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Abstract

We are interested in acoustic wave propagation in time harmonic regime in a
two-dimensional medium which is a local perturbation of an in�nite isotropic
or anisotropic homogeneous medium. We investigate the question of �nding
arti�cial boundary conditions to reduce the numerical computations to a
neighborhood of this perturbation. Our objective is to derive a method which
can extend to the anisotropic elastic problem for which classical approaches
fail. The idea consists in coupling several semi-analytical representations
of the solution in halfspaces surrounding the defect with a Finite Element
computation of the solution around the defect. As representations of the same
function, they have to match in the in�nite intersections of the halfspaces.
It leads to a formulation which couples, via integral operators, the solution
in a bounded domain including the defect and its traces on the edge of the
halfspaces. A stability property is shown for this new formulation.

Keywords: Anisotropic Helmholtz equation; plane-waves representations;
Fourier Transform; Integral operators; Domain Decomposition Methods.

1. Introduction and model problem

This work is motivated by the numerical simulation of Non Destructive Test-
ing or Structural Health Monitoring experiments in anisotropic elastic media
(see for instance (4)). More precisely, we are interested in simulating the
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di�raction of time-harmonic waves by a localized perturbation in a homoge-
neous two dimensional in�nite anisotropic elastic medium. Since the medium
is in�nite, there are theoretical di�culties -how to de�ne the so called out-
going solution of such problem?- and numerical di�culties -can we introduce
an equivalent formulation which is suitable for numerical purposes (for in-
stance a formulation set in a bounded domain with appropriate boundary
conditions)?

This is an old problematic (15) for time harmonic scalar wave equations
and there exist several methods. They are all based on the natural idea of
reducing the pure numerical computations to a bounded domain containing
the perturbations (achieved using for instance Finite Element methods). A
�rst class of methods consists in applying an arti�cial boundary conditions,
around the bounded domain, which is transparent or approximately trans-
parent as in : (1) integral equation techniques, (2) Dirichlet-to-Neumann ap-
proaches providing that the boundary is properly chosen to allow separation
of variables and (3) local radiation conditions at �nite distance constructed
as local approximations at various order of the exact non local condition.
These techniques were �rst introduced for the time harmonic scalar wave
equation - the Helmholtz equation - and then extended to isotropic elasticity
problems using simply the Helmholtz decomposition of the displacement �eld
in terms of potential (see for instance (16)). However it seems that all these
techniques either do not extend to anisotropic elastic media - the separation
of variables is not possible anymore to determine the Dirichlet-to-Neumann
(DtN) operator - or do extend but with a tremendous computational cost -
for the integral equation techniques, the Green tensor depends not only on
the distance between two points but also on the orientation (26). A second
class of methods consists in surrounding the computational domain by a Per-
fectly Matched absorbing Layer (PML). PML techniques are very popular
because they are e�cient and easy to implement in a large class of problems.
But they may be inoperant. Roughly speaking, the PML absorbs the wave
with an outgoing phase velocity, preventing them to come back in the com-
putational domain, while in order to catch the physical solution, it should
absorb the waves with outgoing group velocities. That is why to our knowl-
edge the standard PML technique works for isotropic elastic media (in which
the waves with outgoing phase velocities have outgoing group velocities and
vice versa) but cannot work for general anisotropic elastic media where the
two velocities may di�er (3; 23; 6). Let us mention �nally the pole condition
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method which was developped recently and adapted to anisotropic elastic
waveguide in the past few years (19; 18).

By contrast, our method which is inspired by the method developped in
(12; 13) for locally perturbed periodic media can cover all the cases. It is
based on a simple idea: the solution of homogeneous -isotropic or anisotropic,
acoustic or elastic- halfspace problems can be expressed thanks to its trace
on the halfspace boundary. As several halfspaces surrounding the perturba-
tions are needed to recover the whole domain, they will necessarily overlap.
The second step is then to �nd conditions to ensure the compatibility of the
representations in the overlapping zones. This method has links with domain
decomposition methods with overlap (22; 11; 25), with the speci�c di�culty
that here the overlapping zones are unbounded. More precisely, the idea is
to split the whole domain into �ve parts:

� a square that includes the defect (and all the inhomogeneities) in which
we will use a Finite Element representation of the solution,

� and 4 half-planes, parallel to the four edges of the square in which the
medium is homogeneous.

Taking advantage of the homogeneity of the medium in a half-plane, we can
give an explicit (integral) expression of the solution given (for instance) its
trace on the edge of the half-plane, via the Fourier transform in the transverse
direction. With these integral representations and the Finite Element repre-
sentation of the solution in the square, we can formulate a coupled problem.
To ensure the compatibility of the di�erent representations, as in domain
decomposition methods, we impose transmission conditions on the edges of
the subdomains. This leads us to a system of coupled equations where the
unknowns are the solution in the bounded square and the traces of the solu-
tion on the edges of the half-planes.

Obviously, compared to absorbing layers methods, this approach is more
costly due to the additional unknowns (the traces) linked by non-local inte-
gral equations. One counterpart is that this additional computation of the
traces enables to reconstruct a posteriori the solution in the half-planes (and
therefore in the whole domain), which is impossible for instance when using
non exact absorbing boundary conditions or PML.
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In the paper, we consider the simple model case of a scalar equation: the
dissipative anisotropic Helmholtz equation. We reformulate the di�raction
problem and analyse the properties of this reformulation. Let us underline
that, thought our analysis holds only for dissipative media, the method gives
good numerical results also in the non-dissipative case. We will explain, in
a dedicated section, the theoretical di�culties raised by the case without
dissipation. We should also emphasize that this approach remains valid for
anisotropic elastic media since it mainly relies on the homogeneity of the
medium in the half-planes to get the Fourier representations (see (24)). The
complete description of the method in the elastic case will be the topic of
another paper.

The general model problem that we consider in this paper is then

�div(A(x; y)rp)� !2
" �(x; y)p = f in 
; (1)

in the time harmonic regime at the frequency Re(!") = ! with a small ab-
sorption Im(!") = " > 0, where A is a symmetric positive de�nite matrix of
(L1(
))2�2 modelling the anisotropy and � is a strictly positive function of
L1(
).

The propagation domain 
 is typically R2, or R2 minus a set of obstacles
which are included in a bounded region

9a > 0; @
 � 
a � (�a; a)2:

In presence of obstacles, some boundary conditions have to be added to
the model. The source term f is supposed to be a function of L2(
) with a
compact support included in 
a. Finally, the matrix A is a local perturbation
of a constant matrix A0

supp(A� A0) � 
a; where A0 =
�
c1 c3
c3 c2

�
with

(
c1; c2 > 0;
c1c2 � (c3)2 > 0;

(2)

and the function � is a local perturbation of a constant function, which is
taken, without loss of generalities, equal to 1

supp(�� 1) � 
a: (3)
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For variational boundary conditions on @
 -for instance Neumann or Dirich-
let conditions- it is well known that thanks to the dissipation, this problem
admits a unique solution in H1(
).

To clarify the presentation of the method, we will consider three situations
of increasing di�culty.

(Case 1) The propagation medium is here 
 = R2 n 
a and non homogene-
neous Dirichlet boundary conditions are imposed on its boundary. The
source term f = 0, A = A0 = Id and � = 1 in 
. Coupling ana-
lytical representations of the solution in the 4 halfspaces surrounding
the obstacle O = 
a and ensuring that all representations match, we
end up with a system of integral equations whose unknowns are the 4
traces of the solution on the edges of the halfspaces. We show stability
and well-posedness of this formulation in a framework which is suitable
for numerical simulations. Finally, we show in Appendix A that O
can be a triangle (resp. any other convex polygon with N sides) and a
similar approach can be applied but 3 unknowns (resp. N unknowns)
are involved.

(Case 2) We consider here the general isotropic case A0 = Id, in presence of
source terms and possible perturbations of the geometry, the matrix A
and the coe�cient �. The idea here is that any perturbation can be
taken into account using a Finite Element (FE) method, as soon as it
is contained in a bounded region. Here, we examine the coupling be-
tween the FE representation of the solution and the system of integral
equations obtained in the previous case. We point out the importance
of the presence of an overlap between the FE box and each halfspace.
Thanks to this overlap, we show again stability properties and well-
posedness for this problem.

(Case 3) We consider here the general anisotropic case. We investigate the in-
uence of the anisotropy on the extension of the previous results.

We give in the next section the main results of the paper. More precisely, we
explain formally how to derive the formulations corresponding to each situ-
ation and give the associated stability results. Moreover, we show numerical
results to illustrate the e�ciency of the method and to motivate the reader to
continue the next sections which are much more technical. Sections 3, 4 and
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5 correspond to the theoretical study of, respectively the Case 1, the Case
2 and the Case 3 and contain the proofs of the associated theorems, respec-
tively Theorem 2.2, Theorem 2.5 and Theorem 2.6. In Section 7, we explain
the theoretical di�culties of the non dissipative case (" = 0). Even if there
are still some open questions in that case, we obtain convincing numerical
results when extending formally the halfspace matching method.

Remark 1.1. As explained before, this method was inpired by previous works
where the medium is periodic in two directions outside a bounded region(12;
13). Let us emphasize that in these works, no stability results on the method
was obtained. What we claim is that thanks to the results of the present
paper, we could now obtain stability result of the formulation in the periodic
case and perform the numerical analysis. This will be the topic of another
paper.

2. Main results

2.1. Case 1 : the halfspace matching method for the isotropic case
We consider the following problem: let 
 = R2 n 
a, g 2 H1=2(@
) and

�nd the unique solution p 2 H1(
) of

��p� !2
" p = 0 in 
;

p = g on @
:
(4)

The domain 
 is the union of 4 half-planes 
j
a that lie on the 4 edges of the

square 
a. Using the following local coordinates for all j 2 J0; 3K
�
xj
yj

�
=
�
cos(�j) �sin(�j)
sin(�j) cos(�j)

� �
x
y

�
; where �j =

j�
2
: (5)

the half-planes are de�ned as follows for all j 2 J0; 3K


j
a = fxj � ag � fyj 2 Rg �j

a � @
j
a := fxj = ag � fyj 2 Rg: (6)

Finally, we denote

�aa = @
a and �j
aa = �aa \ �j

a: (7)

These notations are summarized on Figure 1.
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Figure 1: The notations de�ned in (5-6-7).

