Semi-supervised marginboost - Archive ouverte HAL
Communication Dans Un Congrès Année : 2001

Semi-supervised marginboost

Yves Grandvalet
Christophe Ambroise

Résumé

In many discrimination problems a large amount of data is available but only a few of them are labeled. This provides a strong motivation to improve or develop methods for semi-supervised learning. In this paper, boosting is generalized to this task within the optimization framework of MarginBoost . We extend the margin definition to unlabeled data and develop the gradient descent algorithm that corresponds to the resulting margin cost function. This meta-learning scheme can be applied to any base classifier able to benefit from unlabeled data. We propose here to apply it to mixture models trained with an Expectation-Maximization algorithm. Promising results are presented on benchmarks with different rates of labeled data.
Fichier non déposé

Dates et versions

hal-01561463 , version 1 (12-07-2017)

Identifiants

  • HAL Id : hal-01561463 , version 1

Citer

Florence d'Alché-Buc, Yves Grandvalet, Christophe Ambroise. Semi-supervised marginboost. NIPS 2001 - 14th International Conference on Neural Information, Dec 2001, Vancouver, BC, Canada. pp.553-560. ⟨hal-01561463⟩
47 Consultations
0 Téléchargements

Partager

More