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Abstract. At CRYPTO 2012, Knellwolf and Khovratovich presented
a differential formulation of advanced meet-in-the-middle techniques for
preimage attacks on hash functions. They demonstrated the usefulness of
their approach by significantly improving the previously best known at-
tacks on SHA-1 from CRYPTO 2009, increasing the number of attacked
rounds from a 48-round one-block pseudo-preimage without padding and
a 48-round two-block preimage without padding to a 57-round one-block
preimage without padding and a 57-round two-block preimage with padding,
out of 80 rounds for the full function. In this work, we exploit further
the differential view of meet-in-the-middle techniques and generalize it to
higher-order differentials. Despite being an important technique dating
from the mid-90’s, this is the first time higher-order differentials have
been applied to meet-in-the-middle preimages. We show that doing so
may lead to significant improvements to preimage attacks on hash func-
tions with a simple linear message expansion. We extend the number of
attacked rounds on SHA-1 to give a 62-round one-block preimage without
padding, a 56-round one-block preimage with padding, and a 62-round
two-block preimage with padding. We also apply our framework to the
more recent SHA-3 finalist BLAKE and its newer variant BLAKE2, and
give an attack for a 2.75-round preimage with padding, and a 7.5-round
pseudo-preimage on the compression function.

Keywords: Hash function, preimage attack, higher-order differential
meet-in-the-middle, SHA-1, BLAKE, BLAKE2

1 Introduction

A hash function is a cryptographic primitive that is used to compress any binary
string of arbitrary length to one of a fixed predetermined length: H : {0, 1}∗ →
{0, 1}n. Hash functions hold a special role among cryptographic primitives, as
? Partially supported by the Direction Générale de l’Armement and by the Singapore
National Research Foundation Fellowship 2012 (NRF-NRFF2012-06)



operating without a key. This makes the analysis of their security somewhat
harder than for most other primitives, but three notions are commonly used for
that purpose: collision resistance, means that it is hard for an attacker to find
two distinct strings (or messages) m and m′ such that H (m) = H (m′); second
preimage resistance means that it is hard given a predetermined message m to
find a distinct message m′ such that H (m) = H (m′); and preimage resistance
means that it is hard given a target t to find a message m such that H (m) = t.
The hardness level associated with these three notions depends on the length of
the output of H , and is O(2n

2 ) for collision resistance, and O(2n) for (second)
preimage resistance. In addition to these notions, it is also common to evaluate
the security of hash function through the one of its building blocks.

In this work, we give a framework that can be used to attack the preimage
resistance of hash functions designed around certain principles. We show the
usefulness of our approach by improving the best known attacks on two popular
hash functions: the first is the NIST standard SHA-1 [16], which is a widely
used function originally designed by the NSA in the 1990’s; the second is the
SHA-3 finalist BLAKE [3], which along with its updated version BLAKE2 is
increasingly being used in modern applications.

Our starting point is the meet-in-the-middle technique, which was first used
in cryptography by Diffie and Hellman in 1977 to attack double-encryption [8].
Its use for preimage attack is much more recent and is due to Aoki and Sasaki,
who used it as a framework to attack various hash functions, including for in-
stance SHA-0 and SHA-1 [2]. The basic principle behind a meet-in-the-middle
technique is to exploit the fact that some value can be computed in two different
ways involving different parts of a secret, which can then be sampled indepen-
dently of each other. In the case of hash function cryptanalysis, there is no actual
secret to consider, but a similar technique can nonetheless be exploited in certain
cases; we show in more details how to do so in the preliminaries of §2.

At CRYPTO 2012, Knellwolf and Khovratovich introduced a differential for-
mulation of the meet-in-the-middle framework of Aoki and Sasaki, which they
used to improve the best attacks on SHA-1. One of the main interests of their
approach is that it simplifies the formulation of several advanced extensions of
the meet-in-the-middle technique, and thereby facilitates the search for attack
parameters (in the case of meet-in-the-middle attacks, this roughly corresponds
to finding good partitions for the ‘secret’).

In this work, we further exploit this differential formulation and general-
ize it to use higher-order differentials, which were introduced in cryptography
by Lai in 1994 [13]. The essence of this technique is to consider ‘standard’
differential cryptanalysis as exploiting properties of the first-order derivative
of the function one wishes to analyze; it is then somehow natural to gener-
alize the idea and to consider higher-order derivatives as well. Let us illus-
trate this with a small example using XOR ‘⊕’ differences: consider a func-
tion f and assume the differential ∆α f , f (x) ⊕ f (x ⊕ α) = A holds with
a good probability; this is the same as saying that the derivative of f in α
is biased towards A. In particular, if f is linear, this is equal to a constant
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value f (α), though this is obviously not true in general. Now consider the value
∆α f (x)⊕∆α f (x⊕ β) = f (x)⊕ f (x⊕ α)⊕ f (x⊕ β)⊕ f (x⊕ α⊕ β), which cor-
responds to taking the derivative of f twice, first in α, and then in β. The nice
point about doing this is that this function may be more biased than ∆α f was,
for instance by being constant when ∆α f is linear. This process can be iterated
at will, each time decreasing the algebraic degree of the resulting function until
it reaches zero.

As higher-order differentials are obviously best formulated in differential
form, they combine neatly with the differential view of the framework of Knell-
wolf and Khovratovich, whereas using such a technique independently of any
differential formulation would probably prove to be much more difficult.

Previous and new results on SHA-1 and BLAKE(2). The first preimage
attacks on SHA-1 were due to De Cannière and Rechberger [6], who used a
system-based approach that in particular allows to compute practical preimages
for a non-trivial number of steps. In order to attack more steps, Aoki and Sasaki
later used a MiTM approach [2]. This was subsequently improved by Knellwolf
and Khovratovich [12], who attacked the highest number of rounds so far. To
be more precise, they attack reduced versions of the function up to 52 steps
for one-block preimages with padding, 57 steps for one-block preimages without
padding, and 60 steps for one-block pseudo-preimages with padding. The latter
two attacks can be combined to give 57 steps two-block preimages with padding.
In this work, we present one-block preimages with padding up to 56 steps, one-
block preimages without padding up to 62 steps, one-block pseudo preimages with
padding up to 64 steps, resulting in two-block preimages with padding up to 62
steps.