As explained in the introduction, the formulation uses the representation
of the solution in each halfspace 
j

a surrounding the obstacle. Let us then
introduce the halfspace problem: for any  2 H1=2(�j

a), �nd the unique
solution P j( ) 2 H1(
j

a)

��P j � !2
" P j = 0 in 
j

a;
P j =  on �j

a
(8)

Using the Fourier transform in the yj�direction, it is easy to see that, the
solution of (8) is given by
8(xj; yj) 2 [a;+1[�R

P j( )(xj; yj) =
1
p

2�

Z

R

b (�)e{
p
!2
"��2(xj�a)e{�y

j
d�; (9)

where the square root is de�ned with the convention Imp � 0 and b is the
Fourier transformation of  using the convention,

8 � 2 R; b (�) =
1
p

2�

Z

R
 (yj) e�{�y

j
dyj:
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Let us now derive the halfspace matching formulation which involves only
the traces of the solution p on the edges �j

a of 
j
a that we denote

’j = p
��
�ja
: (10)

We have thanks to the boundary conditions satis�ed by p in (4)

’j
��
�jaa

= g
��
�jaa
: (11)

Moreover, because p is solution of (4), its restriction to 
j
a is solution of (8)

with  = ’j so
p
��

ja

= P j(’j): (12)

The trace of p on 
0
a \ �1

a is given by ’1 by (10) and by P 0(’0) by (12) so
we have necessarily

’1
��
�1
a\
0

a
= P 0(’0)

��
�1
a\
0

a
:

Applying this reasoning to the other half lines �j�1
a \ 
j

a, we get

’j�1
��
�j�1
a \
ja

= P j(’j)
��
�j�1
a \
ja

; 8j 2 Z=4Z: (13)

The system of coupled equations (13) and (11) constitutes the halfspace
matching formulation for the problem (4). To understand the nature of this
system of equations and to analyze it, let us introduce the operators

8 2 H1=2(�j
a); Dj

j�1 := P j( )
��
�j�1
a \
ja

: (14)

By classical trace theorem, the operators Dj
j�1 are continuous operators from

H1=2(�j
a) to H1=2(�j�1

a \ 
j
a). In the isotropic case, the expressions of the

operators Dj
j�1 derive directly from the expressions of two operators D� 2

L(H1=2(R); H1=2(a;+1)) as follows

8 2 H1=2(�j
a); Dj

j�1 
j (xj; yj = a) = D�  (xj) for xj > a (15)

(identifying H1=2(�j
a) to H1=2(R)) where D� are de�ned by

D� (x) =
1
p

2�

Z

R

b (�)e{
p
!2
"��2(x�a)e�{�ad�; for x � a: (16)

Gathering (11), (13) and (14), we have shown that the set of traces

(’j)j2J0;3K 2
3Y

j=0

H1=2(�j
a)
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is solution of

8j 2 Z=4Z;

’j = Dj�1
j ’j�1 on �j

a \ 
j�1
a ;

’j = Dj+1
j ’j+1 on �j

a \ 
j+1
a ;

’j
��
�jaa

= g
��
�jaa
:

(17)

We have then derived a system of coupled integral equations satis�ed by the
traces ’j of the solution p of (4). Moreover, there is an equivalence result
between problem (4) and system (17). Indeed, from a solution (’j)j2J0;3K
in
Q
H1=2(�j

a) of (17) and using the halfspace representations (9), we can
construct a solution p of (4). The only di�culty is to show that the halfspace
representations match in their intersections - which are quarter planes. We
can state then the following proposition whose proof is detailed in Section 3.

Proposition 2.1. Let g 2 H1=2(�aa). If p 2 H1(
) is solution of (4) then
(’j = p

��
�ja

)j2J0;3K is solution in
Q
H1=2(�j

a) of (17).

Conversely, if (’j)j2J0;3K in
Q
H1=2(�j

a) is solution of (17) then p de�ned
by

8j 2 J0; 3K; p
��

ja

= P j(’j); (18)

where P j(�) is solution of the halfspace problem (8) (see also the expression
(9)), is a function de�ned "unequivocally", is in H1(
) and is solution of
(4).

This is the system (17) that we aim to discretize. If we want to use a FE
method, a variational formulation has to be derived and using the functional
framework

Q
H1=2(�j

a) could be intrincate. That is why we consider (17)
when looking to the traces in

Q
L2(�j

a). The operators Dj
j�1 which inter-

vene in the formulation are well-de�ned and even continuous from L2(�j
a) to

L2(�j�1
a \ 
j

a) (see Section 3.2 for more details). Writing for all j 2 J0; 3K,
’j = ’j0 + g

��
�jaa

, we can easily show that Problem (17) in the L2�framework
is equivalent to

�0 = (’j0)j2J0;3K 2 V0 = f	0 = ( j0) 2
3Y

j=0

L2(�j
a); 8j;  j0

��
�jaa

= 0g (19)
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is solution of

A �0 = B g;

where A 2 L(V0); B 2 L(L2(�aa); V0) and

8j 2 Z=4Z;
(A�0)j = ’j0 �D

j�1
j ’j�1

0 �Dj+1
j ’j+1

0

(Bg)j = Dj�1
j g

��
�j�1
aa

+Dj+1
j g

��
�j+1
aa

(20)

where for all j, we de�ne the functions Dj�1
j ’j�1

0 ; Dj�1
j g

��
�j�1
aa
2 L2(�j

a \

j�1
a ) as functions of L2(�j

a) by extending them by 0. We are able to show
stability property and well posedness of problem (20) in V0.

Theorem 2.2 (Main result (Case 1)). (1) The operator A 2 L(V0) is
the sum of a coercive operator and a compact one. Thus, for Problem (20),
Fredholm alternative holds.

(2) Problem (20) is well posed in V0.

This Theorem will be shown in Section 3.

Remark 2.3. If g 2 H1=2(�aa), the last theorem gives that the problems (4)
and (20) are equivalent. If the data g is only in L2(�aa), we cannot expect
that the solution p is in H1(
). By using the transposition methods, in (21),
the authors analyse how to understand the solution of such boundary value
problem in bounded convex domain. They introduce a very weak formulation
(the unknown is only in L2 but the test functions is much more regular ).
In recent papers (1; 2), an extension to non convex polygonal bounded do-
main which requires an involved analysis is proposed. For the particular case
of Problem (20), we have introduced a simple formulation which is stable
and whose unique solution is such that its trace on each line �j

a is L2 (or
equivalently its restriction to each halfspace 
j

a is H1=2).

Let us point out that what is done here with 
a being a square can be
extended naturally to the case of any convex polygon 
a. The unknowns,
which are involved in the corresponding system of equations, correspond to
the traces of the solution on the boundary of the halfspaces supported by
each edge of the polygon. See Appendix A for more details.
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2.2. Case 2 : coupling the halfspace matching method with the FE method in
the isotropic case

We consider now problem (4), still in the isotropic case : A0 = Id. Without
loss of generality, for conciseness of the statement, we suppose A = A0 and

 = R2 (it su�ces to adapt the variational formulation and/or the functional
framework to take into account the presence of perturbations, obstacles and
the associated boundary conditions). Thus the problem simpli�es to

�4p� !2
" � p = f in R2 (21)

where Supp(�� 1) and Supp(f) are included in 
a.

Let us �rst introduce some new notations. For b � a, we denote (see Figure 2)


b = (�b; b)2; �bb = @
b and �j
bb = f(x; y); xj = b and yj 2 (�b; b)g

(22)
where the (xj; yj) are de�ned in (5).

Figure 2: Second set of notations (22) (with the dashed lines are the �j
a’s de�ned in (6)).

In Figure 2, �ve domains appear: a bounded one 
b and the four halfspaces

j
a. If b = a, there is no overlap between the bounded domain and the halfs-

paces whereas if b > a, there exists an overlap. We will see that this overlap
has an important role from a theoretical point of view.

Let us now derive the new formulation. Thanks to the previous section,
it is easy to see that the traces ’j of p on the lines �j

a have to satisfy (13).
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On the other hand, if pb denotes the restriction of p to 
b, then it is solution
of

�4pb � !2
" � pb = f in 
b: (23)

For all j, in 
b \ 
j
a, we have introduced two representations of the same

function: pb solution of (23) and P j(’j) solution of (8). We have then in
particular that

’j
���
�jaa

= pb
���
�jaa

(24)

and
rp � nj

���
�jbb

= rP j(’j) � nj
���
�jbb
; (25)

where nj = (xj = 1; yj = 0) is the normal to �j
bb. Let us introduce the

operators

8j 2 J0; 3K; 8 2 H1=2(�j
a); �j  = rP j( ) � nj

���
�jbb

(26)

By classical trace theorem, the operators �j are continuous operators from
H1=2(�j

a) to H�1=2(�j
bb) where H�1=2(�j

bb) is de�ned as the dual of ~H1=2(�j
bb)

which contains the functions of H1=2(�j
bb) which, when extending by 0, are

H1=2(�bb). In the isotropic case, we have that for all j 2 J0; 3K, �j can be
expressed directly from the operator � 2 L(H1=2(R); H�1=2(�b; b)) by

8 2 H1=2(�j
a); �j (xj = b; yj) = � (yj) for yj 2 (�b; b) (27)

(identifying H1=2(�j
a) and H1=2(R)) where � is de�ned by

� (y) =
1
p

2�

Z

R
{
p
!2
" � �2 b (�)e{

p
!2
"��2(b�a)e{�yd�: for y 2 (�b; b): (28)

Gathering (13), (14), (23), (24), (25) and (26) we have shown that

pb 2 H1(
b) and (’j)j2J0;3K 2
3Y

j=0

H1=2(�j
a)

is solution of
�4pb � !2

" � pb = f in 
b

rp � nj
���
�jbb

= �j ’j; 8j 2 J0; 3K

’j
���
�jaa

= pb
���
�jaa
; 8j 2 J0; 3K

’j = Dj�1
j ’j�1 on �j

a \ 
j�1
a ; 8j 2 Z=4Z

’j = Dj+1
j ’j+1 on �j

a \ 
j+1
a ; 8j 2 Z=4Z

(29)
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There is here also an equivalence result between problem (4) in the isotropic
case and the system (29). Indeed, from the trace unknowns, we can construct
a solution pext of the homogeneous isotropic Helmholtz equation outside 
a,
as in Case (1). Now the di�culty is to show that this function pext coincides
with pb in the overlapping zone 
b n 
a, which will be shown in Section 4.1.

