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We propose a 3D imaging platform based on lens-free microscopy to perform multi-angle acquisitions
on 3D cell cultures embedded in extracellular matrices. Lens-free microscopy acquisitions present some
inherent issues such as the lack of phase information on the sensor plane and a limited angular coverage.
We developed and compared three different algorithms based on the Fourier diffraction theorem to obtain
fully 3D reconstructions. These algorithms present an increasing complexity associated with a better
reconstruction quality. Two of them are based on a regularised inverse problem approach. To compare
the reconstruction methods in terms of artefacts reduction, signal-to-noise ratio and computation time, we
tested them on two experimental datasets: an endothelial cell culture and a prostate cell culture grown in
a 3D extracellular matrix with large reconstructed volumes up to ∼ 5 mm3 with a resolution sufficient to
resolve isolated single cells. The lens-free reconstructions compare well with standard microscopy.

OCIS codes: (090.1970) Diffractive optics; (090.1995) Digital holography; (100.3010) Image reconstruction techniques; (170.0110)
Imaging systems; (180.6900) Three-dimensional microscopy.
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INTRODUCTION

The study of in-vitro cell populations is a challenge if one wants
to gather quantitative and systematic data over extended periods
of time on a large volume while preserving the integrity of
the living sample. As stated in [1], the solution "requires our
microscopes to become smart and gentle."

Lens-free time-lapse microscopy provides a simple, cheap
and robust tool meeting these needs in the realm of 2D cell cul-
ture [2–4]. It is label-free and non-phototoxic and allows the
analyse of biological samples at different scales both in space
and time. Its minimal and compact design is adapted to incu-
bator conditions. It allows the study of cell cultures on large
periods of time without the toxicity induced by classical staining
and labelling methods. It offers a large field of view equal to the
sensor surface (a few tens of squared millimetres for standard
CMOS sensors). This gives the opportunity to study populations
of up to twenty thousand cells at the same time with a resolu-
tion, strongly linked to the pixel pitch, sufficient to individually
distinguish every single cell [2].

Unlike conventional 2D cell culture systems, 3D cultures al-

low to study biological processes closer to physiological reality
such as tissue morphogenesis or tumour initiation [5–7]. Along
with the standardisation of 3D culture protocols in cell biology,
lens-free imaging techniques must also be extended to this new
modality both in terms of acquisition methods and 3D recon-
struction algorithms for large organoid structures [8–11].

A previous work [11] introduced a method for 3D lens-free
tomography for large 3D biological samples but implied various
artefacts. To improve both the acquisitions and reconstruction
methods, we present here a new design enhancing the angu-
lar coverage of the object. Based on this new imaging device,
we tested and compared new algorithms to overcome the two
pitfalls of lens-free tomographic acquisitions: the lack of phase
information in the in-line holographic configuration and the lim-
ited angular coverage. We designed three fully 3D reconstruc-
tion algorithms, all based on the Fourier diffraction theorem as
used in standard diffractive tomography [12–15]. They leads
to an increasing reconstruction quality at the cost of increased
complexity:

• The first method C.1, developed in [11], reintroduces an

http://dx.doi.org/10.1364/AO.56.003939
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approximation of the phase by a phase ramp in the dataset.

• The second algorithm C.2 performs an iterative phase re-
trieval based on a regularised inverse problem approach on
each 2D acquisition. In comparison to the former method,
this algorithms handles better the lack of phase informa-
tion in the data acquisition process by estimating a realistic
guess for it.

• The third solution C.3 also uses the regularised inverse prob-
lem formalism, but directly applied on the whole dataset
and the 3D object to retrieve, the Fourier diffraction theo-
rem providing the direct model. Doing so, at the cost of an
increased computation time, we aim to overcome the lim-
ited number of acquisitions and admissible angles around
the sample by directly adding constraints on the 3D object.
To our knowledge, this is the first time that such an inverse
problem approach is implemented in the context of lens-free
diffractive tomography which enables the reconstruction of
large volumes of unstained biological samples.

To compare the reconstruction methods in terms of artefacts
reduction, signal-to-noise ratio and computation time, we tested
them on two experimental datasets: a HUVEC endothelial cell
culture and a RWPE1 prostate cell culture grown in a 3D ex-
tracellular matrix of Matrigel®. The first one presents a planar
geometry and the second one is a complex fully 3D structure.

In the following, we first introduce the experimental bench
we developed dedicated to lens-free diffractive tomography of
3D biological samples. Next, we present the Fourier diffrac-
tion theorem and the three dedicated reconstruction algorithms
we developed to retrieve 3D objects with our lens-free micro-
scope. We then compare the 3D reconstructions of the two above
mentioned datasets to estimate the performances of the three
proposed reconstruction methods. Reconstructed volumes as
large as ∼ 5 mm3 are presented with a resolution sufficient to
resolve isolated single cells. We conclude with a comparison
with phase contrast and fluorescent microscopy.

MATERIALS AND METHODS

Experimental setup
Standard 2D lens-free microscopes are minimalist tools, only
composed of a semi-coherent illumination source fixed above a
sensor [2–4]. It is based on the in-line holography principle (see
figure 1) proposed by Gabor in 1948 [16]. The 2D cell culture
is placed on the top of the sensor at a distance of 1 to 3 mm
and diffracts the normally incident light. The object is then
numerically retrieved from the recorded hologram.

We developed an experimental bench to adapt this geometry
for the reconstruction of 3D objects which requires to multiply
the viewing angles (see figure 1). The object is static while
the sensor1 and the multi-wavelength illumination source2 are
rotating around an axis orthogonal to the sensor with a stepper
motor3.

Unlike the 2D in-line geometry, the illumination is tilted by
an angle θ = 45◦ and the sensor is slightly deported so that the
hologram of the 3D object remains centered regardless of the
position of its geometrical projection according to the angle ϕ
around the 3D sample. This allows to optimise the 2D field of

1CMOS sensor - IDS - 29.4 mm2, 3840× 2748 monochromatic pixels, pixel pitch
1.67 µm - ref. UI-1942LE-M

2LED CREE, λ ∈ {450, 520, 630 nm} - ref. XLamp MC-E RGBW MCE4CT
3RS-535-0401, 0.9◦ , 44 Ncm, 2.8 V, 1.68 A, 4 Wires

Fig. 1. Left - Experimental setup dedicated to lens-free diffractive
tomography. Right - Optical scheme of the system. The semi-
coherent incident plane wave Uinc is scattered by the 3D sample.
Each element of the volume behaves like a secondary spherical
source which creates a diffracted wave Udi f . The sensor records

the intensity of their sum: Itot = |Utot|2 with Utot = Uinc + Udi f .

view of the sensor, which increases the overall volume that can
be reconstructed. This configuration is well adapted to standard
culture cell containers such as Petri dishes.

