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SPECTRAL STUDY OF THE TWO-DIMENSIONAL MIT BAG

MODEL IN A SECTOR

LOÏC LE TREUST AND THOMAS OURMIÈRES-BONAFOS

Abstract. This paper deals with the study of the two-dimensional Dirac operator
with infinite mass boundary condition in a sector. We investigate the question of
self-adjointness depending on the aperture of the sector: when the sector is convex
it is self-adjoint on a usual Sobolev space whereas when the sector is non-convex
it has a family of self-adjoint extensions parametrized by a complex number of the
unit circle. As a byproduct of this analysis we are able to give self-adjointness
results on polygones. We also discuss the question of distinguished self-adjoint
extensions and study basic spectral properties of the operator in the sector.
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1. Introduction

1.1. Motivations and state of the art. In order to describe the confinment of
quarks inside hadrons a phenomenological model was proposed by physicits in the
MIT in the mid-70’s (see [8, 7, 6, 14, 15]). This model, called the MIT bag model,
involves a Hamiltonian given by the Dirac operator in a bounded domain of the
Euclidean space R

3 with suitable boundary conditions.
From a mathematical point of view, the first challenge studying these Hamilto-

nians is to prove their self-adjointness on a suitable functional space. Because the
Dirac operator is an elliptic operator of order one, we expect this functional space to
be contained into the usual Sobolev space H1 and this question has been tackled for
sufficiently smooth domains of R3, for instance in [3, Thm. 4.11], or in [5] for C8-
smooth domains using pseudo-differential techniques and Calderón projectors (see
also [19] for a direct application to the MIT bag model) and in [2] for C2,1 domains
constructing extension operators.

Our goal in this paper is to understand how the regularity of the domain plays a
role in the question of self-adjointness. In a first attempt to handle this question,
we focus on the influence of a corner for a two-dimensional problem set in a sector
with the so-called infinite mass boundary conditions which can be seen as the two-
dimensional analogue of the MIT bag boundary conditions.

Note that because of their importance in modelling low-energy excitations in
graphenes, two-dimensional Dirac operators are also of interest. We refer to [4],
for the study of their self-adjointness in C2 domains of the Euclidean plane R2 for a
large class of boundary conditions.

The techniques that we use to study the self-adjointness of the MIT bag Dirac op-
erator is mainly inspired by the study of the 3-dimensional Dirac-Coulomb operator
[22, Section 4.6] and of the Schrödinger operator with radial potential ´∆`V prq in
Rn where n P Nzt0u [20, Theorem X.11] (see also [11] and the references therein as
well as [10] for the case of a radial δ-shell interaction). The main idea of these works
amount to look at the restriction of the operator to stable subspaces obtained fixing
the angular momentum of the wavefunctions. The restricted operators only act on
the radial variable and their self-adjoint extensions can be studied using standard
ODE techniques [23].

1.2. The MIT bag operator in a sector. Let ω P p0, πq. We study the Dirac
operator with MIT bag boundary condition in the following two-dimensional sector

(1.1) Ωω “ trpcospθq, sinpθqq P R
2 : r ą 0, |θ| ă ωu .

The MIT bag Dirac operator pD,DpDqq of mass m P R is defined as follows

DpDq “ tu P H1pΩω ; C
2q : Bnu “ u on BΩωzt0uu

Du “ ´iσ ¨ ∇u ` mσ3u, for all u P DpDq.(1.2)

The Pauli matrices σ “ pσ1, σ2, σ3q are 2 ˆ 2 hermitian matrices defined by

σ1 “
ˆ

0 1

1 0

˙

, σ2 “
ˆ

0 ´i
i 0

˙

and σ3 “
ˆ

1 0

0 ´1

˙

.
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which satisfy

(1.3) pσ ¨ aqpσ ¨ bq “ 12pa ¨ bq ` iσ ¨ paˆ bq
for any a, b P R3. Here, we denote

σ ¨ a “
d

ÿ

k“1

σkak

for any a P Rd with d “ 2, 3.
For any s P BΩωzt0u, npsq is the outward-pointing normal to Ωω at the point s

and the matrix Bv is defined for any unit vector v in R2 by

(1.4) Bv “ ´iσ3σ ¨ v.
Let us remark that Bv satisfies :

(1.5) Bv

˚ “ Bv, Bv

2 “ 12, SppBvq “ t˘1u
where 12 denotes the identity matrix of C2ˆ2.

Remark 1.1. The operator pD,DpDqq is symmetric and densely defined (see Lemma
3.2).

1.3. Main results.

1.3.1. Self-adjointness results on a corner domain. In the following theorem, we give
all the self-adjoint extensions of the MIT bag Dirac operator in a sector.

Theorem 1.2. The following hold true.