The previous best known result for the BLAKE hash function, as far as preim-
ages are concerned, is a 2.5-round attack by Li and Xu [14]. In a compression
function model, the previous best attack reached 4 rounds [19]. For BLAKE2, the
only known result is a pseudo-preimage attack on the full compression function
targeting a small class of weak preimages of a certain form [10]. In this pa-
per, we give a 2.75-round (resp. 3-round) preimage attack on BLAKE-512 and
BLAKE2b, and a 7.5-round (resp. 6.75) pseudo-preimage on the compression
functions of the larger (resp. smaller) variants of BLAKE and BLAKE2

We give a summary of these results in Table 1.

2 Meet-in-The-Middle Attacks and the Differential
Framework from CRYPTO 2012

As a preliminary, we give a description of the meet-in-the-middle framework for
preimage attacks on hash functions, and in particular of the differential formu-
lation of Knellwolf and Khovratovich from CRYPTO 2012 [12].

The relevance of meet-in-the-middle for preimage attacks comes from the
fact that many hash functions are built from a compression function which is
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Table 1. Existing and new results on SHA-1 and BLAKE(2) (the complexity is given
in base-2 logarithm).

Function # blocks # rounds complexity ref.

SHA-1

1 52 158.4 [12]
1 52 156.7 §4.3
1 56 159.4 §4.3
2 57 158.8 [12]
2 58 157.9 §4.4
2 62 159.3 §4.4

SHA-1, without padding
1 57 158.7 [12]
1 58 157.4 §4.2
1 62 159 §4.2

SHA-1, pseudo-preimage
1 60 157.4 [12]
1 61 156.4 §4.4
1 64 158.7 §4.4

BLAKE-512 1 2.5 481 [14]
1 2.75 510.3 §5.3

BLAKE2b 1 2.75 511 §5.3

BLAKE-256 c.f., pseudo-preimage 1 6.75 253.9 §5.2

BLAKE-512 c.f., pseudo-preimage 1 7.5 510.3 §5.2

BLAKE2s c.f., pseudo-preimage 1 6.75 253.8 §5.2

BLAKE2b c.f., pseudo-preimage 1 12 0 (weak
class)

[10]

1 7.5 510.3 §5.2

an ad hoc block cipher used in one of the PGV modes [17]. One such popular
mode is the so-called Davies-Meyer, where a compression function h : {0, 1}v ×
{0, 1}n → {0, 1}v compressing a chaining value c with a message m to form the
updated chaining value c′ = h(c,m) is defined as h(c,m) , f (m, c) + c, with
f : {0, 1}n × {0, 1}v → {0, 1}v a block cipher of key-length and message-length
n and v respectively.

Given such a compression function, the problem of finding a preimage of t
for h is equivalent to finding a key m for f such that f (m, p) = c for a pair (p, c),
with c = t− p. Additional constraints can also be put on p, such as prescribing
it to a fixed initialization value iv .

In its most basic form, a meet-in-the-middle attack can speed-up the search
for a preimage if the block cipher f can equivalently be described as the com-
position f2 ◦ f1 of two block ciphers f1 : K1 × {0, 1}v → {0, 1}v and f2 :
K2 × {0, 1}v → {0, 1}v with independent key spaces K1,K2 ⊂ {0, 1}n. In-
deed, if this is the case, an attacker can select a subset {k1i , i = 1 . . . N1} (resp.
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{k2j , j = 1 . . . N2}) of keys of K1 (resp. K2), which together suggest N , N1 ·N2

candidate keys k12ij , (k1i , k
2
j ) for f by setting f (k12ij , ·) = f2 (k

2
j , ·) ◦ f1 (k

1
i , ·).

Since the two sets {f1 (k1i , p), i = 1 . . . N1} and {f2−1(k2j , c), j = 1 . . . N2} can
be computed independently, the complexity of testing f (k12ij , p) = c for N keys
is only of O(max(N1, N2)) time and O(min(N1, N2)) memory, which is less than
N and can be as low as

√
N when N1 = N2.

2.1 Formalizing meet-in-the-middle attacks with related-key
differentials

Let us denote by (α, β)
f−→
p
γ the fact that Pr

(x,y)

[
f (x⊕α, y⊕β) = f (x, y)⊕γ

]
= p,

meaning that (α, β) is a related-key differential for f that holds with probability
p. The goal of an attacker is now to find two linear sub-spaces D1 and D2 of
{0, 1}m such that:

D1 ∩D2 = {0} (1)

∀δ1 ∈ D1 ∃ ∆1 ∈ {0, 1}v s.t. (δ1, 0)
f1−→
1
∆1 (2)

∀δ2 ∈ D2 ∃ ∆2 ∈ {0, 1}v s.t. (δ2, 0)
f2

−1

−→
1
∆2. (3)

Let d1 and d2 be the dimension of D1 and D2 respectively. Then for a set M
of messages µi ∈ {0, 1}m (or more precisely the quotient space of {0, 1}m by
D1 ⊕D2), one can define #M distinct sets µi ⊕D1 ⊕D2 of dimension d1 + d2
(and size 2d1+d2), which can be tested for a preimage with a complexity of only
O(max(2d1 , 2d2)) time and O(min(2d1 , 2d2)) memory. We recall the procedure to
do so in Alg. 1.

Algorithm 1: Testing µ⊕D1 ⊕D2 for a preimage [12]
Input: D1, D2 ⊂ {0, 1}m, µ ∈ {0, 1}m, p, c
Output: A preimage of c+ p if there is one in µ⊕D1 ⊕D2, ⊥ otherwise
Data: Two lists L1, L2 indexed by δ2, δ1 respectively

1 forall the δ2 ∈ D2 do
2 L1[δ2]← [ f1 (µ⊕ δ2, p)⊕∆2

3 forall the δ1 ∈ D1 do
4 L2[δ1]← [ f2−1(µ⊕ δ1, c)⊕∆1

5 forall the (δ1, δ2) ∈ D1 ×D2 do
6 if L1[δ2] = L2[δ1] then
7 return µ⊕ δ1 ⊕ δ2

8 return ⊥
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Analysis of Alg. 1. For the sake of simplicity we assume that d1 = d2 , d < v
2 .