3D diffraction physics
The absence of reference arm as in off-axis holography for the
incident wave in the device presented on figure 1 implies that
only the intensity Itot of the complex total wave Utot is recorded
by the sensor. This wave is the summation of the incident plane
wave Uinc produced by the LED and the diffracted wave Udi f
scattered by the object:

Itot = |Utot|2 =
∣∣∣Uinc + Udi f

∣∣∣2 (1)

The input signal is composed of intensities at different illu-
mination positions and wavelengths. From this, we have to
retrieve the 3D diffracting sample. The latter is described by its
scattering potential f defined at each point of space−→r = (x, y, z)
by:

f
(−→r ) =

(n
(−→r )
n0

)2

− 1

 (2)

where n
(−→r ) is the local complex refractive index and n0 is the

refractive index of the surrounding medium. In the hypothesis
of transparent objects, the scattering potential is supposed to be
the same regardless of the illumination wavelength.

Under the first-order Born approximation [12], the wave Udi f
diffracted by the objectO (see figure 1) can be expressed in terms
of f :

Udi f
(−→r ) ' k2

0
4π

∫∫∫
−→rO∈O

f
(−→rO )Uinc

(−→rO ) eik0‖−→r −−→rO‖∥∥−→r −−→rO∥∥ d3−→rO

(3)
with k0 = 2πn0/λ the wave number at a given illumination
wavelength λ in a medium of refractive index n0. This convolu-
tion highlights the 3D Huygens-Fresnel principle which states
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that the diffracted wave is the interference of all the secondary
spherical waves produced by each point of the sample weighted
by the incident wave and the local scattering potential.

This equation can consequently be used to retrieve the scat-
tering potential f from the knowledge of the diffracted wave
Udi f . From equation 2, it is then possible to get the 3D map of
the complex refractive index of the 3D sample. Its real part is
the standard refractive index while its imaginary part represents
the object absorption [17, 18].

Nevertheless, the Born approximation holds only if the over-
all phase delay introduced by the sample remains negligible [13],
a requirement which is generally not met in cell cultures that
contain objects with dimensions larger than few tens of microns.
For a cell with a typical length of l = 20 µm and refractive index
of 1.36 in water [13, 19], the relative refractive index is δn = 0.03.
In the visible light λ ' 550 nm the introduced phase delay is
2πlδn/λ > 2π, which cannot be considered negligible. While
this prevents any quantitative reconstruction, we will however
use the model described by equation (3) to determine whether
some morphological information on the biological sample, such
as positions, dimensions and shapes, can be estimated. In the
following, we will consequently focus on the complex scattering
potential of the reconstructed objects and only plot its mod-
ulus which appears less disturbed than its real or imaginary
parts [20].

Using the notations introduced in figure 2, for a monochro-

matic incident plane wave Uinc
(−→r ) = ei

−→
k0 .−→r of wave vector

−→
k0 = 2πn0

λ (p0, q0, m0), equation (3) can be rewritten to obtain
the Fourier diffraction theorem [12] which links the 3D Fourier
transform of the scattering potential f with the 2D Fourier trans-
form of the diffracted field Udi f on a given plane at z = z+:

f̂ (α, β, γ) =
4π

ik2
0

we−2iπwz+Ûdi f
(
u, v; z+

)
(4)

where (u, v) and (α, β, γ) are respectively the coordinates in the
Fourier space on the plane z = z+ and in the Fourier space of
the object, linked by the following relationships:

α = u− u0

β = v− v0

γ = w− w0

and w (u, v) =

√
n2

0
λ2 − u2 − v2 (5)

with (u0, v0, w0) =
n0
λ (p0, q0, m0).

The Fourier transform4 and its inverse transform are here
defined for a given function g as:

F (g) (u) = ĝ (u) =
∫ ∞

−∞
g(x)e−2iπuxdx (6)

F−1 (ĝ) (x) =
∫ ∞

−∞
ĝ(u)e2iπxudu (7)

Equation (5) implies that the two-dimensional surface Ûdi f is
mapped on a spherical cap (the so-called Ewald’s sphere) into
the 3D Fourier transform f̂ . The cap properties depend on

−→
k0

which gives the cap orientation via its direction (p0, q0, m0) and
the cap radius via its wavelength λ.

Note here that this theorem can be used both in simulation
purpose (going clockwise in figure 2 from a 3D simulated object
to the diffracted waves U j

di f in terms of lighting positions) or for

4This definition extends naturally to higher dimensions.

Fig. 2. Illustration of the geometrical interpretation of the
Fourier diffraction theorem. A 3D Fourier transform links the
3D spatial and frequency domains of the scattering potential f .
A 2D Fourier transform links the 2D spatial and frequency do-
mains of the diffracted wave Udi f for each lighting situation j.
A mapping on spherical caps links the 2D frequency domain
of the diffracted wave and the 3D frequency domain of the ob-
ject. The orientation and radius of these caps directly depend on
the illumination directions

−→
k0

j ∝ (pj
0, qj

0, mj
0) and the associated

wavelengths λj.

direct reconstruction (going counter-clockwise in figure 2 from
the diffracted waves recorded by the sensor toward the retrieved
object via a mapping of the Fourier domain on spherical caps).

Importantly, this theorem requires the knowledge of the
diffracted wave Udi f both in amplitude and phase, whereas

as mentioned above, only Itot = |Utot|2 is recorded by the sensor
with our device.

Consequently, the inverse problem consisting in retrieving f
from the indirectly recorded diffracted wave Udi f is ill-posed
due to this lack of phase information in the measurement of Utot.

3D reconstruction methods
Reconstruction methods based on the Fourier diffraction theo-
rem (4) must deal with two inherent limitations of our in-line
holographic device: the lack of phase information on the wave-
front in the sensor plane, and the limited angular coverage of
the acquisitions.

As mentioned earlier, the first limitation is a consequence
of the fact that the sensor only records the wavefront intensity,
and its phase information is lost. This lack of information leads
to the well-known effect of twin-image in standard 2D lens-
free microscopy and such artefact can be awaited in our 3D
reconstructions if no phase information is added in the sensor
plane.