(i) [Convex corners]
If ω P p0, π{2s, pD,DpDqq is self-adjoint.

(ii) [Non-Convex corners]
If ω P pπ{2, πq, pD,DpDqq is symmetric and closed but not self-adjoint. It

has several self-adjoint extensions pDγ,DpDγqq defined for γ P C such that
|γ| “ 1 by

DpDγq “ DpDq ` spanpv` ` γv´q
Dγv “ Dv

Dγpv` ` γv´q “ ipv` ´ γv´q ` mσ3pv` ` γv´q
for v P DpDq where

v`pr cospθq, r sinpθqq “ Kν0prqu0pθq ´ iKν0`1prqu´1pθq,
v´pr cospθq, r sinpθqq “ Kν0prqu0pθq ` iKν0`1prqu´1pθq,

u0pθq :“ 1

2
?
ω

ˆ

eiθν0

´ie´iθν0

˙

, u´1pθq :“ 1

2
?
ω

ˆ

e´iθpν0`1q

ieiθpν0`1q

˙

.

Here, r ą 0, θ P p´ω, ωq, ν0 “ π´2ω
4ω

, and Kν denotes the modified Bessel
function of the second kind of parameter ν.

Remark 1.3. The distinction between convex an non-convex corners in Theorem 1.2
is not surprising: It is reminescent of [16] where the study of the so-called corner
singularities for elliptic operators of even order are dealt with. We also refer to the
books [13, 12] where the Laplacian in polygonal domains with various boundary
conditions is studied.
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Remark 1.4. For θ0 P r0, 2πs, let us consider the rotated corner

Ωω,θ0 :“ tr
`

cospθq, sinpθq
˘

P R
2 : r ą 0, |θ ´ θ0| ă ωu.

Remark that e´iσ2θ0 is a rotation matrix of angle θ0 which gives Ωω,θ0 “ e´iσ2θ0Ωω.
The unitary transformation

Uθ0 : L2pΩω,θ0 , C
2q ÝÑ L2pΩω, C

2q
v ÞÝÑ eipθ0{2qσ3vpe´iσ2θ0 ¨q

satisfies

U
´1

θ0
p´iσ ¨ ∇ ` mσ3qUθ0 “ ´iσ ¨ ∇ ` mσ3

U
´1

θ0
pσ ¨ nqUθ0 “ σ ¨

`

e´iσ2θ0
n

˘

for any unitary vector n P R2 (see [22, Sections 2 and 3]). This ensures that Theorem
1.2 essentially covers every corner cases.

Remark 1.5. Let us recall some of the properties of the modified Bessel functions Kν

of the second kind of parameter ν that will be used in this paper (see [18, Chapter
7 Section 8 and Chapter 12 Section 1] or [1]). Let ν P R.

(i) The functions r P p0,`8q ÞÑ Kνprq P R are positive and decreasing.
(ii) For r ą 0, we have

Kνprq “ K´νprq.
(iii) For r ą 0, we have that

(1.6) Kνprq „rÑ0

#

Γpνq
2

`

r
2

˘´ν
if ν ą 0

´ logprq if ν “ 0.

and

Kνprq „rÑ`8

´ π

2r

¯1{2

e´r.

In particular, the domain of Dγ in Point (ii) of Theorem 1.2 can be rewritten using
r´|ν0|χprq resp. r´p1´|ν0|qχprq instead of Kν0 resp. Kν0`1 where χ : R` ÞÑ r0, 1s is a
regular function which is equal to 1 in a neighborhood of 0 and 1 for r ą 0 large
enough.

1.3.2. Physical remarks on the self-adjoint extensions on a corner domain. For non-
convex corners, a natural question is to know if some of the self-adjoint extensions
given in Point (ii) of Theorem 1.2 are more relevant than others from the physical
point of view. The following propositions try to shed some light on this question.

The charge conjugation symmetry.
The Dirac operator uses to anti-commutes with the charge conjugation operator

C defined for u P C2 by

Cu “ σ1u.

In particular, for any ω P p0, πq, the operator C is an anti-unitary transformations
that leave DpDq invariant and satisfies C2 “ 12 and

DC “ ´CD.
This property is strongly related with the particles/anti-particules interpretation of
the spectrum of the Dirac operator (see [22, Section 1.4.6]). Studying the relations
between C and the extensions of D, we get the following result.
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Proposition 1.6. Let ω P pπ{2, πq. The only self-adjoint extensions of
`

D,DpDq
˘

such that
CDpDγq “ DpDγq

are the extensions
`

Dγ,DpDγq
˘

for γ “ ˘1. In these cases, we have the anticom-
mutation relation

tC,Dγu “ CDγ ` DγC “ 0.

Scale invariance.
Since Ωω is invariant by dilations, we immediately get that DpDq is stable by

change of scale. In the case of non-convex corner, we get the following proposition.

