / / tr <7T0(6X‘]+kXJC)0'(€XJC,k?TQ)A) fB(eX(]JrkX‘]C)‘Xuo‘z(eXJC)dXJdXJC7
gjc Y 8J

having used the jump set for my. And this is equivalent to the same quantity with princy(o)

replacing 0. So when princy (o) is zero at (z,7) for all z € G, we have

lim (Op(o)(xuk), Xvk)r2(c) = O-

k—o0

Let us fix a continuous real-valued function on G/RT such that n(7g) = 0 and (i) = 1.
Considering a general symbol o, we write 0 = on+ (1 — n)o so

R(Op(o)(xuk), xvr) 2 = R(Op(on) (xuk), xvk) 2 + R((xuk), (Op(o(1 —n))*xvk) L2

As on vanishes at g, the limit of the first term on the right hand side is zero. For the second term,
we have as in the proof of Lemma [6.6] or

Jim (), (Op(o(1 =) o)z = lim ((xur), Ob(o" (1 = n))xun)

and it must be zero since o*(1 — 7)) vanishes at 7. O
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6.5. Consistency of the description. Our main result describes MDMs as trace-class-valued
positive measures, see Section [6.Il In this section, we will show the converse, that is, that any
trace-class-valued positive measure is a MDM.:

Proposition 6.12. Let  be a non-empty open set of G. Let (I',7) be a trace-class-valued positive
measure on Q x G/RT. Then, there exists a pure sequence (uy) with T'dy as MDM.

As in Section [6.1] an argument of diagonal extraction over a suitable sequence of bounded open
subsets exhausting () shows that it suffices to prove:

Lemma 6.13. Let Q2 be a non-empty bounded open set of G. We fix a positive Rockland operator R,
and a function ¢ € C*°(R) such that 1» = 0 on a neighbourhood of 0 and ) =1 on a neighbourhood
of +0o. For any trace-class-valued positive measure (T',y) on 0 x é/R*, there exists a sequence
(ug) in L2(Q) such that u, —p_e0 0 and

(6.8) Vo e S°(Q), kl;ngo (Op(a¢(ﬂ(R)))uk,uk)L2(Q) = / tr (o(z,7) ['(z, 7)) dy(x, 7).

QOx(G/RT)

We will need the following vocabulary:

Definition 6.14. Let 2 be a Borelian set of G with non-empty interior.

e A trace-class-valued measure on Q x G JRT is a pair (7,T') where v is a complex measure on
Q x G/RY, and {T(z,7) € L(Hy), (x,7) € Q x G/RT} is a measurable field of operators
such that (]v[,T") is a positive trace-class-valued measure, see Definition

e Two trace-class-valued measures (7,I') and (7/,I") are equivalent when there exists a mea-
surable positive function f on Q x G JRT such that

dy'(z,7) = f(z,7)dy(x,7) and T'(z,7)= [(x, 7).

1
[, )
The equivalence class of (y,I') is denoted by I'dy. We may sometimes allow ourselves to
identify an equivalence class with one of its representatives.
e A trace-class-valued measure on Q x G JRT (v,T) is positive when ~ is positive and in this

case, we may write I'dy > 0.
The following lemma describes the topological dual of C*(S%(Q)) when Q is bounded:

Lemma 6.15. Let Q be a non-empty bounded open set of G. We denote by M the set of trace-
class-valued measures on 2 x CAJ/IRJr modulo equivalence, and by M™* = {T'dy > 0} the set of positive
trace-class-valued measures on Q0 x G JRT modulo equivalence.

(1) For any trace-class-valued measure (v,T) on Q x @/RJF, the linear form £(, 1y given by
ton(@) = [trle D) dy= [ (o) Te.®) dilad), e CH (@)
(z,7)eQXG/RT
is continuous on C*(S°(Q)); its norm is [ tr (T)d|y|.
(2) Conversely, given any continuous form on C*(S°(Q)), there exists a trace-class-valued mea-
sure (v,T) on Q x G/RT such that { = C(y,1)-
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(3) If two trace-class-valued measures (,T') and (v',I") yield the same linear form, i.e. £, ry =
Ly 11y, then they are equivalent.

(4) The map ® : £ = L,y > [dy is an isomorphism from the topological dual of the Banach
space C*(SO(Q)) onto the Banach space M which is equipped with the norm given by

IDdr|lp = / tr (D)d}).

