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Abstract. As the advent of general-purpose quantum computers appears to be drawing closer,
agencies and advisory bodies have started recommending that we prepare the transition away from
factoring and discrete logarithm-based cryptography, and towards postquantum secure constructions,
such as lattice-based schemes.
Almost all primitives of classical cryptography (and more!) can be realized with lattices, and the
efficiency of primitives like encryption and signatures has gradually improved to the point that key
sizes are competitive with RSA at similar security levels, and fast performance can be achieved both
in software and hardware. However, little research has been conducted on physical attacks targeting
concrete implementations of postquantum cryptography in general and lattice-based schemes in par-
ticular, and such research is essential if lattices are going to replace RSA and elliptic curves in our
devices and smart cards.
In this paper, we look in particular at fault attacks against some instances of the Fiat-Shamir family
of signature scheme on lattices (BLISS, GLP, TESLA and PASSSign) and on the GPV scheme,
member of the Hash’n Sign family. Some of these schemes have achieved record-setting efficiency
in software and hardware. We present several possible fault attacks, one of which allows a full key
recovery with as little as a single faulty signature, and discuss possible countermeasures to mitigate
these attacks.

Keywords: Fault Attacks, Digital Signatures, Postquantum Cryptography, Lattices, BLISS.

1 Introduction

Recent progress in quantum computation [DBI+15], the NSA advisory memorandum recommending the
transition away from Suite B and to postquantum cryptography [NSA16], as well as the announcement
of the NIST standardization process for postquantum cryptography [CJL+16] all suggest that research
on postquantum schemes, which is already plentiful but mostly focused on theoretical constructions and
asymptotic security, should increasingly take into account real world implementation issues.

Among all postquantum directions, lattice-based cryptography occupies a position of particular interest,
as it relies on well-studied problems and comes with uniquely strong security guarantees, such as worst-case
to average-case reductions [Pei15]. A number of works have also focused on improving the performance of
lattice-based schemes, and actual implementation results suggest that properly optimized schemes may be
competitive with, or even outperform, classical factoring- and discrete logarithm-based cryptography.
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Among the possible signatures schemes, one can devise schemes provable in the random oracle model
into two categories. One the one hand the ones constructed using the Full Domain Hash (FDH) approach,
and on the other hand schemes built with the Fiat-Shamir technique. This work focuses on the study
of the effect of Loop abort faults type for both of the construction types, in the general framework of
lattice-based cryptography. More precisely, we get interested in four instances of the Fiat-Shamir family:
BLISS, PASSSign, GLP and TESLA, and one instance of the Hash’n Sign family: GPV. BLISS (Bimodal
Lattice Signature Scheme) is a lattice-based signature scheme that incorporates many of the performance
improvements geared towards reducing parameter sizes without security compromises, by careful analysis
of the hardness of the underlying problems and of the statistical properties of the randomness distributions
involved. It has been proposed by Ducas et al. in [DDLL13], building upon the previous signature scheme
of Lyubashesky [Lyu12], and it has been implemented in hardware by Pöppelmann et al. in a paper
presented at CHES 2014 [PDG14]. The Lyubashevsky signature scheme had also been implemented in
hardware at CHES 2012 by Güneysu et al. [GLP12]. Both signature schemes are interesting targets for
the cryptanalyst, since they are actually designed with real world practicality in mind, and have been the
subject of concrete implementation efforts. PASSSign is signature scheme developed as a variant of the
PASS and PASS-2 signatures, introduced by Hoffstein et al. in 2014 ACNS paper [HPS+14]. Its hardness
is based on the problem of recovering a ring element with small norm from an incomplete description of
its Chinese remainder representation. Eventually, TESLA was introduced by Alkim et al. in [ABBD15] as
a tightly secure scheme based on the learning with errors (LWE) problem.

The literature on the underlying number-theoretic problems of lattice-based cryptography is extensive
(even though concrete bit security is not nearly as well understood as for factoring and discrete logarithms;
in addition, ring-based schemes have recently been subjected to new families of attacks that might eventu-
ally reduce their security, especially in the postquantum setting). On the other hand, there is currently a
distinct lack of cryptanalytic results on the physical security of implementations of lattice-based schemes
(or in fact, postquantum schemes in general! [TE15]). It is well-known that physical attacks, particularly
against public-key schemes, are often simpler, easier to mount and more devastating than attacks targeting
underlying hardness assumptions: it is often the case that a few bits of leakage or a few fault injections
can reveal an entire secret key (the well-known attacks from [BDL01,BMM00] are typical examples). We
therefore deem it important to investigate how fault attacks may be leveraged to recover secret keys in
the lattice-based setting, particularly against some Lattice-Based signatures.

Our contributions. In this work, we initiate the study of fault attacks against lattice-based signature
schemes. Early lattice-based signature schemes with heuristic security have been broken using standard
attacks [GJSS01,GS02,NR09] but recent signature schemes [GPV08,Lyu09,Lyu12,DDLL13] are provably
secure, and cryptanalysis probably requires a more powerful attack model. We therefore look at fault
attacks. To the best of our knowledge, the only previous work in that direction is a fault attack against
NTRUSign [HHP+03], due to Kamal and Youssef [KY12]. It is, however, of limited interest since NTRUSign
is known to be broken [NR09,DN12]; it also suffers from a very low probability of success.

In this work, we consider faults against implementations of the Fiat-Shamir representents, both on the
software [Lyu12,DDLL13] and hardware [GLP12,PDG14], and a single fault attack on the GPV scheme of
the Hash’n Sign family. For both families, we present new fault attacks, the main idea of which is that some
polynomials are generated coefficient by coefficient, and thus, we may use faults to abort the generation
loop early. Similar fault attacks have been described on DSA [NNTW05] or pairing computations [PV06].
Using such faults, our first attack uses LLL to solve a closest vector problem in a lattice, and using a single
successful faulty signature makes it possible to recover the entire secret key. The second attack on [GLP12]
uses only a single fault and also relies on lattice reduction techniques to exploit this fault. We then take a
closer look at the concrete software and hardware implementations, discuss how we can inject the required
faults in practice, and propose countermeasures.