The running time of every loop of Alg. 1 is therefore O(2d) (assuming efficient
data structures and equality testing for the lists), and O(2d)memory is necessary
for storing L1 and L2. It is also clear that if the condition L1[δ2] = L2[δ1] is met,
then µ⊕δ1⊕δ2 is a preimage of c+p. Indeed, this translates to f1 (µ⊕δ2, p)⊕∆2 =
f2
−1(µ ⊕ δ1, c) ⊕ ∆1, and using the differential properties of D1 and D2 for f1

and f2 , we have that f1 (µ ⊕ δ1 ⊕ δ2, p) = f1 (µ ⊕ δ2, p) ⊕∆1 and f2
−1(µ ⊕ δ1 ⊕

δ2, c) = f2
−1(µ ⊕ δ1, c) ⊕ ∆2. Hence, f1 (µ ⊕ δ1 ⊕ δ2, p) = f2

−1(µ ⊕ δ1 ⊕ δ2),
and f (µ⊕ δ1 ⊕ δ2, p) = c. This algorithm therefore allows to search through 22d

candidate preimages with a complexity of O(2d), and thus gives a speed-up of
2d. The complexity of a full attack is hence O(2v−d).

Comparison with basic meet-in-the-middle. When setting ∆1 = ∆2 = 0,
this differential variant of the meet-in-the-middle technique becomes a special
case of the general formulation of the basic technique given above: the key spaces
K1 and K2 now possess a structure of affine spaces. The advantage of this re-
striction comes from the fact that it gives a practical way of searching for the
key spaces, as differential path search is a well-studied area of symmetric crypt-
analysis. Another major advantage is that it makes the formulation of several
extensions to this basic attack very natural, without compromising the ease of
the search for the key spaces. One such immediate extension is obviously to con-
sider non-zero values for ∆1 and ∆2. As noted by Knellwolf and Khovratovich,
this already corresponds to an advanced technique of indirect matching in the
original framework of Aoki and Sasaki. Further extensions are detailed next.

2.2 Probabilistic truncated differential meet-in-the-middle

There are two natural ways to generalize the differential formulation of the meet-
in-the-middle, which both correspond to relaxing one of the conditions from
above. First, one can consider differentials of probability less than one (though
a high probability is still usually needed); second, one can consider truncated
differentials by using an equivalence relation ‘≡’ instead of the equality (usually
taken as a truncated equality: a ≡ b[m] ⇔ a ∧m = b ∧m for a, b,m ∈ {0, 1}v),
denoting by (α, β)

f
 
p
γ the fact that Pr

(x,y)

[
f (x ⊕ α, y ⊕ β) ≡ f (x, y) ⊕ γ

]
= p.

Hence equation 2 becomes:

∀δ1 ∈ D1 ∃ ∆1 ∈ {0, 1}v s.t. (δ1, 0)
f1 
p1
∆1, (4)

for some probability p1 and relation ≡, and similarly for equation 3.
Again, these generalizations correspond to advanced techniques of Aoki and

Sasaki’s framework, which find here a concise and efficient description.

The only change to Alg. 1 needed to accommodate these extensions is to
replace the equality by the appropriate equivalence relation on line 6. However,
the fact that this equivalence holds no longer ensures that µ⊕δ1⊕δ2 is a preimage,
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which implies an increased complexity: firstly, even when it is a preimage, the
relation on line 6 might not hold with probability 1 − p1p2, meaning that on
average one needs to test 1/p1p2 times more candidates in order to account for
the false negatives; secondly, if we denote by s the average size of the equivalence
classes under ≡ (when using truncation as above, this is equal to 2v−r with r
the Hamming weight of m), then on average one needs to check s potential
preimages as returned on line 6 before finding a valid one, in order to account
for the false positives. The total complexity of an attack with the modified
algorithm is therefore O((2v−d + s)/p̃1p̃2), where p̃1 and p̃2 are the respective
average probabilities for p1 and p2 over the spaces D1 and D2.

2.3 Splice-and-cut, initial structures and bicliques

These two techniques are older than the framework of [12], but are fully com-
patible with its differential approach.

Splice-and-cut was introduced by Aoki and Sasaki in 2008 [1]. Its idea is
to use the feedforward of the compression function so as to be able to start
the computation of f1 and f2

−1 not from p and c but from an intermediate
value from the middle of the computation of f . If one sets f = f3 ◦ f2 ◦ f1 and
calls s the intermediate value f3

−1(c) (or equivalently f2 ◦ f1 (p)), an attacker
may now sample the functions f1 (t − f3 (s)) and f2

−1(s) on their respective (as
always independent) key-spaces when searching a preimage for t. By giving more
possible choices for the decomposition of f , one can hope for better attacks. This
however comes at the cost that they are now pseudo-preimage attacks, as one
does not control the value of the IV anymore which is now equal to t− f3 (s).

A possible improvement to a splice-and-cut decomposition is the use of initial
structures [18], which were later reformulated as bicliques [11]. Instead of starting
the computations in the middle from an intermediate value s, the idea is now
to start from a set of multiple values possessing a special structure that spans
several rounds. If the cost of constructing such sets is negligible w.r.t the rest
of the computations, the rounds spanned by the structure actually come for
free. In more details, a biclique, say for f3 in the above decomposition of f , is a
set {m,D1, D2, Q1, Q2} where m is a message, D1 and D2 are linear spaces of
dimension d, and Q1 (resp. Q2) is a list of 2d values indexed by the differences
δ1 of D1 (resp. D2) s.t. ∀(δ1, δ2) ∈ D1 ×D2 Q2[δ2] = f3 (m ⊕ δ1 ⊕ δ2, Q1[δ1]).
This allows to search the message space m⊕D1 ⊕D2 in O(2d) with a meet-in-
the-middle approach that does not need any call to f3 , essentially bypassing this
part of the decomposition.

