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Abstract: The geological evolution of Central Asia commenced with the evolution of a complex
Precambrian–Palaeozoic orogen. Cimmerian blocks were then accreted to the southern margin
during the Mesozoic, leading to tectonic reactivation of older structures and discrete episodes of
basin formation. The Indian and Arabian blocks collided with Asia during the Cenozoic, leading
to renewed structural reactivation, intracontinental deformation and basin development. This com-
plex evolution resulted in the present-day setting of an elongated Tien Shan range flanked by large
Mesozoic–Cenozoic sedimentary basins with smaller intramontane basins distributed within the
range. The aim of this volume is to present multidisciplinary results and reviews from research
groups in Europe and Central Asia that focus on the western part of the Tien Shan and some of
the large sedimentary basins in that area. These works elucidate the Late Palaeozoic–Cenozoic
tectono-sedimentary evolution of the area. Emphasis is placed on the collision of terranes and/
or continents and the ensuing fault reactivation; the impact of changes in climate on the sedimen-
tation is also examined.

Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.

The Central Asian region includes an extensive
orogenic belt, the Tien Shan, and a series of large,
economically valuable, sedimentary basins includ-
ing the South Caspian Basin in the west (providing
a bridge to Europe), the Amu Darya Basin, the
Afghan-Tajik Basin and the Fergana Basin, as well
as basins further east (e.g. Junggar Basin, Tarim
Basin) and south (e.g. Maskhel Basin) (Fig. 1).
Within these basins, gas, gas condensate and oil
fields have been found, with plays largely located
within the Jurassic–Palaeogene-age successions
(e.g. Ulmishek & Masters 1993; Clarke 1994). How-
ever, with the exception of work by Soviet field
geologists (e.g. Vialov 1948; Markowski 1959;
Davidzon et al. 1982), in terms of recording the
complex regional evolution, the sedimentary suc-
cessions within many of these basins have been
largely untouched. Prior to 1989, the entire area
was extremely difficult to physically access for for-
eigners; published papers were largely in Russian
and Chinese, while geological and topographic
maps were forbidden to foreigners. Today, the
ranges and accompanying basins lie in China,
Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan,
Afghanistan and Turkmenistan. While it is now
possible to travel throughout much of this region,

access to some parts remains problematic. Older
maps of the region are sometimes available, but
very few new sheets are published in the former
Soviet area due to the financial collapse in the
early 1990s. In addition, the remote, mountainous
topography, the vast desert basins and the incon-
veniently placed, uncrossable borders contribute
to the challenges of working in this area. Despite
the obvious geological importance of the region,
the western segment remains surprisingly poorly
represented in English-language publications.
Even the spelling of the range is a subject of debate,
providing a metaphor for the contentious geologi-
cal interpretations. Tian Shan (Pinyin) and Tien
Shan (Wade-Giles) are the two dominant spellings
for the Heavenly or Celestial Mountains, so named
because the peaks often appear to be floating on
clouds of vapour or dust. The preferred Russian
transliteration, used in this volume, is Tien Shan.

The ancient Silk Road delineates the oldest path-
ways through the region. This anastomizing trade
route is ideally placed to study the proximal por-
tions of many of the basin-bounding ranges; the
main range-crossing routes follow major river sys-
tems, also providing access to the rugged interior.
Transport along these routes is being improved

From: Brunet, M.-F., McCann, T. & Sobel, E. R. (eds) Geological Evolution of Central Asian Basins and the Western
Tien Shan Range. Geological Society, London, Special Publications, 427, https://doi.org/10.1144/SP427.17
# 2017 The Author(s). Published by The Geological Society of London.
Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

http://crossmark.crossref.org/dialog/?doi=10.1144/SP427.17&domain=pdf
mailto:marie-francoise.brunet@upmc.fr
http://creativecommons.org/licenses/by/3.0/


with the building of new highways and planned rail-
ways and pipelines. Trade is once again crossing the
numerous borders, partially driven by the presence
of the large, still poorly studied petroliferous basins
in the area.

The Phanerozoic tectonic history of the region
commenced with the accretion of the main units
of northern Asia. These accretionary events were
associated with the subduction/collision of various
microcontinents, terranes and island arc complexes
during Palaeozoic and Mesozoic times. Many of
these events remain poorly defined, leading to obvi-
ous confusion in the literature with various recon-
structions and collision timings being proposed
(e.g. Zonenshain et al. 1990; Berzin et al. 1994;
Şengör & Natal’in 1996; Buslov et al. 2004; Nata-
l’in & Şengör 2005; De Grave et al. 2012;
Zanchetta et al. 2013; Şengör et al. 2014; Yang
et al. 2017). The southern margin of Eurasia con-
tained a range of pre-Cenozoic structures, including
suture zones and/or large-scale fault zones between
blocks, some of which were Gondwana-derived (e.g.
Audet & Bürgmann 2011). These structures were
particularly susceptible to subsequent Cenozoic-age
intraplate deformation related to the India–Eurasia
(Early–Middle Eocene) and Arabia–Eurasia (Late
Eocene–Early Oligocene) collisions (e.g. Molnar

& Tapponnier 1975; Tapponnier & Molnar 1979;
Şengör & Natal’in 1996; Windley et al. 2007;
Allen 2010; Dupont-Nivet et al. 2010; van Hinsber-
gen et al. 2012; Kröner et al. 2014). These latter
events were marked by the docking of strong and
resistant Archaean–Proterozoic continental litho-
sphere with the weaker southern margin of Eurasia.
The consequence of these collisions was the for-
mation of two major topographical features – the
Zagros and Himalaya orogenic belts – both
of which are outside of our immediate area of
investigation. The various tectonic events, including
terrane collisions, major continent–continent colli-
sions (including the Pamir Spur) and the related
oceanic closures (e.g. Tien Shan Ocean, Mongol–
Okhotsk Ocean, Palaeotethys, branches of Neote-
thys) all combined to broadly reshape a continental
mass whose tectonic history was already complex.