Organization of the paper. In Section 2, we give a basic description of the five schemes attacked (GLP,
BLISS, PASSSign, TESLA on the one hand, and GPV on the other). In Section 3, we present all our fault
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attacks on these latter schemes and in Section 4 we explain how we can inject the required faults in the
concrete implementations. Finally, Section 5 is devoted to possible countermeasures.

2 Description of the considered Lattice-Based Signatures

2.1 Notation, Gaussian distributions and hardness assumptions

For any integer q, we represent the ring Zq by [−q/2, q/2) ∩ Z. For any ring R, we denote its quotient
ring by Rq as the ring R/(qR). The BLISS signature scheme uses two quotient rings Rq = Zq[x]/(xn + 1)
and R2q = Z2q[x]/(xn + 1) where n is a power of two and q is a prime such that q = 1 (mod 2n). The
elements of Rq can be represented by polynomials of degree n − 1 with coefficients in the range Zq. We
define B = {0, 1} and Bnw the set of binary vectors of length n and Hamming weight w (i.e. vectors with
exactly w out of n non-zero bits). Vectors are considered as column vectors and will be written in bold
lower case letters and matrices with upper case letters. By default, we will use the `2 Euclidean norm,
‖v‖2 = (

∑
i v

2
i )1/2 and `∞-norm as ‖v‖∞ = maxi |vi|.

The Gaussian distribution with standard deviation σ ∈ R and center c ∈ R at x ∈ R, is defined by

ρc,σ(x) = exp
(−(x−c)2

2σ2

)
and more generally by ρc,σ(x) = exp

(−(x−c)2
2σ2

)
and when c = 0, by ρσ(x). The

discrete Gaussian distribution over Z centered at 0 is defined by Dσ(x) = ρσ(x)/ρσ(Z) (or DZ,σ) and more
generally over Zm by Dm

σ (x) = ρσ(x)/ρσ(Zm).
All the constructions in this paper are based on the hardness of the generalized SIS (Short Integer

Solution) problem, which is connected to hard lattices problems.

Definition 1. (R − SISKq,n,m,β problem). Let R be some ring and K be some distribution over Rn×mq ,
where Rq is the quotient ring R/(qR). Given a random A ∈ Rn×mq drawn according to the distribution K,
find a non-zero v ∈ Rmq such that Av = 0 and ‖v‖2 ≤ β.

If R = Z and K be the uniform distribution, then the resulting problem is the classical SIS problem
first defined by Ajtai in his seminal paper [Ajt96] showing connections between worst-case lattice problems
and the average-case SIS problem. If β ≥

√
mqn/m, the SIS instances are guaranteed to have a solution.

In [LM08], Lyubashevsky and Micciancio show that if R = Zq[x]/(xn + 1) with n a power of 2, then the

R− SISKq,n,m,β problem is as hard as the Õ(
√
nβ)− SVP problem in all lattices that are ideal in R (where

K is the uniform distribution over R1×m
q ).

Another hardness assumption used in the security reduction of some of the schemes presented in this
paper is the LWE (learning with errors) problem. We first start by defining the LED which is the probability
distribution used in the definition of the LWE problem.

Definition 2. (LWEq,n,m,ξ distribution). Let n,m, q > 0 integers and ξ a distribution over Z. We define
by Ds,ξ LWE distribution which outputs (a, 〈a, s〉 + e) ∈ Znq × Zq, where a is drawn uniformly at random
in Znq and e under ξ.

We are now able to define the LWE problem — in its decisional version since it will be the only one
used in the security reduction —.

Definition 3. (LWEq,n,m,ξ problem) Let n,m, q > 0 be integers and ξ be a distribution over Z. Moreover,
define Oξ to be an oracle, which upon input vector s ∈ Znq returns samples from the distribution Ds,ξ. The
decisional learning with errors problem LWEn,m,q,ξ is (t, ε)-hard if for any algorithm A, running in time
t and making at most m queries to its oracle, we have∣∣∣Pr[AOξ(s)(·) = 1]− Pr[AU(Z

n
q×Zq)(·) = 1]

∣∣∣ ≤ ε
where the probabilities are taken over s ← U(Znq ) and the random choice of the distribution Ds,ξ, as well
as the random coins of A.
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2.2 Description of the Lyubashevsky signature scheme

In [Lyu12], Lyubashevsky describes a signature scheme proved secure in the random-oracle model which
is an alternative to hash-and-sign methodology of Gentry et al. in [GPV08]. Gentry, Peikert and Vaikun-
tanathan were the first to propose a signature scheme whose security is based on the hardness of worst-
case lattice problems, while Lyubashevsky and Micciancio present a one-time signature scheme based on
the hardness of worst-case ideal lattice problems [LM08]. Lyubashevsky propose a Fiat–Shamir frame-
work [FS86] using rejection sampling technique in [Lyu09]. Both signature schemes are inefficient in prac-
tice: [GPV08] requires megabytes long signature and [Lyu09] needs 60,000 bits for reasonable parameters.

Many previous lattice-based signature schemes have been broken since information about the secret key
leaks in every signature [GJSS01,GS02,NR09,DN12]. Consequently, the basic idea of the Lyubashevsky and
BLISS signature schemes is to use the rejection sampling so that the distribution output is independent of
the secret key. This signature scheme is proved secure on the hardness of the ring version of `2−SISq,n,m,β .

In the following, we describe the version of Güneysu et al. in [GLP12] which is a particular instantiation
of the ring version of Lyubashevsky signature as presented in Section 7 in [Lyu12]. We denote by Rq,k the
subset of Rq that consists of all polynomials with integer coefficients in the interval [−k; k]. The hardness
assumption of [GLP12] is that (a, t) ∈ Rq × Rq where a is chosen uniformly in Rq and t = as1 + s2
with s1 and s2 uniformly chosen in Rq,k is indistinguishable from (a, t) uniformly chosen in Rq × Rq.
When

√
q < k, the solution (s1, s2) is not unique and finding one of them is as hard as worst-case lattice

problems in ideal lattices [LM06,PR06]. In [LPR13], it was shown that if si are chosen according a Gaussian
distribution instead of a uniform one, then recovering the si given (a, t) is as hard as solving worst-case
lattice problems using a quantum computer. In the following our attacks do not take into account the way
the secret key is generated and work in all cases.