Proposition 2.4. If p 2 H1(
) is solution of (21) then
�
pb; (’j)j2J0;3K

�

where pb = p
��

b

and for all j, ’j = p
��
�ja

is solution in H1(
b)�
Q
H1=2(�j

a)
of (29).

Conversely, if
�
pb; (’j)j2J0;3K

�
in H1(
b) �

Q
H1=2(�j

a) is solution of (29)
then p de�ned by

p
��

b

= pb; and 8j 2 J0; 3K; p
��

ja

= P j(’j); (30)

where P j(�) is solution of the halfspace problem (8) (see also the expression
(9)), is a function de�ned "unequivocally", is in H1(
) and is solution of
(21).

This is the system (29) that we aim to discretize and we have then to derive a
variational formulation. However this is possible only for b > a, the problem,
being as in (14), the cross points (see Section 4.2 for more details). Moreover,
as for the case (1), we want to consider the trace unknowns in L2 for numerical
purposes. For b > a, the operators �j which intervene in the formulation are
well-de�ned and continuous from L2(�j

a) to L2(�j
bb). Thus, for b > a, and by

using, as for Case (1), for all j, ’j0 = ’j � pb
��
�jaa

, we introduce a variational
formulation associated to (29) :

Find
�
pb; � = (’j0)j2J0;3K

�
2 H1(
b)�V0 such that 8

�
qb; 	

�
2 H1(
b)�V0Z


b
rpb � rqb � !2pb qb + (A�;	)V0 � (B  pb;	)V0

�
3X

j=0

h
(�j jpb; qb)�jbb

� (�j’j0; qb)�jbb

i
=
Z


b
fqb (31)

where V0 is de�ned in (19), the operators A and B are de�ned in (20), the
operator  (resp. j) is the trace operator from H1(
b) to L2(�aa) (resp.
from H1(
b) to L2(�j

aa)), (�; �)�jbb
is the Hermitian product in L2(�j

bb), (�; �)V0

is the Hermitian product in
Q
L2(�j

a) and where we de�ne the functions of
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L2(�j
aa), L2(�j

a \ 
j�1
a ) as functions of L2(�j

a) when extending by 0.

Extending the proof of Theorem 2.2, we can show a stability result as well.

Theorem 2.5 (Main result (Case 2)). (1) The bilinear form associated
to (31) in (H1(
b)�V0)2 is the sum of a coercive bilinear form and a compact
one. Thus, for Problem (31), Fredholm alternative holds.

(2) Problem (31) is well posed and if
�
pb; �0 = (’j0)j2J0;3K

�
in H1(
b)�V0 is

solution of (31) then p de�ned as in (30) with for all j, ’j = ’j0 + pb
��
�jaa

is
a function de�ned "unequivocally", is in H1(
) and is solution of (21).

This Theorem will be shown in Section 4.2.

2.3. Case 3 : coupling the halfspace matching method and the FE method in
the anisotropic case

Now, we consider Problem (1) in the general anisotropic case. Again without
loss of generality, we suppose 
 = R2. The method to derive the system of
coupled equations is exactly the same than in Case (2), the only di�erence
being the expression of the solution of the corresponding halfspace problems
and then the expression of the integral operators de�ned in (14) and (26).

The solution P j( ) 2 H1(
j
a), for any  2 H1=2(�j

a) of the halfspace prob-
lems

�r � (A0rP j)� !2
" P j = 0 in 
j

a;
P j =  on �j

a
(32)

is now given by

P j( )(xj; yj) =
1
p

2�

Z

R
 ̂(�)er

j(�)(xj�a)ei�y
j
d�; 8(xj; yj) 2 [a;+1[�R:

(33)
where the coe�cients rj(�) are de�ned by :

r0(�) = r2(�) =
�i�c3

c1
+ i
p
d1(�) with d1(�) =

!2
"c1 � d �2

(c1)2 ;

r1(�) = r3(�) =
i�c3

c2
+ i
p
d2(�) with d2(�) =

!2
"c2 � d �2

(c2)2 :
(34)

where d := c1c2 � (c3)2. We deduce then the expressions of the operators
Dj
j�1 and �j for all j 2 Z=4Z de�ned respectively in (14) and (26). Contrary
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to the isotropic case, the operators are a priori di�erent from each other.
Using the same ideas than in Case (2), we can show that for b > a

pb = p
��

b
2 H1(
b) and (’j = p

��
�ja

)j2J0;3K 2
3Y

j=0

L2(�j
a)

is solution of (31) with for all j, ’j0 = ’j � pb
��
�jaa

where, here, the operators
are given by for all  2 H1=2(�j

a)

Dj
j�1 (xj; yj = �a) =

1
p

2�

Z

R

b (�)er
j(�)(xj�a)e�{�ad�; for xj � a (35)

and

�j (xj = b; yj) =
1
p

2�

Z

R
rj(�) b (�)er

j(�)(b�a)e{�yd�; for yj 2 (�b; b): (36)

Proposition 2.4 extends easily to the anisotropic case. Indeed, as the reader
will notice in the proof detailed in Section 4.1, we do not use the expression
of the solution of the halfspace problems or the expression of the operators.

Let us now introduce the variational formulation

Find
�
pb; �0 = (’j0)j2J0;3K

�
2 H1(
b)�V0 such that 8

�
qb; 	0

�
2 H1(
b)�V0Z


b
Arpb � rqb � !2pb qb + (A�;	)V0 � (B  pb;	)V0

�
3X

j=0

h
(�j jpb; qb)�jbb

� (�j’j0; qb)�jbb

i
=
Z


b
fqb (37)

where V0 is de�ned in (19), the operators A and B are de�ned in (20), the
operator  (resp. j) is the trace operator from H1(
b) to L2(�aa) (resp.
from H1(
b) to L2(�j

aa)), (�; �)�jbb
is the Hermitian product in L2(�j

bb), (�; �)V0

is the Hermitian product in
Q
L2(�j

a) and where we de�ne the functions of
L2(�j

aa), L2(�j
a \ 
j�1

a ) as functions of L2(�j
a) when extending by 0.

The main di�erence in the anisotropic case concerns the stability results of
the variational formulation which are linked to the properties of the operators
Dj
j�1 and �j.
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Theorem 2.6 (Main result (Case 3)). Let b > a and � de�ned by tan(�) =p
c1c2 � c2

3=c3 if c3 6= 0 and � = �=2 if c3 = 0.

(i) If

max(sin(�=2); cos(�=2)) max(
p
c1;
p
c2) < (c1c2 � c2

3)1=4; (38)

the bilinear form associated to (37) is the sum of a coercive bilinear
form and a compact one in (H1(
b)� V0)2;

(ii) In the general case, Fredholm alternative holds for the problem (37) and
it is well-posed.

This theorem will be established in Section 5. As you can notice, the �rst re-
sult was proved only for a certain class of moderate anisotropy. In particular
if the x0 and y0 directions are chosen regarding the directions of anisotropy
of A0 then c3 = 0 and the condition (38) reduces to

max
�c1

c2
;
c2

c1

�
< 4:

2.4. Numerical results
To end this section, let us briey describe how to discretize this new formu-
lation and show some numerical results to illustrate and validate the method.

For the approximation of the formulation (20) (resp. (31) and (37)), we
use 1D Lagrange FE method for the trace unknowns (resp. 2D Lagrange
FE method for the volumic unknown). More precisely, the �nite dimensional
space Vh;T � V0 contains piecewise polynomial functions of L2(�T; T )4 where
T > 0. Let us emphasize that the numerical analysis at that point can be
done directly thanks to the stability results (using the coercive+compact
properties)

The di�culty in practice is to handle the integral operator terms. For in-
stance, to compute

�
D+’;  

�
(a;+1) =

1
p

2�

Z +1

a
 (x)

Z 1

�1
b’(�)e{

p
!2
���2(x�a)e{�ad� dx

where ’ and  are functions of L2(a;+1),

16



� we reduce the inner integral in � to the interval [�T�; T�] where T� > 0,

� we use a quadrature formula to discretize the integral in �.
Doing so, the previous integral is approximated by

N�X

n=0

1
p

2�
b’(�n)e{�na

Z +1

0
e{
p
!���2

n(x�a) (x)dx

where the f�ngn2J0;N�K correspond to the quadrature nodes. Since ’ and  
are piecewise polynomial (and compactly supported), we can compute ex-
actly b’(�n) and the integral term in x. We can treat similarly the integral
terms related to the operators Dj

j�1 and �j. The complete numerical analysis
of the method will be the topic of a forthcoming paper.

To validate the method, we have consider in Case (1) the particular data
of the Hankel function on the boundary of the square:

p(x; y)
��
�aa

=
1
4{
H(!�

p
x2 + y2)

��
�aa
:

In that situation, we can validate the results since we know the exact so-
lution is given by p(x; y) = 1

4{H(!�
p
x2 + y2). On Figure 3 (left), we have

represented on (�T; T ) the real part of ’0 and its approximation taking
!� = 10 + 0:001{ and using 1D P2 �nite elements with h = 0:05, T = 6,
T� = 20 and a Gauss quadrature formula of order 4 in a regular mesh of size
0:025. We get a relative error in L2(�T; T ) of 1:2%. Let us emphasize that
with this method, we can reconstruct the solution in the exterior domain.
Indeed, we can compute a posteriori the solution in each halfspace 
j

a using
the formulae (8) as represented on Figure 3 (right). Surprisingly, as we can
see, even though the traces ’j are not close to zero at yj = �T , the results
are quite good.

Let us now show a numerical simulation in the anisotropic case. We have
used the following parameters:

!� = 10 + 0:001{ and A =
�

1 �0:8
�0:8 1

�
:

It is a case of strong anisotropy for which the condition (38) is not satis�ed.
We can see on Figure 4 that the method gives good numerical results. One
simple way to validate these results is to see if the reconstructed solution in
the halfspaces match in the quarters of plane.

17



Figure 3: On the left: Real part of the computed trace ’0 on �0
a (the black line) and

real part of the exact solution (the dashed red line). On the right: Real part of the
reconstructed solution in the exterior domain.

Figure 4: Real part of the computed solution in 
b and reconstruction of the solution in
the halfspace 
j

a.
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3. Theoretical results related to the Case (1)

In this section, we give the proof of Proposition 2.1 in Section 3.1 and the
proof of Theorem 2.2 in Sections 3.2 and 3.3.