3 Higher-Order Differential Meet-in-The-Middle

We now describe how to modify the framework of §2 to use higher-order dif-
ferentials. Let us denote by ({α1, α2}, {β1, β2})

f−→
p

γ the fact that Pr
(x,y)

[
f (x ⊕

α1 ⊕ α2, y⊕ β1 ⊕ β2)⊕ f (x⊕ α1, y⊕ β1)⊕ f (x⊕ α2, y⊕ β2) = f (x, y)⊕ γ
]
= p ,

7



meaning that ({α1, α2}, {β1, β2}) is a related-key order-2 differential for f that
holds with probability p.

Similarly as in §2, the goal of the attacker is to find four linear subspaces
D1,1, D1,2, D2,1, D2,2 of {0, 1}m in direct sum (cf. equation (5)) such that:

D1,1

⊕
D1,2

⊕
D2,1

⊕
D2,2 (5)

∀δ1,1, δ1,2 ∈ D1,1 ×D1,2 ∃ ∆1 ∈ {0, 1}v s.t. ({δ1,1, δ1,2}, {0, 0})
f1−→
1
∆1 (6)

∀δ2,1, δ2,2 ∈ D2,1 ×D2,2 ∃ ∆2 ∈ {0, 1}v s.t. ({δ2,1, δ2,2}, {0, 0})
f2

−1

−→
1
∆2. (7)

Then M ⊕δ1,1⊕δ1,2⊕δ2,1⊕δ2,2 is a preimage of c+p if and only if f1 (µ⊕δ1,1⊕
δ1,2 ⊕ δ2,1 ⊕ δ2,2, c) = f2

−1(µ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, p) which is equivalent by
the equations (6) and (7) to the equality:

f1 (µ⊕ δ1,1 ⊕ δ2,1 ⊕ δ2,2, p)⊕ f2
−1(µ⊕ δ2,1,⊕δ1,1 ⊕ δ1,2, c)⊕

f1 (µ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, p)⊕ = f2
−1(µ⊕ δ2,2,⊕δ1,1 ⊕ δ1,2, c)⊕

f1 (µ⊕ δ2,1 ⊕ δ2,2, p)⊕∆1 f2
−1(µ⊕ δ1,1 ⊕ δ1,2, c)⊕∆2.

(8)

We denote by di,j the dimension of the sub-space Di,j for i, j = 1, 2. Then for
a set M of messages µ ∈ {0, 1}m) one can define #M affine sub-sets µi⊕D1,1⊕
D1,2⊕D2,1⊕D2,2 of dimension d1,1+d1,2+d2,1+d2,2 (since the sub-spaces Di,j

are in direct sum by hypothesis), which can be tested for a preimage using (8).
This can be done efficiently by a modification of Alg. 1 into the following Alg. 2.

Analysis of Alg. 2. If we denote by Γ1 and Γ2 the cost of evaluating of f1
and f2

−1 and Γmatch the cost of the test on line 14, then the algorithm al-
lows to test 2d1,1+d1,2+d2,1+d2,2 messages with a complexity of 2d1,2+d2,1+d2,2Γ2+
2d1,1+d2,1+d2,2Γ2+2d1,1+d1,2+d2,1Γ1+2d1,1+d1,2+d2,1Γ1+2d1,1+d1,2Γ2+2d2,1+d2,2Γ1+
Γmatch. The algorithm must then be run 2n−(d1,1+d1,2+d2,1+d2,2) times in or-
der to test 2n messages. In the special case where all the linear spaces have
the same dimension d and if we consider that Γmatch is negligible with re-
spect to the total complexity, the total complexity of an attack is then of :
2n−4d · (23d · (2Γ1 + 2Γ2) + 22d · (Γ1 + Γ2)) = 2n−d+1Γ + 2n−2dΓ = O(2n−d)
where Γ is the cost of the evaluation of the total compression function f . We
think that the assumption on the cost of Γmatch to be reasonable given the small
size of d in actual attacks and the fact that performing a single match is much
faster than computing f .

The factor that is gained from a brute-force search of complexity O(2n) is
hence of 2d, which is the same as for Alg. 1. However, one now needs four spaces
of differences of size 2d instead of only two, which might look like a setback.
Indeed the real interest of this method does not lie in a simpler attack but in
the fact that using higher-order differentials may now allow to attack functions
for which no good-enough order-1 differentials are available.
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Algorithm 2: Testing µ⊕D1,1 ⊕D1,2 ⊕D2,1 ⊕D2,2 for a preimage
Input: D1,1, D1,2, D2,1, D2,2 ⊂ {0, 1}m, µ ∈ {0, 1}m, p, c
Output: A preimage of c+ p if there is one in µ⊕D1,1 ⊕D1,2,⊕D2,1 ⊕D2,2,

⊥ otherwise
Data: Six lists:
L1,1 indexed by δ1,2, δ2,1, δ2,2
L1,2 indexed by δ1,1, δ2,1, δ2,2
L2,1 indexed by δ1,1, δ1,2, δ2,2
L2,2 indexed by δ1,1, δ1,2, δ2,1
L1 indexed by δ2,2, δ2,1
L2 indexed by δ1,1, δ1,2

1 forall the δ1,2, δ2,1, δ2,2 ∈ D1,2 ×D2,1 ×D2,2 do
2 L1,1[δ1,2, δ2,1, δ2,2]← [ f2−1(µ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, c) ;
3 forall the δ1,1, δ2,1, δ2,2 ∈ D1,1 ×D2,1 ×D2,2 do
4 L1,2[δ1,1, δ2,1, δ2,2]← [ f2−1(µ⊕ δ1,1 ⊕ δ2,1 ⊕ δ2,2, c) ;
5 forall the δ1,1, δ1,2, δ2,2 ∈ D1,1 ×D1,2 ×D2,2× do
6 L2,1[δ1,1, δ1,2, δ2,2]← [ f1 (µ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,2, p) ;
7 forall the δ1,1, δ1,2, δ2,1 ∈ D1,1 ×D1,2 ×D2,1 do
8 L2,2[δ1,1, δ1,2, δ2,1]← [ f1 (µ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1, p) ;
9 forall the δ1,1, δ1,2 ∈ D1,1 ×D1,2 do

