Thomas Espitau
email: tespitau@ens-cachan.fr

Pierre-Alain Fouque
email: pa.fouque@gmail.com

Pierre Karpman
email: pierre.karpman@inria.fr

Higher-Order Differential Meet-in-The-Middle Preimage Attacks on SHA-1 and BLAKE

Keywords: Hash function, preimage attack, higher-order differential meet-in-the-middle, SHA-1, BLAKE, BLAKE2

At CRYPTO 2012, Knellwolf and Khovratovich presented a differential formulation of advanced meet-in-the-middle techniques for preimage attacks on hash functions. They demonstrated the usefulness of their approach by significantly improving the previously best known attacks on SHA-1 from CRYPTO 2009, increasing the number of attacked rounds from a 48-round one-block pseudo-preimage without padding and a 48-round two-block preimage without padding to a 57-round one-block preimage without padding and a 57-round two-block preimage with padding, out of 80 rounds for the full function. In this work, we exploit further the differential view of meet-in-the-middle techniques and generalize it to higher-order differentials. Despite being an important technique dating from the mid-90's, this is the first time higher-order differentials have been applied to meet-in-the-middle preimages. We show that doing so may lead to significant improvements to preimage attacks on hash functions with a simple linear message expansion. We extend the number of attacked rounds on SHA-1 to give a 62-round one-block preimage without padding, a 56-round one-block preimage with padding, and a 62-round two-block preimage with padding. We also apply our framework to the more recent SHA-3 finalist BLAKE and its newer variant BLAKE2, and give an attack for a 2.75-round preimage with padding, and a 7.5-round pseudo-preimage on the compression function.

Introduction

A hash function is a cryptographic primitive that is used to compress any binary string of arbitrary length to one of a fixed predetermined length: H : {0, 1} * → {0, 1} n . Hash functions hold a special role among cryptographic primitives, as operating without a key. This makes the analysis of their security somewhat harder than for most other primitives, but three notions are commonly used for that purpose: collision resistance, means that it is hard for an attacker to find two distinct strings (or messages) m and m such that H (m) = H (m); second preimage resistance means that it is hard given a predetermined message m to find a distinct message m such that H (m) = H (m); and preimage resistance means that it is hard given a target t to find a message m such that H (m) = t. The hardness level associated with these three notions depends on the length of the output of H , and is O(2 n 2) for collision resistance, and O(2 n) for (second) preimage resistance. In addition to these notions, it is also common to evaluate the security of hash function through the one of its building blocks.

In this work, we give a framework that can be used to attack the preimage resistance of hash functions designed around certain principles. We show the usefulness of our approach by improving the best known attacks on two popular hash functions: the first is the NIST standard SHA-1 [16], which is a widely used function originally designed by the NSA in the 1990's; the second is the SHA-3 finalist BLAKE [START_REF] Aumasson | SHA-3 proposal BLAKE, version 1.3[END_REF], which along with its updated version BLAKE2 is increasingly being used in modern applications.

Our starting point is the meet-in-the-middle technique, which was first used in cryptography by Diffie and Hellman in 1977 to attack double-encryption [START_REF] Diffie | Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption Standard[END_REF]. Its use for preimage attack is much more recent and is due to Aoki and Sasaki, who used it as a framework to attack various hash functions, including for instance SHA-0 and SHA-1 [START_REF] Aoki | Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1[END_REF]. The basic principle behind a meet-in-the-middle technique is to exploit the fact that some value can be computed in two different ways involving different parts of a secret, which can then be sampled independently of each other. In the case of hash function cryptanalysis, there is no actual secret to consider, but a similar technique can nonetheless be exploited in certain cases; we show in more details how to do so in the preliminaries of §2.

At CRYPTO 2012, Knellwolf and Khovratovich introduced a differential formulation of the meet-in-the-middle framework of Aoki and Sasaki, which they used to improve the best attacks on SHA-1. One of the main interests of their approach is that it simplifies the formulation of several advanced extensions of the meet-in-the-middle technique, and thereby facilitates the search for attack parameters (in the case of meet-in-the-middle attacks, this roughly corresponds to finding good partitions for the 'secret').

In this work, we further exploit this differential formulation and generalize it to use higher-order differentials, which were introduced in cryptography by Lai in 1994 [START_REF] Lai | Higher Order Derivatives and Differential Cryptanalysis[END_REF]. The essence of this technique is to consider 'standard' differential cryptanalysis as exploiting properties of the first-order derivative of the function one wishes to analyze; it is then somehow natural to generalize the idea and to consider higher-order derivatives as well. Let us illustrate this with a small example using XOR '⊕' differences: consider a function f and assume the differential ∆ α f f (x) ⊕ f (x ⊕ α) = A holds with a good probability; this is the same as saying that the derivative of f in α is biased towards A. In particular, if f is linear, this is equal to a constant value f (α), though this is obviously not true in general. Now consider the value

∆ α f (x) ⊕ ∆ α f (x ⊕ β) = f (x) ⊕ f (x ⊕ α) ⊕ f (x ⊕ β) ⊕ f (x ⊕ α ⊕ β)
, which corresponds to taking the derivative of f twice, first in α, and then in β. The nice point about doing this is that this function may be more biased than ∆ α f was, for instance by being constant when ∆ α f is linear. This process can be iterated at will, each time decreasing the algebraic degree of the resulting function until it reaches zero.

As higher-order differentials are obviously best formulated in differential form, they combine neatly with the differential view of the framework of Knellwolf and Khovratovich, whereas using such a technique independently of any differential formulation would probably prove to be much more difficult.

Previous and new results on SHA-1 and BLAKE [START_REF] Aoki | Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1[END_REF]. The first preimage attacks on SHA-1 were due to De Cannière and Rechberger [START_REF] Chang | Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition[END_REF], who used a system-based approach that in particular allows to compute practical preimages for a non-trivial number of steps. In order to attack more steps, Aoki and Sasaki later used a MiTM approach [START_REF] Aoki | Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1[END_REF]. This was subsequently improved by Knellwolf and Khovratovich [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF], who attacked the highest number of rounds so far. To be more precise, they attack reduced versions of the function up to 52 steps for one-block preimages with padding, 57 steps for one-block preimages without padding, and 60 steps for one-block pseudo-preimages with padding. The latter two attacks can be combined to give 57 steps two-block preimages with padding.