(5) The states of the C*-algebra C*(S°(Q)) are mapped by ® onto the measures Tdy > 0 with
[tr(T)dy = 1. The pure states corresponds to (65, (x) @ 0, (), v0 @ v) where Ty € £,
7o € é/}RJr and vy a unit vector in Hn,.

(6) The positive forms of the C*-algebra C*(S°(Q)) are mapped by ® onto M.

Proof. The states were characterised in Proposition .14l The properties are easily proved from
well-known facts or routine exercises in functional analysis. O

We can now prove Lemma [6.13]

Proof of Lemma[6.13. We denote by M the subset of M™ of I'dy > 0 for which there exists a
sequence (uy) in L2(Q) satisfying wuy —j— oo 0 and (6.8). We already know that M contains 0, and
the examples in Propositions [6.7] and

Claim 1: Let us show that M is convex. Indeed, one checks easily that if the sequence (uy) in
L%(Q) satisfies ux —k_00 0 and (6.8) with I'dy > 0, then for any 7 > 0 the sequence (ruy,) satisfies
the same property with r2I'dy > 0.

Claim 2: One checks easily that if 2o € G and if the sequence (u) in L?(Q) satisfies ug, —p—oo
0 and (6.8)) with I'dy > 0, then the sequence (ug(xo-)) satisfies the analogous properties with
[ (zox, 7)dy(xox, 7) when this is in M. In this sense, M is invariant under spatial translations.

Lemma [6.15] allows us to identify M with the topological dual of C*(S°(Q)); we now equip it
with the weak-* topology. By the Krein-Milman Theorem, M™ is the positive span of the pure
states and 0 (i.e. the closure of the set of all non-negative linear combinations of pure states).

Claim 3: Let us show that M is closed in M*. Indeed, let (F(j)d’y(j))jeN be a sequence in
M converging to I'dy in M™. Considering corresponding sequences (u,(f ))keN in L?(Q) satisfying
u,(j ) —hoo 0 and (B8) with TU)dy) > 0, then we extract a diagonal subsequence (ué’?%”)mN
satisfying u,(;zy))) — 00 0. By Proposition [6.4], we may assume that this subsequence satisfies (G.8])
for a certain positive trace-class-valued measure which has to coincide with I'dy by the uniqueness
properties in Proposition [6.4] and Lemma @). Hence the limit Tdy is in M which is thus
closed.

Conclusion: Considering a sequence as in Proposition with my € G of infinite dimension,
A e L(Hnry)oo u((f) = ¢ Qse/2qy(e~z) where € > 0, ug € D(gye) with a support small enough
and Qjc = ) ;c e Uk, the proof of Claim 3 shows that (d;—0 ® di=r,, AA*) € M when 0 € Q.

Using the invariance under spatial translation (cf. Claim 2), (dp=z, ® 0i=n,, AA*) € M for any
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zo € Qand m € G of infinite dimension. Note that this membership also holds when 7 is of finite
dimension (therefore of dimension one, and it suffices to adapt the Euclidean case), and we view it
as a degenerate case of Proposition We choose A = vg ® v with vg € Hyz, smooth and unitary.
We can remove the hypothesis ‘smooth’ by considering a sequence of such vectors and Claim 3.
This shows that M contains all the pure states, see Lemma [Bl). Moreover, they can all be
obtained as MDM of sequences obtained by diagonal extractions of suitable sequences constructed
in Proposition This together with Corollary and Claim 1 show that M also contains the
positive span of the pure states and 0. Therefore M = M™. O

7. APPLICATIONS

In this section, we investigate the properties of the MDM of a sequence of functions that sat-
isfy a differential equation. In particular, we are concerned with Div-Curl type results and, as a
consequence, we shall focus on vector-valued sequences.

Let 2 be an open subset of G and let us consider a vector-valued sequence of functions of L%(Q2),
(Ur)ken = (u}, -+ ,uk)ken, N € N. We assume that (Uy) converges weakly to some vector valued
function U = (ug,--- ,un) of L2(Q)", in the sense that for all j € {1,--- , N}, uf tends weakly to
u; in L*(G). In order to study the defects of compactness of a family of the form (Uy)xen, we shall
use matrices of symbols in S°. We denote by My (S°) the set of such matrices with N lines and
N rows. More generally, we denote by My (A) the set of matrices with N lines and N rows and
with entries in a given algebra A, for instance A = C or S° or C’*(SO). We shall need basic notions
about the C*-algebra My (A) for a general C*-algebra A, and this is done in the first subsection.
Then, we shall define MDM for vector-valued sequences and discuss localisation property of MDM
whenever (Ug)ren satisfies a system of differential equations. Finally, the last subsection is devoted
to compensated compactness results and application to Div-Curl Lemma.