The Tien Shan is one of the world’s largest
mountain belts comprising the well-exposed south-
ern portion of a much larger Phanerozoic-age oro-
genic belt, the so-called Central Asian Orogenic
Belt (CAOB) (e.g. Jahn et al. 2000, 2004; Windley
et al. 2007; Kröner et al. 2014). The Tien Shan
stretches over 2800 km along an E–W axis from
Xinjiang in NW China through to the Aral Sea
in Uzbekistan via Kazakhstan, Tajikistan and

Fig. 1. Location map for the papers presented in this volume, superimposed on a shaded relief background. Stars
indicate the approximate regions presented in the papers included in this volume. We provide only the name of the
first author. Two papers (Jolivet 2015; Robert et al. 2015) dealing with a wide area are positioned in the middle of the
map without stars. The location of Figure 2 is shown. Green line: political borders and Caspian Sea shoreline; ATB:
Afghan Tajik Basin; B: Basin; FB: Fergana Basin; Kyr: Kyrgyzstan, Taj: Tajikistan; TFF: Talas–Fergana Fault.
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Kyrgyzstan, with the highest peaks exceeding
7000 m asl and the lowest point at 154 m bsl in
the eastern Tien Shan. The chain has had an ex-
tremely complex evolution, commencing with the
formation of the various small, scattered Pre-
cambrian blocks, followed by a Palaeozoic history
involving the development of accretionary belts,
marine sedimentary basins and relatively minor col-
lisions. To the west the Central Tien Shan Ocean
closed completely in the latest Carboniferous, and
closure was followed by a phase of Early Permian
post-collisional exensional magmatism (e.g. Dol-
gopolova et al. 2017; Konopelko et al. 2017). The
subsequent Mesozoic history of the Tien Shan is
characterized by episodes of intracontinental tecto-
nism, with the final phase in Cenozoic times related
to far-field effects of the India–Asia collision (e.g.
Burtman 1980, 1997; Bazhenov et al. 1999; Buslov
et al. 2008; Jolivet et al. 2010; Macaulay et al.
2014). During this last phase older structures were
often preferentially reactivated, creating the mis-
leading impression that the Palaeozoic and Ceno-
zoic belts are identical.

The Tien Shan is often subdivided into three
sectors, namely: the Western, Central and Eastern
Tien Shan. The Talas–Fergana Fault, a notable
strike-slip feature, marks the boundary between the
Western and Central Tien Shan sectors. However,
depending on where a study is located, different

concepts have been used for both the geographic
and geological subdivisions (i.e. as a result of the
different authors), leading to potential confusion.
In particular, the Chinese and the ex-Soviet ter-
minologies are not compatible. Here we follow the
subdivisions depicted in Figure 2. These three
geographic regions can be further subdivided into
the North, Middle and South Tien Shan. This latter
subdivision is broadly based on the regional Palae-
ozoic evolution; the ensuing amalgamation of
various terranes resulted in the formation of distinc-
tive tectonic zones (e.g. Şengör et al. 1993; Wang
et al. 2006; Windley et al. 2007; Xiao et al. 2008;
Burtman 2010).

The North Tien Shan, situated east of the Talas–
Fergana Fault, comprises several Precambrian-
age blocks as well as Cambrian–Lower Ordovician
ophiolites and marine sediments (Biske & Seltmann
2010), overlain by Ordovician-age sediments and
volcanic rocks, and cut by I-type granites. The re-
gion includes the southern margin of the Kazakh–
Kyrgyz continent, which was deformed as a result
of subduction and accretion during the Late Carbon-
iferous and Early Permian (i.e. accretion of Turan,
Alai, Tarim area to Kazakh–Kyrgyz continent,
e.g. Thomas et al. 1999a; McCann et al. 2013; Burt-
man 2015). To the north, the Late Palaeozoic-
age Yili volcanic belt or Yili Block represents a
continental arc, which overlaps Early Palaeozoic

Fig. 2. Location map showing the major structures of the western Tien Shan and regional subdivisions on a
USGS SRTM (Shuttle Radar Topographic Mission) topography background, projection World Mercator, scale bar at
latitude 458. Suture zones are represented by magenta dotted or dashed lines; North Tien Shan (NTS) becoming
Chinese Central Tien Shan in China in light brown; Middle Tien Shan in blue (MTS); Karatau–Talas terrane in grey
blue; South Tien Shan in green (STS); and Yili Palaeozoic volcanic belt (YB) in light yellow. Terrane boundaries
sometimes do not correspond exactly to sutures due to post-collisional nappe tectonics. B: Basin; CNTS: Chinese
North Tien Shan; F: Fault; L: Lake; R: Range; TFF: Talas–Fergana fault (black line). Inset map shows the
location of geographic subdivision of the Tien Shan Range. WTS: Western Tien Shan; CTS: Central (Kyrgyz)
Tien Shan; ETS: Eastern (Chinese) Tien Shan. Compiled from Bande et al. (2015a), Loury et al. (2015),
Alexeiev et al. (2016).
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accretionary collages and sutures in the region of
SE Kazakhstan (e.g. Alexeiev et al. 2016).

The Middle Tien Shan (¼Syrdarya, Naryn
or Ishim–Middle Tien Shan microcontinent)
comprises a range of Neoproterozoic units which
include tillites and acid volcanic rocks (Biske &
Seltmann 2010). It is separated from the North
Tien Shan by the Terskey Suture (suture of the Ter-
skey Early Palaeozoic ocean; e.g. Burtman 2010;
Glorie et al. 2011). The Middle Tien Shan wedges
out eastwards near the border of Kyrgyzstan with
China; further east, it has no recognized equivalent
(Xiao et al. 2013). To the NW, the Karatau–Talas
terrane (e.g. Alexeiev et al. 2016) is considered
to form a marginal part of the Middle Tien Shan
microcontinent, based on similarities in terms of
the Early Palaeozoic depositional facies from both
areas. From Middle Devonian to Late Carboniferous
times, the Middle Tien Shan probably formed part
of the passive margin of the Kazakh–Kyrgyz con-
tinent and was characterized by shallow-marine
carbonate and siliciclastic sediments (e.g. Alekseev
et al. 2009; Biske & Seltmann 2010).