In this work, we present one-block preimages with padding up to 56 steps, oneblock preimages without padding up to 62 steps, one-block pseudo preimages with padding up to 64 steps, resulting in two-block preimages with padding up to 62 steps.

The previous best known result for the BLAKE hash function, as far as preimages are concerned, is a 2.5-round attack by Li and Xu [START_REF] Li | Attacks on Round-Reduced BLAKE[END_REF]. In a compression function model, the previous best attack reached 4 rounds [START_REF] Wang | Free-start preimages of round-reduced BLAKE compression function[END_REF]. For BLAKE2, the only known result is a pseudo-preimage attack on the full compression function targeting a small class of weak preimages of a certain form [START_REF] Guo | Analysis of BLAKE2[END_REF]. In this paper, we give a 2.75-round (resp. 3-round) preimage attack on BLAKE-512 and BLAKE2b, and a 7.5-round (resp. 6.75) pseudo-preimage on the compression functions of the larger (resp. smaller) variants of BLAKE and BLAKE2

We give a summary of these results in Table 1.

2 Meet-in-The-Middle Attacks and the Differential Framework from CRYPTO 2012

As a preliminary, we give a description of the meet-in-the-middle framework for preimage attacks on hash functions, and in particular of the differential formulation of Knellwolf and Khovratovich from CRYPTO 2012 [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF]. The relevance of meet-in-the-middle for preimage attacks comes from the fact that many hash functions are built from a compression function which is an ad hoc block cipher used in one of the PGV modes [START_REF] Preneel | Hash Functions Based on Block Ciphers: A Synthetic Approach[END_REF]. One such popular mode is the so-called Davies-Meyer, where a compression function h : {0, 1} v × {0, 1} n → {0, 1} v compressing a chaining value c with a message m to form the updated chaining value c = h(c, m) is defined as h(c, m) f (m, c) + c, with f : {0, 1} n × {0, 1} v → {0, 1} v a block cipher of key-length and message-length n and v respectively.

Given such a compression function, the problem of finding a preimage of t for h is equivalent to finding a key m for f such that f (m, p) = c for a pair (p, c), with c = t -p. Additional constraints can also be put on p, such as prescribing it to a fixed initialization value iv .

In its most basic form, a meet-in-the-middle attack can speed-up the search for a preimage if the block cipher f can equivalently be described as the composition

f 2 • f 1 of two block ciphers f 1 : K 1 × {0, 1} v → {0, 1} v and f 2 : K 2 × {0, 1} v → {0, 1} v with independent key spaces K 1 , K 2 ⊂ {0, 1} n . In- deed, if this is the case, an attacker can select a subset {k 1 i , i = 1 . . . N 1 } (resp. {k 2 j , j = 1 . . . N 2 }) of keys of K 1 (resp. K 2), which together suggest N N 1 • N 2 candidate keys k 12 ij (k 1 i , k 2 j) for f by setting f (k 12 ij , •) = f 2 (k 2 j , •) • f 1 (k 1 i , •). Since the two sets {f 1 (k 1 i , p), i = 1 . . . N 1 } and {f 2 -1 (k 2 j , c
), j = 1 . . . N 2 } can be computed independently, the complexity of testing f (k 12 ij , p) = c for N keys is only of O(max(N 1 , N 2)) time and O(min(N 1 , N 2)) memory, which is less than N and can be as low as

√ N when N 1 = N 2 .

Formalizing meet-in-the-middle attacks with related-key differentials

Let us denote by (α, β)

f -→ p γ the fact that Pr (x,y) f (x⊕α, y⊕β) = f (x, y)⊕γ = p,
meaning that (α, β) is a related-key differential for f that holds with probability p. The goal of an attacker is now to find two linear sub-spaces D 1 and D 2 of {0, 1} m such that:

D 1 ∩ D 2 = {0} (1)
∀δ 1 ∈ D 1 ∃ ∆ 1 ∈ {0, 1} v s.t. (δ 1 , 0) f1 -→ 1 ∆ 1 (2)
∀δ 2 ∈ D 2 ∃ ∆ 2 ∈ {0, 1} v s.t. (δ 2 , 0) f2 -1 -→ 1 ∆ 2 . (3)
Let d 1 and d 2 be the dimension of D 1 and D 2 respectively. Then for a set M of messages µ i ∈ {0, 1} m (or more precisely the quotient space of {0, 1} m by

D 1 ⊕ D 2), one can define #M distinct sets µ i ⊕ D 1 ⊕ D 2 of dimension d 1 + d 2
(and size 2 d1+d2), which can be tested for a preimage with a complexity of only O(max(2 d1 , 2 d2)) time and O(min(2 d1 , 2 d2)) memory. We recall the procedure to do so in Alg. 1.

Algorithm 1: Testing µ ⊕ D 1 ⊕ D 2 for a preimage [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF] Input:

D1, D2 ⊂ {0, 1} m , µ ∈ {0, 1} m , p, c Output: A preimage of c + p if there is one in µ ⊕ D1 ⊕ D2, ⊥ otherwise Data: Two lists L1, L2 indexed by δ2, δ1 respectively 1 forall the δ2 ∈ D2 do 2 L1[δ2] ← f1 (µ ⊕ δ2, p) ⊕ ∆2 3 forall the δ1 ∈ D1 do 4 L2[δ1] ← f2 -1 (µ ⊕ δ1, c) ⊕ ∆1 5 forall the (δ1, δ2) ∈ D1 × D2 do 6 if L1[δ2] = L2[δ1] then 7 return µ ⊕ δ1 ⊕ δ2 8 return ⊥ Analysis of Alg. 1.
For the sake of simplicity we assume that

d 1 = d 2 d < v 2 .
The running time of every loop of Alg. 1 is therefore O(2 d) (assuming efficient data structures and equality testing for the lists), and O(2 d) memory is necessary for storing