7.1. Matrices of a C*-algebra. Let A be an algebra with unit 14 and let N € N. We have
already defined the algebra My (A) of the N x N matrices with coefficients in A. We need to
set some natural notation. We denote by Iy € My (C) the identity matrix and by Aly the set
of diagonal matrices in My (A) with the same repeated entry on the diagonal, by E;; the N x N
complex matrix with 0 in every entry except for the ith row and jth column where the entry is 1,
and by 14FE;; € My(A) the matrix with 0 in every entry except for the ith row and kth column
where the entry is 14. Finally, we denote by Mp(A) the set of matrices with P lines and @) rows
and with entries in A. If the algebra A is also a normed vector space, we set the following norm
on My 1(A):

N U1

IV ay = 1D 0jvilla when V=

Jj=1 N

The next lemma gives the main properties of My (A) when A is a C*-algebra.

Lemma 7.1. Let A be a C* algebra with unit 14 and let N € N.
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(i) Equipped with the norm given by
HMHMN(A) = Sup{HVl*MVQHA W, Ve € MN,l(A)’ ‘|V1HMN,1(A) <1 ||V2HMN,1(A) < 1}’

Mn(A) is a C*-algebra with unit 141n. The sub-C*-algebra Aln of My (A) is isomorphic
to the C*-algebra A.

(ii) Let m be a representation of the C*-algebra My (A) . Let & be a non-zero vector of this
representation with & € w(E11)Hr. We denote by W the closed subspace of Hr generated
by &1. As Hilbert spaces, W is isomorphic to the orthogonal sum of N copies of m(Aln)&;.
Furthermore the representation m of the C*-algebra My (A) on W is completely determined
by its restriction 7T‘AIN to Aly.

(iii) The spectrum of the C*-algebra My (A) may be identified with the spectrum of the C*-
algebra A wvia the homeomorphism which maps an irreducible representation m of My (A)
to the irreducible representation of A defined by the restriction W‘AIN.

(iv) If £ is a state of A and V. € My 1(A) with {(V*V) = 1, then the functional L = Lyy
defined on My (A) via

L(M) = 0V*MV), M € My(A),

is a state of M\n(A). The pure states of Mn(A) are of the form Ly, with £ a pure state
of A and V € Mn1(C)lag a complex vector satisfying ((V*V) = 1.

Proof. Part (i) is left to the reader. Let us prove Part (ii). Let 7 be a representation of the
C*-algebra My (A). For each j = 1,..., N, we set ’ngj) := m(14F;j)Hr. The subspaces ’ngj) are
closed, orthogonal and their sum is H, = @fgjg N 7(3 ) since E;Ej; = 6;—jFy and Iy = Z;V: 1 Ejj
in My(C). Furthermore, since 7(mly) and 7(14E};) commutes for j fixed and any m € A, the
algebra A acts on 1Y via m — m(mly). We also observe that for any 1 < ¢,j < N, m(14E;;)
maps 7-[7(3) to ’ngj) since Ej; B = Ej;EjEy;. In fact, m(14E;;) maps unitarily ’ngi) onto 7-[7(Tj) with
inverse m(14E;;) since E;;Ej; = Ey; and EjE;j = Ejj.

Let us fix a non-zero vector &) ¢ HY . Let 7(Mpy(A)ED be the closed subspace of H,

generated by €1 under «. Its orthogonal projection on 7—[7(3 ) is

T(1aEj;)m(Mn(A)EWD = w(14Ej;5) S m(Aly)m(1a By )W) = m(Aly)m (14 Ej)ED),

that is, the closed subspace in 7—[7(3 ) generated by £0) = m(1aEj1)€ (1 under the action of A given

by the restriction of m to Aly. All these orthogonal projections are unitarily isomorphic:

T(1aEj;)m(Mn(A)EWD = m(ATN)EW) = (14 Ej1)m(ALy)ED).