The second limitation comes from the limited possibilities
to turn around the object, the angular coverage being limited
by the wall of the container and the fact that the sensor must
stay parallel to this container to be as close as possible to the
biological sample. Moreover, only a discrete and finite number
N of angles are acquired. This means that only a part of the
Fourier space of the 3D object is accessible from a given dataset:
the coefficients lying on the spherical caps corresponding to
each illumination

−→
k0

j, j ∈ J1, NK which depends on its direction
−→
k0

j ∝ (pj
0, qj

0, mj
0) and its wavelength λj.

To overcome these limitations, we developed three different
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but complementary methods. The first step of each method is
a registration of the data. Indeed, as the illumination and the
sensor turn around the sample, the hologram of a given object
rotates and falls on different positions on the sensor. The use of
the whole 3840× 2748 pixels frame in the reconstruction method
is time and memory consuming, and one can use a region of
interest surrounding these holograms, as presented in [11].

Methods C.1 and C.2 are based on the Fourier diffraction
theorem used to map the Fourier domain f̂ of the 3D object f .
Each acquisition with a different illumination gives informa-
tion on coefficients of f̂ lying on spherical caps (figure 2 used
counter-clockwise). Both of these methods needs an estima-
tion of the diffracted wave Udi f . Method C.3 uses the Fourier
diffraction theorem as a direct model for simulating the data,
i.e. the recorded intensity of the total wave Utot (figure 2 used
clockwise).

All the recorded intensities of the total transmitted waves
Itot = |Utot|2 are normalised so that their background value
equals to 1, corresponding to the unperturbed theoretical inci-

dent wave Uinc
(−→r ) = ei

−→
k0 .−→r .

Phase ramp

In this method first introduced in [11], the unknown phase on the
sensor is considered to be a phase ramp, whose characteristics
match the ones of the tilted illumination. To do so, the square
root of Itot is multiplied by a phase ramp exp (i

−→
k0 .−→r ) to take

into account the non-uniform phase shift induced by the tilted
incidence of

−→
k0 relative to the sensor plane. Then we subtract

the theoretical incident plane wave Uinc
(−→r ) = ei

−→
k0 .−→r :

Udi f '
√

Itot exp
(

i
−→
k0 .−→r

)
−Uinc (8)

This approximation is a needed step in the presented method,
as the phase contains information about the inclination of the
wavefront. Without this information, the mapping of the Fourier
space with equation (12) cannot work because the computed
2D spectra will be shifted in the Fourier space. Equation (8)
reintroduces the information of the illumination angle in the
data. Nevertheless, it does not totally compensate the lack of
phase information in the sensor plane since the phase distortion
introduced by the object is not taken into account [11].

Once an approximation of Udi f is known, it is mapped into
the Fourier space of f according to the Fourier diffraction theo-
rem. To do so, equation (4) is first rewritten in terms of (α, β, γ)
to homogenise the coordinates in the frequency domain:

f̂ (α, β, γ) =
4π

ik2
0

w′e−2iπw′z+Ûdi f
(
α + u0, β + v0; z+

)
(9)

with γ = w′ − w0 and w′ (α, β) =
√

n2
0

λ2 − (α + u0)
2 − (β + v0)

2.
Equations (6) and (9) give:

f̂ (α, β, γ) =
4π

ik2
0

w′e−2iπw′z+F2D

(
Udi f .e−2πi(u0x+v0y)

)
(10)

Note that this equation is given in terms of the absolute po-
sition (x, y) in the sensor plane. But, as previously mentioned,
the holograms are aligned prior to the reconstruction step. Udi f
is consequently expressed in terms of (x + x0, y + y0), where
(x0, y0) = zs (p0, q0) is the theoretical position of the hologram
in the sensor plane at a distance z+ = zs (figure 2). Taking

into account this shift in the spatial domain and according to
equation (7), one finally gets:

f̂ (α, β, γ) = e−2πi(x0α+y0 β) 4π

ik2
0

w′e−2iπw′zs · · ·

F2D

(
Udi f .e−2πi(u0(x+x0)+v0(y+y0))

) (11)

This Fourier mapping operation is performed for each U j
di f

recorded for each lighting situation
−→
k0

j, j ∈ J1, NK. An approxi-
mation of f can then be retrieved with an inverse Fourier trans-
form of the mapped f̂ :

f = F−1
3D

[
map

(
e−2πi

(
xj

0u+yj
0v
)

4π

ik2
0

wj′e−2iπwj′zs · · ·

F2D

(
U j

di f .e−2πi
(

uj
0

(
x+xj

0

)
+vj

0

(
y+yj

0

))))∣∣∣∣
{
−→
kj

0 |j=1→N}

] (12)

where map (.)
∣∣
{
−→
kj

0 |j=1→N}
stands for the mapper5 of the spher-

ical caps into the Cartesian mesh of f̂ . To avoid aliasing, both
U j

di f and f are zero-padded.
This method has the advantage to reconstruct large volumes

in a small amount of time. Nevertheless, it is based on a strong
approximation on the phase and only a small part of the Fourier
domain of the object is constrained: the coefficients on which
lie the spherical caps. Hence, one can expect strong artefacts as
discussed in [11].

2D phase retrieval

As presented in [10], this method aims to find a better estimate
of the unknown phase in the sensor plane by performing an
iterative phase retrieval. To this end, for each 2D picture I j

tot of
the dataset j ∈ J1, NK, the 3D object to retrieve is approximated
by an average median plane tj

2D. This mathematical artifice is
used in a phase retrieval algorithm to get the phase at the sensor
plane for this given illumination j. Contrary to the method
exposed in [10], our phase retrieval technique is based on an
inverse problem approach.

Using the notations of figure 2, the total wave Utot at z = z+

diffracted by a 2D complex transmissive plane t2D at z = 0
is directly given by the Rayleigh-Sommerfeld diffraction for-
mula [21]:

Utot
(−→r ) = z+

iλ

∫∫
−→rO∈O

t2D
(−→rO )Uinc

(−→rO ) eik0‖−→r −−→rO‖∥∥−→r −−→rO∥∥2 d2−→rO

(13)
For low scattering objects, one can rewrite: t2D = 1 + δt.

Equation (13) becomes:

Utot
(−→r ) = Uinc

(−→r )+ Udi f
(−→r )

= Uinc
(−→r )+ (Uinc.δt) ?