The South Tien Shan, separated from the Mid-
dle Tien Shan by the South Tien Shan Suture
(¼Turkestan Suture, characterized by Early Ordovi-
cian–Early Carboniferous ophiolites; Kurenkov &
Aristov 1995; Gao et al. 1998; Chen et al. 1999),
is a Late Palaeozoic-age, fold-and-thrust belt for-
med during the closure of the Turkestan Ocean
(¼Central Tien Shan Ocean; Zonenshain et al.
1990; Kheraskova et al. 2010; Seltmann et al.
2011; McCann et al. 2013). The direction of sub-
duction vergence of the Central Tien Shan Ocean
is uncertain, and both northerly directed (e.g.
Windley et al. 1990; Allen et al. 1992; Xiao et al.
2004; Hegner et al. 2010) and southerly directed
(e.g. Charvet et al. 2007, 2011; Lin et al. 2009; Ma
et al. 2014) models have been proposed. The South
Tien Shan is situated along the SW margin of the
Central Asian Orogenic Belt (CAOB,¼Altaids; Şen-
gör et al. 1993, 2014), a key region for our under-
standing of both the amalgamation of Eurasia (see
above) and the Phanerozoic growth of the CAOB
(Windley et al. 1990, 2007; Bazhenov et al. 1999;
Gao et al. 2009; Kröner et al. 2014). Only the
South Tien Shan is continuous along the whole
length of the belt (e.g. Xiao et al. 2013); the Middle
and North Tien Shan are not always present. In its
western part, the South Tien Shan can be subdivided
into several units from west to east (Konopelko
et al. 2007, 2017): the Kyzylkum, Gissar, and
Alai (¼Alay) segments west of the Talas–Fergana
Fault; and the Kokshal segment to the east. Litho-
logically they are all similar, comprising Ordovi-
cian–mid-Carboniferous pelagic sediments, partly
associated with intraplate volcanics, and thick
carbonate platforms (mainly Late Devonian–Early

Carboniferous in age) which are best developed in
the latter two segments (Biske & Seltmann 2010;
Seltmann et al. 2011). Post-collisional intrusions
east and west of the Talas–Fergana Fault are
dated as Early Permian (e.g. Konopelko et al.
2007, 2017; Dolgopolova et al. 2017). Seltmann
et al. (2011) have noted that the South Tien Shan
region contains deformed forearc accretionary com-
plexes as well as passive margin sediments.

Lateral variations within the South Tien Shan
serve to illustrate the complexity of the regional
geology. The Chinese part of the South Tien Shan,
for example, was separated from the Tarim block
by a South Tien Shan Ocean, which opened in a
back-arc setting and probably closed in the Late
Carboniferous–Early Permian (e.g. Xiao et al.
2013). In the Kyrgyz part of the South Tien Shan,
the presence of minor Devonian-age ophiolites
(on the China map of Tien Shan; Wang et al.
2007) may represent the westward continuation
of the suture between the Tarim block and the Chi-
nese South Tien Shan as suggested by Käßner et al.
(2017). To the west of the Talas–Fergana Fault, the
small Gissar Ocean (e.g. Brookfield 2000) formed
as a result of Carboniferous-age rifting, possibly in
a back-arc setting. This ocean was located to the
south of the South Tien Shan and to the north of
the Karakum Block. It subsequently closed in the
latest Carboniferous, forming the Gissar Suture
(e.g. Burtman 2010; Dolgopolova et al. 2017; Kono-
pelko et al. 2017).

This volume assembles the results from pro-
jects supported fully, or in part, by the DARIUS
Programme as well as invited external studies.
The DARIUS Programme (2009–14) was a multi-
disciplinary geological programme that comprised
original scientific projects, executed by academic
scientific teams involving more than 350 scientists
representing 150 research institutions from 25
countries in Europe, the Middle East and western
Central Asia. The DARIUS consortium was spon-
sored by major oil companies (BHP Billiton, BP,
ENI, Maersk Oil, Petronas Carigali, Shell, Statoil,
Total) and French research organizations (Centre
National de la Recherche Scientifique-INSU,
University Pierre & Marie Curie). The main objec-
tive of DARIUS was to characterize the tectono-
stratigraphic evolution of a vast domain around
the central Tethys extending from the eastern
Black Sea in the west to western Central Asia in
the east, and to reconstruct the post-Late Palaeozoic
geodynamic evolution of the domain. The priority
was to investigate the 6000 km long continuous
orogenic belt extending from Crimea/Anatolia
in the west to the western Tien Shan in the east,
including the surrounding basins, through the col-
lection of original data and the development of
regional syntheses.

M.-.F. BRUNET ET AL.



The present volume is one of the end-products
of the DARIUS Programme, which also gave rise
to three other special volumes – one on Cimmerian
Terranes (Zanchi et al. 2015); one on Anatolia
(Robertson et al. 2016); and one on the Eastern
Black Sea–Caucasus domain (Sosson et al.
2017) – as well as an atlas of 20 palaeotectonic
maps ranging in age from the Late Permian through
to the Pliocene (Barrier & Vrielynck 2017).

The papers in the present volume represent
up-to-date work and reviews on some of the geo-
logical elements (see Fig. 1 for locations) of the
western part of the Tien Shan as well as some of
the large basins of Central Asia, with the overarch-
ing goal of attaining a better understanding of the
regional geological evolution. The volume is subdi-
vided into four sections and these and their constit-
uent papers are discussed in order in the following
sections.

Regional evolution and extensional

sedimentary basins

The volume commences with a synthesis of the
main geodynamic episodes which occurred during
the Late Palaeozoic–Mesozoic in Central Asia, pro-
viding a general framework for the other, more
localized, studies in the book. This is followed by
a detailed review of the post-Variscan evolution of
the Afghan orogenic segments. Such a review is
long overdue in the international literature, given
the difficulties of working in present-day Afghani-
stan. The subsequent three papers analyse the evolu-
tion of two major extensional sedimentary basins in
the western part of the studied area: the Amu Darya
Basin and the South Caspian Basin.

Jolivet (2015) reviews the various geodynamic
episodes which occurred across the region of Cen-
tral Asia and Tibet during the Late Palaeozoic–
Mesozoic and which induced either large-scale
compression or widespread extension. The various
events, including the Late Palaeozoic final amal-
gamation of the Central Asian Orogenic Belt, the
accretion of the Cimmerian blocks, the closure
of the Mongol–Okhotsk Ocean and the accretion
of the Neocimmerian blocks, determined the
structural pattern of the region. These Mesozoic
events were significant in the localization and
evolution of Tertiary deformation (e.g. Tapponnier
et al. 2001; Searle et al. 2011; van Hinsbergen
et al. 2011). In many areas, the degree of post-
Mesozoic exhumation has been sufficiently small
that it is still possible to discern relict low-relief
landforms that formed over c. 100 Ma ago. This,
in turn, evidences the long-lasting aridity and low
levels of erosion outside of the extremely localized
deformation zones.