So, as vector spaces and in terms of actions of A via 7|a1,, T(Mny(A))ED is isomorphic to N
copies of m(Alx)é(M). Furthermore, writing any matrix M € My(A) as M = ZKLKN myplaE
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with my , € A, we have

W(M)f(j) = W(mlklAElk)f(j) = Z W(mlkIN)ﬂ'(lAElkEjl)f(l)
1<l,k<N 1<l,k<N
= m(myIn)m(1aBn)eM = > w(my;In)e?,
1<IKN 1<IKN

isin m1(Mpy(A))ED). So 7 acts on (M (A))E(D) where it is completely determined by its restriction
to m(Aly). This shows Part (ii).
Part (iii) follows from Part (ii) and its proof. Before proving Part (iv), let us observe that the

last computations in Part (ii) above imply

(r(M)ED, €Wy = (m(muIn)EW, W)y, .

A form of converse of this property consists in noticing that if £ is a state of the C*-algebra A, then
the functional L defined on My (A) via L(M) = £(mq1) is a state of the C*-algebra My (A). More
generally, if V' € My 1(A) is a fixed vector valued in A and ¢ is a state of the C*-algebra A, then
the functional L defined on My (A) via L(M) = £(V*MV) is a state of the C*-algebra My (A)
provided that ¢(V*V) = 1.

Let us now prove Part (iv). Let L be a state of My (A). Weset I'j; := L(14E;;) for 1 <i,5 <N,
and consider the matrix I' = (Ty;;) € My(C). Since L(M) = L(M*), the matrix [' = TI'* is
Hermitian so there exists a N x N unitary matrix P such that P*I'P is diagonal. We may replace
L by M — L(PMP*) and assume that I is diagonal. Since L is a positive linear functional, so is its
restriction M +— tr (MT') to My (C) and this implies I" > 0. Furthermore as L is a state, trI" = 1.
So we may assume that I' = Diag(Aq,...,Ay) with Ay > Ao > ... > Ay >0and My +...+ Ay = 1.

We now assume that L is pure. Let 7 be the irreducible representation of the C*-algebra My (A)
and & the unit vector associated with L. We can decompose

E=& +...4+En, where & i=n(14E;;)¢ € HY) = (14 E;;) M.
We have 1 = [|€]3, = [l&1ll5, + ...+ lEn]F, =M + ... + Ax and more generally
(& &) = (M(LAEH)E, O, = L(1aEij) = Ajdi=;.

Necessarily & # 0. Naturally, &; € 7—[7(3) is orthogonal to £U) := T(1aEj)6 = m(1aEjn ) € ’ngj) if
i# 7. And for j =2,..., N, ¢ is orthogonal to ¢\ since

(5j,f(j))7{ﬂ = (m(1al;;)&, m(LaEj&)n, = (m(LaF1;)E,8)n, = L(1ak;) = 61=;.

This shows that if £, # 0 then the space m(My(A))&2 generated by & under the representation
of My (A) will be non-zero and distinct from (M (A))&1, contradicting the irreducibility of .
Therefore 0 = & = ... =&y and € = & is unitary. Furthermore we have:

LM)= Y (w(miEy)6) = Y (m(mijEy)é;, &) = (r(miBn)ér, &) = (mn),

1<i,j<N 1<i,j<N
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where ¢, is the state of A associated with the restriction of 7 to A on m(ALy)&; and the unit vector
&1. With the notation of the statement, this shows L = Ly, 1y with V' = e;14 where e; is the first
vector of the canonical basis of CV; one checks easily £1(V*V) = £1(14) = 1. This concludes the
proof of Part (iv) and of Lemma [7.1] O

7.2. Microlocal defect measures of vector-valued sequences and localisation properties.
Let us now go back to the family (Uy)ren in L2(Q)Y where €2 is an open subset of G. We are
concerned with the limit of quantities of the form

(Op(0)Uk, Uk) 2 (0~

for 0 € Mpy(S%(R2)). In view of the description of the preceding section, a MDM of (U )xe is a
pair (T',) consisting of a positive Radon measure v and of a N x N matrix of y-integrable fields
of non-negative trace-class operators I' = (I'; j)1<; j<n, such that, up to a subsequence, for all

o € Mpq(S9(9)),

lim (Op(0)Uk, Uk) 2y = / ey (o(@ %) D(a, 7)) doy(z, 7)
k—o0 Qx(G/RT)

where the trace try denotes the trace of operators of L1(HY): if o = (oij)i<ij<n, I'= (Tij)i<ij<n,

try (o(x, %) (@, 7)) = Y tr (0u(x, %) Tjale, 7)) .
1<i,j<N

Since Uy = (u¥, -+ ,uk), T'; ;dy describes the limit of quantities <Op(a)u"~C uk

o> j)Lz(Q) for scalar

symbols o. The field T; jdv is the joint measure of the sequences (uf) and (ué“)

Let us now consider a matrix-valued operator P consisting of K lines and N rows of differential
operators of order m such that (PUy)ren converges to 0 in L2, (2, loc)X as k — 4o00. Recall that
L%(Q, s) was defined in Definition L2231 If the family (Uy)ren solves a differential equation, in the
sense that PUj tends to 0 in L2, (G)¥, then the MDM I'dy satisfies the following localization

property.