Proposition 1.7. Let ω P pπ{2, πq. The only self-adjoint extensions of
`

D,DpDq
˘

such that for any u P DpDγq and α ą 0,

rx P Ωω ÞÑ upαxq P C
2s P DpDγq,

are the extensions
`

Dγ ,DpDγq
˘

for γ “ ˘1.

This property is used, for instance, in the proofs using Virial identities (see Remark
1.13).

Kinetic energy.
From a physical point of view, it is reasonable to impose that the domain of the

MIT bag Dirac operator is included in the formal form domain H1{2pΩq of the Dirac
operator on Ω. This additional constraint allows us to pick a single self-adjoint
extension. In particular, we have the following result.

Proposition 1.8. Let ω P pπ{2, πq. The only self-adjoint extension of
`

D,DpDq
˘

satisfying DpDγq Ă H1{2pΩωq is
`

D1,DpD1q
˘

.

Remark 1.9. The proof of proposition 1.8 shows a stronger statement. If γ “ 1, we
have DpDγq Ă H3{4´εpΩωq for any ε P p0, 1{4q.
1.3.3. Some results on polygonal domains. Using Point (i) of Theorem 1.2, Remark
1.4 and partitions of the unity, we immediately obtain the following result.

Corollary 1.10. Let Ω Ă R2 be a convex polygonal open set. The Dirac operator
pDΩ,DpDΩqq defined by

DpDΩq “ tu P H1pΩ,C2q, Bnu “ u on BΩu
Du “ ´iσ ¨ ∇u` mσ3u for any u P DpDΩq,

is self-adjoint.

Remark 1.11. A similar result can be stated in the case of non-convex polygonal
open set using Point (ii) of Theorem 1.2. We choose not to write it down here for
the sake of readability.

1.3.4. Spectral properties on Corner domains. Let us study now the spectral prop-
erties of the self-adjoint operators on corner domains. We restrict ourselves to the
physical case γ “ 1. In the next proposition, we use the following unified notation:

Dsa “
#

D if ω P p0, π{2s,
D1 if ω P pπ{2, πq.

where D and D1 are defined in (1.2) and Point (ii) of Theorem 1.2 respectively. As
defined Dsa is self-adjoint.
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Proposition 1.12. For any ω P p0, πq, we have

SppDsaq “ SpesspDsaq “
#

R if m ď 0,

Rzp´m,mq if m ě 0.

Remark 1.13. Using the Virial identity (see in particular [22, Section 4.7.2] and
Section 5.2), we get that there is no point spectrum in Rzp´|m|, |m|q. Nevertheless,
the proof gives no information on the point spectrum in p´|m|, |m|q for negative
m. We choose not to adress this problem in this work to focus on the physical case
m ě 0.

1.4. Organisation of the paper. In Section 2, we prove Theorem 1.2 and give
the main lemmas that we use. Their proofs are gathered in Section 3. In Section
4, we discuss the physically relevant self-adjoint extensions. Finally, the spectral
properties of Proposition 1.12 are proved in Section 5.

2. Study of the self-adjoint extensions of D

In this section, we give the main lemmas on which rely the proofs of Points (i)
and (ii) of Theorem 1.2. Their proofs are detailed in Section 3. Note that without
loss of generality, we can assume that m “ 0 since mσ3 is a bounded self-adjoint
operator.

2.1. Notations. We denote by x¨, ¨y resp. x¨, ¨yL2 the scalar products on C2 resp.
L2 which are anti-linear in the first variable.

2.2. The operator in polar coordinates. On Ωωzt0u, we introduce the polar
coordinates

xpr, θq “
ˆ

x1pr, θq
x2pr, θqq

˙

“
ˆ

r cospθq
r sinpθq

˙

“ reradpθq,(2.1)

for r ą 0 and θ P p´ω, ωq where

(2.2) eradpθq “
ˆ

cospθq
sinpθq

˙

, eangpθq “ d

dθ
eradpθq “

ˆ

´ sinpθq
cospθq

˙

.

In what follows, the following basic relation will be usefull

(2.3) iσ3σ ¨ eang “ σ ¨ erad.
For all Ψ P L2pΩω,C

2q, we get that

ψpr, θq “ Ψpxpr, θqq
is an element of L2pp0,`8q, rdrqbL2pp´ω, ωq,C2q. Using this system of coordinates,
we rewrite the Dirac operator as

D “ ´iσ ¨ eradBr ´ iσ ¨ eang
r

Bθ “ ´iσ ¨ erad
´

Br ` i
σ3

r
Bθ

¯

“ ´iσ ¨ erad
ˆ

Br ` 12 ´ K

2r

˙(2.4)

where

(2.5) K “ σ3 p´2iBθq ` 12.