3.1. The problem (4) and the formulation (17) are equivalent.
Proposition 2.1 states that

1. the traces on �j
a of the solution of the original problem (4) are solution

of the integral formulation (17): this is true by construction (see Section
2.1);

2. from a solution of the integral formulation (17), we can reconstruct
the solution of (4): this is proven in this section - for now the trace
unknowns are in H1=2.

Let us suppose that (’j)j2J0;3K in
Q
H1=2(�j

a) is solution of (17). We want
to reconstruct the solution p in H1(
) of (4).

For instance, from ’0 2 H1=2(�0
a), we consider the corresponding halfspace

solution P 0(’0) in H1(
0
a) and from ’1 2 H1=2(�1

a), we consider the corre-
sponding halfspace solution P 1(’1) in H1(
1

a). We claim that because ’0

and ’1 are solution of the �rst two equations of (17), P 0(’0) and P 1(’1)
coincide in 
0

a \ 
1
a. Indeed,

� by linearity the di�erence V = P 0(’0) � P 1(’1) is a solution of the
Helmholtz equation in the quarter plane

��V � !2
" V = 0 in 
0

a \ 
1
a: (39)

� the �rst equation of (17) with j = 1 is equivalent to saying that

’1
���
�1
a\
0

a

= P 0(’0)
���
�1
a\
0

a

and by de�nition, we have ’1 = P 1(’1)
���
�1
a

. Then

V
���
�1
a\
0

a

= P 0(’0)
���
�1
a\
0

a

� P 1(’1)
���
�1
a\
0

a

= 0:

We deduce likewise -using the second equation with j = 0- that
V
���
�0
a\
1

a

= 0 and then

V
���
@(
0

a\
1
a)

= 0: (40)
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So, by using (39) and (40), and by uniqueness of the quarter plane problem in
H1

0 , we conclude that V = 0 and that P 0(’0) and P 1(’1) coincide in 
0
a\
1

a.

We can then de�ne unequivocally a function p by

p
���

0
a

= P 0(’0) and p
���

1
a

= P 1(’1):

Moreover, this function is solution in H1 of the Helmholtz equation in 
0[
1.

Using the other equations of (17) and the same kind of arguments, we can
show that

8j 2 Z=4Z; P j(’j) and P j+1(’j+1) coincide on 
j
a \ 
j+1

a

and then the function p de�ned by

p
���

ja

= P j(’j)

is de�ned unequivocally and is solution in H1 of the Helmholtz equation in

. Finally,

8j 2 J0; 3K; p
���
�jaa

= P j(’j)
���
�jaa

= g
���
�jaa

where the second inequality is deduced thanks to the third line of (17). This
function p is then solution of (4).

3.2. Stability property of the integral formulation (20)
We prove in this section, a part of Theorem 2.2 which states that the

operator A de�ned in (20) is the sum of a coercive operator and a compact
one. The well posedness of Problem (20) in V0 will be proven in Section 3.3.

By (15) and (16), we can rewrite the operator A as

A = I�

2

664

0 J0
+D� 0 J0

�D+
J1
�D+ 0 J1

+D� 0
0 J2

�D+ 0 J2
+D�

J3
+D� 0 J3

�D+ 0

3

775 (41)

where we have identi�ed L2(�j
a) and L2(R) and where for all j 2 Z=4Z, J j�

are unitary isomorphism from L2(a;+1) to L2(�j
a \ 
j�1

a ) de�ned by

8 2 L2(a;+1); J j�  (xj = a; yj) :=  (�yj); for � yj � a (42)
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Let us note that 8j, J+
j is a canonical isomorphism and J�j makes the funtions

run through +1 to a. Finally, we remind the reader that D� are operators
from L2(R) to L2(a;+1) de�ned by

8’ 2 L2(R); D� ’ (x) =
1
p

2�

Z

R
b’(�)e{

p
!2
"��2(x�a)e�{�ad�; for x > a:

It is quite obvious that the operators D� are continuous operators from
H1=2(R) to H1=2(a;+1) (it su�ces to use (14) where it is de�ned thanks
to the trace operator). It is less obvious (but true) that the same property
holds in the L2 framework. To show this result, it is possible to use, as in
(21), abstracts arguments: the operator being continuous from H1=2(R) to
H1=2(a;+1), using a transposition argument, we can de�ne it as a contin-
uous operator from H�1=2(R) to [H1=2

00 (a;+1)]0, and �nally an interpolation
argument gives that it is a continuous operator from L2(R) to L2(a;+1)).
A more constructive proof is provided in this section.

To show the stability property of Theorem 2.2, additional properties for
the operators D+ and D� are required. We �rst state these properties for
D+ and give a detailed proof. Similar properties for D� will be then given,
without proofs, since similar arguments can be used.

Let us de�ne for all interval I � R, RI is a restriction operator of L2(R)
de�ned by

8’ 2 L2(R); RI’ = ’ on I and RI’ = 0 on R n I (43)

Proposition 3.1. The operator D+ is continuous from L2(R) to L2(a;+1).
Moreover,

1. D+R(a;+1) can be decomposed as

D+R(a;+1) = L+ R(a;+1) +K+ (44)

where K+ is a compact operator from L2(R) to L2(a;+1) and L+ is a
continuous operator from L2(R) to L2(a;+1) which satis�es

8’ 2 L2(R); kL+R(a;+1) ’kL2(a;+1) �
1
p

2
kR(a;+1) ’kL2(R);

2. D+R(�1;�a) is a compact operator from L2(R) to L2(a;+1).
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The main di�culty in the analysis is that D+ is not a compact operator.
Going back to the halfspace problem, D+ is a trace operator on a half-line
touching the boundary of the halfspace. The lack of compactness comes from
this intersection point. To analyse the non-compact part and inspired by
singularity theory (20), we introduce the static equivalent of D+ for !" = 0,
denoted by L below. This strategy is often used in Integral Equation analy-
sis, see for instance (5).

By decomposing D+ as

D+ = R(a;b)D+ +R(b;+1)D+ (45)

the proof of Proposition 3.1 follows from the following properties

� the operator R(b;+1)D+ : L2(R)! L2(a;+1) is a compact operator;

� the operator R(a;b)D+ = R(a;b)L+K1 where L is a continuous operator
from L2(R) to L2(a;+1) and K1 is a compact operator from L2(R) to
L2(a;+1);

� 8’ 2 L2(R); kLR(a;+1) ’kL2(a;+1) � 1p
2 kR(a;+1) ’kL2(R);

� LR(�1;�a) is a compact operator from L2(R) to L2(a;+1)

Lemma 3.2. The operator R(b;+1)D+ : L2(R) ! L2(a;+1) is a compact
operator.

Proof: Let us notice that D+ is a kernel operator

8 2 L2(�0
a); D+ (x) =

1
p

2�

Z

R

b (�)k+(x; �)d�; for x � a;

with the kernel
k+(x; �) = e{

p
!2
"��2(x�a)e{�a:

Since b > a, this kernel is square-integrable
Z

R

Z +1

b
jk+(x; �)j2dxd� =

Z

R

e�2Im(
p
!2
"��2)(b�a)

2Im(
p
!2
" � �2)

< +1

Classical results on Hilbert-Schmidt operators gives that R(b;+1)D+ is com-
pact. �
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Lemma 3.3. The operator R(a;b)D+ : L2(R)! L2(a;+1) can be written

R(a;b)D+ = R(a;b)L+K1 (46)

where L is a continuous operator from L2(R) to L2(a;+1) and K1 is a
compact operator from L2(R) to L2(a;+1). Moreover

1. L is bounded by 1 ;

2. 8’ 2 L2(R); kLR(a;+1) ’kL2(a;+1) �
1
p

2
kR(a;+1) ’kL2(R);

3. R(a;b)LR(�1;�a) is a compact operator from L2(R) to L2(a;+1)

Proof: Let ’ be in L2(R) and let us introduce v(’) a solution in the
distributional sense of

(
�4v = 0; in 
0

a

v(’) = ’; on x = a:
(47)

We use in what follows the Mellin Transform (see for instance (20) for more
details). Denoting (r; �) the polar coordinates de�ned by (see Figure 5)

r =
p

(x� a)2 + (y � a)2 2 (0;+1)

� =
�
2

+ arctan(
y � a
x� a

) 2 (0; �);
(48)

we introduce the function w de�ned for a.e. (t; �) 2 B � R � (0; �) by
w(t; �) = v(x; y) where t = log(r) and (r; �) de�ned in (48). The function w
is a solution in the distributional sense of

8
><

>:

�4w = 0 in B
w(t; 0) = w0(t) := ’(�et + a)
w(t; �) = w�(t) := ’(et + a):

(49)
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Figure 5: Notations and change of variables

Since ’ is in L2(R), we have t 7! et=2w0(t) and t 7! et=2w�(t) in L2(R) and

ket=2w0(t)kL2(R) = k’kL2(�1;a) and ket=2w�(t)kL2(R) = k’kL2(a;+1) (50)

To compute w, we can use the Fourier-Laplace transform de�ned by

û(�) � [Mt!�u](�) :=
Z

R
e��tu(t) dt: (51)

It is an isomorphism between fu; e�tu 2 L2(R)g and L2(‘��) where ‘�� =
f� = �� + {s; s 2 Rg, for all � 2 R and we have the Plancherel formula

Z

R
e2�t ju(t)j2 dt =

1
2{�

Z

‘��

jû(�)j2 d� := kûk2
L2(‘��): (52)

We have in particular thanks to (50)

ŵ0 2 L2(‘�1=2); kŵ0kL2(‘�1=2) = k’kL2(�1;a)

ŵ� 2 L2(‘�1=2); kŵ�kL2(‘�1=2) = k’kL2(a;+1)
(53)

Applying this transformation to (49) and using the classical derivation rule
of the Fourier transform, we show that � ! ŵ(�; �) is solution of an ODE
parametrized by �. Solving this ODE, we obtain for � =2 Z

8� 2 (0; �); ŵ(�; �) = A(�; � � �) ŵ0(�) + A(�; �) ŵ�(�) (54)

where
A(�; �) =

sin(��)
sin(��)

: (55)
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For all � 2 (0; �), s 7! A(�1=2 + {s; �) is in L1(R), its supremum is attained
for s = 0 and it is equal to sin(�=2). In particular for � = �=2, we have

sup
�1=2+{R

jA(�; �=2)j =
1
p

2

and then

kŵ(�; �=2)kL2(‘��) �
1
p

2

h
kŵ0kL2(‘�1=2) + kŵ�kL2(‘�1=2)

i
: (56)

We deduce using successively (53), (50), (52) and the change of variables
r = et that

v(’)
���
y=a
2 L2(a;+1) and kv(’)

���
y=a
kL2(a;+1) � k’kL2(R)

The operator L de�ned by

8’ 2 L2(R); L’ = v(’)
���
y=a

(57)

is then a continuous operator from L2(R) to L2(a;+1) and its norm is
bounded by 1 (this bound is optimal but we do not prove it here since it is
not useful for the following).