L 1 and L 2 . It is also clear that if the condition L 1 [δ 2] = L 2 [δ 1] is met, then µ⊕δ 1 ⊕δ 2 is a preimage of c+p. Indeed, this translates to f 1 (µ⊕δ 2 , p)⊕∆ 2 = f 2 -1 (µ ⊕ δ 1 , c) ⊕ ∆ 1
, and using the differential properties of D 1 and D 2 for f 1 and f 2 , we have that Comparison with basic meet-in-the-middle. When setting ∆ 1 = ∆ 2 = 0, this differential variant of the meet-in-the-middle technique becomes a special case of the general formulation of the basic technique given above: the key spaces K 1 and K 2 now possess a structure of affine spaces. The advantage of this restriction comes from the fact that it gives a practical way of searching for the key spaces, as differential path search is a well-studied area of symmetric cryptanalysis. Another major advantage is that it makes the formulation of several extensions to this basic attack very natural, without compromising the ease of the search for the key spaces. One such immediate extension is obviously to consider non-zero values for ∆ 1 and ∆ 2 . As noted by Knellwolf and Khovratovich, this already corresponds to an advanced technique of indirect matching in the original framework of Aoki and Sasaki. Further extensions are detailed next.

f 1 (µ ⊕ δ 1 ⊕ δ 2 , p) = f 1 (µ ⊕ δ 2 , p) ⊕ ∆ 1 and f 2 -1 (µ ⊕ δ 1 ⊕ δ 2 , c) = f 2 -1 (µ ⊕ δ 1 , c) ⊕ ∆ 2 . Hence, f 1 (µ ⊕ δ 1 ⊕ δ 2 , p) = f 2 -1 (µ ⊕ δ 1 ⊕ δ 2), and f (µ ⊕ δ 1 ⊕ δ 2 , p) = c.

Probabilistic truncated differential meet-in-the-middle

There are two natural ways to generalize the differential formulation of the meetin-the-middle, which both correspond to relaxing one of the conditions from above. First, one can consider differentials of probability less than one (though a high probability is still usually needed); second, one can consider truncated differentials by using an equivalence relation '≡' instead of the equality (usually taken as a truncated equality:

a ≡ b[m] ⇔ a ∧ m = b ∧ m for a, b, m ∈ {0, 1} v), denoting by (α, β) f p γ the fact that Pr (x,y) f (x ⊕ α, y ⊕ β) ≡ f (x, y) ⊕ γ = p.
Hence equation 2 becomes:

∀δ 1 ∈ D 1 ∃ ∆ 1 ∈ {0, 1} v s.t. (δ 1 , 0) f1 p1 ∆ 1 , (4)
for some probability p 1 and relation ≡, and similarly for equation 3.

Again, these generalizations correspond to advanced techniques of Aoki and Sasaki's framework, which find here a concise and efficient description.

The only change to Alg. 1 needed to accommodate these extensions is to replace the equality by the appropriate equivalence relation on line 6. However, the fact that this equivalence holds no longer ensures that µ⊕δ 1 ⊕δ 2 is a preimage, which implies an increased complexity: firstly, even when it is a preimage, the relation on line 6 might not hold with probability 1 -p 1 p 2 , meaning that on average one needs to test 1/p 1 p 2 times more candidates in order to account for the false negatives; secondly, if we denote by s the average size of the equivalence classes under ≡ (when using truncation as above, this is equal to 2 v-r with r the Hamming weight of m), then on average one needs to check s potential preimages as returned on line 6 before finding a valid one, in order to account for the false positives. The total complexity of an attack with the modified algorithm is therefore O((2 v-d + s)/ p1 p2), where p1 and p2 are the respective average probabilities for p 1 and p 2 over the spaces D 1 and D 2 .

Splice-and-cut, initial structures and bicliques

These two techniques are older than the framework of [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF], but are fully compatible with its differential approach.

Splice-and-cut was introduced by Aoki and Sasaki in 2008 [START_REF] Aoki | Preimage Attacks on One-Block MD4, 63-Step MD5 and More[END_REF]. Its idea is to use the feedforward of the compression function so as to be able to start the computation of f 1 and f 2 -1 not from p and c but from an intermediate value from the middle of the computation of f . If one sets

f = f 3 • f 2 • f 1 and calls s the intermediate value f 3 -1 (c) (or equivalently f 2 • f 1 (p)
), an attacker may now sample the functions f 1 (t -f 3 (s)) and f 2 -1 (s) on their respective (as always independent) key-spaces when searching a preimage for t. By giving more possible choices for the decomposition of f , one can hope for better attacks. This however comes at the cost that they are now pseudo-preimage attacks, as one does not control the value of the IV anymore which is now equal to t -f 3 (s).

A possible improvement to a splice-and-cut decomposition is the use of initial structures [START_REF] Sasaki | Finding Preimages in Full MD5 Faster Than Exhaustive Search[END_REF], which were later reformulated as bicliques [START_REF] Khovratovich | Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family[END_REF]. Instead of starting the computations in the middle from an intermediate value s, the idea is now to start from a set of multiple values possessing a special structure that spans several rounds. If the cost of constructing such sets is negligible w.r.t the rest of the computations, the rounds spanned by the structure actually come for free. In more details, a biclique, say for f 3 in the above decomposition of f , is a

set {m, D 1 , D 2 , Q 1 , Q 2 }
where m is a message, D 1 and D 2 are linear spaces of dimension d, and

Q 1 (resp. Q 2) is a list of 2 d values indexed by the differences δ 1 of D 1 (resp. D 2) s.t. ∀(δ 1 , δ 2) ∈ D 1 × D 2 Q 2 [δ 2] = f 3 (m ⊕ δ 1 ⊕ δ 2 , Q 1 [δ 1]). This allows to search the message space m ⊕ D 1 ⊕ D 2 in O(2 d
) with a meet-inthe-middle approach that does not need any call to f 3 , essentially bypassing this part of the decomposition.