Remark 2.1. In the following, we will rely on the properties of K to build subspaces
that D leaves stable. Our choice for K is commented in Remark 2.4.
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2.3. Study of the operator K. Let us first remark that for any r ą 0, we have
on the boundary BΩωzt0u that

B
npreiωq “ ´iσ3σ ¨ eangpωq “: B`

B
npre´iωq “ iσ3σ ¨ eangp´ωq “: B´

(2.6)

where Bn is defined in (1.4). Now, let us study the spectral properties of K.

Lemma 2.2. We have that

(i) The operator pK,DpKqq on L2pp´ω, ωq,C2q where K is defined in (2.5) and

DpKq “ tu P H1pp´ω, ωq,C2q : B`upωq “ upωq and B´up´ωq “ up´ωqu

is self-adjoint and of compact resolvent.
(ii) Its spectrum is

SppKq “ tλκ , κ P Zu

where λκ :“ πp1`2κq
2ω

. For κ P Z, we have ker pK ´ λκq “ spanpuκq where

uκ :“ 1

2
?
ω

˜

eiθ
λκ´1

2

p´1qκ`1ie´iθ λκ´1

2

¸

,

and puκqκPZ is an orthonormal basis of L2pp´ω, ωq,C2q.
(iii) We have that pσ ¨ eradqDpKq Ă DpKq, tK, σ ¨ eradu “ 0 and

u´pκ`1q “ p´1qκipσ ¨ eradquκ.

Remark 2.3. Thanks to Point (iii), we recover the fact that SppKq is symmetric with
respect to 0.

Remark 2.4. The decomposition of the wavefunctions in angular harmonics for the
Dirac operator on R2 has been a major inspiration for this work. In that case, the
following operator acting on the angular variable

K̃ “ ´2iBθ ` σ3 “ σ3K

DpK̃q “ H1pR{2πZ,C2q

is called the spin-orbit operator. It is self-adjoint and commutes with the Dirac
operator D. Hence, one can restrict the study of D to the eigenspaces of K̃ which
are left stable by D. We refer, in particular, to [22, Section 4.6] where the spherical
symmetry in R

3 is extensively studied.
In our case, K̃ does not behave well with respect to the MIT bag boundary

condition. Nevertheless, the slight change we made allows to build subspaces that
are left stable by D.

We list here the properties of K motivating its introduction :

(a) it is a first order operator in the θ variable.
(b) its domain takes into account the MIT bag boundary condition and made him

self-adjoint.
(c) it has good (anti)-commutation relations with D.
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2.4. Study of D on stable subspaces. We are now in a good position to intro-
duce subspaces that are left stable by D and then to study the operators built by
restriction of D.

Lemma 2.5. We have that

L2pp0,`8q, rdrq b L2pp´ω, ωq,C2q “ ‘κě0Eκ

where Eκ “ L2pp0,`8q, rdrqbspanpuκ, u´pκ`1qq. Moreover, the following holds true.

(i) For any κ P N, the operator pdκ,Dpdκqq defined by

Dpdκq “ DpDq X Eκ

dκ “ Dˇ

ˇEκ

is a well-defined unbounded operator of the Hilbert space Eκ.
(ii) For any κ P N, the operator pdκ,Dpdκqq is unitarily equivalent to the operator

pdκω,Dpdκωqq defined by

Dpdκωq “
"ˆ

a

b

˙

P L2pp0,`8q, rdr,C2q :

ż 8

0

ˆ

| 9a|2 ` |9b|2 ` |λκ ´ 1|2
4r2

|a|2 ` |λκ ` 1|2
4r2

|b|2
˙

rdr ă `8
*

,

d
κ
ω “ p´1qκ

ˆ

iσ2

ˆ

Br ` 1

2r

˙

` σ1
λκ

2r

˙

“ p´1qκ
ˆ

0 Br ` λκ`1

2r

´Br ` λκ´1

2r
0

˙

.

(iii) Let

v “
ÿ

κPZ

aκuκ

be any element of DpDq, we have that

}Dv}2L2 “
ÿ

κPZ

ż 8

0

ˆ

| 9aκ|2 ` |λκ ´ 1|2 |aκprq|2
4r2

˙

rdr “ }∇v}2L2.

(iv) The operators pD,DpDqq and pdκω,Dpdκωqq for any κ P N are symmetric and
closed.

(v) The operator pD,DpDqq is self-adjoint (possibly with a larger domain) if and
only if the operators pdκω,Dpdκωqq are self-adjoint (possibly with larger domains).
Moreover, if this is the case, the spectrum of D is equal to the union of the
spectrum of the operators d

κ
ω.