(
z+

iλ
eik0r

r2

)
(14)

The convolution ? is computed in the padded Fourier do-
main. To take into account the limited coherence length lcoh of

5Different techniques were tested to map the discrete cap into the discrete cubic
mesh: the nearest neighbour techniques and linear interpolation. As there was
no noticeable differences in the results, for ease of use and rapidity, we kept a
mapping of the nearest neighbour Fourier coefficients.
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the illumination and to reduce aliasing effects due to the high fre-
quencies of the convolution kernel, we also added a pyramidal
mask in the kernel:

Mlcoh
(x, y) =


lcoh−r2D

lcoh
if r2D < lcoh

0 if r2D > lcoh

, r2D =
√

x2 + y2 (15)

Then for any δt, it exists a direct model giving the complex
diffracted wave Udi f (δt) at the sensor plane:

Udi f (δt) = (δt.Uinc) ?

(
Mlcoh

z+

iλ
eik0r

r2

)
(16)

The inverse problem of retrieving δt from the measurements
Itot is ill-posed due, among others, to the lack of phase measure-
ment on the detector plane.

We choose to resolve the reconstruction problem by minimis-
ing the following data-fidelity term:

δ̃t = argmin
δt

∥∥∥∥Itot −
∣∣∣Uinc + Udi f (δt)

∣∣∣2∥∥∥∥2
(17)

The initial parameters of the experiment (here δt) are re-
trieved from the knowledge of the experimental data (here Itot)
and the direct model allowing to simulate numerical data for
a given set of parameters. This inverse approach allows us to
model the non-linear direct process of image formation without
requiring an inversion formula.

Nonetheless, minimising directly equation (17) will not be
sufficient to retrieve the phase of Udi f since an infinite number
of phase can match the recorded intensities Itot. One needs to
add some constraints and regularisations to the minimisation
problem (17). The inverse approach allows us to perform this by
minimising the following criterion:

δ̃t = argmin
C(δt)

∥∥∥Itot − |Utot (δt)|2
∥∥∥2

+ µL1 ‖δt‖L1,ε + µ∇ ‖∇δt‖L1,ε

(18)
C (δt) stands for the constraint given on the domain of ad-

missible solutions. The central term is a sparsity prior given
by:

‖δt‖L1,ε =
1

nbxnby
∑
k,l

√∣∣δtk,l
∣∣2 + ε2 (19)

where the indices (k, l) stand for the nbx × nby pixels’ locations
on the image grid respectively on the x and y-axes. ε is a small
number to ensure the differentiability of the L1-norm in the
vicinity of 0. If one works with overall sparse objects, this aims
at enforcing the fact that the expected reconstructed plane is
mainly composed of isolated "particles" [22, 23].

Another a priori hypothesis is that the expected "particles"
have almost uniform values inside their support. As a result, the
gradient of δt has to be almost sparse. Another interpretation is
that the reconstructed image has to be smooth while preserving
sharp edges at the locations of the particles. This gives the
right-hand term of equation (18) which takes the form of an
edge-preserving regularisation [24, 25]. The gradient of δt is
computed as follows:

∣∣∇δtk,l
∣∣2 =

1
2

[∣∣δtk+1,l − δtk,l
∣∣2 + ∣∣δtk,l+1 − δtk,l

∣∣2 + · · ·∣∣δtk+1,l+1 − δtk,l+1
∣∣2 + ∣∣δtk+1,l+1 − δtk+1,l

∣∣2] (20)

The parameter ε is again used to avoid the singularity when
∇δt = 0. It has also the property of relaxing the strong constraint
put by the L1-norm on the sharpness of edges by acting like a
threshold on the gradient. Below this threshold, regularisation
smooths the solution (behaving like a L2-norm) while above this
threshold, the contrast is preserved (behaving like a L1-norm).

In order to tune an appropriate trade-off between data-fidelity
and a priori information, the regularisation terms are respec-
tively weighted by two hyper-parameters µL1 and µ∇.

The reconstruction consists in minimising the criterion (18),
which is performed by the VMLM-B algorithm [26], a modified
limited memory quasi-Newton convex optimisation method
with BFGS updates and bound constraints.

Once δt is estimated for a given illumination j, the corre-
sponding diffracted wave U j

di f can be computed via the right-
hand term in equation (14). When the 2D phase information of
all the different acquisitions is retrieved, a 3D Fourier mapping
is performed as previously exposed in the former method C.1 via
equation (12) to obtain the final fully 3D reconstructed volume.

This method C.2 solves one pitfall of the previous method C.1:
the phase information introduced in the reconstruction is more
realistic and should reduce some artefacts. Nevertheless, it does
not solve the problem of the Fourier mapping limitations: only
the same coefficients on the spherical caps are accessible.

3D inverse problem approach

In this last method, the Fourier diffraction theorem (6) is used as
a simulation tool for a direct model (see figure 2) to implement an
inverse problem approach to iteratively retrieve the 3D object f .
Working directly on the full volume f theoretically allows to
retrieve more Fourier coefficients than methods C.1 and C.2
via and extrapolation, thanks to a priori information, of the
missing frequencies which lie outside spherical caps covered by
the dataset. Such an approach also allows to appropriately deal
with the lack of phase information to reduce artefacts.

Using the mathematics introduced in section C.1, one gets a
direct model to compute the diffracted wave Udi f centred on its
theoretical position (x0, y0) from any scattering potential f and
illumination

−→
k0 from equations (11) and (12):

Udi f ( f ) =e2πi(u0(x+x0)+v0(y+y0))F−1
2D

[
e2πi(x0u+y0v) · · ·

ik2
0

4πw′
e2iπw′zs map−1 (F3D ( f ))

∣∣−→
k0

)] (21)

Generalising the definitions introduced in the previous
method C.2 to the third dimension, this direct model is used to
define a new cost function and a new minimisation problem:

f̃ =argmin
C( f )

[
1
N

N

∑
j=1

∥∥∥∥I j
tot −

∣∣∣U j
inc + U j

di f ( f )
∣∣∣2∥∥∥∥2

+ · · ·

µL1 ‖ f ‖L1,ε + µ∇ ‖∇ f ‖L1,ε

] (22)

where C ( f ) stands for the domain constraints of the solution f̃ .
The resolution of the minimisation problem (22) is performed

with the same convex optimisation algorithm [26] introduced in
method C.2.

Besides addressing the lacking phase and estimating the
global Fourier transform of f , this method also allows to im-
prove the data alignment. Indeed, after having performed a
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first estimation of f , one can use the direct model (21) to sim-
ulate a numerical dataset Ĩ j

tot = |U j
inc + U j

di f ( f ) |2, j ∈ J1, NK.

By construction, this set of simulated intensities Ĩ j
tot is aligned

with the numerical 3D object f . It can consequently be used as a
reference to refine the registration of the experimental data I j

tot.
As presented in [11], the experimental data are aligned with the
simulated intensities via a Least Squares Minimisation of the dif-
ference between the simulated intensities and the interpolation
of the experimental data for a given shift.