The Afghan orogenic segment is located within
the collision zone of Eurasia and the Gondwana-
derived continental blocks. Siehl (2015) points out
that this zone has remained active up to the present
day as a result of the northward drift of India to
the east and Arabia to the west (Stöcklin 1977; Şen-
gör 1984; Boulin 1991). He reviews the geology
of the Afghan portion of the Afghan–Tajik Basin,
and examines the period following the Variscan
orogenic events at the end of the Palaeozoic Era.
These events heralded the onset of successive sutur-
ing events (Eo-Cimmerian, Late Cimmerian) and
involved the accretion of Gondwana-derived frag-
ments to the southern margin of Eurasia and the clo-
sure of the Palaeotethys Ocean, as well as branches
of the Neotethys Ocean. Additionally, these tectonic
events were related to the development of the
Cimmerian and Himalayan ‘Tethyside Orogenic
Zone’ of Şengör et al. (1988). The successive col-
lages and sutures resulted in the formation of the
c. 1300 km long Afghan orogenic segment, which
extends in a west–east direction from the eastern
Iranian Kopet Dagh to the Pamir–Punjab region
in southern Kyrgyzstan–northern Pakistan. It has a
width of c. 1100 km in a north–south direction
from the North Afghan–Tajik Basin in the north
to the Maskhel Basin of Balochistan in the south.

Brunet et al. (2017) use a set of depth-structure
maps and isopach maps as well as regional cross-
sections to examine the tectono-sedimentary evo-
lution of the Amu Darya Basin during the Late
Palaeozoic and the Mesozoic. The evolution is con-
sidered from the point of view of basin subsidence,
and can be explained by two main extensional
events. The first, and most important, event proba-
bly occurred during the Late Palaeozoic–Triassic
after closure of the Turkestan Ocean, and resulted
in the deposition of several kilometres of sediments.
This event followed the final amalgamation of
the Turan Platform, composed of several individual
crustal blocks of varying sizes, thus creating an in-
homogeneous basement. Inherited structures were
reactivated during subsequent periods of extension
as well as during collisions. The second extensional
event took place in Early–Middle Jurassic times,
following the Eo-Cimmerian orogeny. This event
was concentrated in the eastern half of the Amu
Darya Basin, and resulted in the deposition of
thick Jurassic-age successions which subsequently
formed the main petroleum system of the basin.

Detailed analysis of a series of cross-sections
from the Bukhara-Khiva area allows Mordvintsev
et al. (2017) to examine, in detail, the evolution
of the northeastern margin of the Amu Darya
Basin during the Mesozoic (focusing mainly on
the Jurassic). Sections are based on subsurface
data: seismic lines, boreholes and depth-structure
maps. The structures of the Bukhara step and the
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deeper Chardzhou step, which together form the
basin margin, are described and compared. An
extensional event controlling the deposition of the
Early–Middle Jurassic-age series is clearly docu-
mented by the cross-sections. This event resulted
in the formation of new normal faults and/or the
reactivation of a series of Late Palaeozoic struc-
tures, accommodating the infill of the topographic
lows by siliciclastic successions, initially continen-
tal and later marine. Subsidence declined markedly
from Middle Callovian times onwards, coeval with
the deposition of the Middle Late Jurassic carbonate
succession, passing upwards into a phase of thermal
subsidence during the Cretaceous.

Abdullayev et al. (2015) integrate geophysi-
cal observations as well as subsidence and gravity
modelling of selected 2D profiles from the South
Caspian Basin region. Based on their results, they
suggest that the observed pattern of subsidence
and sedimentation within the basin can be explained
by a process of thermal subsidence following
Jurassic rifting, and a period of enhanced subsidence
that resulted from sediment-induced loading in the
Late Tertiary. The western and eastern parts of the
South Caspian Basin have different subsidence
histories, partly related to variations in the underly-
ing crust type. Gravity modelling reveals that the
South Caspian Basin crustal density is compatible
with an oceanic composition in the western part,
while the crust in the eastern part is thicker. The
observed subsidence and sedimentation patterns
within the basin can therefore be interpreted in
terms of thermal subsidence and sedimentary load-
ing of ‘oceanic type’ or attenuated continental
crust. Forward modelling of lithospheric extension
and gravity modelling confirm the presence of the
variable crustal types, and the authors infer a tenta-
tive Jurassic age for the rifted margin and its basin.

Modelling the collisional and sedimentary

evolution of the western part of the Tien

Shan

Models of the tectono-sedimentary evolution of
the Tien Shan region are complex and incomplete
(see also Xiao et al. 2010). This is due to a combi-
nation of factors including the complex geology
(see Nurtaev et al. 2013), problems of access (to
some areas) and the lack of published and accessible
information (particularly in English and/or in
western scientific journals). Additionally, there are
significant problems correlating the different geo-
logical subdivisions between the various countries
through which the Tien Shan runs (see Xiao et al.
2010 for a Chinese version of the main termino-
logies). From east to west, two papers in the volume
examine the suture zones and the vergence of

subduction in the Tien Shan. Another paper takes
a broad regional approach, examining the entire
area while also extending further to the south to
include the colliding Arabian and Indian plates.

Loury et al. (2015) present two crustal-scale
cross-sections of the Kyrgyz portion of the Central
Tien Shan and correlate the major faults and units
eastwards from Kyrgyzstan to China. Based on
field and seismic data, they suggest that the broad
structure conforms to that of a doubly vergent
mountain belt where the Chinese and Kyrgyz areas
show identical structural and metamorphic his-
tories. This double-vergence appears to be inherited
from two major steps: (1) subduction towards the
south of the Central Tien Shan Ocean; and (2) strike-
slip kinematics, mainly during the Early Permian.
Based on the structure and kinematics of the South
Tien Shan belt, they suggest that the Central Tien
Shan Ocean was subducted during the Late Carbon-
iferous, resulting in continental collision at c. 320–
310 Ma when the Tarim block collided with the
Kazakh–Kyrgyz continent. Top-to-north thrust-
ing and top-to-south detachment within the accre-
tionary prism resulted in the exhumation of a large
continental unit which had been metamorphosed
under eclogite facies conditions. This tectonic
evolution is broadly consistent with a published
numerical model by Vogt & Gerya (2014). The
time span for this collision–accretion orogeny is
at least 27 Ma between the onset of subduction
and final exhumation.