2.3 Description of BLISS

The BLISS signature scheme is a more efficient version of Lyubashevsky signature scheme. The rejection
sampling has been optimized so that the number of times we need to reject is diminished using a bimodal
distribution. The key generation has also been updated to generate the si using NTRU ideas. We do
not define the parameter Nκ(S) (the interested reader can read it in [DDLL13]), used only in the key
generation algorithm, which is a technical parameter that is not important in our attacks. Finally, the z2
is compressed in z†2 in BLISS, but since our attack does not involve this value, we do not describe how the
compression works. The value ζ is defined as ζ · (q − 2) = 1 mod 2q. The only modification important for
us is that H as now range {v : v ∈ Bn, ‖v‖1 ≤ κ}.

2.4 Description of the PASSSign signature scheme

PASSSign is a signature scheme introduced by Hoffstein et al. in [HPS+14]. This scheme is a variant of the
PASS and PASS-2 scheme from the same authors, adding the rejection sampling technique of Lyubashevsky
from 2009. Its hardness is based on the problem of recovering a ring element with small norm from an
incomplete description of its Chinese remainder representation.

We follow in its description the original presentation and notation of [HPS+14]. Computations are
made in the ring Zq[x]/(xN − 1). On that ring, we define B∞q the subset of polynomials whose coefficients

lie in [−k, k]. Given g a primitive N−th root of unity in Zq, Ω a subset of {gi|1 ≤ i ≤ N−1}, we define the

mapping FΩ : Zq[x]/(xN − 1)→ Z|Ω|q consisting on the multi-evaluation of a polynomial on the elements
of Ω. The image a a polynomial f by FΩ will be simply denoted by f |Ω . The function FormatC maps the
set of bitstrings output by the Hash function H into a set of sparse polynomials. Once again, since its
details are not mandatory when mounting the attack, we let the interested reader to refer to the original
paper for an in-depth description.
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Signing Key: s1, s2 ∈ Rq,1 where each coefficient of every si is chosen uniformly and independently from {−1, 0, 1}
Verification Key: (a, t) where a←Rq and t = as1 + s2
Random Oracle: H : {0, 1}∗ → {v : v ∈ {−1, 0, 1}n, ‖v‖1 ≤ κ} with κ = 32

1: function Sign(µ,a, s1, s2)
2: y1,y2 ←Rq,k
3: c = H(ay1 + y2, µ)
4: z1 = s1c + y1, z2 = s2c + y2

5: If z1 or z2 6∈ Rq,k−32, goto 1
6: return (z1, z2, c)
7: end function

1: function Verify(µ, z1, z2, c,a, t)
2: Accept iff z1 and z2 ∈ Rq,k−32 and c = H(az1 +

z2 − tc, µ)
3: end function

Fig. 1. Lyubashevsky or [GLP12] signature scheme based on Ring `2−SISq,n,m,β .Two sets of parameters for (n, q, k)
are given for estimated security of 100 and 256 bits: Set I (512, 8383489, 214) for a 8,950-bit signature, 1620-bit
secret key and 11800-bit public key and Set II (1024, 16760833, 215) for a 18800-bit signature, 3250-bit secret key
and 25000-bit public key.

1: function KeyGen()
2: Choose f ,g as uniform polynomials with exactly d1 = dδ1ne entries in {±1} and d2 = dδ2ne entries in {±2}
3: S = (s1, s2)T ← (f , 2g + 1)T

4: If Nκ(S) ≥ C2 · 5 · (dδ1ne+ 4dδ2ne) · κ then restart
5: aq = (2g + 1)/f mod q (restart if f is not invertible)
6: return (pk = A, sk = S) where A = (a1 = 2aq, q − 2) mod 2q
7: end function

1: function Sign(µ, pk = A, sk = S)
2: y1,y2 ← Dn

Z,σ
3: u = ζ · a1 · y1 + y2 mod 2q
4: c← H(bued mod p, µ)
5: Choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: Continue with probability

1/
(
M exp(−‖Sc‖/(2σ2)) cosh(〈z,Sc〉/σ2

)
other-

wise restart
9: z†2 ← (bued − bu− z2ed) mod p

10: return (z1, z
†
2, c)

11: end function

1: function Verify(µ,A, (z1, z
†
2, c))

2: If ‖(z1|2d · z†2)‖2 > B2 then Reject
3: If ‖(z1|2d · z†2)‖∞ > B∞ then Reject
4: Accept iff c = H(bζ ·a1 ·z1 + ζ · q ·ced+z†2 mod
p, µ)

5: end function

Fig. 2. BLISS Signature Scheme. Four different sets of parameters are proposed with security levels at least
128 bits. The interesting parameters for us are: n = 512, q = 12289, σ ∈ {215, 107, 250, 271}, (δ1, δ2) ∈
{(0.3, 0), (0.42, 0.03), (0.45, 0.06)} and κ ∈ {23, 30, 39}, resulting in signature size around 5kb, secret key size around
2kb and 3kb and public key size of 7kb.
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Public Parameters: g a primitive N − th root of unity in Zq, Ω a subset of {gi|1 ≤ i ≤ N − 1}, t its cardinal, k the
infinity norm of noise polynomials, and b the 1-norm of challenge polynomials.
Signing Key: Secret f ∈ Zq[X]/(Xn − 1) of small norm. t = as1 + s2
Random Oracle: H : Ztq × {0, 1}∗ → {0, 1}l
1: function Sign(µ, f)
2: y← B∞k
3: h = H(y|Ω , µ)
4: c = FormatC(h)
5: If z 6∈ B∞k−b, goto 1
6: return (c, z, µ)
7: end function

1: function Verify(µ, c, z, c, f |Ω)
2: Accept iff z2 ∈ B∞k−b and c = FormatC(H(z|Ω −

f · c|Ω , µ))
3: end function

Fig. 3. PASSSign signature. Two sets of parameters for (n, q, k) are given for estimated security of 100 and 128
bits: Set I (769, 1047379, 215 − 1) for a 12624-bit signature, 1600-bit secret key and 7720-bit public key and Set II
(1152, 968521, 215 − 1) for a 18800-bit signature, 2000-bit secret key and 12000-bit public key.

2.5 Description of the TESLA signature scheme

The TESLA scheme is a variation of the BG scheme presented in [Ben14], initially modified by Dagdelen
et al. in [DBG+14] at LATINCRYPT 14, allowing to get rid of the forking lemma in their security analysis.