10 L2[δ1,1, δ1,2]←[ f2−1(µ⊕ δ1,1 ⊕ δ1,2, c)⊕∆1 ;

11 forall the δ2,1, δ2,2 ∈ D2,1 ×D2,2 do
12 L1[δ2,1, δ2,2]←[ f1 (µ⊕ δ2,1 ⊕ δ2,2, p)⊕∆2 ;

13 forall the δ1,1, δ1,2, δ2,1, δ2,2 ∈ D1,1 ×D1,2 ×D2,1 ×D2,2 do
14 if L1,1[δ1,2, δ2,1, δ2,2]⊕ L1,2[δ1,1, δ2,1, δ2,2]⊕ L1[δ2,1, δ2,2] =

L2,1[δ1,1, δ1,2, δ2,2]⊕ L2,2[δ1,1, δ1,2, δ2,1]⊕ L2[δ1,1, δ1,2] then
15 return µ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2

16 return ⊥

Using probabilistic truncated differentials. Similarly as in §2, Alg. 2 can be
modified in order to use probabilistic truncated differentials instead of probability-
1 differentials on the full state. The changes to the algorithm and the complexity
evaluation are identical to the ones described in §2.2, which we refer to for a de-
scription.

4 Applications to SHA-1

4.1 Description of SHA-1

SHA-1 is an NSA-designed hash function standardized by the NIST [16]. It
combines a compression function which is a block cipher with 512-bit keys and
160-bit messages used in Davies-Meyer mode with a Merkle-Damgård mode of
operation [15, Chap. 9]. Thus, the initial vector (IV) as well as the final hash
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are 160-bit values, and messages are processed in 512-bit blocks. The underlying
block cipher of the compression function can be described as follows: let us denote
by m0, . . .m15 the 512-bit key as 16 32-bit words. The expanded key w0, . . . w79

is defined as:

wi =

{
mi if i < 16
(wi−3 ⊕ wi−8 ⊕ wi−14 ⊕ wi−16)≪ 1 otherwise.

Then, if we denote by a, b, c, d, e a 160-bit state made of 5 32-bit words and
initialized with the plaintext, the ciphertext is the value held in this state after
iterating the following procedure (parametered by the round number i) 80 times:

t← [ (a≪ 5) + Φi÷20(b, c, d) + e+ ki÷20 + wi
e← [ d
d←[ c
c←[ b≪ 30
b← [ a
a← [ t,

where ‘÷’ denotes the integer division, Φ0...3 are four bitwise Boolean functions,
and k0...3 are four constants (we refer to [16] for their definition).

Importantly, before being hashed, a message is always padded with at least
65 bits, made of a ‘1’ bit, a (possibly zero) number of ‘0’ bits, and the length
of the message in bits as a 64-bit integer. This padding places an additional
constraint on the attacker as it means that even a preimage for the compression
function with a valid IV is not necessarily a preimage for the hash function.

4.2 One-block preimages without padding

We apply the framework of §3 to mount attacks on SHA-1 for one-block preimages
without padding. These are rather direct applications of the framework, the only
difference being the fact that we use sets of differentials instead of linear spaces.
This has no impact on Alg. 2, but makes the description of the attack parameters
less compact.

As was noted in [12], the message expansion of SHA-1 being linear, it is
possible to attack 15 steps both in the forward and backward direction (for
a total of 30) without advanced matching techniques: it is sufficient to use a
message difference in the kernel of the 15 first steps of the message expansion.
When applying our framework to attack more steps (say 55 to 62), we have
observed experimentally that splitting the forward and backward parts around
steps 22 to 27 seems to give the best results. A similar behaviour was observed
by Knellwolf and Khovratovich in their attacks, and this can be explained by
the fact that the SHA-1 step function has a somewhat weaker diffusion when
computed backward compared to forward.

We use Alg. 3 to construct a suitable set of differences in the preparation of
an attack. This algorithm was run on input differences of low Hamming weight;
these are kept only when they result in output differences with truncation masks
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that are long enough and with good overall probabilities. The sampling param-
eter Q that we used was 215; the threshold value t was subjected to a tradeoff:
the larger it is, the less bits are chosen in the truncation mask, but the better
the probability of the resulting differential. In practice, we used values between
2 and 5, depending on the differential considered.

Algorithm 3: Computing a suitable output difference for a given input
difference

Input: A chunk f i of the compression function, δi,1, δi,2 ∈ {0, 1}m, a threshold
value t, a sample size Q, an internal state c.

Output: An output difference S , and a mask TS for the differential
((δi,1, δi,2), 0)

f i S
Data: An array d of n counters initially set to 0.

1 for q = 0 to Q do
2 Choose µ ∈ {0, 1}m at random ;
3 ∆←[ f i(µ⊕ δi,1 ⊕ δi,2, c)⊕ f i(µ⊕ δi,1, c)⊕ f i(µ⊕ δi,2, c)⊕ f i(µ, c);
4 for i = 0 to n− 1 do
5 if the ith bit of ∆ is 1 then
6 d[i]←[ d[i] + 1;

7 for i = 0 to n− 1 do
8 if d[i] ≥ t then
9 Set the i-th bit of the output difference S to 1;

Once input and output differences have been chosen, we use an adapted
version of Alg. 2 from [12] given in Alg. 4 to compute suitable truncation masks.

The choice of the size of the truncation mask d in this algorithm offers a trade-
off between the probability one can hope to achieve for the resulting truncated
differential and how efficient a filtering of “ bad ” messages it will offer. In our ap-
plications to SHA-1, we chose masks of size about min(log2(|D1,1|), log2(|D1,2|),
log2(|D2,1|), log2(|D2,2|)), which is consistent with taking masks of size the di-
mension of the affine spaces as is done in [12].

We similarly adapt Alg. 3 from [12] as Alg. 5 in order to estimate the average
false negative probability associated with the final truncated differential.