Alexeiev et al. (2015) examine passive-margin
Devonian–Permian-age carbonate successions in
the Middle Tien Shan region of Kyrgyzstan. These
sediments record c. 150 Ma of tectonic history in
the region and provide important insights into the
reconstructions of the sedimentary basins and the
regional geodynamic framework in one of the least-
understood regions of the Central Asian Orogenic
Belt. Major reorganizations in the architecture
of the carbonate platform were caused by eustatic
drowning events in the early Tournaisian, early
Visean and near the Visean–Serpukhovian boun-
dary. Similar carbonate deposits are also observed
in South Kazakhstan and the North Caspian Basin,
suggesting a common origin and hence a similar
petroleum reservoir potential. A convergent margin
formed in the middle Bashkirian; subsequently,
flexurally driven subsidence documents the encro-
achment of an orogenic thrust wedge. Deposition
is superceded by deformation and plutonism after
the Asselian, documenting the onset of the final
hard collision.

Robert et al. (2015) analyse crustal and litho-
spheric thickness maps for Central Eurasia com-
bining elevation and geoid anomaly data and
thermal analysis. Their results are constrained by
older data derived from seismological and seismic
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experiments, tomographic imaging and integrated
geophysical studies. These include one-dimensional
spot estimates (e.g. Nasrabadi et al. 2008), 2D tran-
sects across the Himalaya–Tibet (e.g. Kind et al.
2002) and the Zagros–Iran (e.g. Paul et al. 2006,
2010) regions and 3D regional studies (e.g. Zor
et al. 2003), although less than 19% of the region
has crustal thickness data coverage better than
one measurement per 50 000 km2. Robert et al.’s
maps show that crustal thickening is at a maximum
beneath the high topographic areas across the region
(e.g. Zagros, Himalaya, Tien Shan, Tibetan Pla-
teau). The crustal and lithospheric thickness patterns
are however variable, highlighting the strain parti-
tioning which has occurred within the lithosphere.
The Arabia–Eurasia collision zone is characterized
by a thick lithosphere beneath the Zagros belt,
whereas a thin to non-existent lithospheric mantle
is observed beneath the Iranian and Anatolian pla-
teaux. Conversely, the India–Eurasia collision
zone is characterized by a very thick lithosphere
below its southern part as a consequence of the
underplating of the cold and stiff Indian lithosphere.

Fault reactivation and far-field effects

As noted in the introduction, the Tien Shan region is
characterized by a complex orogenic history. The
various collisional episodes, coupled with strike-
slip activity, resulted in the development of a signif-
icant fault zone, the Talas–Fergana Fault, examined
in detail below. Additionally, the role of far-field
effects – particularly related to the Cenozoic colli-
sions occurring along the southern margin of the
Eurasian continent, especially that of the Pamir
indentation – and their role in the development of
the broader orogeny are also examined.

Bande et al. (2015a) examine the role of major
structural features, in particular the role of regional
strike-slip faults in continental interiors in the
region. The Talas–Fergana Fault is of great signi-
ficance in terms of understanding the hinterland
kinematics of the India–Asia collision. New apatite
fission track data from mountain ranges bounding
the northern end of the Talas–Fergana Fault suggest
that there was a rapid exhumation event there at
c. 25 Ma. This can be correlated with a synchronous
pulse of cooling and thrust belt propagation in the
South Tien Shan, implying that both ranges under-
went coeval and rapid exhumation. Strike-slip
motion along the Talas–Fergana Fault commenced
at c. 25 Ma, facilitating anticlockwise rotation of the
Fergana Basin as well as exhumation of the linked
horsetail splays. Pamir indentation was underway
by c. 20 Ma. The Talas–Fergana Fault was there-
fore largely responsible for transferring Pamir-
induced shortening to the NW Tien Shan.

The link between fault reactivation and far field
effects is explored by Bande et al. (2015b) in their
analysis of Cenozoic deformation within the Fer-
gana Basin. Deformation is concentrated along
thrusts on the northern and southern basin margins,
while the eastern margin is transpressive. All of
the observed deformation can be associated with
movement along the Talas–Fergana Fault. The
close association of the Fergana Basin with the
Talas–Fergana Fault resulted in the development
of a basin morphology that differs from that of
other Cenozoic-age intramontane basins within the
Tien Shan typically bounded by north- or south-
verging faults (e.g. Cobbold et al. 1996; Burbank
et al. 1999; Macaulay et al. 2014). The Fergana
Basin is located due north of the Pamir, suggesting
a possible tectonic link between indentation of
the latter and basin evolution. While folding and
thrusting in the Tajik Basin is clearly related to the
indentation of the Pamir Mountains, no convincing
mechanism has, thus far, been proposed for tectonic
linkage between compression and the morphology
of the Fergana Basin. It would however now appear
that shortening (beginning in the Oligocene) was
transferred along the Talas–Fergana Fault, reaching
the western Kyrgyz and Uzbek Tien Shan and
resulting in exhumation in the Chatkal and Fergana
ranges by c. 25 Ma.

Sedimentation, environment and climate

Sedimentary basins, and the depositional succes-
sions within them, provide the most tangible and
accessible records of the lithospheric, geographi-
cal, oceanographic and ecological developments
which occur in a specific area over a specific period
of time (McCann & Saintot 2003). Investigation of
the sedimentary successions contained with the
basins which formed within the broader Tien Shan
orogen thus provide overviews of the Mesozoic
(five papers) and Cenozoic (two papers) history
across the region, focusing as they do on the inter-
linkage of sedimentation, tectonics and climate.

Schnyder et al. (2016) examine palynological
and high-resolution carbon isotope data measured
on bulk organic matter from the Lower Jurassic
continental succession in the Leontiev Graben of
Kazakhstan. The two datasets are in agreement,
allowing the recognition of the transition zone
between the Pliensbachian and the Toarcian. The
major palaeoclimatic changes associated with large
carbon-cycle perturbations at the Pliensbachian–
Toarcian transition have, to date, been primarily
studied in marine settings. This study presents one
of the best continental sequences in the world
for documenting this transition. Identification of
the transition also facilitates correlation with the
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worldwide Toarcian Oceanic Anoxic Event and
negative (organic) carbon isotope excursion, as well
as identifying a warming trend.