Higher-Order Differential Meet-in-The-Middle

We now describe how to modify the framework of §2 to use higher-order differentials. Let us denote by

({α 1 , α 2 }, {β 1 , β 2 }) f -→ p γ the fact that Pr (x,y) f (x ⊕ α 1 ⊕ α 2 , y ⊕ β 1 ⊕ β 2) ⊕ f (x ⊕ α 1 , y ⊕ β 1) ⊕ f (x ⊕ α 2 , y ⊕ β 2) = f (x, y) ⊕ γ = p , meaning that ({α 1 , α 2 }, {β 1 , β 2 }
) is a related-key order-2 differential for f that holds with probability p.

Similarly as in §2, the goal of the attacker is to find four linear subspaces D 1,1 , D 1,2 , D 2,1 , D 2,2 of {0, 1} m in direct sum (cf. equation (5)) such that:

D 1,1 D 1,2 D 2,1 D 2,2 (5)
∀δ 1,1 , δ 1,2 ∈ D 1,1 × D 1,2 ∃ ∆ 1 ∈ {0, 1} v s.t. ({δ 1,1 , δ 1,2 }, {0, 0}) f1 -→ 1 ∆ 1 (6) ∀δ 2,1 , δ 2,2 ∈ D 2,1 × D 2,2 ∃ ∆ 2 ∈ {0, 1} v s.t. ({δ 2,1 , δ 2,2 }, {0, 0}) f2 -1 -→ 1 ∆ 2 . (7
)
Then

M ⊕ δ 1,1 ⊕ δ 1,2 ⊕ δ 2,1 ⊕ δ 2,2 is a preimage of c + p if and only if f 1 (µ ⊕ δ 1,1 ⊕ δ 1,2 ⊕ δ 2,1 ⊕ δ 2,2 , c) = f 2 -1 (µ ⊕ δ 1,1 ⊕ δ 1,2 ⊕ δ 2,1 ⊕ δ 2,2
, p) which is equivalent by the equations (6) and (7) to the equality:

f 1 (µ ⊕ δ 1,1 ⊕ δ 2,1 ⊕ δ 2,2 , p) ⊕ f 2 -1 (µ ⊕ δ 2,1 , ⊕δ 1,1 ⊕ δ 1,2 , c)⊕ f 1 (µ ⊕ δ 1,2 ⊕ δ 2,1 ⊕ δ 2,2 , p)⊕ = f 2 -1 (µ ⊕ δ 2,2 , ⊕δ 1,1 ⊕ δ 1,2 , c)⊕ f 1 (µ ⊕ δ 2,1 ⊕ δ 2,2 , p) ⊕ ∆ 1 f 2 -1 (µ ⊕ δ 1,1 ⊕ δ 1,2 , c) ⊕ ∆ 2 . (8)
We denote by d i,j the dimension of the sub-space D i,j for i, j = 1, 2. Then for a set M of messages µ ∈ {0, 1} m) one can define #M affine sub-sets

µ i ⊕ D 1,1 ⊕ D 1,2 ⊕ D 2,1 ⊕ D 2,2 of dimension d 1,1 + d 1,2 + d 2,1 + d 2,2
(since the sub-spaces D i,j are in direct sum by hypothesis), which can be tested for a preimage using [START_REF] Diffie | Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption Standard[END_REF]. This can be done efficiently by a modification of Alg. 1 into the following Alg. 2.

Analysis of Alg. 2. If we denote by Γ 1 and Γ 2 the cost of evaluating of f 1 and f 2 -1 and Γ match the cost of the test on line 14, then the algorithm allows to test 2 d1,1+d1,2+d2,1+d2,2 messages with a complexity of 2 d1,2+d2,1+d2,2 Γ 2 + 2 d1,1+d2,1+d2,2 Γ 2 +2 d1,1+d1,2+d2,1 Γ 1 +2 d1,1+d1,2+d2,1 Γ 1 +2 d1,1+d1,2 Γ 2 +2 d2,1+d2,2 Γ 1 + Γ match . The algorithm must then be run 2 n-(d1,1+d1,2+d2,1+d2,2) times in order to test 2 n messages. In the special case where all the linear spaces have the same dimension d and if we consider that Γ match is negligible with respect to the total complexity, the total complexity of an attack is then of :

2 n-4d • (2 3d • (2Γ 1 + 2Γ 2) + 2 2d • (Γ 1 + Γ 2)) = 2 n-d+1 Γ + 2 n-2d Γ = O(2 n-d)
where Γ is the cost of the evaluation of the total compression function f . We think that the assumption on the cost of Γ match to be reasonable given the small size of d in actual attacks and the fact that performing a single match is much faster than computing f . The factor that is gained from a brute-force search of complexity O(2 n) is hence of 2 d , which is the same as for Alg. 1. However, one now needs four spaces of differences of size 2 d instead of only two, which might look like a setback. Indeed the real interest of this method does not lie in a simpler attack but in the fact that using higher-order differentials may now allow to attack functions for which no good-enough order-1 differentials are available.

Algorithm 2: Testing µ ⊕ D 1,1 ⊕ D 1,2 ⊕ D 2,1 ⊕ D 2,2 for a preimage Input: D1,1, D1,2, D2,1, D2,2 ⊂ {0, 1} m , µ ∈ {0, 1} m , p, c Output: A preimage of c + p if there is one in µ ⊕ D1,1 ⊕ D1,2, ⊕D2,1 ⊕ D2,2,
⊥ otherwise Data: Six lists: L1,1 indexed by δ1,2, δ2,1, δ2,2 L1,2 indexed by δ1,1, δ2,1, δ2,2 L2,1 indexed by δ1,1, δ1,2, δ2,2 L2,2 indexed by δ1,1, δ1,2, δ2,1 L1 indexed by δ2,2, δ2,1 L2 indexed by δ1,1, δ1,2