Moreover, using that

sup
�2(0;�)

sup
�1=2+{R

jA(�; �)j = 1

we show with the same tools that
Z �

0

Z

R+
jv(r; �)j2 dr d� =

Z �

0

Z

R
jw(t; �)j2 et dt d�

=
Z �

0

Z

‘�1=2

jŵ(�; �)j2 d� d� � 2 k’k2
L2(R): (58)

This means that r�1=2v 2 L2(
a). Thus v is not in L2(
a) but it is L2
loc(
a)

and for any compact set K � 
a, we have

9C > 0; kvkL2(K) � Ck’kL2(R):
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By noticing that L’ is also given by

L’(x) =
1
p

2�

Z

R
’̂(�)e�j�j(x�a)e{�a

we can show using the same arguments than in the proof of Lemma 3.2 that
R(a;b)(D+’� L’) is a compact operator.

The property on LR(a;+1) can be deduced from the previous computation
by taking ’

��
(�1;a) = 0 or equivalently ŵ0 = 0. From the estimation (56), we

can conclude that

8’ 2 L2(R); kLR(a;+1) ’kL2(a;+1) �
1
p

2
kR(a;+1) ’kL2(R):

Finally, let us consider the previous computations with ’ = 0 on (�a;+1).
The function w is solution of (49) with w� = 0 and w0(t) = ’(�et+a). Since
’(y) = 0 for y > �a, we have e�tw0 is in L2(R) for all  > 0. By using
the Fourier Laplace Transform de�ned in (51), ŵ0 is in L2(‘) for all  > 0.
Moreover, again as in the proof of Lemma 3.3, for � =2 Z

ŵ(�; �) = A(�; �) ŵ0(�)

We can show that

8 > 0;  =2 N sup
‘
�A(�; �) < +1

which enables us to deduce that

8 > 0;  =2 N �ŵ(�; �) 2 L2(‘):

In particular for � = �=2 and by using the properties of the Fourier-Laplace
Transform, we have then

8 > 0;  =2 N e�t@tw(t; �=2) 2 L2(R)

which gives

8 > 0; r�(+1=2)(r@r)v(r; �=2) 2 L2(a;+1):

If we choose  = 1=2, we obtain that LR(�1;�a)’ = v(r; �=2) 2 H1(a;+1).
By compact embedding ofH1(a; b) in L2(a; b), we conclude thatR(a;b) LR(�1;�a)
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is a compact operator from L2(R) to L2(a;+1). �

Using the same arguments, we can show the following properties for D�.

Proposition 3.4. The operator D� is continuous from L2(R) to L2(a;+1).
Moreover,

1. D�R(�1;�a) can be decomposed as

D�R(�1;�a) = L�R(�1;�a) +K�

K� is a compact operator from L2(R) to L2(a;+1) where L� is a
continuous operator from L2(R) to L2(a;+1) which satis�es

8’ 2 L2(R); kL�R(�1;�a) ’kL2(a;+1) �
1
p

2
kR(�1;�a) ’kL2(R);

2. D�R(a;+1) is a compact operator from L2(R) to L2(a;+1).

Using the previous results, we can now prove that the operator A 2 L(V0),
described in (41), is the sum of a coercive operator and a compact one.
Indeed, using Propositions 3.1 and 3.4, the operator A can be decomposed
as

I� L�K (59)

where

L =

2

664

0 J0
+ L�R(�1;�a) 0 J0

� L+R(a;+1)
J1
� L+R(a;+1) 0 J1

+ L�R(�1;�a) 0
0 J2

� L+R(a;+1) 0 J2
+ L�R(�1;�a)

J3
+ L�R(�1;�a) 0 J3

� L+R(a;+1) 0

3

775

(60)
and

K =

2

664

0 J0
+

~K� 0 J0
�

~K+

J1
�

~K+ 0 J1
+

~K� 0
0 J2

�
~K+ 0 J2

+
~K�

J3
+

~K� 0 J3
�

~K+ 0

3

775 (61)

where the J j� are unitary isomorphism de�ned in (42), ~K+ = D+R(�1;�a) +
K+R(a;+1) and ~K� = D�R(a;+1) + K�R(�1;�a) are compact operators of

27



L2(R), by Proposition 3.1 and 3.4. K is then a compact operator of
Q
L2(�j

a).
Moreover, it is easy to see that the norm of L as an operator of V0 is bounded
by 1=

p
2 by noting that for all j 2 Z=3Z and for all ’j+1 2 L2(�j+1

a ) and
’j�1 2 L2(�j�1

a ),

kJ j+L�R(�1;�a)’j+1+J j�L+R(a;+1)’j�1k2 �
1
2

�
kR(a;+1)’j�1k2+kR(�1;�a)’j+1k2

�

so that

kL�k2 �
1
2

3X

j=0

�
kR(a;+1)’jk2 + kR(�1;�a)’jk2

�

Consequently, I� L is coercive in V0.

3.3. Well posedness of the integral formulation (20)
As the operator A involved in (20) is a Fredholm operator of index 0, it suf-
�ces to show its injectivity to deduce its surjectivity.

Similarly to Section 3.1, let us suppose that (’j)j2J0;3K is solution of Problem
(20) with g = 0 but here it is only in

Q
L2(�j

a). By reconstructing a solution
of (4) with g = 0, we want to show that (’j)j2J0;3K = 0. The di�culty here
is that the corresponding halfspace solutions are not in H1 since the ’j’s are
not in H1=2 but in L2.

From ’0 2 L2(�0
a) (resp. ’1 2 L2(�1

a)), we consider the halfspace func-
tion P 0(’0) (resp. P 1(’1)) de�ned in (9) which is only in H1=2(
0

a) (resp.
H1=2(
1

a)). It is the solution of the corresponding halfspace problem in 
0
a

(resp. 
1
a) in a very weak sense (see (21)). Because of this non varia-

tional framework, it is less obvious than in Section 3.1 to prove that be-
cause ’0 and ’1 are solution of the �rst two equations of (17) , P 0(’0) and
P 1(’1) coincide in 
0

a \ 
1
a. Nevertheless, we can show that the di�erence

V = P 0(’0) � P 1(’1) 2 L2(Q01
a ) with Q01

a = 
0
a \ 
1

a is solution in the
distributional sense of the Helmholtz equation

��V � !2
" V = 0 in Q01

a :

Moreover, the "trace" of V vanishes on the boundary of the quarter-plane in
the sense that

8u 2 H2(Q01
a ) \H1

0 (Q01
a );

Z

Q01
a

4V u =
Z

Q01
a

V 4u:
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We deduce that

0 =
Z

Q01
a

(4V + !2
" V )u =

Z

Q01
a

V (4u+ !2
" u):

Using classical results of regularity of solutions in convex polygonal domains
(see for instance (17)), we know that the operator

A01
a : H2(Q01

a ) \H1
0 (Q01

a ) ! L2(Q01
a )

u 7! 4u+ !2
" u

is surjective. We conclude that V = 0 and then P 0(’0) and P 1(’1) coincide
in the quarter plane Q01

a .

Using the other equations of (17) and the same kind of arguments, we can
show that the function p 2 L2(
) de�ned by

p
��

ja

= P j(’j)

is de�ned unequivocally. Let us prove now that p = 0. By de�nition, it is
solution in the distributional sense of the Helmholtz equation in 
 and its
trace on each line �j

a are in L2. Moreover, we can show that its "trace" on
@
a vanishes in the sense that

8u 2 H2(
) \H1
0 (
);

Z



4p u =

Z



p4u: (62)

Indeed, we have thanks to (17, Theorem 1.5.3) that (62) holds for any
u 2 H2(
) \ H1

0 (
) which vanishes near the corners and the subset of
H2(
) \ H1

0 (
) of functions which vanishes near the corners is dense in
H2(
) \H1

0 (
) by extending the proof of Lemma 2.1.2 of (17).

We deduce that the function p satis�es for all u 2 H2(
) \H1
0 (
),

0 =
Z



(4p+ !2

" p)u =
Z



p (4u+ !2

" u):

The function p is then orthogonal to the range of the operator

A : H2(
) \H1
0 (
) ! L2(
)

u 7! 4u+ !2
" u:
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Using (17, Section 2.3), p can then be decomposed as

pR +
3X

j=0

�j r
�2=3
j sin(2�j=3)

where (rj; �j) are the polar coordinates whose origin is the corner (xj =
a; yj = a) and such that �j is the angle from �j

aa. The restriction of p to each
halfspace 
j

a being in H1=2(
j
a) (or equivalently the "trace" of p to each line

�j
a being in L2(
j

a)), we conclude that each �j = 0 and then p is in H1(
).
As a solution of the Helmholtz equation in 
 whose trace vanishes on @
, p
is equal to 0 and its traces on each �j

a as well : ’j = 0.

4. Theoretical results associated to Case (2)

In this section, we give the proof of Proposition 2.4 in Section 4.1 and The-
orem 2.5 in Sections 4.2.

4.1. Problem (1) in the isotropic case and Problem (29) are equivalent
Proposition 2.4 states that

1. the restriction in 
b and the traces on �j
a of the solution of the original

problem (4) are solution of Problem (29): this is true by construction;
2. from a solution of Problem (29), we can reconstruct the solution of (1):

this is proven in Section 4.1 - for now the trace unknowns are in H1=2.