Fürsich et al. (2015) reconstruct the Early Juras-
sic–Early Callovian palaeoenvironmental and de-
positional history of the NW Afghan–Tajik Basin
in southern Uzbekistan. The oldest sediments date
from the Early Jurassic through the end of the
Early Bajocian, during which .500 m of non-
marine sediments were deposited in an extensional
setting. During the Late Bajocian, transgression
led to the establishment of storm-influenced sili-
ciclastic ramps. Following the deposition of a
condensed unit in the Middle Bathonian, sedimenta-
tion resumed in an outer carbonate ramp-basinal
setting as the subsidence rate outpaced the dimin-
ished siliciclastic sediment supply. The change
from siliciclastic to carbonate deposition in the Mid-
dle Jurassic was influenced by a number of factors,
including the levelling of relief in the hinterland,
and the subsidence evolution shifting into the
thermal phase. However, the change from humid
to arid climatic conditions was also of great
importance.

Jurassic outcrops are rare in central Uzbekistan
and McCann (2016a) details the succession from
one of these: the Sarbatyr inlier in the Kyzylkum
area. The succession comprises mainly continental
sediments deposited in a distal, but prograding,
alluvial fan setting. These sediments were derived
from the weathering and erosion of the adjacent
Kyzylkum Massif. The alluvial sediments inter-
finger with nearshore/lagoonal marine sediments
which are rich in both fossils and glauconite,
suggesting varying sea levels over time. Three
transgressive events can be recognized. While it is
possible that these events correspond to global
eustatic patterns, the effects of local tectonic acti-
vity must also be considered. This work demon-
strates the influence of marine activity in the
Kyzylkum region of Uzbekistan during the Bajo-
cian–Bathonian.

McCann (2016b) examines a Cretaceous
sedimentary succession from the Kyzylkum and
Nuratau regions of central Uzbekistan. The region
formed the westernmost part of an ancient Asian
landmass bordered by the Tethys Ocean and the
Turgai Strait (which opened during the Late Creta-
ceous). The region was dominated by a broad
coastal plain with topographic highs (Kyzylkum
and Nuratau massifs), adjacent to a marine area.
Frequent transgressions resulted in the intercalation
of continental and marine deposits, with advances
and retreats of the coast related to major marine
eastward incursions (as far as the Tarim Basin).
However, the complex sedimentary pattern was
also influenced by tectonic activity along the evolv-
ing northern margin of the Amu Darya Basin, which

formed subsequent to the closure of the Turkestan
Ocean, as well as by climatic variations.

Within the Tien Shan region, Jolivet et al.
(2015) note that the Jurassic–Early Cretaceous
period was marked by complex, low-intensity
tectonic deformation and major climate changes
from humid (Middle Jurassic) to arid conditions
(Late Jurassic) to semi-arid conditions (Cretaceous).
Using the sediment record in the Junggar, Tarim and
Fergana basins to describe the tectonic evolution of
the Tien Shan therefore requires differentiation
between tectonic and climatic influences on sedi-
mentation. Tectonic deformation in the region
commenced during the Middle Jurassic, leading to
basin inversion and the recycling of older sedimen-
tary successions. The change to a humid climate in
Middle Jurassic times favoured the development
of extensive vegetation cover and the establishment
of permanently flowing rivers. However, by Late
Jurassic times there was a shift towards a monsoon-
type, semi-arid climate with the development of
desert environments, with an aridity peak at the
Late Jurassic–Early Cretaceous boundary. Aridity
coincided with an increase in alluvial fan depo-
sition, the timing of which cannot be related to the
most-often-proposed geodynamic event (i.e. the
Early Cretaceous accretion of the Lhasa Block)
since fan growth would appear to predate this event.

Klocke et al. (2015) study a c. 10 km section of
sediments deposited in the NE part of the Tajik
Basin. This comprises an Upper Cretaceous–Oligo-
cene pre-tectonic shallow-marine to continental
succession and a younger syntectonic succession
of clastic deposits derived from the uplifting moun-
tain ranges of the Tien Shan in the north and
the Pamir in the south and east. The evolution of
the Tajik Basin is documented by facies, palaeo-
transport directions and provenance analysis.
The Cenozoic-age sediments within the basin reflect
large fluvial plains running from the margins of
the northern Pamir and the southern Tien Shan
mountains. Subsequently, in Neogene times the
basin fill was progressively deformed by folding
and thrusting.

Bosboom et al. (2015) investigate the Creta-
ceous and Palaeogene sedimentary successions in
three areas (Tarim Basin, China; Fergana Valley
and the Alai Valley, Kyrgyzstan; Afghan–Tajik
Basin, Tajikistan) in order to reconstruct the epicon-
tinental sea that was present across the region at
that time. The results indicate that the various loca-
tions, while geographically distant, shared a similar
palaeogeographical evolution, one characterized
by a long-term stepwise retreat punctuated by short-
term shallow-marine incursions. The final Late
Eocene disappearance of this sea probably occurred
(with a degree of diachroneity) prior to the isolation
of the Paratethys Sea. This shifting of the coast
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towards the west would have had profound effects
on the climate of Central Asia, resulting in reduced
moisture supply to the interior.

Geological evolution of Central Asian

Basins and the western Tien Shan Range:

integration of new results

The Palaeozoic Tien Shan forms part of the exten-
sive Central Asian Orogenic Belt (CAOB) (Jahn
et al. 2000, 2004). The CAOB formed as a result
of continuous subduction-accretion from the Neo-
proterozoic through to the Late Palaeozoic, culmi-
nating with the final amalgamation of the East
European Craton in the west, the Siberian Craton
in the east and the Karakum and Tarim continents
to the south (Konopelko et al. 2007). Subsequent
accretion and associated oceanic closures were
often related to the movement of Cimmerian ter-
ranes, which became detached from Gondwana dur-
ing the Permian due to the opening of the Neotethys
Ocean and subsequently collided with the southern
margin of Eurasia. The earliest collisional episode,
involving the various Iranian blocks, occurred in
the Late Triassic. This was followed by the collision
of the Central Afghanistan and Central Pamir blocks
at the end of the Triassic. These two events resulted
in the formation of the Eo-Cimmerian unconformity
and the Eo-Cimmerian Belt (e.g. Zanchi et al. 2009;
Zanchetta et al. 2013). Coevally, the end of the
Indosinian Orogeny in SE Asia as well as the accre-
tion of the Qiangtang Block in Tibet during the
Triassic–Early Jurassic (e.g. Jolivet 2015) marked
the end of this initial Mesozoic-age deformational
phase in Central Asia. Subsequent tectonic activity
was more diffuse, and would appear to have been
partly driven by far-field processes associated with
a series of events, including: the poorly under-
stood closure of the Mongol–Okhotsk Ocean in
Siberia (Late Jurassic–Early Cretaceous, van der
Voo et al. 2015; Early Cretaceous, Jolivet 2015);
the accretion of the Lhasa Block along the southern
Tibet margin (Early Cretaceous); and slab pull along
the palaeo-Pacific and ‘Meso-Tethys’ subduction
zones (e.g. Hendrix et al. 1992; Sobel 1999; Jolivet
2015; van der Voo et al. 2015). The Cenozoic-age
collision of India and Eurasia resulted in significant
deformation across the region (e.g. Liu et al. 2013;
Yang et al. 2013, 2014), with far-field effects
being traced as far north as the Sea of Okhotsk
(e.g. Worrall et al. 1996). The regional evolution
of the Tien Shan region is therefore characterized
by two major orogenic phases: the Early Mesozoic
Eo-Cimmerian Orogeny and the Cenozoic collision
of India and Eurasia (e.g. Dumitru et al. 2001; Joli-
vet et al. 2010; Jolivet 2015; Siehl 2015). These two
major events are separated by a transitional period

characterized by a series of less-well-understood
events (in terms of their far-field effects) extend-
ing from the Jurassic through the Cretaceous. The
impact of these events, related to the accretion
of smaller blocks (e.g. Lhasa Block) to Eurasia, is
unclear; published reconstructions and timings
for the various events often vary. In summary, the
various accretionary events from Late Palaeozoic
times onwards varied both in terms of their tim-
ing as well as their location, resulting in varia-
tions both in deformation as well as the related
post-collisional magmatism towards the east
(Klett et al. 2006; Zanchi et al. 2009, 2012; Siehl
2015).

Deformation in Central Asia related to the vari-
ous accretionary events outlined above has been
significant, ranging from crustal thickening through
to more localized effects related to fault reactiva-
tion. In addition to lithospheric changes, far-field
effects related to the various continental collisions
are also of significant importance since pre-existing
discontinuities may transfer stress from distant
geodynamic processes, both compressional (e.g.
accretion of the Cimmerian, Qiangtang, Lhasa and
Indian blocks) and extensional (e.g. back-arc
extension, slab roll-back). The far-field effects of
continental collision (e.g. Molnar & Tapponnier
1975; Allen et al. 1991; Hendrix et al. 1994) and
the role of older structures (e.g. Jolivet et al. 2010;
Selander et al. 2012; Macaulay et al. 2013) have
been extensively studied in the Tien Shan region,
particularly on the Eastern (Chinese) Tien Shan
(e.g. Allen & Vincent 1997; Yin et al. 1998; Chen
et al. 2007; Sun et al. 2009) and the Central (Kyr-
gyz) Tien Shan (e.g. Abdrakhmatov et al. 1996;
Cobbold et al. 1996; Sobel et al. 2006a, b; De
Grave et al. 2011; Macaulay et al. 2014). In contrast,
far less has been published on the western Tien
Shan. Robert et al. (2015) provide evidence of
crustal thickening in both major frontal ranges
(Himalayas, Zagros, Pamir, Caucasus) as well as
more distal ranges, such as the Alborz, Kopet
Dagh and the Tien Shan, while also noting that
crustal thinning is restricted to the Arabian and
Indian oceanic domains, the South Caspian Sea,
the Red Sea and the Black Sea. The width of the
zone of deformation (.1200 km) highlights the
extent of the area affected by crustal thickening,
which is also a testament to the efficient transfer
of tectonic forces for hundreds to thousands of
kilometres from the respective collisional zones.
Robert et al. (2015) also note that within these
broad zones of deformation some tectonic blocks
(e.g. Central Iran, Tarim) exhibit only slightly
thickened crust and relatively uniform topography,
suggesting only moderate deformation. This would
suggest that these blocks have a degree of rheolog-
ical resistance to the ongoing deformation.
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During the Mesozoic and Early Cenozoic, parts
of the Tien Shan were periodically reactivated
in response to distal collisions (e.g. Hendrix et al.
1992; Sobel & Dumitru 1997; Allen et al. 2001;
Dumitru et al. 2001; Glorie et al. 2011). Indeed,
the role of Palaeozoic structures and sutures is
particularly important during later Cenozoic
deformation. In central parts of Asia, major struc-
tures such as the Talas–Fergana or the Altyn Tagh
faults were reactivated with strike-slip motion.
The Talas–Fergana Fault, which is c. 2000 km
long, is one of the best examples of a reactivated
intra-continental strike-slip fault, and a prominent
morphological feature within the western Tien
Shan. Deformation along the fault trace during the
Late Oligocene–Early Miocene (e.g. Hendrix
et al. 1994; Sobel & Dumitru 1997; Sobel et al.
2006a; Heermance et al. 2008; Amidon & Hynek
2010; Wei et al. 2013; Bande et al. 2015a) and
again in the Late Miocene (e.g. Bullen et al. 2003;
Heermance et al. 2008; Macaulay et al. 2014) can
be linked to the evolution of the Pamir (Bande
et al. 2015b).

In southern Tajikistan the sinistral strike-slip
Darvaz Fault marks the boundary between the
North Pamir and the Tajik Basin, along which
200–300 km of left-lateral offset has been esti-
mated (Burtman & Molnar 1993). Stratigraphic
work by Klocke et al. (2015) suggests that there
was Late Oligocene uplift of the northern Pamir.
Generally, strike-slip faults within continental
interiors often move in response to distal plate col-
lisions (e.g. Burtman et al. 1996; Yin et al. 2002).
Constraining the spatio-temporal distribution of
activity along such faults is therefore of great signif-
icance in terms of our understanding of how oblique
deformation is accommodated in transpressional
settings. Strike-slip movements and fault reacti-
vation also affected large sedimentary basins in
the region, such as the Amu Darya Basin, from
Late Palaeozoic through to Cenozoic times (Thomas
et al. 1999a, b; Natal’in & Şengör 2005; Brunet
et al. 2017; Mordvintsev et al. 2017), although
the precise effects on basin evolution are difficult
to document.