1 forall the δ1,2, δ2,1, δ2,2 ∈ D1,2 × D2,1 × D2,2 do 2 L1,1[δ1,2, δ2,1, δ2,2] ← f2 -1 (µ ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, c) ; 3 forall the δ1,1, δ2,1, δ2,2 ∈ D1,1 × D2,1 × D2,2 do 4 L1,2[δ1,1, δ2,1, δ2,2] ← f2 -1 (µ ⊕ δ1,1 ⊕ δ2,1 ⊕ δ2,2, c) ; 5 forall the δ1,1, δ1,2, δ2,2 ∈ D1,1 × D1,2 × D2,2× do 6 L2,1[δ1,1, δ1,2, δ2,2] ← f1 (µ ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,2, p) ; 7 forall the δ1,1, δ1,2, δ2,1 ∈ D1,1 × D1,2 × D2,1 do 8 L2,2[δ1,1, δ1,2, δ2,1] ← f1 (µ ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1, p) ; 9 forall the δ1,1, δ1,2 ∈ D1,1 × D1,2 do 10 L2[δ1,1, δ1,2] ← f2 -1 (µ ⊕ δ1,1 ⊕ δ1,2, c) ⊕ ∆1 ; 11 forall the δ2,1, δ2,2 ∈ D2,1 × D2,2 do 12 L1[δ2,1, δ2,2] ← f1 (µ ⊕ δ2,1 ⊕ δ2,2, p) ⊕ ∆2 ; 13 forall the δ1,1, δ1,2, δ2,1, δ2,2 ∈ D1,1 × D1,2 × D2,1 × D2,2 do 14 if L1,1[δ1,2, δ2,1, δ2,2] ⊕ L1,2[δ1,1, δ2,1, δ2,2] ⊕ L1[δ2,1, δ2,2] = L2,1[δ1,1, δ1,2, δ2,2] ⊕ L2,2[δ1,1, δ1,2, δ2,1] ⊕ L2[δ1,1, δ1,2] then 15 return µ ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2 16 return ⊥
Using probabilistic truncated differentials. Similarly as in §2, Alg. 2 can be modified in order to use probabilistic truncated differentials instead of probability-1 differentials on the full state. The changes to the algorithm and the complexity evaluation are identical to the ones described in §2.2, which we refer to for a description.

4 Applications to SHA-1

Description of SHA-1

SHA-1 is an NSA-designed hash function standardized by the NIST [16]. It combines a compression function which is a block cipher with 512-bit keys and 160-bit messages used in Davies-Meyer mode with a Merkle-Damgård mode of operation [START_REF] Menezes | Handbook of Applied Cryptography[END_REF]Chap. 9]. Thus, the initial vector (IV) as well as the final hash are 160-bit values, and messages are processed in 512-bit blocks. The underlying block cipher of the compression function can be described as follows: let us denote by m 0 , . . . m 15 the 512-bit key as 16 32-bit words. The expanded key w 0 , . . . w 79 is defined as:

w i = m i if i < 16 (w i-3 ⊕ w i-8 ⊕ w i-14 ⊕ w i-16) ≪ 1 otherwise.
Then, if we denote by a, b, c, d, e a 160-bit state made of 5 32-bit words and initialized with the plaintext, the ciphertext is the value held in this state after iterating the following procedure (parametered by the round number i) 80 times:

t ← (a ≪ 5) + Φ i÷20 (b, c, d) + e + k i÷20 + w i e ← d d ← c c ← b ≪ 30 b ← a a ← t,
where '÷' denotes the integer division, Φ 0...3 are four bitwise Boolean functions, and k 0...3 are four constants (we refer to [16] for their definition).

Importantly, before being hashed, a message is always padded with at least 65 bits, made of a '1' bit, a (possibly zero) number of '0' bits, and the length of the message in bits as a 64-bit integer. This padding places an additional constraint on the attacker as it means that even a preimage for the compression function with a valid IV is not necessarily a preimage for the hash function.

One-block preimages without padding

We apply the framework of §3 to mount attacks on SHA-1 for one-block preimages without padding. These are rather direct applications of the framework, the only difference being the fact that we use sets of differentials instead of linear spaces. This has no impact on Alg. 2, but makes the description of the attack parameters less compact.

As was noted in [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF], the message expansion of SHA-1 being linear, it is possible to attack 15 steps both in the forward and backward direction (for a total of 30) without advanced matching techniques: it is sufficient to use a message difference in the kernel of the 15 first steps of the message expansion. When applying our framework to attack more steps (say 55 to 62), we have observed experimentally that splitting the forward and backward parts around steps 22 to 27 seems to give the best results. A similar behaviour was observed by Knellwolf and Khovratovich in their attacks, and this can be explained by the fact that the SHA-1 step function has a somewhat weaker diffusion when computed backward compared to forward.

We use Alg. 3 to construct a suitable set of differences in the preparation of an attack. This algorithm was run on input differences of low Hamming weight; these are kept only when they result in output differences with truncation masks that are long enough and with good overall probabilities. The sampling parameter Q that we used was 2 15 ; the threshold value t was subjected to a tradeoff: the larger it is, the less bits are chosen in the truncation mask, but the better the probability of the resulting differential. In practice, we used values between 2 and 5, depending on the differential considered.

Algorithm 3: Computing a suitable output difference for a given input difference

Input: A chunk f i of the compression function, δi,1, δi,2 ∈ {0, 1} m , a threshold value t, a sample size Q, an internal state c. Output: An output difference S , and a mask TS for the differential

((δi,1, δi,2), 0) f i S
Data: An array d of n counters initially set to 0.

1 for q = 0 to Q do 2 Choose µ ∈ {0, 1} m at random ; 3 ∆ ← f i (µ ⊕ δi,1 ⊕ δi,2, c) ⊕ f i (µ ⊕ δi,1, c) ⊕ f i (µ ⊕ δi,2, c) ⊕ f i (µ, c); 4 for i = 0 to n -1 do 5 if the i th bit of ∆ is 1 then 6 d[i] ← d[i] + 1; 7 for i = 0 to n -1 do 8 if d[i] ≥ t then 9
Set the i-th bit of the output difference S to 1;

Once input and output differences have been chosen, we use an adapted version of Alg. 2 from [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF] given in Alg. 4 to compute suitable truncation masks.