Let us suppose that
�
pb; (’j)j2J0;3K

�
in H1(
b) �

Q
H1=2(�j

a) is solution of
(29). Because, (’j)j2J0;3K satisfy the last two equations of (29), using the same
arguments than in Section 3.1, we can construct unequivocally a function pext
in H1(
 n 
a) by

8j 2 J0; 3K; pext
��

ja

= P j(’j): (63)

which is solution of the homogeneous Helmholtz equation (4) with

8j 2 J0; 3K; pext
��
�jaa

= ’j
��
�jaa
: (64)

If b > a, as pb satis�es the �rst equation of (29) and by construction of pext,
we deduce that v = pb

��

bn
a

� pext
��

bn
a

is solution in H1(
b n 
a) of

�4v � !2
" v = 0
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and for all j 2 J0; 3K,

v
��
�jaa

= pb
��
�jaa
� ’j

��
�jaa

= 0; by (64) and the third equation of (29)

rv � nj
��
�jbb

= rpb � nj
��
�jbb
� �j’j = 0 by (63) and the second equation of (29);

where the last equality has to be understood in the L2 sense because, by
interior regularity arguments, �j’j 2 L2(�j

bb) for b > a. We conclude that
pb = pext in 
b n 
a.

If b = a, using similar arguments, we show that

8j; pb
��
�jaa

= pext
��
�jaa

and rpb � nj
��
�jbb

= rpext � nj
��
�jbb

which gives (by (21) for instance)

pb
��
�aa

= pext
��
�aa

and rpb � n
��
�bb

= rpext � n
��
�bb
:

In both cases, we can construct (unequivocally if b > a) a function p in H1(
)
by

p
��

b

= pb and p
��

n
b

= pext
��

n
b

which is solution of (1) in the isotropic case.

Remark 4.1. As you can notice, in this proof, we do not use the expression
of the solution of the halfspace problems or the expression of the operators.
The same arguments can be used for the anisotropic case. That is why,
Proposition 2.4 holds for the anisotropic case.

4.2. Stability properties of Problem (29)
Let us remind the reader that a variational formulation of (29) can only

be derived for b > a. Indeed the di�culty for b = a is that, we de�ne piece
by piece the normal trace of pb on �aa thanks to the restriction of �’j on �j

aa
which is in H�1=2(�j

aa), the dual space of ~H1=2(�j
aa), the set of functions of

H1=2(�j
aa) whose extension by 0 are in H1=2(�aa). It seems then impossible

to derive a variational formulation in that case. This is similar to the well
known di�culty of the cross points in Domain Decomposition methods (14).
However, this di�culty does not appear when b > a because by interior
regularity arguments, we know that the restriction of �’j on �j

bb is at least
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in L2(�j
bb). Introducing for all j ’j0 = ’j � pb

��
�jaa

and using the notation
introduced in (59), we can rewrite the variational formulation as follows

Find
�
pb; �0 = (’j0)j2J0;3K

�
2 H1(
b)�V0 such that 8

�
qb; 	0

�
2 H1(
b)�V0

�
(S� !2

"M)pb; qb
�


b
+
�
(I� L)�;	

�
V0
�
�
K�;	

�
V0
� (B  pb;	)V0

�
3X

j=0

h
(�j jpb; qb)�jbb

� (�j’j0; qb)�jbb

i
=
Z


b
fqb (65)

where V0 is de�ned in (19), the operator S is the sti�ness operator, the oper-
ator M is the mass operator, the operator  (resp. j) is the trace operator
from H1(
b) to L2(�aa) (resp. from H1(
b) to L2(�j

aa)) and where as ex-
plained in Section 4.2, the norm of the operator L 2 L(V0) is bounded by
1=
p

2 and the operator K is compact.

To show that this problem is of Fredholm type, it su�ces to show the fol-
lowing property of the operator �.

Proposition 4.2. If b > a, for each j 2 f0; 1; 2; 3g, the operator �j de�ned
in (36) is an operator from L2(�j

a) to L2(�j
bb) and is compact.

Proof: The proof can be done in two ways. The �rst way uses an abstract
argument: it su�ces to use the interior regularity property of the solution of
the associated halfspace problem (8). Indeed, for any data ’ in L2(�j

a), the
solution of the associated halfspace problem (8) is C1 far from the interface
so in particular on �j

bb if b > a. The operator is then well de�ned from L2(�j
a)

to L2(�j
bb). Compact embeddings results complete the proof.

The second way uses a more explicit argument: �j are isomorphic to �
as explained in (27) and � is an Hilbert Schmidt operator from L2(R) to
L2(�b; b) since the associated kernel given by

k(y; �) = {
p
!2
" � �2 e{

p
!2
"��2(b�a)e{�y:

is in L2((�b; b)� R) if b > a. Indeed, we have
Z

R

Z +1

b
jk(y; �)j2dyd� � C

Z

R
j!2
" � �

2j e�2Im(
p
!2
"��2)(b�a) < +1:
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�

We can now conclude on the properties of the operators involved in the vari-
ational formulation (65). The two �rst terms de�ne an operator which is co-
ercive in H1(
b)�V0. The other terms are compact operators in H1(
b)�V0
since respectively: (1) K is compact in V0 by Section 4.2, (2) the operator 
(resp. the operators j) is compact from H1(
b) to V0 thanks to the com-
pact embedding of H1=2(�aa) in L2(�aa) (resp. the compact embedding of
H1=2(�j

aa) in L2(�j
aa) ) (3) thanks to Proposition 4.2.

To show well-posedness of (65), it su�ces then to show uniqueness of the
solution. The di�culty has been already handled in Section 3.3. Indeed, sim-
ilarly to Section 4.1, let us suppose that

�
pb; (’j)j2J0;3K

�
in H1(
b)�

Q
L2(�j

a)
is solution of (29) with f = 0. Using the well-posedness of Problem (17) with
g = pb

��
�jaa

, it exists a unique solution (’j)j2J0;3K in
Q
L2(�j

a) solution of (17),
and this solution corresponds necessarily to the traces of the H1 solution pext
of the exterior problem whose trace on @
a is g = pb

��
�jaa

. The (’j)j2J0;3K are
then in

Q
H1=2(�j

a) and it su�ces then to conclude as in 3.3. As f = 0, the
unknowns

�
pb; (’j)j2J0;3K

�
vanish as well.

5. Theoretical results associated to Case (3)

The aim of this section is to prove Theorem 2.6 that states that Problem
(37) is of Fredholm-type and it is well posed.

Comparing to the Case (2), the speci�city is that the operators Dj
j�1 and

�j de�ned in (35) and (36) are a priori di�erent the one from the others, in
the sense that they cannot be identi�ed to the same operators D� and �. In
the isotropic case, the properties of the operators D� and � given in Propo-
sitions 3.1, 3.4 and 4.2 were fundamental to show the stability properties of
(31). In the anisotropic case, we then need to study for which conditions the
same properties hold for the operators Dj

j�1 and �j.

Because of the presence of the overlap (b > a), Proposition 4.2 holds even for
the anisotropic case, and then for all j 2 J0; 3K, the �j are compact operators.

It is less obvious to extend to the anisotropic case the results of Propositions
3.1 and 3.4. We remind the reader that for any j and for any  2 H1=2(�j

a),
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P j( ) denotes the unique solution in H1(
j
a) of the halfspace problem (32)

which can be written in the variables (xj; yj) introduced in (5)

�r(xj ;yj) � (A
j
0r(xj ;yj)P j)� !2

" P j = 0 in 
j
a;

P j =  on �j
a

(66)

with

A0
0 = A2

0 = A0 :=
�
c1 c3
c3 c2

�
and A1

0 = A3
0 =

�
c2 �c3
�c3 c1

�
(67)

where we have supposed c1; c2 > 0 and d := c1c2 � (c3)2 > 0. Let us de�ne
for the sequel, the restriction operator Rj

I of L2(�j
a) , for all j 2 J0; 3K and

for all interval I � R, de�ned by

8’ 2 L2(�j
a); Rj

I’(xj = a; yj) =

(
’(xj = a; yj) for yj 2 I

0 for yj 62 I
(68)

Let us focus for a moment on the problem j = 0. By performing the change
of variables (see Figure 6)

X0 =
x0p
c1

and Y0 =
p
c1y0 � c3x0=

p
c1p

d
;

Figure 6: Change of variable (x0; y0)! (X0; Y0)
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we can show that the function V 0(	)(X0; Y0) = P 0( )(x0; y0) is solution of
the problem

�4(X0;Y0)V 0 � !2
" V 0 = 0 in 
0

a;
V 0 = 	 on �0

a
(69)

where 	(Y0) =  (
p
d=c1Y0 + c3a=c1). Let us denote the lines

�1
a \ 
0

a = f(X0; Y0); X0 �
a
p
c1
; Y0 =

p
c1p
d
a�

c3p
d
X0g

�3
a \ 
0

a = f(X0; Y0); X0 �
a
p
c1
; Y0 = �

p
c1p
d
a�

c3p
d
X0g:

Using the results of Propositions 3.1, 3.4 and Appendix A, we can deduce
the following result on the operators D0

1 and D0
3.

Proposition 5.1. The operators D0
1 and D0

3 are continuous respectively from
L2(�0

a) to L2(�1
a \ 
0

a) and from L2(�0
a) to L2(�3

a \ 
0
a). Moreover,

1. D0
1R0

(a;+1) and D0
3R0

(�1;�a) can be decomposed as

D0
1R

0
(a;+1) = L0

1R
0
(a;+1) +K0

1

D0
3R

0
(�1;�a) = L0

3R
0
(�1;�a) +K0

3
(70)

where K0
1 (resp. K0

3 ) is a compact operator from L2(�0
a) to L2(�1

a\
0
a)

(resp. from L2(�0
a) to L2(�1

a \ 
3
a)), L0

1 (resp. L0
3) is a continuous

operator from L2(�0
a) to L2(�1

a \ 
0
a) (resp. L2(�0

a) to L2(�1
a \ 
3

a)),
and L0

1 and L0
3 satisfy for all ’ 2 L2(�0

a)

kL0
1R

0
(a;+1) ’kL2 � j cos(�=2)j

r
c1p
d
kR0

(a;+1) ’kL2(�0
a);

kL0
3R

0
(�1;�a) ’kL2 � j sin(�=2)j

r
c1p
d
kR0

(�1;�a) ’kL2(�0
a)

(71)

where � is de�ned by tan � =
p
d=c3, d = c1c2�c2

3 if c3 6= 0 and � = �=2
if c3 = 0.

2. D0
1R0

(�1;�a) are D0
3R0

(a;+1) are compact operators.

Proof: The continuity of the operators D0
1 and D0

3 is easy to deduce using
Problem (69) in the new variables (X0; Y0) and Appendix A.2. Similarly,
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using Appendix A.2 we have that the operators D0
1R0

(�1;�a) and D0
3R0

(a;+1)
are compact operators.