We conclude this section by giving the statistics for the best attacks that we
found for various reduced versions of SHA-1 in Table 2, the highest number of
attacked rounds being 62. Because the difference spaces are no longer affine, they
do not lend themselves to a compact description and their size is not necessarily
a power of 2 anymore. The ones we use do not have many elements, however,
which makes them easy to enumerate.
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Algorithm 4: Find truncation mask T for matching
Input: D1,1, D1,2, D2,1, D2,2 ⊂ {0, 1}m, a sample size Q, a mask size d.
Output: A truncation mask T ∈ {0, 1}n of Hamming weight d.
Data: An array k of n counters initially set to 0.

1 for q = 0 to Q do
2 Choose µ ∈ {0, 1}m at random ;
3 c←[ f (µ, iv);
4 Choose (δ1,1, δ1,2, δ2,1, δ2,2) ∈ D1,1 ×D1,2 ×D2,1 ×D2,2 at random;
5 ∆←[ f1 (µ⊕ δ1,1 ⊕ δ1,2, c)⊕ f1 (µ⊕ δ1,1, c)⊕ f1 (µ⊕ δ1,2, c);
6 ∆←[ ∆⊕ f2

−1(µ⊕ δ2,1 ⊕ δ2,2, c)⊕ f2
−1(µ⊕ δ2,2, c)⊕ f2

−1(µ⊕ δ2,2, c);
7 for i = 0 to n− 1 do
8 if the ith bit of ∆ is 1 then
9 k[i]←[ k[i] + 1;

10 Set the d bits of lowest counter value in k to 1 in T.

Algorithm 5: Estimate the average false negative probability
Input: D1,1, D1,2, D2,1, D2,2 ⊂ {0, 1}m, T ∈ {0, 1}n, a sample size Q
Output: Average false negative probability α.
Data: A counter k initially set to 0.

1 for q = 0 to Q do
2 Choose µ ∈ {0, 1}m at random ;
3 c←[ f (µ, iv);
4 Choose (δ1,1, δ1,2, δ2,1, δ2,2) ∈ D1,1 ×D1,2 ×D2,1 ×D2,2 at random;
5 ∆←[ f1 (µ⊕ δ1,1 ⊕ δ1,2, c)⊕ f1 (µ⊕ δ1,1, c)⊕ f1 (µ⊕ δ1,2, c);
6 ∆←[ ∆⊕ f2

−1(µ⊕ δ2,1 ⊕ δ2,2, c)⊕ f2
−1(µ⊕ δ2,2, c)⊕ f2

−1(µ⊕ δ2,2, c);
7 for i = 0 to n− 1 do
8 if ∆ 6≡T 0n then
9 k ←[ k + 1;

10 return k/Q

4.3 One-block preimages with padding

If we want the message to be properly padded, 65 out of the 512 bits of the last
message blocks need to be fixed according to the padding rules, and this natu-
rally restricts the positions of where one can now use message differences. This
has in particular an adverse effect on the differences in the backward step, which
Hamming weight increases because of some features of SHA-1’s message expan-
sion algorithm. The overall process of finding attack parameters is otherwise
unchanged from the non-padded case. We give statistics for the best attacks
that we found in Table 3. One will note that the highest number of attacked
rounds dropped from 62 to 56 when compared to Table 2.
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Table 2. One block preimage without padding. N is the number of attacked steps,
Split is the separation step between the forward and the backward chunk, di,j is the
log2 of the cardinal of Di,j and α is the estimate for the false negative probability. The
complexity is computed as described in §3.

N Split d1,1 d1,2 d2,1 d2,2 α Complexity

58 25 7.6 9.0 9.2 9.0 0.73 157.4
59 25 7.6 9.0 6.7 6.7 0.69 157.7
60 26 6.5 6.0 6.7 6.0 0.60 158.0
61 27 4.7 4.8 5.7 5.8 0.51 158.5
62 27 4.7 4.8 4.3 4.6 0.63 159.0

Table 3. One block preimage with padding. N is the number of attacked steps, Split is
the separation step between the forward and the backward chunk, di,j is the log2 of the
cardinal of Di,j and α is the estimation for false negative probability. The complexity
is computed as described in §3.

N Split d1,1 d1,2 d2,1 d2,2 α Complexity

51 23 8.7 8.7 8.7 8.7 0.72 155.6
52 23 9.1 9.1 8.2 8.2 0.61 156.7
53 23 9.1 9.1 3.5 3.5 0.61 157.7
55 25 6.5 6.5 5.9 5.7 0.52 158.2
56 25 6 6.2 7.2 7.2 0.6 159.4

4.4 Two-block preimages with padding

We can increase the number of rounds for which we can find a preimage with a
properly padded message at the cost of using a slightly longer message of two
blocks: if we are able to find one-block pseudo preimages with padding on enough
rounds, we can then use the one-block preimage without padding to bridge the
former to the IV. Indeed, in a pseudo-preimage setting, the additional freedom
degrees gained from removing any constraint on the IV more than compensate
for the ones added by the padding. We first describe how to compute such
pseudo-preimages.

One-block pseudo-preimages. If we relax the conditions on the IV and do
not impose anymore that it is fixed to the one of the specifications, it becomes
possible to use a splice-and-cut decomposition of the function, as well as short
(properly padded) bicliques.

The (reduced) compression function of SHA-1 f is now decomposed into
three smaller functions as f = f2

t ◦ f1 ◦ f3 ◦ f2
b, f3 being the rounds covered by

the biclique. The function f1 covers the steps s1 to e, f2 = f2
t ◦ f2

b covers s2
to e + 1 through the feedforward, and f3 covers s2 + 1 to s1 − 1, as shown in
Figure 1.
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f2 f1f3

s2 s2+1 s1-1 s1 e e+1

Fig. 1. A splice-and-cut decomposition with biclique.

Finding the parameters is done in the exact same way as for the one-block
preimage attacks. Since the bicliques only cover 7 steps, one can generate many
of them from a single one by modifying some of the remaining message words
outside of the biclique proper. Therefore, the amortized cost of their construction
is small and considered negligible w.r.t. the rest of the attack. The resulting
attacks are shown in Table. 4.