Proposition 7.2. Let p(x,m) be the principal symbol of the matriz-valued differential operator
P € Mg n(S™() where Q is an open subset of G. We assume that the family (Uy)ken in
L2(Q)N is such that PU}, tends to PU in L%,,(G)X. Let T'dy be a MDM of (Ug)ren, then

p()(l', 7T)F(‘Ta F)po(l’, ﬂ-)* =0, de(‘Ta 7T) a.ce.,
where po(x,7) == m(R) ™ p(x, %) for any positive Rockland operator R.

Proof. We may assume that the sequence (Uy) is pure. The equation satisfied by (Uy)ken implies
that for any o € M (S%(92)) we have

lim (Op(a)(I +R)E PU, (1 + R)‘?PUk>L2(Q)K ~0.
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By the definition of I'dy, we deduce

m

[t (e Ry
Qx(G/RT)

and this relation holds for any og € M(S°(Q)), and this implies the result. O

ao(a:,ﬁ)ﬂ(R)_%p(a;,ﬁ)F(m,fr)> dy(z,7) = 0,

7.3. Compensated compactness. The issue of compensated compactness result is to pass to the
limit in quantities of the form

/ oz (), Ui () ode,

for some compactly supported scalar-valued smooth function ¢ and for smooth bounded matrix-
valued function ¢ € My (D(Q2)). The aim is to find conditions on the matrix ¢ which allow to
pass to the limit in terms of weak limits U of (Ug)ren. The next proposition is a compensated
compactness result. Recall that the spaces L2(,loc) were defined in Definition F.23]

Proposition 7.3. Let p(x,m) be the principal symbol of the matriz-valued differential operator
P € Mg n(S™()) where Q is an open subset of G. Let (Uy)ren be a sequence in L*(2, loc)™N which
converges to U weakly in L*(Q,loc)™ and such that (PUy)ren converges to PU in L%, (Q,loc)®

(i) Let g € Mn(C®()) be such that for all z € Q, 7 € G and h € (H)N, we have
p(z,m)h = 0= (q()h, h)yy = 0.
Then the sequence of smooth functions given by x — (q(x)Ug(z), Ug(x))cn converges to

v s (@)U (), U))ex in D(9).
(i) Let g € Mn(C™(Q)) be such that ¢* = q and satisfying for allz € Q, 7 € G andh € (H)N

p(z,m)h = 0= (q(x)h, h)yy = 0.

Then, for any non-negative ¢ € D(2),

liminf/ ¢(x)(q(2)Uk(2), Uy (2))cn de > / ¢(x)(q(2)U (), U(z))cy da.

k—o00

Proof of Proposition [7.3. The proof follows the lines of [30, Theorem 2|. Part (i) follows from Part
(ii), using in particular the decomposition of ¢ = ¢1 4 ig2 with g1, g2 smooth function valued in the
space of Hermitian N x N-matrices. So we just have to prove Part (ii). We may assume that the
sequence (Uyg) is pure and that U = 0. As a consequence, we know that

fim [ o) (ale)Uuo) Uuleends = [ ofatr (a(@)T e, #)dr (0,7

k—o0 QxG/Rt+
and our aim is to show that the right-hand side of the preceding equality is 0. The proof comes
from the following observation: fixing Q' a bounded open subset of G whose closure is included
in 0, we have

Ve >0, 3C.>0, Y(z,7)eQ xG/RY, Vhe M,
(7.1) (a(@)h, h)ggy + Cellpo(w, 7)h|F > —ellhll3,x
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where po(z,7) = W(R)_% p(z, 7). Indeed, this equation yields the positivity of the operator

R.(z,7) = q(x) + Cepy(x, 7)po(z, 77) + €ld
and we deduce

/  ¢@)rn(Re(z, m)D(z, 7))dy(z, 7) > 0.
QOxG /Rt
On the other hand,
try (Re(z, m)I(z, 7)) = try(¢(2)(x, 7)) + Cotrg (po(x, 7)) (z, 7)py(z, 7)) + e tr (F(x, 7)).