The reactivation of older structures under
changing geodynamic conditions is examined by
Loury et al. (2015) for the Kyrgyz portion of the
South Tien Shan. They note that reactivation of
Palaeozoic-age structures in Permian–Mesozoic
times occurred mainly in a strike-slip regime, fea-
turing left-lateral motion localized in the centre of
the South Tien Shan. Subsequently, in Cenozoic
times a flower structure developed as a result of
the reactivation of former top-to-the-north Car-
boniferous thrusts to the north of the South Tien
Shan. This was coeval with the development of
top-to-the-south thrusts in a fold-and-thrust belt

propagating over the Tarim block, south of the
South Tien Shan.

Subsequent to the collisions of the Cimmerian
terranes with Eurasia in the Late Triassic (e.g.
Stampfli & Borel 2002; Barrier & Vrielynck 2008,
2017; Wilmsen et al. 2009; Zanchi et al. 2009,
2012), a number of new or rejuvenated sedimen-
tary basins formed north of the main collision
zone in Central Asia, including the Amu Darya
Basin (extending mainly across Turkmenistan and
Uzbekistan) and the Afghan-Tajik Basin (extending
across Uzbekistan, Tajikistan and Afghanistan)
(e.g. Thomas et al. 1999a; Melikhov 2000, 2013,
2017; Brookfield & Hashmat 2001; Ulmishek
2004; Klett et al. 2006; Fürsich et al. 2015; Brunet
et al. 2017). The evolution of these two basins was
closely linked from the Late Palaeozoic onwards;
indeed, during Jurassic times the two basins were
connected. A similar connection existed to the
WSW between the South Caspian and the Kopet
Dagh basins, which formed in the Jurassic (Brunet
et al. 2003; Taheri et al. 2009; Robert et al. 2014;
Abdullayev et al. 2015). The Jurassic–Cretaceous
was characterized by a general planation of the
previously formed relief (e.g. Makarov 1977; Che-
diya 1986; Burbank et al. 1999; Allen et al. 2001;
Cunningham et al. 2003; Jolivet et al. 2010, 2013,
2015), providing sediments to these newly forming
extensional basins (Brookfield & Hashmat 2001;
Klett et al. 2006; Fürsich et al. 2015; Brunet
et al. 2017).

The deposits within sedimentary basins related
to orogenic systems provide a record of the evo-
lution of uplift and subsequent erosion of the
adjacent mountain ranges, as well as the history of
changing depositional systems, subsidence, tectonic
deformation, sea-level variations (e.g. Alexeiev
et al. 2015) and climate within the basins them-
selves (e.g. DeCelles & Giles 1996; Schlunegger
et al. 1997; Pfiffner et al. 2002; Sinclair & Naylor
2012). In Central Asia, the Mesozoic period was
marked by pronounced tectonic activity but also
by climatic changes, specifically, the transition
from a humid climate during the Middle Triassic–
Middle Jurassic to a semi-arid-arid climate through
to the Late Jurassic–Early Cretaceous (e.g. Hendrix
et al. 1992; Shao et al. 2003; Cecca et al. 2005;
Fürsich et al. 2015; Jolivet 2015; Jolivet et al.
2015; McCann 2016a, b; Schnyder et al. 2016;
Brunet et al. 2017). Subsequently, during the
early Cenozoic regionally well-correlated marine
transgressions occurred (Bosboom 2013; Bosboom
et al. 2015). These transgressive events have been
linked to Paratethys Sea which was open to the
west (Black Sea, Caucasus, Caspian Sea) and
extended eastwards through the Amu Darya, Tajik,
Fergana and Tarim basins of Central Asia (Popov
et al. 2004).
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Concluding remarks

This Special Publication was prepared as a contri-
bution to our understanding of the geological evo-
lution of selected Central Asian basins and the
western Tien Shan Range. There are very few
international publications which focus on the evolu-
tion of Central Asia, especially its Mesozoic evolu-
tion, and this volume aims to fill some of the gaps
in our existing knowledge on this dynamic and
key region. It combines the results obtained by inter-
disciplinary groups from numerous institutions in
Europe and Central Asia. Structural, geophysical,
sedimentological, stratigraphical, palaeontological,
thermochronological, geochemical and subsidence
analyses are all used to decipher the complex
tectono-sedimentary evolution of the area and to
unravel the complete history of the collisions and
subsequent intra-continental deformation that com-
menced in Late Palaeozoic times across Central
Asia.

This history began with the assemblage of the
Late Palaeozoic Central Asian Orogenic Belt,
which in itself involved a complex series of colli-
sional events. In the Mesozoic, the first significant
orogenic event can be linked to the docking of the
Cimmerian blocks to Asia during Triassic–Early
Jurassic times. The main central Asia sedimentary
basins therefore developed prior to the onset of the
India–Eurasia collision during the Cenozoic.

New evolutionary models are presented, exam-
ining the timing of the various tectonostratigra-
phic events and emphasizing the reactivation of
inherited structures. They illustrate the diversity of
processes involved in the ongoing construction
of the mountains and the adjacent basins and the
mutual relationship between internal and exter-
nal mechanisms, as well as far-field deformation,
mountain building, topographic evolution, basin
development and climatic conditions.

The editors would like to acknowledge the entire team of
the Geological Society of London Publishing House, and
especially Angharad Hills, Rachael Kriefman, Tamzin
Anderson and Sarah Gibbs, for their support, patience
and work to produce this Special Publication. The manu-
script greatly benefited from a review by Randell Stephen-
son who is also the GSL book editor for this volume.
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Popov, S., Rögl, F., Rozanov, A.Y., Steininger, F.F.,
Scherba, I.G. & Kovac, M. 2004. Lithological-paleo-
geographic maps of Paratethys. 10 maps late Eocene
to Pliocene. Courier Forschungsinstitut Senckenberg,
250, 1–46.

Robert, A.M.M., Letouzey, J., Kavoosi, M.A., Sher-

kati, S., Müller, C., Vergés, J. & Aghababaei, A.
2014. Structural evolution of the Kopeh Dagh fold-
and-thrust-belt (NE Iran) and interactions with the
South Caspian Sea Basin and Amu Darya Basin.
Marine and Petroleum Geology, 57, 68–87.
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Stöcklin, J. 1977. Structural correlation of the Alpine
ranges between Iran and Central Asia. In: Livre à la
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