The choice of the size of the truncation mask d in this algorithm offers a tradeoff between the probability one can hope to achieve for the resulting truncated differential and how efficient a filtering of " bad " messages it will offer. In our applications to SHA-1, we chose masks of size about min(log

2 (|D 1,1 |), log 2 (|D 1,2 |), log 2 (|D 2,1 |), log 2 (|D 2,2 |))
, which is consistent with taking masks of size the dimension of the affine spaces as is done in [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF].

We similarly adapt Alg. 3 from [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF] as Alg. 5 in order to estimate the average false negative probability associated with the final truncated differential.

We conclude this section by giving the statistics for the best attacks that we found for various reduced versions of SHA-1 in Table 2, the highest number of attacked rounds being 62. Because the difference spaces are no longer affine, they do not lend themselves to a compact description and their size is not necessarily a power of 2 anymore. The ones we use do not have many elements, however, which makes them easy to enumerate. Table 2. One block preimage without padding. N is the number of attacked steps, Split is the separation step between the forward and the backward chunk, di,j is the log 2 of the cardinal of Di,j and α is the estimate for the false negative probability. The complexity is computed as described in §3.

N

Two-block preimages with padding

We can increase the number of rounds for which we can find a preimage with a properly padded message at the cost of using a slightly longer message of two blocks: if we are able to find one-block pseudo preimages with padding on enough rounds, we can then use the one-block preimage without padding to bridge the former to the IV. Indeed, in a pseudo-preimage setting, the additional freedom degrees gained from removing any constraint on the IV more than compensate for the ones added by the padding. We first describe how to compute such pseudo-preimages.

One-block pseudo-preimages. If we relax the conditions on the IV and do not impose anymore that it is fixed to the one of the specifications, it becomes possible to use a splice-and-cut decomposition of the function, as well as short (properly padded) bicliques. The (reduced) compression function of SHA-1 f is now decomposed into three smaller functions as

f = f 2 t • f 1 • f 3 • f 2 b
, f 3 being the rounds covered by the biclique. The function f 1 covers the steps s 1 to e, f 2 = f 2 t • f 2 b covers s 2 to e + 1 through the feedforward, and f 3 covers s 2 + 1 to s 1 -1, as shown in Figure 1.

f 2 f 1 f 3 s 2 s 2 +1 s 1 -1 s 1 e e+1
Fig. 1. A splice-and-cut decomposition with biclique.

Finding the parameters is done in the exact same way as for the one-block preimage attacks. Since the bicliques only cover 7 steps, one can generate many of them from a single one by modifying some of the remaining message words outside of the biclique proper. Therefore, the amortized cost of their construction is small and considered negligible w.r.t. the rest of the attack. The resulting attacks are shown in Table . 4.

Table 4. One block pseudo-preimage with padding. N is the number of attacked steps, di,j is the log 2 of the cardinal of the set D1,2 and α is the estimation for false negative probability. The various splits are labeled as in Figure 1. The complexity is computed as described in §3. Complexity of the two-block attacks. Using both one-block attacks, it is simple to mount a two-block attack at the combined cost of each of them. For a given target c, one:

1. uses a properly-padded pseudo-preimage attack, yielding the second message block µ 2 and an IV iv ; 2. uses a non-padded preimage attack with target iv , yielding a first message block µ 2 .

From the Merkle-Damgård structure of SHA-1, it follows that the two-block message (µ 1 , µ 2) is a preimage of c.

For attacks up to 60 rounds, we can use the pseudo-preimage attacks of [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF]; for 61 and 62 rounds, we use the ones of this section. This results in attacks of complexities as shown in Table 5.

Table 5. Two-block preimage attacks on SHA-1 reduced to N steps. The pseudopreimage attacks followed by ' ' come from [START_REF] Knellwolf | New Preimage Attacks against Reduced SHA-1[END_REF].

N

Second 5 Applications to BLAKE and BLAKE2

Description of BLAKE

The hash function BLAKE [START_REF] Aumasson | SHA-3 proposal BLAKE, version 1.3[END_REF] was a candidate and one of the five finalists of the SHA-3 competition, that ended in November 2012. Although it was not selected as the winner, no weaknesses were found in BLAKE and it is accepted as being a very secure and efficient hash function [START_REF] De Cannière | Preimages for Reduced SHA-0 and SHA-1[END_REF]. More recently, a faster variant BLAKE2 has been designed [START_REF] Aumasson | BLAKE2: Simpler, Smaller, Fast as MD5[END_REF]; both functions come in two variants with a chaining value of 256 bits (BLAKE-256 and BLAKE2s) and 512 bits (BLAKE-512 and BLAKE2b). The design of BLAKE is somewhat similar to the one of SHA-1, as being built around a compression function in Merkle-Damgård mode.

It does however feature a few notable differences: first, the compression function takes two additional inputs to the message m and the previous chaining value c, in the form of a user-defined salt s and a block counter t. The new chaining value c is thus defined as c h(c, m, s, t); second, the compression function follows the local wide-pipe paradigm which was introduced by BLAKE's predecessor LAKE [START_REF] Aumasson | The Hash Function Family LAKE[END_REF], meaning that the state size of the compression function h is larger than the size of the chaining value c. In particular, this implies that c is first expanded to form the input to h, and that the output of the latter is compressed in order to give c . This feature has some important consequences when analyzing the function and makes some types of attacks harder to perform, as we will see later. We describe BLAKE-512 in more details, and refer to the specification document [START_REF] Aumasson | SHA-3 proposal BLAKE, version 1.3[END_REF] for a full description of the function and of its variants. Similarly, the changes from BLAKE to BLAKE2 having no impact on our overall attack strategy, we refer the reader to the specifications of BLAKE2 for more details [START_REF] Aumasson | BLAKE2: Simpler, Smaller, Fast as MD5[END_REF].