The following lemma allows us to conclude our study. Its proof relies on [21,
Theorem VIII.3], [20, Theorem X.2] and some properties of modified Bessel functions
[18, 1].

Lemma 2.6. The following holds true.

(i) For any κ ě 1 and any ω P p0, πq, or κ “ 0 and any ω P p0, π{2q, the operator
pdκω,Dpdκωqq is self-adjoint.

(ii) For any ω P pπ{2, πq, pd0ω,Dpd0ωqq is not self-adjoint but has several self-adjoint
extensions pd0,γω ,Dpd0,γω qq defined by

Dpd0,γω q “ Dpd0ωq ` spanpa` ` γσ3a`q
d
0,γ
ω pa` c0pa` ` γσ3a`qq “ d

0

ωa` c0ipa` ´ γσ3a`q
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where a P Dpd0ωq, c0 P C,

a` “
˜

Kλ0´1

2

prq
´iKλ0`1

2

prq

¸

,

γ P C is such that |γ| “ 1.

Points (i) and (ii) of Theorem 1.2 follow from Lemmas 2.2, 2.5 and 2.6.

3. Proofs of Lemmas 2.2, 2.5 and 2.6

3.1. Preliminary study.

3.1.1. Some algebraic properties of the boundary matrices Bv.

Lemma 3.1. For any unit vector v P R2, the matrix Bv satisfies

kerpBv ˘ 12q “ σ3 kerpBv ˘ 12qK “ σ ¨ v kerpBv ˘ 12qK.

Proof. Since tσ3,Bvu “ 0, we have that

σ3 kerpBv ˘ 12qK “ σ3 ranpBv ˘ 12q “ ranpBv ¯ 12q “ kerpBv ˘ 12q.
Since tσ ¨ v,Bvu “ 0, the same algebraic proof works for the other equality. �

3.1.2. Symmetry of D. For the sake of completeness, we recall the following standard
result on MIT bag Dirac operator.

Lemma 3.2. The operator pD,DpDqq is symmetric and densely defined.

Proof. Let u, v P DpDq. Since Ωω is a Lipschitz domain, we have by an integration
by parts that

xDu, vyL2 ´ xu,DvyL2 “
ż

BΩω

x´iσ ¨ nu, vy

(see [17, Section 3.1.2]). By Lemma 3.1, we have, almost everywhere on the bound-
ary, that

´ipσ ¨ nqu P σ ¨ n kerpBn ´ 12q “ kerpBn ´ 12qK

so that x´iσ ¨ nu, vy “ 0 and

xDu, vyL2 “ xu,DvyL2 .

�

3.2. Study of the angular part : proof of Lemma 2.2. We divide the proof in
several steps.

Step 1: Symmetry of K. Let u, v P DpKq, we have by an integration by parts and
Lemma 3.1 that

xKu, vyL2 ´ xu,KvyL2 “
ż ω

´ω

Bθ x´2iσ3u, vy dθ

“ x´2iσ3upωq, vpωqy ´ x´2iσ3up´ωq, vp´ωqy “ 0

(3.1)

so that K is symmetric.
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Step 2 : Self-adjointness of K. Let u P DpK˚q. Taking the test functions in
C8

c pp´ω, ωq,C2q Ă DpKq, we get that the distributionKu belongs to L2pp´ω, ωq,C2q
so that u P H1pp´ω, ωq,C2q. Using again the integration by parts performed in (3.1),
we obtain that

σ3upωq P kerpB` ´ 12qK

σ3up´ωq P kerpB´ ´ 12qK.

By Lemma 3.1, we get u P DpKq and then K is self-adjoint. Using the compact
Sobolev embedding

H1pp´ω, ωq,C2q ãÑ L2pp´ω, ωq,C2q,
we get that K has compact resolvent and that its spectrum is discrete. This ends
the proof of Point (i).

Step 3 : Study of its spectrum. Let λ P R, we look for the solutions of

(3.2) Ku “ λu

that belongs to DpKq. Let us remark that without any boundary conditions as-
sumed, the set of solutions of (3.2) is

E1

λ :“ span

ˆˆ

eiθ
λ´1

2

0

˙

,

ˆ

0

e´iθ λ´1

2

˙˙

Let u P E1

λ X DpKq, we have that there exist a, b P C such that

u “
˜

aeiθ
λ´1

2

be´iθ λ´1

2

¸

,

and, by (2.3), the boundary condition reads

upωq “ B`upωq “ ´σ ¨ eradpωqupωq “ ´
ˆ

0 e´iω

eiω 0

˙

upωq “
˜

´be´iω λ`1

2

´aeiω λ`1

2

¸

up´ωq “ B´up´ωq “ σ ¨ eradp´ωqup´ωq “
ˆ

0 eiω

e´iω 0

˙

up´ωq “
˜

beiω
λ`1

2

ae´iω λ`1

2

¸

so that
a “ beiωλ “ ´be´iωλ.