On the contrary of the two previous presented schemes, the TESLA signatures works directly on vectors
— and no more on the additional algebraic structure provided by the use of polynomials —. The matrix
A used in the scheme is publicly known and can be seen as a global constant shared by arbitrary many
users. The CheckE function is fully described in the original paper from Dagdelen et al [DBG+14] and
ensures mandatory properties to preserves that the signature remains short. Once again, we do not fully
describe it here since its details are irrelevant for our attacks. We conclude this presentation by noting that
the security proof uses the hardness of the LWE problem. Its specificity is to avoid the use of the Forking
Lemma proposed by Pointcheval and Stern in [PS96].

2.6 GPV Signature Scheme

This signature is described in [DLP14] by Ducas, Lyubashevsky and Prest and derived from an IBE scheme.

We denote here by f̄ = f0 −
∑n−1
i=1 fn−ix

i where f =
∑n−1
i=0 fix

i and by B the matrix B =

(
Mg −Mf

MG −MF

)
,

where F and G are defined by fG− gF = q and Ma represents the matrix of the multiplication in R by
the element a, which is anticirculant of dimension n.
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Public parameters: A ∈ Zm×nq ,m, n ∈ Z.
Encoding Function: F : {0, 1}κ → Bn,ω, space of vectors length n and weight ω. Random Oracle:
H : {0, 1}∗ → {0, 1}κ.

1: function KeyGen()
2: S← Dn×n

σ

3: E← Dn×n
σ

4: If not CheckE(E) then Restart
5: return (pk = T, sk = (S,E)) where T = (AS + E mod q
6: end function
1: function Sign(µ, pk = A, sk = S)
2: y←$ [−B;B]n

3: v = Ay mod q
4: c← H(bved, µ)
5: c← F (c)
6: z← y + sc
7: w← v −Ec mod q
8: If |[wi]2d | > 2d−1 − L or ‖z‖∞ > B − U then

Restart.
9: return (z, c)

10: end function

1: function Verify(µ,A, (z1, z
†
2, c))

2: c← F (c)
3: w′ ← Az−Tc mod q
4: c′ ← H(bw′ed, µ) Accept iff c′ = c and
‖z‖∞ ≤ B − U

5: end function

Fig. 4. TESLA Signature Scheme. A set of parameters are proposed with security level at least 128 bits. The
interesting parameters for us are: κ = 128, n = 416, m = 800, q = 227 − 39, σ = 114, U = 7138, d = 24, ω = 20,
L = 6042. The resulting signature size around 10.24kb, secret key size around 1Mb and public key size of 1.33Mb.

3 Description of our attacks

In this section we describe two different fault attacks against the previously described signature schemes.
The first attack on all the schemes consists in reducing the polynomial y1 to only a few monomials (say
64 or 128 among 512) and allows to recover s1 with an efficient lattice attack. The second fault attack is
aimed against the GPV scheme, targeting the vector s of the signature with an early abort of a generation
loop.

Both of our attacks have been validated using a proof-of-concept implementation in Sage [Dev16]. The
implementation is attached to this paper as supporting material for the reviewers’ perusal.

4 Attack on y1

Due to the obvious similarities between the four instances of the Fiat-Shamir family that we choose to
attack, we only give details of the attack on the BLISS scheme.

The first fault attack that we consider, which is also the more devastating one, targets the generation
of the random “commitment” element y1, in both the original Lyubashevsky signature scheme and in
BLISS. For simplicity’s sake, we introduce the attack against BLISS in particular, but it works against
other variants of Lyubashevsky signatures with almost no changes.

Intuitively, y1 should mask the secret key element s1 in the relation z1 = ±s1c + y1, and therefore
modifying the distribution of y1 should cause some information about s to leak in signatures. The actual
picture in the Fiat–Shamir with aborts paradigm is in fact slightly different (namely, rejection sampling
ensures that the distribution of z1 is independent of s1, but only does so under the assumption that y1

follows the correct distribution), but the end result is the same: perturbing the generation of y1 should
lead to secret key leakage.
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Basis: B ∈ Zn×n of a n-dimensional lattice L, standard deviation σ > 0, center c ∈ Zn
v sampled in DL,σ,c
1: function GaussianSampler(B, σ, c)
2: vn ← 0
3: cn ← c
4: for i← {n, . . . , 1} do
5: c′i ← 〈ci, b̃i〉/||b̃i||2
6: σ′i ← σ/||b̃i||
7: zi ← SampleZ(σ′i, c

′
i)

8: ci−1 ← zibi and vi−1 ← vi + zibi
9: end for

10: return v0

11: end function

1: function KeyGen(n, q)
2: σf = 1.17

√
q/(2n)

3: f ,g← Dn,σf
4: Norm ← max ‖(g,−f)‖, ‖( qf̄

f f̄+gḡ
, qḡ

f f̄+gḡ
)‖)

5: if Norm> 1.17
√
q, go to step 3

6: Using extended euclidean algo, compute ρf , ρg ∈ R and Rf , Rg ∈ Z s.t.
– ρf · f = Rf mod (xn + 1)
– ρg · g = Rg mod (xn + 1)

7: if gcd(Rf , Rg) 6= 1 or gcd(Rf , q) 6= 1, go to step 3
8: Using extended euclidean algorithm, compute u, v ∈ Z s.t. u ·Rf + v ·Rg = 1
9: F← qvρg,G← −quρf

10: while k 6= 0 do

11: k =

⌊
F·̄f+G·̄f
f f̄+gḡ

⌉
∈ R

12: Reduce F and G: F← F− k · f ,G← G− k · g
13: end while
14: h = g · f−1 mod q
15: return sk = (f ,g,F,G), pk = h s.t. f · h = g mod q and fG− gF = q
16: end function

Fig. 5. The function SampleZ(σ′, c′) samples a 1-dimensional Gaussian DZ,σ′,c′ .