Initialization and finalization of the compression function. The state of the compression function is logically seen as a 4 × 4 array of 64-bit words v 0...15 , making 1024 bits in total. It is initialized from 8 words of incoming chaining value c 0...7 , 4 words of salt s 0...4 , 2 words of counter t 0,1 and 8 words of constant k 0...7 , as shown below:

    v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12 v 13 v 14 v 15     ←     c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 s 0 ⊕ k 0 s 1 ⊕ k 1 s 2 ⊕ k 2 s 3 ⊕ k 3 t 0 ⊕ k 4 t 0 ⊕ k 5 t 1 ⊕ k 6 t 1 ⊕ k 7     .
The outgoing chaining value c 0...7 is defined from the final value of the state v 0...15 , the initial value of the chaining value and the salt as:

c 0 ← c 0 ⊕ s 0 ⊕ v 0 ⊕ v 8 c 4 ← c 4 ⊕ s 0 ⊕ v 4 ⊕ v 12 c 1 ← c 1 ⊕ s 1 ⊕ v 1 ⊕ v 9 c 5 ← c 5 ⊕ s 1 ⊕ v 5 ⊕ v 13 c 2 ← c 2 ⊕ s 2 ⊕ v 2 ⊕ v 10 c 6 ← c 6 ⊕ s 2 ⊕ v 6 ⊕ v 14 c 3 ← c 3 ⊕ s 3 ⊕ v 3 ⊕ v 11 c 7 ← c 7 ⊕ s 3 ⊕ v 7 ⊕ v 15 .
Round function. One round of BLAKE is made of eight calls to a 'quarterround' function G i on part of the state:

G 0 (v 0 , v 4 , v 8 , v 12) G 1 (v 1 , v 5 , v 9 , v 13) G 2 (v 2 , v 6 , v 10 , v 14) G 3 (v 3 , v 7 , v 11 , v 15) G 4 (v 0 , v 5 , v 10 , v 15) G 5 (v 1 , v 6 , v 11 , v 12) G 6 (v 2 , v 7 , v 8 , v 13) G 7 (v 3 , v 4 , v 9 , v 14
) .

There are 16 such rounds for BLAKE-5121 . Furthermore, because the whole state is updated twice during one round (once by G 0.. , with σ a round-dependent permutation of {0 . . . 15}. The padding is nearly the same as for SHA-1. The only difference is that a '1' bit is again systematically appended after the '0' bits (if any). Hence, there are at least 66 bits of padding.

Terminology. As can be seen from the above description, there is an additional initialization phase for the compression function in BLAKE when compared to most hash functions and SHA-1 in particular. We choose to call pseudo-preimage on the compression function a preimage attack that bypasses this initialization and requires complete freedom for the initial 16-word state, yet that does respect the finalization (and thence forms an attack for the same level of security than the compression function, i.e. 512 bits for BLAKE-512). This is a more restrictive model than attacking the underlying block cipher of the compression function in a PGV mode, which would in itself be a significant attack on a building block of the hash function.

Pseudo-preimage on the compression function

If we relax the conditions on the initialization of the compression function, we can use a splice-and-cut approach to mount a pseudo-preimage attack in a straight application of the framework, which we did on the BLAKE(2) family. We note that because of the use of a local-wide-pipe construction, matching in the middle of the compression function has a complexity the square of the actual security level for preimages. Therefore we perform the matching phase right on the output of the compression function.

We mount an attack on the compression function reduced to 7.5 rounds of BLAKE-512 and BLAKE 2b attacking round 0.5 (resp. 0.25) to round 8 (resp. 7.75), and 6.75 rounds of BLAKE-256 and BLAKE2s attacking round 0.75 to round 7.5. We decompose this reduced compression function f as f 1 • f 3 • f 2 . The function f 1 starts at round 5.25 and ends at round 8 (resp. 7.75 for BLAKE2b and 7.5 for BLAKE2s and BLAKE-256), f 2 -1 covers rounds 4 to 0.5 (resp. 0.25 and 0.75) , and f 3 is a biclique covering the 0.75 remaining rounds. Finding the parameters of the attack is done similarly as in §4. Since the biclique covers less than one round, it leaves some of the message words free, which can then be used to generate many similar bicliques. Therefore, the amortized cost of their construction is small and considered negligible w.r.t. the rest of the attack. The only message words with differences are m 2 & m 8 in the forward computation and m 3 & m 11 in the backward computation. As a consequence, the whole message can easily be properly padded.The statistics of the resulting attacks are shown in Table. 6.

Preimage on the hash function

We now adapt the framework to mount a preimage attack for the larger variants of BLAKE and BLAKE2. Because of the quick diffusion of BLAKE's round function (notably due to the fact that every message word is used in every round), we were unsuccessful when searching for difference spaces resulting in a good meetin-the-middle decomposition that simultaneously preserves the initialization of the compression function. Table 6. One block pseudo-preimage without padding on BLAKE-512 and BLAKE2b; di,j is the log 2 of the cardinal of the set Di,j and α is the estimation for false negative probability. The complexity is computed as described in §3. The various splits are labeled as in Figure 1. To overcome this problem, we use a single difference space, in the forward direction only. The use of order-2 differentials proves to be critical at this point, as no gain could be easily obtained otherwise. More precisely, we use differences of the type ({α 1 , α 2 }, {0, 0}) f T p 0, meaning that with probability p over the messages m, f (m)⊕f (m⊕α 1)⊕f (m⊕α 2) ≡ f (m⊕α 1 ⊕α 2) for a truncation mask T . This equality can be used with Alg. 2 modified as Alg. 6 in an attack. The basic idea at play here is that after computing f (m), f (m ⊕ α 1) and f (m ⊕ α 2), one can test the values of f (m ⊕ α 1 ⊕ α 2) for essentially no additional cost. We give an illustration of this process in the full version of the paper [START_REF] Espitau | Higher-Order Differential Meet-in-The-Middle Preimage Attacks on SHA-1 and BLAKE[END_REF]. Analysis of Alg. 6. The test on line 6 can be performed efficiently by using an appropriate data structure (typically a hash table), resulting in overall linear time for the loop on line 5. In line with §2.2, the total complexity of an attack based on this algorithm thus becomes (2 n-d1-d2 (2 d 1 + 2 d 2)Γ + s)/p, where d 1 (resp. d 2) is the dimension of D 1,1 (resp. D 1,2), Γ is the cost of calling f 1 , s the complexity of retesting and p is the average success probability of the order-2 differentials.