Performing anew a 3D reconstruction of this dataset via equa-
tion (22) will increase the quality of the retrieved object. One can
iterate these steps alternating between 3D reconstruction and
data alignment. This refinement cannot be performed with the
first two methods.

3D cell cultures
The different 3D reconstruction approaches were tested and
compared on two types of cell models which lead to different
morphologies when grown in 3D scaffolds.

Human Umbilical Vein Endothelial Cells (HUVEC)

HUVEC cells are primary cells extracted from human neona-
tal umbilical cords used for many vascular biology research
applications, such as inflammation, angiogenesis and blood
clotting. The cells were purchased from Millipore™. The cul-
ture was maintained in a sub-confluent state in culture Petri
Dish (113 cm2) coated with fibronectin at 37◦C. HUVEC cells
were grown in EndoGro basal medium (Millipore™) supple-
mented with 5 ng/mL of rhVEGF, rhEGF, rhFGFb respectively,
15 ng/mL rh IGF-1, 10 mM L-glutamine, 0.75 U/mL heparin sul-
fate, 1 µg/mL hyroscortisone hemisucinate, 50 µg/mL ascorbic
acid, and 10% FBS.

For the final cell culture, the cells were grown in
Matrigel® (BD Biosciences) according to a no top-coat protocol.
For polymerisation, Matrigel® was incubated for 30 minutes at
37◦C and 4000 to 10000 cells were seeded and allowed to adhere
for approximately 45 minutes. Then their complete medium was
slowly poured over the attached cells.

All cells were routinely cultured in a humidified atmosphere
with 5% CO2 at 37◦C for a day.

Prostate Epithelial Cells (RWPE1)

RWPE1 cell line was obtained from ATCC. This cell line was
derived from non-neoplastic human prostate epithelial cells by
immortalisation with human papillomavirus. RWPE1 cells were
used as a model for normal prostate epithelial cell behaviour
as characterised by a polarised acinar morphology in 3D cul-
tures. RWPE1 cells were maintained in KSFM (Life Technolo-
gies) supplemented with 5 ng/mL Epidermal Growth Factor
(Life Technologies), 50 µg/mL Bovine Pituitary Extract (Life
Technologies) and 1% Penicillin-Streptomycin (Life Technolo-
gies). Cells were passaged upon 70% confluence and seeded at
20000 cells/mL density. All cells were routinely cultured in a
humidified atmosphere with 5% CO2 at 37◦C.

Cell number and viability was measured by trypan blue dye
exclusion staining using an EVE™ Automatic Cell Counter (Na-
noEnTek).

For the final 3D cell culture, Matrigel® (BD Biosciences) mi-
crobeads were produced using a microfluidic chip with flow
focusing geometry as previously described in [27]. For the aci-
nar morphogenesis assay, RWPE1 cells in Matrigel® microbeads
were allowed to develop into organoids for 7 days in KSFM (Life

Technologies) supplemented with 50 ng/mL Epidermal Growth
Factor (Life Technologies), 2% Foetal Bovine Serum (Life Tech-
nologies), 1% Matrigel® and 1% Penicillin-Streptomycin (Life
Technologies) in multiwell plates. Cell culture medium was
changed every two days.

Finally, capsules were washed twice with medium and were
then embedded in Matrigel® deposited at the center of Greiner
petri dishes (Sigma-Aldrich) and allowed to polymerise for 30
minutes at 37◦C. Culture medium was subsequently added.

Acquisitions of the microscope views (RWPE1)

For comparison purpose, microscope acquisitions were per-
formed on the RWPE1 cell culture. The organoids in capsules
were labelled with 10 µM CellTracker™ Orange CMTMR dye
(Thermo Fisher Scientific) in media for 30 minutes at 37◦C. Fi-
nally, the RWPE1 culture was fixed using 2% paraformaldehyde
1% glutaraldehyde for 20 min.

During these steps, the cell culture could have been slightly
modified and some structures washed away. As the aim was to
compare the z-positioning and the shape of some objects, it was
however deemed sufficient.

z-stacks of phase and fluorescent images were acquired us-
ing an AxioObserver.Z1 inverted microscope (Zeiss) with a N-
Achroplan 5x/0.13 Ph0 air objective mounted with an AxioCam
503 monochrome digital camera. Acquisitions were performed
on 150 slices equally spread on ∆z = 400 µm.

RESULTS

Comparison of the three reconstruction methods

Reconstruction parameters

The two 3D cell cultures were similarly processed.

Acquisitions Both datasets were composed of 3 × 16 acqui-
sitions done at 16 different angles ϕ ∈ {0◦, 282◦}, ∆ϕ =
18.8◦ in the three available wavelengths of the RGB LED
λ ∈ {450, 520, 630 nm}. In each dataset, a region of interest
of 1024× 1024 pixels (1.72 mm2) was selected. The only limita-
tion in this selection is that the observed region must be in all the
pictures of the dataset. We chose a representative region of each
dataset by encompassing several typical structures, i.e. branches
for the HUVEC network, and capsules and organoids for the
RWPE1 culture.

Reconstruction volume To reduce the computing time and the
memory consumption, the final reconstruction was composed
of 512× 512× 300 voxels of 3.34× 3.34× 5.32 µm3 for a global
volume of 1.7× 1.7× 1.6 mm3 = 4.7 mm3. The voxels are not
orthonormal to take into account the distortion on the z-axis
induced by the refraction between the air of refractive index
nair and the culture medium of refractive index n0. Indeed, for
an illumination tilted of an angle θair in the air, everything acts
as if the sample was illuminated with an angle θ0 verifying :
nair.sinθair = n0.sinθ0. This leads to a scaling factor6 on the
z-axis equal to:

z0
zair

=

√
n2

0/n2
air − sin2θair

1− sin2θair
(23)

6In the present case, with θair = 45◦ , nair ' 1 and n0 = 1.33 in the water,
the effective angle seen by the sample is θ0 ' 32◦ , leading to a scaling factor
z0/zair ' 1.59.
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Method C.2 The three available wavelengths were used to-
gether to improve the 2D phase retrieval via the minimisation
problem (18). As mentioned earlier for the 3D scattering po-
tential, the effective 2D transmissive plane δt is supposed to be
independent of the illumination wavelength. To do so, the data
fidelity term in equation (18) was simply modified to be the sum
of the nλ = 3 data fidelity terms at each wavelength:∥∥∥Itot − |Utot (δt)|2

∥∥∥2
↔ 1

nλ
∑
λj

∥∥∥∥I
λj
tot −

∣∣∣Uλj
tot (δt)

∣∣∣2∥∥∥∥2
(24)

To insure non-emissive objects, the constraint C (δt) was cho-
sen to force δt to have a negative real part: R (δt) < 0. ε was set
to 10−6, lcoh to 500 µm and the hyper-parameters to µL1 = 0.5
and µ∇ = 0.1. The number of iterations was fixed to 100.