Table 4. One block pseudo-preimage with padding. N is the number of attacked steps,
di,j is the log2 of the cardinal of the set D1,2 and α is the estimation for false negative
probability. The various splits are labeled as in Figure 1. The complexity is computed
as described in §3.

N s1 e s2 d1,1 d1,2 d2,1 d2,2 α Complexity

61 27 49 20 7.0 7.0 7.5 7.5 0.56 156.4
62 27 50 20 5.8 5.7 7.2 7.2 0.57 157.0
63 27 50 20 6.7 6.7 7.7 7.7 0.57 157.6
64 27 50 20 3 3 4.5 4.7 0.69 158.7

Complexity of the two-block attacks. Using both one-block attacks, it is
simple to mount a two-block attack at the combined cost of each of them. For a
given target c, one:

1. uses a properly-padded pseudo-preimage attack, yielding the second message
block µ2 and an IV iv ′;

2. uses a non-padded preimage attack with target iv ′, yielding a first message
block µ2.

From the Merkle-Damgård structure of SHA-1, it follows that the two-block
message (µ1, µ2) is a preimage of c.

For attacks up to 60 rounds, we can use the pseudo-preimage attacks of [12];
for 61 and 62 rounds, we use the ones of this section. This results in attacks of
complexities as shown in Table 5.
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Table 5. Two-block preimage attacks on SHA-1 reduced to N steps. The pseudo-
preimage attacks followed by ‘?’ come from [12].

N Second block complexity First block complexity Total Complexity

58 156.3? 157.4 157.9
59 156.7? 157.7 158.3
60 157.5? 158.0 158.7
61 156.4 158.5 158.8
62 157.0 159.0 159.3

5 Applications to BLAKE and BLAKE2

5.1 Description of BLAKE

The hash function BLAKE [3] was a candidate and one of the five finalists of the
SHA-3 competition, that ended in November 2012. Although it was not selected
as the winner, no weaknesses were found in BLAKE and it is accepted as being
a very secure and efficient hash function [7]. More recently, a faster variant
BLAKE2 has been designed [5]; both functions come in two variants with a
chaining value of 256 bits (BLAKE-256 and BLAKE2s) and 512 bits (BLAKE-
512 and BLAKE2b). The design of BLAKE is somewhat similar to the one of
SHA-1, as being built around a compression function in Merkle-Damgård mode.
It does however feature a few notable differences: first, the compression function
takes two additional inputs to the message m and the previous chaining value c,
in the form of a user-defined salt s and a block counter t. The new chaining value
c′ is thus defined as c′ , h(c,m, s, t); second, the compression function follows
the local wide-pipe paradigm which was introduced by BLAKE’s predecessor
LAKE [4], meaning that the state size of the compression function h is larger
than the size of the chaining value c. In particular, this implies that c is first
expanded to form the input to h, and that the output of the latter is compressed
in order to give c′. This feature has some important consequences when analyzing
the function and makes some types of attacks harder to perform, as we will see
later. We describe BLAKE-512 in more details, and refer to the specification
document [3] for a full description of the function and of its variants. Similarly,
the changes from BLAKE to BLAKE2 having no impact on our overall attack
strategy, we refer the reader to the specifications of BLAKE2 for more details [5].

Initialization and finalization of the compression function. The state of
the compression function is logically seen as a 4× 4 array of 64-bit words v0...15,
making 1024 bits in total. It is initialized from 8 words of incoming chaining
value c0...7, 4 words of salt s0...4, 2 words of counter t0,1 and 8 words of constant
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k0...7, as shown below:
v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

← [


c0 c1 c2 c3
c4 c5 c6 c7

s0 ⊕ k0 s1 ⊕ k1 s2 ⊕ k2 s3 ⊕ k3
t0 ⊕ k4 t0 ⊕ k5 t1 ⊕ k6 t1 ⊕ k7

 .

The outgoing chaining value c′0...7 is defined from the final value of the state
v′0...15, the initial value of the chaining value and the salt as:

c′0 ← [ c0 ⊕ s0 ⊕ v′0 ⊕ v′8 c′4 ←[ c4 ⊕ s0 ⊕ v′4 ⊕ v′12
c′1 ← [ c1 ⊕ s1 ⊕ v′1 ⊕ v′9 c′5 ←[ c5 ⊕ s1 ⊕ v′5 ⊕ v′13
c′2 ← [ c2 ⊕ s2 ⊕ v′2 ⊕ v′10 c′6 ←[ c6 ⊕ s2 ⊕ v′6 ⊕ v′14
c′3 ← [ c3 ⊕ s3 ⊕ v′3 ⊕ v′11 c′7 ←[ c7 ⊕ s3 ⊕ v′7 ⊕ v′15

.

Round function. One round of BLAKE is made of eight calls to a ‘quarter-
round’ function Gi on part of the state:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)

.

There are 16 such rounds for BLAKE-5121. Furthermore, because the whole
state is updated twice during one round (once by G0...3 and once by G4...7), one
such update will be called a half-round. The function Gi(a, b, c, d) is defined for
round r as:

1 : a← a+ b+ (mσr(2i) ⊕ kσr(2i+1)) 5 : a← a+ b+ (mσr(2i+1) + kσr(2i))
2 : d← (d⊕ a)≫ 32 6 : d← (d⊕ a)≫ 16
3 : c← c+ d 7 : c← c+ d
4 : b← (b⊕ c)≫ 25 8 : b← (b⊕ c)≫ 11

,

with σ a round-dependent permutation of {0 . . . 15}. The padding is nearly the
same as for SHA-1. The only difference is that a ‘1’ bit is again systematically
appended after the ‘0’ bits (if any). Hence, there are at least 66 bits of padding.