By Proposition [.2] we obtain that for all ¢ € D(Q') and € > 0,

/ _ ole)trn(g(a)l (2, 7))dy (2, ) > —6/ p(@)tr Iz, ) dy(z, ),
QOxG/R+

OxG/R+

which allows us to conclude.

It remains to prove (T.I)). We first note that the injectivity of m(R) implies that the property
on g with respect to p is also satisfied by pg, i.e. for all z € Q, 7 € G and h € HY,

po(a, T = 0 = (q(a)h, h)y 2 0.

We argue by contradiction: if (1)) is false, then there exists g > 0 and sequences (z,)nen of
and (7, )nen of G /R, together with unit vectors h,, € ’Hfr\; for each n € N such that

(Q(xn)hny hn)’}-[gyn + anO(‘Tna Wn)hn”g.tTJYH < —¢&p.
We interpret these sequences as the data of a sequence of states (Lj,)nen of the C*-algebra
C*(Mn(S°(€))), defined by
Vo € C*(Mn(S°())), Ln(0) = (0(xn,7n)hny hn) gy -
We have
Vn €N, Ly,(q) + nL,(pipo) < —¢o,
in particular L,(q) < —e&o for all n € N. We extract a weak-* converging sub-sequence from of
(Lyp)nen and we denote its weak limit by L. Note that L is a state and it satisfies L(q) < —&p and
L(pgpo) = 0. Desintegrating L into pure states [20], §8.8] and combining Lemma [7.I] with Proposi-
tion[5.14] we obtain L as an integral of states of the form o +— (V*(z0, 710)o (w0, 70) V (20, 770) 0, V0) 1,
against a positive measure v. Since L(pipo) = 0, we have:
(V* (o, T0)popo(o, 70)V (0, 70)v0s V0) s, = Hpo(l’o,7'T0)V(960,7'T0)1)0H3{7;r<0 =0 v-ae.
But our hypothesis implies

(q(z0)V (o, 7r0)vo, V (w0, To)vo) v =2 0 v-ace.,

and therefore L(q) > 0. This contradicts L(q) < —eg < 0. Hence () is proved and this concludes
the proof of Proposition [7.3l d
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7.4. Link with div-curl results. Our result below gives a new approach to div-curl lemma, which
had already been considered from a more geometric (sub-Riemannian) perspective in [0, [7]. We
assume that G is a stratified Lie group. We fix a canonical basis X7,...,X,,, on the first stratum.
Then the divergence operator is defined by

Vf = (fly”’ 7fn1) € S(G)nla diV(f) = lel + - +Xn1fn1’

We denote by 7(div) the symbol of the operator div. This symbol is a vector of n; symbols of
order 1, i.e. div € My, (SL(G)). We define the curl-property as follows:

Definition 7.4. Let Q be an open subset of G. A n; x ny matrix p(x, 7) € M, (S7(2)) of symbols
of order m satisfies the curl-property when, for all z € Q, 7 € é, hi,hy € (HX)™:

m(div) - by = 0 and p(z, m)hy = 0 = (h1, ha)ym = 0.

Recall that the spaces L2((2,loc) were defined in Definition We have the following div-curl
type result.

Proposition 7.5. Let 2 be an open subset of G. Let (Vi )ren and (Wy)ken be two bounded pure fam-
ilies of L?(2,loc)™ with weak limits V and W respectively. We assume that the sequence of scalar
functions (div(Vy))ken converges to div(V) in L?(Q,loc) as k — +oo and that (Op(p)Wi)ken
converges to Op(p)W in L%, (G,loc)™ where p(m) € My, xn, (STHSY)) satisfies the curl-property,
cf Definition[74. Then the sequence of functions given by x — ¢(x)(Vi(z), Wi (z))cm converges to
x+— ¢(x)(V(x), W(x))cm in the sense of distribution on Q as k — oo.

Proof. We set:

Pz, = (R(ﬂ')m_ 7(div) 0

0 p(a:,w))eMm“’z"l(Sg(Q)) and  q(z) :

Il
~
o
3
o O
-
m
S
S
a

Then, for any h = (hy, hy) € (H2°)™ x (HX)™ = (HX)?™, we have

(q(@)h, h)y2m = (h1, ha)yym
and
plx,m)h =0 <= w(div)-h; =0 and p(z,7)hy = 0.
The curl-property allows us to apply Proposition Part (i) to the sequence (Uy)ren given by

Uy = (Vi,, Wj,) € C?*™ | the operator P = Op(p) and the matrix-valued function q(z). The statement
follows. O
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