Method C.3 For the 3D inverse problem approach, the iterative
process was split in seven batches of ten iterations in between
which a data registration was performed. The constraints were
set to R ( f ) > 0 and I ( f ) > 0 which leads for a small δn =
n− n0 to an absorbent and dephasing object. ε was set to 10−6.

Something which was also tested in this work was to change
the weight of the hyper-parameters along this iterative process.
For the first guesses, for example, one can start with a small
regularisation on sparsity and increase the hyper-parameter
µL1 afterwards to enforce the constraint. To do so, µL1 was set
to vary from 0 to 100 ([0, 0, 0, 10, 10, 100, 100] for the HUVEC
dataset and [0, 0, 0, 0, 10, 10, 100] for the RWPE1 dataset). On
the other hand, especially for complex samples, one can start
with a problem strongly regularised in terms of localisation with
high values for µ∇: the data fidelity is degraded, but the over-
regularisation forces the reconstructed object to be localised, and
consequently the simulated data to be well aligned, bettering the
registration step. Once the alignment of the experimental data
is more accurate, the hyper-parameter µ∇ can be set to lower
values, increasing the data fidelity relative weight in the cost
function. µ∇ was consequently set to vary from 3 to 1 for the
HUVEC dataset ([3, 1, 1, 1, 1, 1, 1]) and from 5 to 1 for the RWPE1
dataset ([5, 5, 3, 1, 1, 1, 1]).

Performances of the different methods

Method C.2 As expected, the iterative RGB 2D phase retrieval
algorithm developed for method C.2 reduces the numerous arte-
facts introduced by the lack of phase information (see figure 3).
The sparsity constraint efficiently cleans the noise and the twin-
image signal present in the background of figure 3.b: the back-
ground on figure 3.c is homogeneous with overlying sharp and
contrasting objects.

After a rapid drop in the first 20 iterations for each dataset
(see figure 4), the cost function of equation (18) barely decreases
after the 50th iteration.

Method C.3 The convergence curves for the 3D inverse problem
(see figure 5) are less intuitive as they are not strictly decreasing.
This is due to the fact that every 10 iterations, a data alignment
refinement occurs and the values of the hyper-parameters may
change. Both of these effects are visible on the curves.

If the registration step does not have a visible effect on the
HUVEC convergence curve, its effect is noticeable between the
first and the second batch of the RWPE1 dataset reconstruc-
tion. Indeed, between these two batches, at the 10th iteration,
the value of the hyper-parameters is unchanged (µL1 = 0 and
µ∇ = 5) and so is the value of the last two terms of the cost func-
tion (22). The change in the cost function from more than 16 % to

Fig. 3. Example of a RGB phase retrieval performed on the first
illumination position in the HUVEC dataset. (a) Raw acquisition
by the sensor with the green illumination. (b) Modulus of a
simple 2D back-propagation of the green intensity to the object
plane. The classical twin-image effect is clearly visible around
the isolated cells and the branches of the HUVEC network. (c)
Recovered phase information in the sensor plane for the green
illumination after the iterative RGB retrieval. (d) The retrieved
2D object modulus. Most of the artefacts are erased by the
regularised inverse problem approach.

less than 14 % can therefore only be attributed to the diminution
of the data fidelity term because of a better agreement between
the experimental and simulated data.

The noticeable upward jumps are linked with the change of
the value of the hyper-parameter µL1 . It gains a factor 10 at the
30th and the 50th iterations for the HUVEC reconstruction and
at the 40th and the 60th iterations for the RWPE1 reconstruction.

Reconstruction time The reconstruction time with the phase
ramp method C.1 is directly the time of the Fourier mapping
operation and is quite fast (∼ mins) (see table 1).

Method C.1 Method C.2 Method C.3

HUVEC ∼ 1 min ∼ 1 h 20 min ∼ 7 h

RWPE1 ∼ 1 min ∼ 2 h ∼ 10 h

Table 1. Comparison of the reconstruction times with the dif-
ferent methods. The increase in the complexity of the recon-
struction method significantly lengthens the computation time.
They were obtained with our Matlab® code running on a Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40 GHz processor. The code was
not fully optimised, thus the given times must be considered as
an order of magnitude for comparison purposes.

As expected, most of the reconstruction with the method C.2
is spent in the 2D phase retrieval: several minutes for each of the
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Fig. 4. Convergence curves of the RGB phase retrieval C.2 per-
formed on the first illumination position in the HUVEC (see
figure 3) and RWPE1 datasets. The curves were normalised to
their values at the first and the last iterations.

Fig. 5. Convergence curves of the iterative 3D inverse prob-
lem C.3 for the two datasets. The curves were normalised to
their values at the first and the last iterations. For each dataset,
the batches of 10 iterations are separated by a blank in the curve
to emphasise the iterations where the alignment of the data is
refined and where a change in the hyper-parameters can occur.

16 lighting positions. In details, the final reconstruction times
for the HUVEC and RWPE1 datasets are ∼ 16× 5 + 2 min and
∼ 16× 7 + 2 min. The last 2 min correspond to the final Fourier
mapping operation.

Unsurprisingly, the 3D inverse problem approach C.3 is the
slowest one. The running time being composed of roughly 60%
for the minimisation of the problem (22) and 40% for the data
registration refinement.

3D reconstructions

In this section we compare the three methods via 3D reconstruc-
tions on the two experimental datasets.

HUVEC reconstruction It clearly appears on the volumes slices
(see figures 6.c-e) that the methods C.2 and C.3 strongly diminish
the artefacts of the phase ramp solution C.1 by cleaning the twin-
image from the background. One can nevertheless see on the
orthogonal views (see figures 6.i-k) that strong artefacts remain
in the reconstructions performed with the method C.2. They are
due to the limited angular coverage: the cone shapes around the
contrasted objects are characteristic of the angle θ at which the
sample is illuminated.

For morphological and positioning analysis, method C.2 ap-
pears to be sufficient compared to method C.3 (see figures 6.d-e).
The gain of contrast in the plotted profiles on figures 6.f-h does
not justify the high calculation time of method C.3, since the two
methods give similar results in terms of segmentation capabili-
ties.