Application to BLAKE [START_REF] Aoki | Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1[END_REF]. We introduce the differences at round 5.25 and let them propagate with good probability for 2.75 rounds for BLAKE-512 and BLAKE2b. Like in §5.3 the only message words with differences are m 2 & m 8 in the forward computation and m 3 & m 11 in the backward computation. As a consequence, the whole message can easily be properly padded.The attack parameters are found as before and lead to the attacks in Table 7.

 This algorithm therefore allows to search through 2 2d candidate preimages with a complexity of O(2 d), and thus gives a speed-up of 2 d . The complexity of a full attack is hence O(2 v-d).

 .3 and once by G 4...7), one such update will be called a half-round. The function G i (a, b, c, d) is defined for round r as: 1 : a ← a + b + (m σr(2i) ⊕ k σr(2i+1)) 5 : a ← a + b + (m σr(2i+1) + k σr(2i)) 2 : d ← (d ⊕ a) ≫ 32 6 : d ← (d ⊕ a) ≫ 16 3 : c ← c + d 7 : c ← c + d 4 : b ← (b ⊕ c) ≫ 25 8 : b ← (b ⊕ c) ≫ 11

Function Start s1 e s2 d1, 1

 1

Algorithm 6 :

 6 Testing µ ⊕ D 1,1 ⊕ D 1,2 for a preimageInput: D1,1, D1,2 ⊂ {0, 1} m , µ ∈ {0, 1} m , p, c Output: A preimage if there is one in µ ⊕ D1,1 ⊕ D1,2, ⊥ otherwise Data: Two lists L1, L2 indexed by δ1,2, δ1,1 respectively 1 forall the δ1,2 ∈ D1,2 do 2 L1[δ1,2] ← f1 (µ ⊕ δ1,2, p) 3 forall the δ1,1 ∈ D1,1 do 4 L2[δ1,1] ← f1 (µ ⊕ δ1,1, c) 5 forall the (δ1,1, δ1,2) ∈ D1,1 × D1,2 do 6 if L1[δ1,2] ⊕ L2[δ1,1] ≡ f1 (µ, c) ⊕ c ⊕ p then 7 return µ ⊕ δ1,1 ⊕ δ1,2 8 return ⊥

Table 1 .

 1 Existing and new results on SHA-1 and BLAKE(2) (the complexity is given in base-2 logarithm).

	Function	# blocks # rounds complexity ref.
		1	52	158.4		[12]
		1	52	156.7		§4.3
	SHA-1	1 2	56 57	159.4 158.8		§4.3 [12]
		2	58	157.9		§4.4
		2	62	159.3		§4.4
		1	57	158.7		[12]
	SHA-1, without padding	1	58	157.4		§4.2
		1	62	159		§4.2
		1	60	157.4		[12]
	SHA-1, pseudo-preimage	1	61	156.4		§4.4
		1	64	158.7		§4.4
	BLAKE-512	1 1	2.5 2.75	481 510.3		[14] §5.3
	BLAKE2b	1	2.75	511		§5.3
	BLAKE-256 c.f., pseudo-preimage	1	6.75	253.9		§5.2
	BLAKE-512 c.f., pseudo-preimage	1	7.5	510.3		§5.2
	BLAKE2s c.f., pseudo-preimage	1	6.75	253.8		§5.2
	BLAKE2b c.f., pseudo-preimage	1	12	class) 0	(weak	[10]
		1	7.5	510.3		§5.2

Table 3 .

 3 One block preimage with padding. N is the number of attacked steps, Split is the separation step between the forward and the backward chunk, di,j is the log 2 of the cardinal of Di,j and α is the estimation for false negative probability. The complexity is computed as described in §3.

		Split d1,1 d1,2 d2,1 d2,2 α Complexity
	58	25 7.6 9.0 9.2 9.0 0.73	157.4
	59	25 7.6 9.0 6.7 6.7 0.69	157.7
	60	26 6.5 6.0 6.7 6.0 0.60	158.0
	61	27 4.7 4.8 5.7 5.8 0.51	158.5
	62	27 4.7 4.8 4.3 4.6 0.63	159.0
	N	Split d1,1 d1,2 d2,1 d2,2 α Complexity
	51	23 8.7 8.7 8.7 8.7 0.72	155.6
	52	23 9.1 9.1 8.2 8.2 0.61	156.7
	53	23 9.1 9.1 3.5 3.5 0.61	157.7
	55	25 6.5 6.5 5.9 5.7 0.52	158.2
	56	25 6 6.2 7.2 7.2 0.6	159.4

Table 7 .

 7 The preimage attacks on BLAKE(2); di,j is the log 2 of the cardinal of Di,j and α is the estimate for the false negative probability.

	Function	#rounds d1,1 d1,2 α Complexity
	BLAKE-512	2.75	4.0 9.5 0.6	510.3
	BLAKE2b	2.75	3.1 6.9 0.4	511.0

There are 14 for BLAKE-256, 12 for BLAKE2b and 10 for BLAKE2s.

Partially supported by the Direction Générale de l'Armement and by the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06)

Algorithm 4: Find truncation mask T for matching Input: D1,1, D1,2, D2,1, D2,2 ⊂ {0, 1} m , a sample size Q, a mask size d. Output: A truncation mask T ∈ {0, 1} n of Hamming weight d. Data: An array k of n counters initially set to 0.

10 Set the d bits of lowest counter value in k to 1 in T.

Algorithm 5: Estimate the average false negative probability

One-block preimages with padding

If we want the message to be properly padded, 65 out of the 512 bits of the last message blocks need to be fixed according to the padding rules, and this naturally restricts the positions of where one can now use message differences. This has in particular an adverse effect on the differences in the backward step, which Hamming weight increases because of some features of SHA-1's message expansion algorithm. The overall process of finding attack parameters is otherwise unchanged from the non-padded case. We give statistics for the best attacks that we found in Table 3. One will note that the highest number of attacked rounds dropped from 62 to 56 when compared to Table 2.