Hence, there is a nontrivial solution of (3.2) that belongs to DpKq if and only if
e2iωλ “ ´1. We deduce that the spectrum of K is

SppKq “
"

πp1 ` 2κq
2ω

, κ P Z

*

.

We define λκ :“ πp1`2κq
2ω

for any κ P Z. If κ is even, we have a “ ib and

ker pK ´ λκq “ span

˜

eiθ
λκ´1

2

´ie´iθ λκ´1

2

¸

,

if κ is odd, we have a “ ´ib so that

ker pK ´ λκq “ span

˜

eiθ
λκ´1

2

ie´iθ λκ´1

2

¸

.
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This proves Point (ii).

Step 4 : Study of the commutation relation. Since σ ¨ erad commutes with B, we get
that

pσ ¨ eradqDpKq Ă DpKq.
We also have

Kσ ¨ erad “ σ3 pσ ¨ eradp´2iBθq ´ 2iσ ¨ eangq ` σ ¨ erad
“ ´σ ¨ eradσ3p´2iBθq ´ σ ¨ erad “ ´σ ¨ eradK.

This ends the proof of Point (iii).

3.3. Study of the stable subspaces : proof of Lemma 2.5. Let us remark that
the direct sum decomposition is an immediate consequence of Point (ii) of Lemma
2.2. We divide the remaining of our proof into several steps.

Proof of Points (i) and (ii). These points follow from identity (2.4) :

D “ ´iσ ¨ erad
ˆ

Br ` 12 ´ K

2r

˙

and Point (iii) of Lemma 2.2. Indeed, for any κ P N, any v P Eκ, there exist
a, b P L2pp0,`8q, rdrq such that for all r ą 0 and all θ P p´ω, ωq

vpr, θq “ aprquκpθq ` bprqu´pκ`1qpθq.

If v P H1pΩω,C
2q, since ´iσ3Bθ “ K´1

2
, we have

}∇v}2L2 “
ż 8

0

ˆ

| 9a|2 ` |9b|2 ` |λκ ´ 1|2
4r2

|a|2 ` |λ´pκ`1q ´ 1|2
4r2

|b|2
˙

rdr

and

Dv “ dκv “ p´1qκ`1u´pκ`1q

ˆ

9a` 1 ´ λκ

2r
a

˙

` p´1qκuκ
ˆ

9b ` 1 ` λκ

2r
b

˙

.

This ends this part of the proof.

Proof of Points (iii) and (iv). Let

v “
ÿ

κPZ

aκuκ

be any element of DpDq. By Lemma A.1, we have that

}Dv}2L2 “
ÿ

κPZ

ż 8

0

ˇ

ˇ

ˇ

ˇ

9aκ ` 1 ´ λκ

2r
aκ

ˇ

ˇ

ˇ

ˇ

2

rdr “
ÿ

κPZ

ż 8

0

ˆ

| 9aκ|2 ` |λκ ´ 1|2 |aκprq|2
4r2

˙

rdr

“ }∇v}2L2.

Point (iv) follows immediatly.

Proof of Point (v). This last point is proven as in [22, Lemma 4.15] using [21,
Theorem VIII.3].
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3.4. Proof of Lemma 2.6. Let us fix κ P N. In this proof, we apply the basic
criterion for self-adjointness [21, Theorem VIII.3]. Hence, we have to study the sets

kerppdκωq˚ ˘ i12q.
Let us first remark that

Dppdκωq˚q Ă
"ˆ

a

b

˙

P L2pp0,8q, rdrq2 : d
κ
ω

ˆ

a

b

˙

P L2pp0,8q, rdrq2
*

.

Since tdκω, σ3u “ 0, we get that

kerppdκωq˚ ´ i12q “ σ3 kerppdκωq˚ ` i12q.
Hence, it remains to look if solutions of

(3.3) pdκω ´ i12q
ˆ

a

b

˙

“ 0

that belongs to L2pp0,8q, rdrq2 exist. This is a linear system of differential equations
of first order. The set of solutions is a vector space of dimension 2 and the solutions
are regular on p0,8q. We have

pdκω ` i12q pdκω ´ i12q “ pdκωq2 ` 12

so that

0 “
`

pdκωq2 ` 12
˘

ˆ

a

b

˙

“ ´ 1

r2

¨

˝

r2B2

r ` rBr ´
´

r2 ` pλκ´1q2

4

¯

0

0 r2B2

r ` rBr ´
´

r2 ` pλκ`1q2

4

¯

˛

‚

ˆ

a

b

˙

.