RWPE1 reconstruction The HUVEC network is overall planar
compared to the RWPE1 cell culture which is more complex
with overlapping structures spread on a large scale along the
z-axis (see figure 7.b). It appears that the previous remarks on
the artefacts reduction still holds (see figures 7.c-e. and 7.i-k).

Besides, some 3D structures only contrast from the back-
ground with method C.3. This is particularly visible on the
profiles (see figures 7.c-h) in which the signal of small individual
objects strongly peaks (green arrows) in all the reconstructions,
whereas some organoids are only visible with the inverse prob-
lem approach C.3 (red arrows). In addition, the segmentation
between the three structures between the blue brackets along
the dashed-lines appears possible only with method C.3.

In order to better quantify these differences in the reconstruc-
tions quality, a contrast to noise ratio R was estimated on specific
regions of interest and compared for the three methods. A re-
gion of 45× 45 pixels was selected in a region seemingly without
any reconstructed object to compute the mean value mb and the
standard deviation σb of the background signal. Then spots of
3× 3 pixels were selected to estimate their mean intensity ms.
The contrast to noise ratio was then computed as follows:

R =
ms −mb

σb
(25)

This does not pretend to be a rigorous signal to noise ratio
estimation. Indeed, we do not know the real signal to actually
compare it with our reconstructions. Moreover, these ratios do
not reflect the efficiency of the different methods to reduce the
artefacts: the background is estimated in a region where they
seem to appear minimal, whereas they can peak rather high (see
the twin-image in the phase ramp reconstructions on figures 6.c
and 7.c). These ratios consequently give only an idea on how
the different algorithms increase the signal intensity compared
to the background.

First of all, the different contrasts (see table 2) confirm that
isolated objects are well reconstructed with a contrast higher
than 15 compared to the background (R0 and R3) for all the
reconstruction techniques. The value R1 confirms that some
structures such as the spot 1 on figures 7.c-e are undistinguish-
able from the background with the 2D phase retrieval C.2 (see
figure 7.d). One needs the 3D inverse problem method C.3 to
extract these structures from the background intensity.

The contrast to noise ratio is higher with method C.3. One
could have nevertheless expected a better contrast based on the
scales of the profiles (see figures 6.f-g and 7.f-g). This comes from
the standard deviation of the background which gains a factor
of ∼ 12 with this method compared to methods C.1 and C.2.

Concerning the sectioning on the z-direction, the 3D view of
figure 7.b shows that objects are widely spread in the three di-
mensions and artefacts on this direction seem limited. Looking
more closely at the orthogonal views (see figures 7.i-k), it appears
once again that only the 3D regularised problem approach is
able to clean the artefacts to correctly retrieve the objects. Indeed,
one can see that the isolated and small objects that are blurred
by the twin-image with the simple phase ramp method C.1 are
well reconstructed by the 2D phase retrieval algorithm C.2 (see
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Fig. 6. Comparison of the
reconstruction methods on a
HUVEC network. The cells
spread on the Matrigel® surface
and the final network is over-
all planar. (a) Raw data at the
three wavelengths and at dif-
ferent angles. (b) 3D visuali-
sation of the reconstructed vo-
lume with the 3D inverse pro-
blem method (see visualisation
1). Reconstruction parameters:
ϕ ∈ {0◦, 282◦}, ∆ϕ = 18.8◦,
θ = 45◦, λ = RGB, zs =
3.3 mm, 512× 512× 300 voxels
of 3.34× 3.34× 5.32 µm3. Final
volume: 1.7× 1.7× 1.6 mm3 =
4.7 mm3. (c-e) Comparison of
the three methods for a volume
slice at z = 0 µm. The red
square and the green spot (0)
represent respectively the areas
on which the background and
the signal were estimated. (f-h)
Profiles drawn along the yellow
dashed-lines in figures 6.(c-e).
(i-k) Cropped views on the xz-
plane orthogonal to the green
dashed-line.

HUVEC RWPE1

mb
(
10−5) σb

(
10−6) ms

(
10−4) R0 mb

(
10−5) σb

(
10−6) m1

s
(
10−5) R1 m2

s
(
10−5) R2 m3

s
(
10−4) R3

Method C.1 2.88 6.16 1.22 15 2.51 5.74 4.44 3.4 7.68 9 1.12 15

Method C.2 2.74 4.18 2.41 51 2.39 4.93 3.09 1.4 7.62 11 1.80 32

Method C.3 8.35 79.8 26.6 32 5.71 66.9 71.3 9.8 13.7 20 40.1 59

Table 2. Details of the estimation of the contrast R for the different areas spotted on figures 6.c-e and 7.c-e. The exponents are coherent
with the numbering of the spots on these figures.

figures 7.i and j). Added to methods C.1 and C.2, method C.3 ef-
ficiently cleans the remaining artefacts due to the lack of angular
coverage. Objects in the vicinity of the organoids are now visible
and well separated. Nonetheless, their shape normally spherical
appears rather straight. This is once again due to the impossibil-
ity of acquiring angles widely distributed in elevation (θ-angle
on figure 1): the algorithm cannot recover the information which
is in the zones of shadow of the organoids.

Comparison with a standard microscope

To further study the sectioning capabilities of the device and the
algorithms on the z-axis, a comparison was made with acquisi-
tions from a standard microscope.

To do so, a fully 3D reconstruction was performed with a
higher resolution on the RWPE1 cell culture with the 3D inverse
problem approach C.3. The region of interest is framed by a
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Fig. 7. Comparison of the recon-
struction methods on a RWPE1
cell culture. The cells tend to
form organoids when embed-
ded in Matrigel®. (a) Raw data
at the three wavelengths and at
different angles. (b) 3D visual-
isation of the reconstructed vo-
lume with the 3D inverse pro-
blem method (see visualisation
2). Reconstruction parameters:
ϕ ∈ {0◦, 282◦}, ∆ϕ = 18.8◦,
θ = 45◦, λ = RGB, zs =
3.3 mm, 512× 512× 300 voxels
of 3.34× 3.34× 5.32 µm3. Final
volume: 1.7× 1.7× 1.6 mm3 =
4.7 mm3. (c-e) Comparison of
the three methods for a volume
slice at z = −48 µm. The
red square and the green spots
(1, 2, 3) represent respectively
the areas on which the back-
ground and the signal were es-
timated. The blue square is the
zone which was reconstructed
with a higher resolution for
comparison with a standard mi-
croscope. (f-h) Profiles drawn
along the yellow dashed-lines
in figures 7.(c-e). (i-k) Cropped
views on the xz-plane orthogo-
nal to the green dashed-line.

blue dashed square on figure 7.e. The dataset was composed of
3× 31 acquisitions done at 31 different angles ϕ ∈ {0◦, 282◦},
∆ϕ = 9.4◦ in the three available wavelengths of the RGB LED.
The region of interest was composed of 512× 512 pixels (855×
855 µm2). The final reconstruction was composed of 512× 512×
300 voxels of 1.67 × 1.67 × 2.66 µm3 for a global volume of
855× 855× 800 µm3 = 0.584 mm3.