Then, as in Section 3.2, the idea is to decompose D0
1R0

(a;+1) and D0
3R0

(�1;�a)
as follows

D0
1R

0
(a;+1) = R1

(a;b)D
0
1R

0
(a;+1) +R1

(b;+1)D
0
1R

0
(a;+1)

D0
3R

0
(�1;�a) = R3

(a;b)D
0
3R

0
(�1;�a) +R3

(b;+1)D
0
3R

0
(�1;�a)

Similarly to the proof of Lemma 3.2, it is easy to see that Rj
(b;+1)D

0
j with

b > a are compact operators for j = 1; 3.

To �nish, using the same arguments than in the proof of Lemma 3.3 and
Appendix A, we can show that

R1
(a;b) D

0
1 R

0
(a;+1) = L0

1R
0
(a;+1)+K

0
1 ; and R3

(a;b) D
0
3 R

0
(�1;�a) = L0

3R
0
(�1;�a)+K

0
3

where 1) K0
1 and K0

3 are compact operators and 2) L0
1 and L0

3 are continuous
operators which satisfy

8’ 2 L2(�0
a);

kL0
1R

0
(a;+1) ’kL2 � j cos(�=2)j

r
c1p
d
kR0

(a;+1) ’kL2(�0
a);

kL0
3R

0
(�1;�a) ’kL2 � j sin(�=2)j

r
c1p
d
kR0

(�1;�a) ’kL2(�0
a)

and � is de�ned by tan � =
p
d=c3 if c3 6= 0 and � = �=2 if c3 = 0. Indeed,

using Appendix A, we have that for all  2 L2(�0
a) and by denoting 	(Y0) =

R0
(a;+1) (y0)

Z

�ja\
0
a

jV 0(	)(X0; Y0)j2 dX0 � (cos(�=2))2
Z

�0
a

j	(Y0)j2 dY0

Finally, by performing the change of variables to go back to the variables
(x0; y0), we obtain the the estimate for L0

1. Similar arguments give the bound
for the norm of L0

3. �

Finally, extending these results to each halfspace, we get the following result.

Proposition 5.2. For all j 2 Z=4Z, the operator Dj
j�1 is continuous from

L2(�j
a) to L2(�j�1

a \ 
j
a). Moreover,
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1. Dj
j+1R

j
(a;+1) and Dj

j�1R
j
(�1;�a) can be decomposed as

Dj
j+1R

j
(a;+1) = Ljj+1R

j
(a;+1) +Kj

j+1

Dj
j�1R

j
(�1;�a) = Ljj�1R

j
(�1;�a) +Kj

j�1

where Kj
j�1 are compact operators and Ljj�1 are continuous operators

from L2(�j
a) to L2(�j

a \ 
j�1
a ) that satisfy for all ’ 2 L2(�j

a)

kLjj+1 R
j
(a;+1) ’kL2 � Cj

j+1kR
j
(a;+1) ’kL2(�ja)

kLjj�1R
j
(�1;�a) ’kL2 � Cj

j�1kR
j
(�1;�a) ’kL2(�ja)

where

Cj
j+1 = cos(�=2)

r
c1p
d

and Cj
j�1 = sin(�=2)

r
c1p
d

for j = 0; 2

and

Cj
j+1 = cos(�=2)

r
c2p
d

and Cj
j�1 = sin(�=2)

r
c2p
d

for j = 1; 3

where � is de�ned by tan � =
p
d=c3, d = c1c2�c2

3 if c3 6= 0 and � = �=2
if c3 = 0.

2. Dj
j+1R

j
(�1;�a) and Dj

j�1R
j
(a;+1) are compact operators.

Using the same arguments than for the proof of Theorem 2.5 detailed in
Section 4.2, we can show the �rst part of Theorem 2.6 concerning the stability
property under the conditions (38) since

Cj
j�1 � max (j cos(�=2)j; j sin(�=2)j)

max(
p
c1;
p
c2)

d1=4

If the condition (38) is not satis�ed, we can still show that the problem is of
Fredholm type. Indeed, by Proposition 5.2, we can decompose A = I�L�K
as in (59) where K is compact and L 2 L(V0) and

L =

2

6664

0 J0
1 L1

0R1
(�1;�a) 0 J0

3 L3
0R3

(a;+1)
J1

0 L0
1R0

(a;+1) 0 J1
2 L2

1R2
(�1;�a) 0

0 J2
1 L1

2R1
(a;+1) 0 J2

3 L3
2R3

(�1;�a)
J3

0 L0
3R0

(�1;�a) 0 J3
2 L2

3R2
(a;+1) 0

3

7775
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where J jj�1 is the extension by 0 to the line �j
a of a function of L2(�j

a\
j�1
a ).

The di�culty here comes from the fact that the norm of L is, in general, not
strictly less than 1. Yet, we can still prove that I� L is invertible thanks to
the following result.

Proposition 5.3. The operator L2 is continuous from V0 into itself and its
norm is bounded by 1=2.

Proof: Noticing that Rj+1
(a;+1)J

j+1
j and Rj�1

(�1;�a)J
j�1
j are equal to 0, we

deduce that L2 is a diagonal operator in the sense that

8� = (’j)j2J0;3K 2
Y

L2(�j
a); (L2�)j = L2

jj ’
j

where for all j 2 Z=4Z

L2
jj = J jj+1 L

j+1
j Rj+1

(�1;�a)J
j+1
j Ljj+1R

j
(a;+1)+J

j
j�1 L

j�1
j Rj�1

(a;+1)J
j�1
j Ljj�1R

j
(�1;�a):

Then, by Proposition 5.2, we get that for any ’j 2 L2(�j
a)

kJ jj+1 L
j+1
j Rj+1

(�1;�a)J
j+1
j Ljj+1R

j
(a;+1)’

jk � j sin(�=2) cos(�=2)j
p
c1c2p
d
kRj

(a;+1)’
jk

�
1
2
j sin(�)j

p
c1c2p
d
kRj

(a;+1)’
jk: (72)

If c3 6= 0, we recall that � = arctan(
p
d=c3) and d = c1c2 � (c3)2 so that

sin(�) =
p
d=c3q

(
p
d=c3)2 + 1

=
p
d

p
c1c2

Then, it comes in (72)

kJ jj+1 L
j+1
j Rj+1

(�1;�a)J
j+1
j Ljj+1R

j
(a;+1)’

jk �
1
2
kRj

(a;+1)’
jk:

We prove exactly the same result in the particular case c3 = 0. In the same
manner, we get

kJ jj�1 L
j�1
j Rj�1

(a;+1)J
j�1
j Ljj�1R

j
(�1;�a)’

jk �
1
2
kRj

(�1;�a)’
jk:
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By de�nition of the extension operators J jj�1, we have

kL2
jj’

jk2 = kLj+1
j Rj+1

(�1;�a)J
j+1
j Ljj+1R

j
(a;+1)’

jk2

+ kLj�1
j Rj�1

(a;+1)J
j�1
j Ljj�1R

j
(�1;�a)’

jk2

which gives thanks to the previous inequalities

k(L2)jj’jk2 �
1
4
k’jk2:

We conclude easily that the norm of L2 is bounded by 1=2. �

With this result, we easily deduce that I�L2 is invertible. Writing I�L2 =
(I�L)(I+L), we have Im(I�L2) � Im(I�L) so I�L is surjective. Similarly,
since I� L2 = (I + L)(I� L), we have Ker (I� L) � Ker(I� L2), so I� L
is injective. Therefore I� L is also invertible (but not necessarily coercive).
This shows that Freholm alternative holds for Problem (37).

Remark 5.4. Let us emphasize than in the general anisotropic case, the
operator involved in Problem (37) cannot be decomposed as the sum of a
coercive operator and a compact one but only as the sum of an invertible one
and a compact one. The well posedness is ensured by the uniqueness which is
showed in the sequel. The consequence of this weaker result is that a priori,
the numerical analysis cannot be done in the general case. However, Problem
(37) can be adapted to recover the stability property. Indeed, we can show that
a solution of (37) is also solution of a similar problem where the A is replaced
by an operator ~A = I� (I� A)2 and the operator B by ~B = (2I� A)B.

Concerning the well-posedness of Problem (37), as explained in Section 4.2,
the only di�culty concerns the extension of the well-posedness of (20), whose
proof is detailed in Section 3.3, to the anisotropic case. In order to extend
the proof, it su�ces to answer the two intrincate following questions.

1. Does the function V 2 L2(Q01
a ) where Q01

a = 
0
a \
1

a which is solution
in the distributional sense of

�r � (A0rV )� !2
" V = 0; in Q01

a

and whose "trace" on the boundary of the quarter plane, vanishes in
the sense of

8u 2 H2(Q01
a ) \H1

0 (Q01
a );

Z

Q01
a

r � (A0rV )u =
Z

Q01
a

Vr � (A0ru)
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vanish? By using the same change of variables than previously, this
function V is linked to the function satisfying same kind of equations
but in the isotropic case (A0 = I) and in a sector of angle � � � where
the angle � is de�ned in Proposition 5.2 (see �gure 6). As � 2 (0; �),
the sector is convex and using similar arguments than in Section 3.3,
we can conclude that V = 0.

2. Does the function p 2 L2(
 n
a) whose trace on each line �j
a is in L2,

which is solution in the distributional sense of

�r � (A0rp)� !2
" p = 0; in 
 n 
a

and whose trace vanishes on @
a in the sense that

8u 2 H2(
n
a)\H1
0 (
n
a);

Z


n
a
r�(A0rp)u =

Z


n
a
pr�(A0ru)

vanish? Again by the same change of variables, this function p is
linked to the function ~p satisfying the same kind of equations but in
the isotropic case and outside a parallelogram. The complementary of
the parallelogram is not convex but as in Section 3.3, the function ~p is
in H1 up to a linear combination of singular functions. We have then
the same decomposition for the function p, but since the trace of p on
each line �j

a is in L2, we can conclude that p is in H1, then p = 0.

6. Some extensions

3D con�gurations.
The method extends straightforwardly to problems similar to (1) with 
 �
R3. The lines �j

a are replaced by in�nite planes and half-planes are re-
placed by half-spaces where analytical representation are derived using the
2D Fourier Transform. All theoretical results remain true. The method has
not been yet implemented but we anticipate numerical di�culties linked to
the presence of dense and large blocks in the matrix to invert. This could
require appropriate compression strategies.