Signing Key: f ,g ∈ Rq,1 where each coefficient is chosen uniformly and independently from {-1,0,1}
Verification Key: h ∈ Rq where g = fh mod q
Random Oracle: H : {0, 1}∗ → Znq

1: function Sign(µ,B)
2: c← H(µ) ∈ Znq
3: (z1, z2)← (c,0)−GaussianSampler(B, σ, (c,0)) . z1 + z2 · h = t
4: return (z1, z2, c)
5: end function

1: function Verify(µ, z1, z2, c,h)
2: Accept iff z1 + z2 · h = H(µ) and ||(z1, z2)|| ≤ 1.17

√
q

3: end function

Fig. 6. IBE Sign [DLP14] signature scheme.

Concretely speaking, in BLISS, y1 ∈ Rq is a ring element generated according to a discrete Gaussian
distribution5, and that generation is typically carried out coefficient by coefficient in the polynomial rep-

5 In the scheme of [GLP12], the distribution of each coefficient is uniform in some interval, but this doesn’t affect
our attack strategy at all.
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resentation. Therefore, if we can use faults to cause an early termination of that generation process, we
should obtain signatures in which the element y1 is actually a low-degree polynomial. If the degree is low
enough, we will see that this reveals the whole secret key right away, from a single faulty signature!

Indeed, suppose that we can obtain a faulty signature generated from an element y1 of degree m� n.
We get in particular the pair (c, z1) with z1 = (−1)bs1c + y1. Without loss of generality, we may assume
that b = 0 (we will recover the whole secret key only up to sign, but in BLISS, (s1, s2) and (−s1,−s2) are
clearly equivalent secret keys). Moreover, with high probability, c is invertible: if we heuristically assume
that c behaves like a random element of the ring from that standpoint, we expect it to be the case with
probability about (1−1/q)n, which is over 95% for all proposed BLISS parameters. We thus get an equation
of the form:

c−1z1 − s1 ≡ c−1y1 ≡
m∑
i=0

y1,ic
−1xi (mod q) (1)

Thus, the vector v = c−1z1 is very close to the sublattice of Zn generated by wi = c−1xi mod q for
i = 0, . . . ,m and qZn, and the difference should be s1.

The previous lattice is of full rank in Zn, so the dimension is too large to apply lattice reduction directly.
However, the relation given by equation (1) also holds for all subsets of indices. More precisely, let I be a
subset of {0, . . . , n− 1}, and ϕI : Zn → ZI be the projection (ui)0≤i<n 7→ (ui)i∈I . Then we also have that
ϕI(z1) is a close vector to the sublattice LI of ZI generated by qZI and the images under ϕI of the wi’s;
and the difference should be ϕ(s1).

Equivalently, using Babai’s nearest plane approach to the closest vector problem, we hope to show that(
ϕI(s1), B

)
, for a suitably chosen positive constant B, is the shortest vector in the sublattice L′I of ZI ×Z

generated by
(
ϕI(v), B

)
as well as the vectors

(
ϕI(wi), 0

)
and qZI × {0}.

The volume of L′I is given by:

vol(L′I) = B · vol(LI) = B · vol(qZI)
[LI : qZI ]

= Bq`−r

where ` is the cardinality of I and r is the rank of the family
(
ϕI(w0), . . . , ϕI(wm)

)
in ZIq , which is at most

m + 1. Hence vol(L′I) ≥ Bq`−(m+1), and the Gaussian heuristic predicts that the shortest vector should
be of norm:

λI ≈
√
`+ 1

2πe
· vol(L′I)

1/(`+1) &

√
`+ 1

2πe
·B1/(`+1)q1−(m+2)/(`+1).

Thus, we expect that
(
ϕI(s1), B

)
will actually be the shortest vector of L′I provided that its norm is

significantly smaller than this bound λI . Now ϕI(s1) has roughly δ1` entries equal to ±1, δ2` entries equal
to ±2 and the rest are zeroes; therefore, the norm of

(
ϕI(s1), B

)
is around

√
(δ1 + 4δ2)`+B2. Let us

choose B = d
√
δ1 + 4δ2e. The condition for s1 to be the shortest vector LI can thus be written as:

√
(δ1 + 4δ2) · (`+ 1)�

√
`+ 1

2πe
·B1/(`+1)q1−(m+2)/(`+1)

or equivalently:

`+ 1 &
m+ 2 + log

√
δ1+4δ2

log q

1− log
√

2πe(δ1+4δ2)

log q

. (2)

The denominator of the right-hand side of (2) ranges from about 0.91 for the BLISS–I and BLISS–II
parameter sets down to about 0.87 for BLISS–IV. In all cases, we thus expect to recover ϕI(s1) if we can
solve the shortest vector problem in a lattice of dimension slightly larger than m. This is quite feasible
with the LLL algorithm for m up to about 50 or 60, and with BKZ for m up to 100 or so.
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To complete the attack, it suffices to apply the above to a family of subsets I of {0, . . . , n− 1} covering
the whole set of indices, which reveals the entire vector s1. The second component of the secret key is then
obtained as s2 = a1s1/2 mod q.

Remark 1. A variant of that attack which is possibly slightly simpler consists in observing that ϕI(s1)
should be the shortest vector in the lattice generated by LI and ϕI(v). The bound on the lattice dimension
becomes essentially the same as (2). The drawback of that approach, however, is that we obtain each ϕI(s1)
up to sign, and so one needs to use overlapping subsets I to ensure the consistency of those signs.

Remark 2. Note that a single faulty signature is enough to recover the entire secret key with this attack,
a successful key recovery may require several fault injections. This is due to rejection sampling: after a
faulty y1 is generated, the whole signature may be thrown away in the rejection step. On average, the fault
attacker may thus need to inject the same number of faults as the repetition rate of the scheme, which is a
small constant ranging from 1.6 to 7.4 depending on chosen parameters [DDLL13], and even smaller with
the improved analysis of BLISS–B [Duc14].

Remark 3. Finally, we note that in certain hardware settings, fault injection may yield a faulty value of y1

in which all coefficients upwards of a certain degree bound are non zero but equal to a common constant
(see the discussion in Section 6.3). Our attack adapts to that setting in a straightforward way: that simply
means that y1 is a linear combination of the xi for small i and of the all-one vector (1, . . . , 1), so it suffices
to add that vector to the set of lattice generators.

5 Attack on the GPV scheme

Our second attack targets the practical hash-and-sign signature scheme of Ducas, Lyubashevsky and
Prest [SI14], which is based on GPV-style lattice trapdoors. More precisely, the faults we consider are again
early loop aborts, this time in the lattice-point Gaussian sampling routine used in signature generation.