The functions a and b are modified Bessel functions (see [18, Chapter 12, Section
1] and [1]) of parameters λκ´1

2
and λκ`1

2
. The modified Bessel functions of the first

kind do not belong to L2pp1,8q, rdrq. Hence, the only option for pa, bq to be in
L2pp1,8q, rdrq2 is that a “ a0Kλκ´1

2

and b “ b0Kλκ`1

2

with a0, b0 P C. We recall

that Kν are the modified Bessel function of the second kind of parameter ν P R.
They satisfy Kν “ K´ν and

9K|ν| ` |ν|
r
K|ν| “ ´K|ν|´1.(3.4)

By remark 1.5, for b to belong to L2pp0, 1q, rdrq, one has to have λκ ă 1. We have

(a) λκ ě 3{2 for any κ ě 1 and any ω P p0, πq,
(b) λ0 ě 1 for any ω P p0, π{2q,
(c) λ0 ă 1 for any ω P pπ{2, πq.
Hence, in Cases (a) and (b), we necessarily get b0 “ 0. Taking into account (3.3)
and (3.4) we also get a0 “ 0 which implies

kerppdκωq˚ ˘ i12q “ t0u
so that [21, Theorem VIII.3] ensures that pdκω,Dpdκωqq is a self-adjoint operator. In
Case (c), we get that

ˆ

a

b

˙

P spanpa0`q, with a0` “
˜

Kλ0´1

2

prq
´iKλ0`1

2

prq

¸

.
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we easily prove that a0` P Dppdκωq˚q which yields

kerppdκωq˚ ´ i12q “ spanpa0`q and kerppdκωq˚ ` i12q “ spanpσ3a0`q
We conclude by [20, Theorem X.2].

4. Distinguished self-adjoint extensions of D

The goal of this section is to prove Propositions 1.6 and 1.8 about the distinguished
extensions of

`

D,DpDq
˘

when ω P pπ{2, πq.

4.1. Proof of Proposition 1.6. The anticommutation of C with D is straightfor-
ward. The only thing left to prove is the following lemma.

Lemma 4.1. Let ω P pπ{2, πq and γ P C such that |γ| “ 1. The following statements
are equivalent:

(a) γ “ ˘1,
(b) DpDγq is left invariant by C and DγC “ ´CDγ.

Proof. Let us consider u P DpDγq. By Point (ii) Theorem 1.2, we know that there
exists v P DpDq and c0 P C such that u “ v ` c0pv` ` γv´q. Remark that we have

Cv` “ iv`, Cv´ “ iv´.

Thus, we have Cu “ Cv ` ic0pv` ` γv´q so that Cu P DpDγq if and only if γ P R,
that is γ “ ˘1. Moreover, assume that γ “ ˘1, we have:

DγCu “ DCv ´ c0pv` ´ γv´q “ ´CDv ´ c0pv` ´ γv´q.
As Dγpv` ` γv´q “ ipv` ´ γv´q, we get CDγpv` ` γv´q “ pv` ´ γv´q which yields
DγCu “ ´CDγu. �

4.2. Proof of Proposition 1.7. Proposition 1.7 follows from the following lemma.

Lemma 4.2. Let α ą 0 and γ “ eis P C for s P r0, 2πq. The unitary application

Vα : L2pΩω,C
2q ÝÑ L2pΩω,C

2q
u ÞÝÑ αupα¨q

satisfies

V
´1

α p´iσ ¨ ∇qVα “ αp´iσ ¨ ∇q

VαDpDγq “
#

DpDγq if γ “ ˘1pi.e. if s P t0, πuq,
DpDγ̃q otherwise

where γ̃ “ e
2i arctan

´

tanps{2q

α
λ0

¯

.

Proof. Let α ą 0 and γ “ eis P C. By Lemma 2.5, we are reduced to study the
change of scale of the operator d

0,γ
ω because we easily get that Dpdκωq is scaling

invariant. By Remark 1.5, we have

VαDpD˘1q “ DpD˘1q
and that for γ ‰ ´1 and r ą 0,

p1 ` γq
˜

K 1´λ0

2

pαrq
´i1´γ

1`γ
K 1`λ0

2

pαrq

¸

„rÑ0

1 ` γ

α
1´λ0

2

˜

K 1´λ0

2

prq
´iα´λ0 1´γ

1`γ
K 1`λ0

2

prq

¸

.
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We have

´i1 ´ γ

1 ` γ
“ ´ tanps{2q

so that

´iα´λ0
1 ´ γ

1 ` γ
“ ´α´λ0 tanps{2q “ ´i1 ´ γ̃

1 ` γ̃

for γ̃ “ e
2i arctan

´

tanps{2q

α
λ0

¯

. This ensures that VαDpDγq “ DpDγ̃q and the result follows.
�

4.3. Proof of Proposition 1.8. To prove Proposition 1.8 it is enough to prove the
following lemma.

Lemma 4.3. Let ω P pπ{2, πq and ν0 as defined in Theorem 1.2. The following
holds true.