Multi-scattering problems.
In some cases, enclosing all the heterogeneities and obstacles in one con-
vex polygon can be costly. For instance, in the case of two remote hetero-
geneities/obstacles, a more relevant formulation can be derived by introduc-
ing two separated rectangles (or more general polygons if necessary), one for
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each heterogeneity/obstacle. There will be 2 volumic unknowns, and 8 traces
unknowns. The system of coupled equations will be essentially the same with
additional coupling terms representing the coupling between the two obsta-
cles. These coupling terms being "compact", the stability and well-posedness
results can be proven with similar arguments.

Scattering problems.
Our main motivation is to apply our method to scattering problems which
make sense in the case without dissipation. We refer the reader to the next
section dedicated to the theoretical di�culties raised in the non dissipative
case. Besides, our method extends directly to the scattering problems if the
unknown is the di�racted �eld. An alternative could be to keep the total �eld
for the volumic unknown and use the di�racted �elds for the trace unknowns.

7. The non dissipative case : Open questions but encouraging nu-
merical results

Up to now, we have considered the dissipative problem (4) with Im(!") > 0.
But we claim that in practice, our method also works in the non dissipa-
tive case Im(!) = 0 (See Figure 7). It is quite easy to extend the discrete
formulation to this case, selecting carefully the outgoing solution of the half-
space problem. The price to pay in order to get accurate results is then to
use a re�ned discretization in the Fourier variable �. Indeed, the solution
decaying much more slowly than in the dissipative case (the solution in the
non-dissipative isotropic case behaves like ei!rp

r at in�nity, while the solution
in the dissipative case decays exponentially), its Fourier transform is less
regular.
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Figure 7: The solution in an anisotropic non dissipative case with ! = 10

The main di�culty lies at the theoretical level: the extension of the theoret-
ical results to the non-dissipative case still raises many open questions, that
we briey discuss below.

Let us consider to �x ideas the simplest case of the (isotropic non-dissipative)
Helmholtz equation. It is well-known that the well-posedness of the associ-
ated boundary value problem is ensured if one imposes to the solution to
be "outgoing", which means for instance that the solution satis�es the Som-
merfeld radiation condition at in�nity. Our objective is to reformulate this
problem using our halfspace matching formulation. The �rst di�culty is
that the traces ’j of the solution are no longer in L2 (again, they behave like
ei!rp
r ). An appropriate functional framework has been introduced in (9; 10),

where the space H1=2(R), convenient for the dissipative case, is replaced by
the space V (!; R) of the functions ’ such that j�2 � !2j1=4’̂ 2 L2(R): The
functions of V (!; R) are locally in H1=2, but they may not belong to L2(R),
due to their behavior at in�nity. Using this framework we can state the fol-
lowing result:

42



Let g 2 H1=2(�aa). If p is the outgoing solution of
����
��p� !2p = 0 in 
 = R2n
a
p = g on �aa

then f’ja; j 2 f0; 1; 2; 3gg is solution of (16) in the space
Q3

j=0 V (!; �j
a) (with

obvious notations). But we are not able to prove the converse statement cor-
responding to the second part of Proposition 2.1 (even if we conjecture that
it is true). Indeed, we did not succeed in proving that the di�erent halfspace
representations of the solution match in the quarters of planes. For instance,
we are not able to prove like in paragraph 3.1 that V = P 0(’0) � P 1(’1)
vanishes in 
0

a \ 
1
a. The reason is that we cannot prove that V is outgoing

(in the sense of Sommerfeld radiation condition at in�nity), since we just
know that P 0(’0) is propagating in the direction of positive x, while P 1(’1)
is propagating in the direction of positive y.

Another di�culty arises when we try to extend stability results like Theorem
2.2 to the non-dissipative case. All the theory has been done with traces in
L2, which is no longer the appropriate space. An idea could be to introduce
the space L(!; R) of the functions ’ such that j�

2�!2j1=4

j�2+!2j1=4 ’̂ 2 L2(R), because
the functions of L(!; R) are locally in L2. But it is far from obvious to prove
the di�erent properties of the integral operators in this space. Finally, prov-
ing uniqueness will be of course much more intricate in the non-dissipative
case than in the dissipative case, where we mainly used the coerciveness in
H1. A �rst step has been done by proving a related uniqueness result: in
(7), overlapping halfspace representations are used to prove the absence of
trapped modes (i.e. L2 solutions of the homogeneous non-dissipative equa-
tion) under very weak hypotheses.

Les us emphasize that our approach seems to be well-suited to formulate a
large class of problems, for which no equivalent of the Sommerfeld radiation
condition is available. This is typically the case of anisotropic elastic media.
For these problems, we aim at using our halfspace formulation, not only to
solve numerically the problem, but also to de�ne the notion of outgoing so-
lution and to prove existence and uniqueness of this outgoing solution. This
has been done for instance in (8) using a formulation with non-overlapping
halfspace representations for the junction of open waveguides.
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Appendix A. The case of a general convex polygon

In Case (1), we have considered for now only the case where the obstacle @

is a square but the method can be extended for any convex polygon. There
will be as many trace unknowns as edges of the polygon. This suggests that
for Case (2) and Case (3), the domain 
a can be any convex polygon strictly
included in 
b (i.e. whose shape can be chosen independently).

To illustrate this extension, we consider in this appendix the Case (1) when
@
 is a triangle (see Figure A.8). This situation is particularly of interest
since in that case, only 3 trace unknowns are involved.

Figure A.8: 
a is a triangle and some associated notations

Let 
 = R2 n 
a, g 2 H1=2(@
) and �nd the unique solution p 2 H1(
) of

��p� !2
" p = 0 in 
;

p = g on @

(A.1)

The domain 
 can be split into 3 half-planes 
j
a that lie on the 3 edges of

the triangle 
a. To de�ne these 3 half-planes, we will use the following local
coordinates

8j 2 Z=2Z;
�
xj+1

yj+1

�
=
�
� cos(�j;j+1) sin(�j;j+1)
� sin(�j;j+1) � cos(�j;j+1)

� �
xj
yj

�
; (A.2)

where �j;j+1 2 (0; �) is represented in Figure A.8 and lj is the distance of the
origin to the lines �j

a, and de�ne the half-planes as follows:


j
a = fxj � ljg�fyj 2 Rg �j

a � @
j
a := fxj = ljg�fyj 2 Rg 8j 2 J0; 2K:
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Finally, we denote as before

�aa = @
a and �j
aa = �aa \ �j

a:

These notations are summarized on Figure A.8. For each j, the expression
(9) of the solution of the associated halfspace problem (8) is the same but the
expression of the operators Dj

j�1 de�ned in (14) is di�erent. In particular,
they are not necessarily isomorphic to the same operators D� since the angle
between the �j

a’s are di�erent. They are given by for all  2 H1=2(�j
a)

Dj
j�1 (t) =

1
p

2�

Z

R

b (�)e{
p
!2
"��2t sin(�j;j�1)e�{�(a

j+t cos(�j;j�1))d�; for t � 0:

(A.3)
where 2aj = j�j

aaj and �j;j�1 = �j�1;j.

Using the same approach than in Section 2.1, we introduce the following
problem

8j 2 Z=2Z; ’j(yj) =

Dj�1
j ’j�1(�(yj + aj)) for yj 2 (�1;�aj)

Dj+1
j ’j+1(yj � aj) for yj 2 (aj;+1)

g(yj) for yj 2 (�aj; aj):

(A.4)

We have the equivalent of Theorem 2.2 for the triangle case.

Theorem Appendix A.1. (1) Let g 2 L2(�aa), the problem

Look for (’j)j2J0;2K 2
3Y

j=0

L2(�j
a) solution of (A.4) (A.5)

is of Fredholm type.

(2) Problem (A.5) is well posed in L2.

The stability property is a consequence of the following result.

Proposition Appendix A.2. The operator Dj
j�1 is continuous from L2(�j

a)
to L2(�j�1

a \ 
j
a). Moreover,
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1. Dj
j+1R

j
(aj ;+1) and Dj

j�1R
j
(�1;�aj) can be decomposed as

Dj
j+1R

j
(aj ;+1) = Ljj+1R

j
(aj ;+1) +Kj

j+1

Dj
j�1R

j
(�1;�aj) = Ljj�1R

j
(�1;�aj) +Kj

j�1
(A.6)

where Kj
j�1 are compact operators and Ljj�1 are continuous operators

from L2(�j
a) to L2(�j

a \ 
j�1
a ) that satisfy for all ’ in L2(�j

a)

kLjj+1 R
j
(aj ;+1) ’kL2 � cos(�j;j+1=2) kRj

(aj ;+1) ’kL2

kLjj�1R
j
(�1;�aj) ’kL2 � sin(�j;j�1=2) kRj

(�1;�aj) ’kL2
(A.7)

2. Dj
j+1R

j
(�1;�aj) and Dj

j�1R
j
(aj ;+1) are compact operators.

Proof: The proof will be done only for D0
1 and it can be extended to the

other operators easily. We use the same steps for the proof as for the one
described in Section 3.2. For the decomposition of D0

1, it su�ces to use a
restriction operator, as in (45), which allows us to separate the behavior of
the operator near the intersection of the lines �0

a and �1
a and far from this

intersection. As in Lemma 3.2, it is easy to show that the part far from the
intersection R1

(�1;�b1)D
0
1 is compact from L2(�0

a) to L2(�1
a\
0

a), for b1 > a1.
For the part near the intersection R1

(�b1;�a1)D
0
1, we study as in the proof of

Lemma 3.3, the norm of
L0

1 ’ = v(’)
��
�=�0;1

in L2(R+), where v(’) is solution of (47) and where the polar coordinates
(r; �) are de�ned in (48). Using the same reasoning as in the proof of Lemma
3.3, we have that

kv(’)
��
�=�0;1kL2(R+) � sup

�1=2+{R
jA(�; � � �0;1)j k’kL2(�1;a0)

+ sup
�1=2+{R

jA(�; �0;1)j k’kL2(a0;+1)

where A is de�ned in (55). Since

sup
�1=2+{R

jA(�; �0;1)j = sin(�0;1=2);

we can conclude that the operator L0
1 is continuous, and also that

kL0
1R

0
(a0;+1)k � sin(�0;1=2):
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Finally, to prove the last point, D0
1R0

(�1;�a0) is compact, we use the same
arguments as in the proof of Lemma 3.3. �

To show stability, it su�ces then to use exactly the same arguments than
the ones detailed in Section 4.2. To show well posedness, the reasoning of
4.2 can be also adapted to that case.
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