5.1 Description of the attack

The attack can be described as follows. A correctly generated signature element is of the form z =
R · f + r · F ∈ Z[x]/(xn + 1), where the short polynomials f and F are components of the secret key, and
r,R are short random polynomials sampled in such a way that z follows a suitable Gaussian distribution.
In fact, r,R are generated coefficient by coefficient, in a single loop with 2n iterations, going from the
top-degree coefficient of r down to the constant coefficient of R.

Therefore, if we inject a fault aborting the loop after m ≤ n iterations (in the first half of the loop),
the resulting signature simply has the form:

z = r0x
n−1F + r1x

n−2F + · · ·+ rm−1x
n−mF.

Any such faulty signature is, in particular, in the lattice L of rank m generated by the vectors xm−iF,
i = 1, . . . ,m, in Z[x]/(xn + 1).

Suppose then that we obtain several signatures z(1), . . . , z(`) of the previous form. If ` is large enough
(slightly more than m is sufficient; see §5.2 below for an analysis of success probability depending on `),
the corresponding vectors will then generate the lattice L. Assuming the lattice dimension is not too large,
we should then be able to use lattice reduction to recover a shortest vector in L, which is expected to be
one of the signed shifts ±xm−iF, i = 1, . . . ,m, since the polynomial F is constructed in a such a way as
to make it quite short relative to the Gram–Schmidt norm of the ideal lattice it generates. Hence, we can
recover F among a small set of at most 2m candidates.

And recovering F is actually sufficient to reconstruct the entire secret key (f ,g,F,G), and hence
completely break the scheme. This is due to the particular structure of the NTRU lattice. On the one
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hand, G is linked to F via the public key polynomial h: G = F · h mod q, so we obtain it directly. On the
other hand, the basis completion algorithm of Hoffstein et al. [HHP+03] allows to recover the pair (f ,g)
from (F,G) via the defining relation f ·G − g · F = q. This is actually used in the opposite direction in
the key generation algorithm of the scheme of Ducas et al. (i.e. they construct (F,G) from (f ,g)), but
applying [HHP+03, Theorem 1], the technique is easily seen to work in both ways.

Moreover, if we start from a polynomial of the form ζF where ζ is of the form ±xα, then applying
the previous steps yields the quadruple (ζf , ζg, ζF, ζG), which is also a valid secret key equivalent to
(f ,g,F,G), in the sense that signing with either keys produces signatures with exactly the same distribu-
tions. Thus, we don’t even need to carry out an exhaustive search on several possible values of F after the
lattice reduction step: it suffices to use the first vector of the reduced basis directly.

5.2 How many faults do we need?

Let us analyze the probability of success of the attack depending on the iteration m at which the iteration
is inserted and the number ` > m of faulty signatures z(i) available. As we have seen, a sufficient condition
for the attack to succeed (provided that our lattice reduction algorithm actually finds a shortest vector)
is that the ` faulty signatures generate the rank-m lattice L defined above. This is not actually necessary
(the attack works as soon as one of the shifts of F is in sub-lattice generated by the signatures, rather
than all of them), but we will be content with a lower bound on the probability of success.

Now, that condition is equivalent to saying that the ` random vectors (r
(i)
0 , . . . , r

(i)
m−1) ∈ Zm (sampled

according to the distribution given by the GPV algorithm) that define the faulty signatures:

z(i) = r
(i)
0 xn−1F + · · ·+ r

(i)
m−1x

n−mF

generate the whole integer lattice Zm. But the probability that ` > m random vectors generate Zm has
been computed by Maze, Rosenthal and Wagner [MRW11] (see also [FW14]), and is asymptotically equal

to
∏`
k=`−m+1 ζ(k)−1. In particular, if ` = m+ d for some integer d, it is bounded below by:

pd =

+∞∏
k=d+1

1

ζ(k)
.

Thus, if we take ` = m+ 1 (resp. ` = m+ 2, ` = m+ 3), we expect the attack to succeed with probability
at least p1 ≈ 43% (resp. p2 ≈ 71%, p3 ≈ 86%).

6 Implementation of the faults

Once afain, due to the obvious similarities between the four instances of the Fiat-Shamir family that we
choose to attack, we only give details of the attack on the BLISS scheme. Even though the second attack
on the GPV scheme looks different in its exploitation, the underlying fault introduced is strictly identical
and as such we let the reader refers to the following description.

In this section we investigate how an attacker may obtain helpful faulty signatures for the proposed
attacks. We base our discussion on two available implementations of BLISS signature namely the soft-
ware implementation from Ducas and Lepoint [DL] and the FPGA implementation by Pöppelmann et
al. [PDG14]. The former one is based on /dev/urandom and sha 512 while the later performs sampling
based on Trivium instances and uses Keccak hash function as random oracle. Notice that discussion
on the hardware implementation is also valid for the implementation of [GLP12] since both share some
common components and architecture that we exploit (for instance BRAM storage).

We emphasize the fact that those implementations were not supposed to have any resilience with
respect to fault attacks and were only developed as proofs of concept to illustrate the efficiency properties
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of the schemes. The point here is to show that the fault attacks presented in this paper are relevant based
on the analysis of freely available and published implementations to put forward the need of dedicated
protections against faults attacks (when attackers have such abilities).

6.1 Classical fault models

Faults during a computation may be induced by different means as a laser beam shot, electromagnetic
injection, under-powering, clock/power glitches. . . These faults are mainly characterized by their

– range: impacting a single bit or many bits (e.g. register or memory word);
– effect: typically target chunk is set to a chosen value, random value or all-zero (resp. all-one) value;
– persistence: a fault may only modify the target for a short period or it may be definitive.

Obviously, some fault models are close from being purely theoretical: it is very unlikely to be able
to set a 32-bit register to 0xbad00dad during precisely 2 cycles. Nevertheless many recent works have
been published showing that some faults models that seemed overdone are actually obtained during lab
experiments. One example is the work of Ordas et al. at CARDIS 2014 [OGT+14] showing that with finely
tuned EM probes it is possible to induce a single-bit fault (bit-set or bit-reset).