(i) The function

pr cospθq, r sinpθqq P Ωω ÞÑ Kν0prqu0pθq

belongs to H1{2pΩωq.
(ii) The function

pr cospθq, r sinpθqq P Ωω ÞÑ Kν0`1prqu´1pθq

does not belong to H1{2pΩωq.

Proof. Using [9, Cor. 4.53.], we have H1{2pΩωq ãÑ L4pΩωq and by Remark 1.5

|Kν0`1prqu´1pθq|4 r “ 1

23ω2
|Kν0`1prq|4r „rÑ0

C

r4pν0`1q´1

for any r ą 0 and θ P p´ω, ωq. Since

ν0 “ π ´ 2ω

4ω
ą ´1{2,

this function does not belongs to L4pΩωq and Point (ii) holds true. Let us prove
Point (i). We have for r ą 0 and θ P p´ω, ωq that

|∇Kν0u0|2pr, θq “ 1

4ω
|BrKν0prq|2 ` |Kν0prq|2

4ωr2
2|ν0|2.

By (3.4) and Remark 1.5, we have that Kν0u0 belongs to W 1,ppΩωq as soon as

1 ď p ă 2

|ν0| ` 1
.

Since

min
ωPpπ{2,πq

2

|ν0| ` 1
“ 8

5
ą 4

3

and W 1,4{3pΩωq ãÑ H1{2pΩωq, we get Point (i). �
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5. Spectrum of Dsa

5.1. Proof of Proposition 1.12. The proof is divided into two steps.
Step 1 : Study of the spectrum for the Dirac operator on R

2 and R
2

` “ Ωπ{2 and
consequences. Let us remark that

SppD1q “ Rzp´|m|, |m|q,

SppD2q “
#

Rzp´m,mq if m ě 0,

R if m ă 0,

where D1 is the Dirac operator on R2 and D2 is the Dirac operator on the half-plane
Ωπ{2. This second point can be easily obtained using the test functions of the form

upx1, x2q “
ˆ

1

´i

˙

emx1vpx2q P DpD2q

where v is a scalar function. Up to send Weyl sequences for D2 to infinity and to
troncate them, we have that

SppDsaq Ą SppD2q Ą SppD1q.

In particular, this gives the essential spectrum in the case m ă 0.
Step 2 : Study of the reverse inclusion. In the following, we assume that m ą 0.

By Remark 1.9, we have DpDsaq Ă H3{4´εpΩωq for all ε P p0, 1{4q. Hence, by an
integration by parts, we obtain that for all u P DpDsaq,

2Re x´iσ ¨ ∇u, σ3uyL2 “ }u}2L2pBΩωq

so that

}Dsau}2L2pΩωq “ }σ ¨ ∇u}2L2pΩωq ` m2}u}2L2pΩωq ` m}u}2L2pBΩωq.

This ensures that SpppDsaq2q Ă rm2,`8q so that

SppDsaq Ă p´8,´ms Y rm,`8q.

This ends the proof of Proposition 1.12.

5.2. Study of the point spectrum via the Virial Theorem. Let λ be an eigen-
value of Dsa associated with the eigenfunction u. We define by uα “ upα¨q. By
Proposition 1.7, we have that uα belongs to DpDsaq. Taking the scalar product of
´iσ ¨∇uα with u and integrating by parts, we get xpλ12 ´ mσ3quα, uyL2 “ 0. Taking
the limit α Ñ 1, we obtain

xpλ12 ´ mσ3qu, uyL2 “ 0.

This ensures that |λ| ď |m|. The case |λ| “ |m| is not admissible neither. Indeed,
this would imply that at least one component of the function u is 0 and the boundary
condition would impose that u “ 0. We get that there is no point spectrum in
Rzp´|m|, |m|q.



16 L. LE TREUST AND T. OURMIÈRES-BONAFOS

Appendix A. A result on radial functions

Lemma A.1. Let a P L2pp0,`8q, rdrq be a function such that 9a, a
r

P L2pp0,`8q, rdrq.
We have

Re

ż 8

0

ˆ

9aprqaprq
r

˙

rdr “ 0.

Proof. The function r1{2a belongs to H1p0,`8q so that a P C0p0,8q. For r0 ą 0,
we have that

Re

ż 8

r0

ˆ

9aprqaprq
r

˙

rdr “
ż 8

r0

d

dr
|a|2prqdr “ ´|a|2pr0q

so that |a|2 has a finite limit at 0. Since a{r P L2pp0,`8q, rdrq, we get that |a|2p0q “
0 and that

Re

ż 8

0

ˆ

9aprqaprq
r

˙

rdr “ 0.

�
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