Terminology. As can be seen from the above description, there is an additional
initialization phase for the compression function in BLAKE when compared to
most hash functions and SHA-1 in particular. We choose to call pseudo-preimage
on the compression function a preimage attack that bypasses this initialization
and requires complete freedom for the initial 16-word state, yet that does respect
the finalization (and thence forms an attack for the same level of security than
the compression function, i.e. 512 bits for BLAKE-512). This is a more restrictive
model than attacking the underlying block cipher of the compression function
in a PGV mode, which would in itself be a significant attack on a building block
of the hash function.
1 There are 14 for BLAKE-256, 12 for BLAKE2b and 10 for BLAKE2s.

16



5.2 Pseudo-preimage on the compression function

If we relax the conditions on the initialization of the compression function, we can
use a splice-and-cut approach to mount a pseudo-preimage attack in a straight
application of the framework, which we did on the BLAKE(2) family. We note
that because of the use of a local-wide-pipe construction, matching in the middle
of the compression function has a complexity the square of the actual security
level for preimages. Therefore we perform the matching phase right on the output
of the compression function.

We mount an attack on the compression function reduced to 7.5 rounds of
BLAKE-512 and BLAKE 2b attacking round 0.5 (resp. 0.25 ) to round 8 (resp.
7.75), and 6.75 rounds of BLAKE-256 and BLAKE2s attacking round 0.75 to
round 7.5. We decompose this reduced compression function f as f1 ◦ f3 ◦ f2 . The
function f1 starts at round 5.25 and ends at round 8 (resp. 7.75 for BLAKE2b
and 7.5 for BLAKE2s and BLAKE-256), f2

−1 covers rounds 4 to 0.5 (resp. 0.25
and 0.75 ) , and f3 is a biclique covering the 0.75 remaining rounds. Finding the
parameters of the attack is done similarly as in §4. Since the biclique covers less
than one round, it leaves some of the message words free, which can then be
used to generate many similar bicliques. Therefore, the amortized cost of their
construction is small and considered negligible w.r.t. the rest of the attack. The
only message words with differences are m2 & m8 in the forward computation
and m3 & m11 in the backward computation. As a consequence, the whole
message can easily be properly padded.The statistics of the resulting attacks are
shown in Table. 6.

5.3 Preimage on the hash function

We now adapt the framework to mount a preimage attack for the larger variants
of BLAKE and BLAKE2. Because of the quick diffusion of BLAKE’s round func-
tion (notably due to the fact that every message word is used in every round), we
were unsuccessful when searching for difference spaces resulting in a good meet-
in-the-middle decomposition that simultaneously preserves the initialization of
the compression function.

Table 6. One block pseudo-preimage without padding on BLAKE-512 and BLAKE2b;
di,j is the log2 of the cardinal of the set Di,j and α is the estimation for false negative
probability. The complexity is computed as described in §3. The various splits are
labeled as in Figure 1.

Function Start s1 e s2 d1,1 d1,2 d2,1 d2,2 α Complexity

BLAKE-512 0.5 5.25 8 4 3.0 9.3 4.0 9.5 0.49 510.3
BLAKE2b 0.25 5.25 7.75 4 4.5 8.0 3.9 3.9 0.41 510.9

BLAKE-256 0.75 5.25 7 4 4.1 7.2 9.0 9.0 0.64 253.9
BLAKE2s 0.75 5.25 7 4 4.1 7.2 9.0 9.0 0.68 253.8
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To overcome this problem, we use a single difference space, in the forward
direction only. The use of order-2 differentials proves to be critical at this point,
as no gain could be easily obtained otherwise. More precisely, we use differences
of the type ({α1, α2}, {0, 0})

f
 T
p

0, meaning that with probability p over the

messagesm, f (m)⊕f (m⊕α1)⊕f (m⊕α2) ≡ f (m⊕α1⊕α2) for a truncation mask
T . This equality can be used with Alg. 2 modified as Alg. 6 in an attack. The
basic idea at play here is that after computing f (m), f (m⊕ α1) and f (m⊕ α2),
one can test the values of f (m⊕ α1 ⊕ α2) for essentially no additional cost. We
give an illustration of this process in the full version of the paper [9].

Algorithm 6: Testing µ⊕D1,1 ⊕D1,2 for a preimage
Input: D1,1, D1,2 ⊂ {0, 1}m, µ ∈ {0, 1}m, p, c
Output: A preimage if there is one in µ⊕D1,1 ⊕D1,2, ⊥ otherwise
Data: Two lists L1, L2 indexed by δ1,2, δ1,1 respectively

1 forall the δ1,2 ∈ D1,2 do
2 L1[δ1,2]← [ f1 (µ⊕ δ1,2, p)
3 forall the δ1,1 ∈ D1,1 do
4 L2[δ1,1]← [ f1 (µ⊕ δ1,1, c)
5 forall the (δ1,1, δ1,2) ∈ D1,1 ×D1,2 do
6 if L1[δ1,2]⊕ L2[δ1,1] ≡ f1 (µ, c)⊕ c⊕ p then
7 return µ⊕ δ1,1 ⊕ δ1,2

8 return ⊥

Analysis of Alg. 6. The test on line 6 can be performed efficiently by using
an appropriate data structure (typically a hash table), resulting in overall linear
time for the loop on line 5. In line with §2.2, the total complexity of an attack
based on this algorithm thus becomes (2n−d1−d2(2d1 + 2d2)Γ + s)/p̃, where d1
(resp. d2) is the dimension of D1,1 (resp. D1,2), Γ is the cost of calling f1 , s the
complexity of retesting and p̃ is the average success probability of the order-2
differentials.

Application to BLAKE(2). We introduce the differences at round 5.25 and
let them propagate with good probability for 2.75 rounds for BLAKE-512 and
BLAKE2b. Like in §5.3 the only message words with differences are m2 & m8

in the forward computation and m3 & m11 in the backward computation. As
a consequence, the whole message can easily be properly padded.The attack
parameters are found as before and lead to the attacks in Table 7.
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Table 7. The preimage attacks on BLAKE(2); di,j is the log2 of the cardinal of Di,j

and α is the estimate for the false negative probability.

Function #rounds d1,1 d1,2 α Complexity

BLAKE-512 2.75 4.0 9.5 0.6 510.3
BLAKE2b 2.75 3.1 6.9 0.4 511.0
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