In the next subsections we discuss which fault models6 may lead to faulty signatures relevant with
respect to the attacks presented in this paper. We did not investigate clock glitches or under-powering
which induce violation of the setup time and which actual side-effects are implementation and compilation-
dependent (with large ranges of possible parameters to test). Nevertheless, they may not be overseen in
the evaluation of a chip since they may also lead to the generation of relevant faulty signatures.

6.2 Fault attacks on software implementations

Polynomial y1 can be generated using a loop over the n coefficients. This is, again, how the implementation
in [DL] is made: a loop is constructing polynomials y1 and y2 one coefficient at a time using a Gaussian
sampler (function Sign::signMessage).

The condition To perform the attack rather few restrictive since we only require y1 to have at most
(roughly) a quarter of unknown coefficients. Such result can be obtain by going out the loop after a few
iterations. Again, a random fault on the loop counter or skipping the jump operation will lead to such
result.

Notice here that it is less trivial here to decide whether a faulty signature will be helpful or not.
Hopefully, the timing precision is much less important here since the attack will succeed even with 50
unknown coefficients out of 512. This means that the time-window for the fault to occur is composed of
decades of loop iterations. Moreover, we may use side-channel analysis to detect the loop iteration pattern
to trigger the fault injection. Such pattern is likely to be detected after much less than 50 iterations and
thus it seems that the synchronization here will be relatively easy.

To conclude, this attack also seems to be a real threat and even more than the attack on c since
synchronization is ease in this case by the loose condition on the number of known coefficients in y1.

6.3 Fault attacks on hardware implementations

Generation of polynomial y1 requires n random coefficients. It is very unlikely that all these coefficient are
obtained at the same time (n is too large) thus y1 generation will be sequential. This is the case in the
implementation we took as example where the super memory is linked to the sampler through a 14-bit
port. We may fault a flag or a state register to fool the control logic (here the bliss processor) and keep part

6 We only focus on single fault attacks here.
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of the BRAM cells to their initial state. If this initial state is known then we know all the corresponding
coefficients and hopefully the number of unknown ones will be small enough for the attack to work. The
large number of unknown coefficients handled by the attack again helps the attacker by providing a large
time window for the fault to occur. The feasibility of the attack will mostly depend on the precise flag/state
implementation and the knowledge of memory cells previous/initial value.

There is a second way of performing the fault injection here. The value of y1 has to be stored somehow
until the computation of z1 (close to the end of the signature generation). In the example implementation
a BRAM is used. We may fault BRAM access to fix some coefficients to a known value. A possible fault
would be to set the rstram or rstreg signal to one (Xilinx’s nomenclature). Indeed, when set to one, this
will set the output latches (resp. register) of the RAM block to some fixed value SRVAL defined by the
designer. We may notice two points to understand why this kind of fault enables the proposed attack.

(i) The value of y1 used to compute u will not be the faulted one but this has no impact on the attack.
(ii) If we do not know the default value for the output register, all coefficients are unknown but we know

that a big part of them are equal to the same unknown default value. In that case, the attack is still
applicable by adding one generator to the constructed lattice: see Remark 3 in Section 4.

Again a large time window is given to the attacker due to sequential read induced by the size of y1.
The BRAM storage of y1 helps here the attacker since a single bit-set fault may have effects on many

coefficients. The only difficulty seems to be able to perform a single-bit fault — which seems to be possible
according to [OGT+14] — and the rstram signal localization7.

7 Conclusion and possible countermeasures

We have shown that unprotected implementations of the four lattice-based signature schemes that we
considered are vulnerable to fault attacks, in certain fault models that our analysis suggests are quite
realistic: the faulty signatures required by our attacks can be obtained on actual implementations. As a
result, countermeasures should be added in applications where such a physical attacker is relevant to the
threat model.

Simple countermeasures exist to thwart the single fault attacks proposed here since they rely on pro-
cessing signatures computed from polynomials that are too sparse. Let investigate the in-depth described
attack on BLISS, and the generation of y1. The number of non-zero coefficients in that polynomial is not
fixed by the sampling algorithm, and it can take several distinct values with non-negligible probability.
Therefore, requiring that y1 has a specified number of non-zero coefficients affects the distribution of z1
and could thus cause invalidate the security of the scheme. One could, on the other hand, check that
the top ε · n coefficients of y1 are not all zero for some small constant ε > 0, say ε = 1/16; indeed, the
probability that they all vanish is roughly: (

1

σ
√

2π

)εn
which is exponentially small. Thus, the resulting distribution of y1 after this check is statistically in-
distinguishable from the original distribution, and security is therefore preserved. Moreover, the lattice
dimension required to mount our fault attack is greater than (1− ε)n, which makes it impractical.

Another possible countermeasure is to generate the coefficients of y1 in random order instead of iterating
from low to high degree or some other fixed pattern. This prevents our attack since, even if a faults causes
the loop to terminate early, the attacker no longer knows which subset of the c−1xi the vector c−1z1 − s1
is a linear combination of.
7 Since y1 is not directly outputted checking if the attack actually worked is a bit more tricky. Again side-channel

collision analysis may help here. We may also notice that if the faulty y1 is sparse (that is known coefficients
have been set to zero) then the number of non-zero coefficients in the corresponding z1 should be significantly
smaller then for a z1 corresponding to a dense y1.
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A Listings of POC code

1 from sage.stats.distributions.discrete_gaussian_integer \

import DiscreteGaussianDistributionIntegerSampler

3

#BLISS -II parameters

5 q=12289

n=512

7

(delta1 ,delta2)=(0.3 ,0)

9 sigma =10

kappa =23

11

R.<xx >= QuotientRing(ZZ[x], ZZ[x]. ideal(x^n+1))

13 Rq.<xxx >= QuotientRing(GF(q)[x], GF(q)[x].ideal(x^n+1))

15 sampler = DiscreteGaussianDistributionIntegerSampler(sigma=sigma , algorithm=’

uniform+table’)

17 def s1gen():

s1vec =[0]*n

19 d1=ceil(delta1*n)

d2=ceil(delta2*n)

21

while d1 >0:

23 i=randint(0,n-1)

if s1vec[i]==0:

25 s1vec[i]=(-1)^randint (0,1)

d1 -=1

27

while d2 >0:

29 i=randint(0,n-1)

if s1vec[i]==0:

31 s1vec[i]=2*(-1)^randint (0,1)

d2 -=1

33

return sum([s1vec[i]*xx^i for i in range(n)])

35

37 def faultyz1gen(s1 ,d):

#y1 should be generated with gaussian coefficients , but let’s do it

39 #uniformly for now

#y1=sum([ randint(-2*sigma ,2*sigma)*xx^i for i in range(d)])

41 y1=sum([ sampler ()*xx^i for i in range(d)])

43 #c is a random binary polynomial of weight kappa

dc=kappa

45 cvec =[0]*n

while dc >0:

47 i=randint(0,n-1)

if cvec[i]==0:

49 cvec[i]=1

dc -=1

51
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c=sum([cvec[i]*xx^i for i in range(n)])

53 z1=y1+c*s1

55 return (c,z1)

57 def faultattack(d,e):

s1=s1gen ()

59 (c,z1)=faultyz1gen(s1 ,d)

61 try:

cinv =1/Rq(c.lift())

63 except ZeroDivisionError:

print "c not invertible"

65 return

67 """

Try to recover the first e coefficients of s1

69 (of course , if we succeed , we should succeed for *all* sets of

e coefficients of s1 , so we can recover the whole secret key).

71 """

73 latvec =[( cinv*xxx^i).lift().list()[:e] for i in range(d)]

latvec =[( cinv*Rq(z1.lift())).lift().list()[:e]] + latvec

75 latvec=latvec +[[0]*i + [q] + [0]*(e-i-1) for i in range(e)]

77 M=matrix(ZZ ,latvec)

M=M.augment(matrix(ZZ ,e+d+1,1,[2*q]+[0]*(e+d))).LLL()

79 v=M[d+e]

v=v*(2*q/v[-1])

81

print "Recovered vector:", v[:-1]

83 print "Truncated key:", s1.lift().list()[:e]

85 return s1,c,z1,M

Listing 1.1. Attack on BLISS scheme

from sage.stats.distributions.discrete_gaussian_integer \

2 import DiscreteGaussianDistributionIntegerSampler

from sage.stats.distributions.discrete_gaussian_polynomial \

4 import DiscreteGaussianDistributionPolynomialSampler

6 q=1021

n=256

8 sigmaf =1.17*sqrt(q/(2*n))

sigma =1.17*sqrt(q)

10

x=polygen(ZZ)

12 R.<xx >= QuotientRing(ZZ[x], ZZ[x]. ideal(x^n+1))

Rq.<xxx >= QuotientRing(Integers(q)[x], Integers(q)[x].ideal(x^n+1))

14

K=QuotientRing(QQ[x], QQ[x]. ideal(x^n+1))

16
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def norml2(l):

18 return sqrt(sum([RR(x)^2 for x in l]))

20 def anticirculant(f):

return Matrix(ZZ, [ (xx^i*f).list() for i in range(n) ])

22

def gpvkeygen ():

24 fsampler = DiscreteGaussianDistributionPolynomialSampler(R,n,sigmaf)

while True:

26 f,g = fsampler (), fsampler ()

28 fbar = K(f.lift().subs(-xx^255))

gbar = K(g.lift().subs(-xx^255))

30

f2 = q*fbar / (f*fbar + g*gbar)

32 g2 = q*gbar / (f*fbar + g*gbar)

34 norm = max(norml2(f.list() + g.list()), \

norml2(f2.list() + g2.list()))

36

if norm > sigma:

38 continue

40 Rf, rhof , _ = xgcd(f.lift(), x^n+1)

Rg, rhog , _ = xgcd(g.lift(), x^n+1)

42 gg, u, v = xgcd(Rf , Rg)

44 if gg == 1 and gcd(Rf,q) == 1:

break

46

F = q*v*rhog

48 G =-q*u*rhof

50 while True:

k = (F*fbar + G*gbar) / (f*fbar + g*gbar)

52 kl= [ floor(c+0.5) for c in k.list() ]

k = sum([ kl[i]*xx^i for i in range(len(kl)) ])

54

if k.lift().degree () < 0:

56 break

58 F-= k*f

G-= k*g

60

h = Rq(g)/Rq(f)

62

B = block_matrix( [[ anticirculant(g), anticirculant(-f)], \

64 [anticirculant(G), anticirculant(-F)]] )

return h,f,g,B

66

def rndvec(v):

68 return [x if 2*x<q else x-q for x in v]

70 def gpvsign(B, fault=2*n, verbose=False , m=None):
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if m is None:

72 t = Rq.random_element ()

else:

74 t = m # assume m is a hash value in Rq

76 Bgram , T = B.change_ring(RDF).gram_schmidt ()

Bgram = matrix(RDF , [T[i,i]*Bgram.row(i) for i in range(2*n)])

78

v = vector(ZZ ,2*n)

80 c = vector(ZZ ,2*n, rndvec(t.lift().list()) + [0]*n)

82 for i in range(2*n-1,2*n-1-fault ,-1):

b = Bgram.row(i)

84 s = sigma/b.norm()

k = c.dot_product(b)/b.norm()^2

86 z = DiscreteGaussianDistributionIntegerSampler(sigma=s,c=k,\

algorithm="uniform+online")()

88

if verbose:

90 print z,RR(s),RR(k)

92 c = c - z*B.row(i)

v = v + z*B.row(i)

94

96 return t, vector(ZZ,n,rndvec(t.lift().list()))-v[:n], -v[n:] # (t,s1,s2)

98 def test_gpvfault(B,m,d,bkz=None):

"""

100 Try to recover F from m faults with the iterations stopping at d.

One should need m>d in general?

102 """

print "Computing the m=%d faulty signatures" % m

104 sigs = [gpvsign(B,d)[2] for _ in range(m)]

106 if bkz is None:

print "Trying to reduce with LLL"

108 M = Matrix(ZZ ,sigs).LLL()

else:

110 print "Trying to reduce with BKZ -%d" % bkz

M = Matrix(ZZ ,sigs).BKZ(block_size=bkz)

112

P = [sum([M[k,i]*xx^i for i in range(n)]) for k in range(m)]

114 F = sum([B[-1,n+i]*xx^i for i in range(n)])

print "P_i/F =", [K(Pi)/K(F) for Pi in P]

116

return P

Listing 1.2. Attack on GPV scheme
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