The iterative process was split in twenty batches of ten iter-
ations in between which a data registration was performed for
the first fourteen batches. The constraints were set toR ( f ) > 0
and I ( f ) > 0 and the hyper-parameters were varying from 0 to
1000 for µL1 and varying from 5 to 0.5 for µ∇.

The total reconstruction time was ∼ 30 h whose ∼ 12 h were
dedicated to the data registration refinement.

The reconstruction quality is degraded on the z-direction on
the final reconstructed volume (see figure 8). This is due to
the acquisition geometry: it is impossible to rotate the sample
to acquire more specific data on the z-direction. This loss of
information leads to the limited number of coefficients acces-

sible in the Fourier domain of the object as mentioned above.
Nevertheless, the 3D regularisation compensates this lack of
viewing angles. Even if all the information is not retrieved, this
algorithm allows to clean and reduce classical artefacts which ap-
pears in classical tomographic algorithms with limited angular
coverage [28].

The shape of the organoids can be reconstructed as well as
some information inside the structures such as global changes
of density (see figures 8.a and c)). We insist here again that this
is not quantitative (see 2.B). What seems to be a bridge is visible
between two planes at different z (see figure 8.b).

We compared the 3D reconstruction with microscope views
(see figure 9). The main structures are common to all the views.
Nevertheless, as mentioned earlier, in the reconstructed vol-
ume, single objects (red arrows) artificially contrast more than
extended structures (blue arrows).

Figure 10 presents the comparison of different slices of the
fully 3D reconstructed volume with their microscope counter-
parts. Despite a non-quantitative contrast, one can see that the
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Fig. 8. Visualisations of the reconstructed volume of the RWPE1
dataset at full resolution with the 3D inverse problem method
(see visualisation 3). Reconstruction parameters: ϕ ∈ {0◦, 282◦},
∆ϕ = 9.4◦, θ = 45◦, λ = RGB, zs = 3.52 mm, 512× 512× 300
voxels of 1.67 × 1.67 × 2.66 µm3. Final volume: 855 × 855 ×
800 µm3 = 0.584 mm3. (a-c) Orthogonal slices based on a xy-
slice at z = 61 µm. (d-f) orthogonal 3D rendering of the fully 3D
reconstructed volume. All the views are orthonormal.

main structures are accurately reconstructed both in terms of
positioning and morphology.

The z-sectioning also appears more selective compared with
the focused/unfocused criterion and is able to separate extended
overlapping structures (figures 9.d-f and 10). For example, the
organoid on the z = 193 µm slice is well set apart from the
cellular branch at z = −33 µm without any bridging artefact on
the z = 105 µm slice. Another example is the structure at the
bottom right of the z = −33 µm slice: it appears separated from
the underlying slightly unfocused small organoid visible on the
microscope view. This small structure is actually reconstructed
at z = −84 µm (see visualisation 5).

In the slice z = −126 µm, some structures are still visible
despite the fact that this slice is the deepest one into the object
and consequently beyond the limits of the model (3) since the
incident wavefront crossed the entire sample.

Let’s also mention here that with the fully 3D reconstruction,

Fig. 9. Comparison between the integration of the z-stacks of
the fully 3D reconstructed volume (a - average intensity), the
phase contrast (b - average intensity) and the CellTracker™ vi-
sualisation (c - max intensity). (d-f) Orthogonal slices of the
different volumes on the xz-plane along the corresponding yel-
low dashed-lines. The green arrows point at different objects of
interest. For the phase contrast and fluorescence imaging, the
arrows are placed were the objects seem at their best focus on
the xy-plane (see visualisations 4 and 5 for more detailed views).

one can see that the two cellular branches at z = 193 µm and
z = 105 µm are actually bridged in the third dimension: this
is the branch we mentioned above on figure 8.b in the top left
quadrant.

CONCLUSION AND DISCUSSION

We presented a novel tool to perform acquisitions on large 3D
cell cultures. Based on the in-line holographic principle, it can
image unlabelled and unstained living samples. To overcome
the limitations raised by such a microscope, that is to say the
lack of phase information on the data and the limited angular
coverage, we developed three dedicated algorithms.

We showed that these algorithms are able to retrieve the 3D
object but with different qualities in terms of contrast to noise
ratio and computational time. Giving the result in a single pass,
the algorithm based on a phase ramp is fast but leads to a signal
which can be hard to distinguish from the artefacts and the
noise. Providing the best contrast, the algorithm based on the
3D inverse problem approach can nevertheless be extremely
time consuming.

It appears then that the choice to use either an algorithm or
another will depend on the targeted application. To identify
isolated single cells in a 3D volume, which provide a strong
signal, the first algorithm can be sufficient. On the other hand if
one aims at reconstructing complex overlapping structures, only
the 3D regularised iterative reconstruction can provide a more
pertinent result.

Comparison with standard microscope views showed that
the fully 3D reconstructions are accurate in terms of morphology
and positioning. The proposed lens-free device provides a cheap
and easy to use tool with a good sectioning in the z-direction
on large volumes. Nonetheless, it has been shown that the
reconstructions are not quantitative in terms of contrast (figure 9).
The small objects will appear highlighted compared to larger
structures. This is a limitation of the method and makes the
image prone to interpretation errors.

Beyond this proof of concept, some work remains to be done,
especially in terms of computational time.
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Fig. 10. Comparison of the fully 3D reconstructed volume (left)
with the microscope views of phase contrast imaging (middle)
and CellTracker™ visualisation (right). Different slices at dif-
ferent depths are presented (see visualisation 6 for a more de-
tailed view). At each focusing distance, the main characteristic
structures that are in focus on the phase contrast images were
manually segmented. The red outlines were superimposed on
the reconstructed slices and on the CellTracker™ visualisation.

As mentioned for method C.2, the decreasing rate of the cost
function sharply diminishes after the 50th iteration. It would
have been possible to stop the algorithm at that point without
degrading the reconstruction quality, leading to a reconstruction
time divided by 2.

The computational time of the 3D inverse problem
method C.3 is its main pitfall. We saw that is mainly divided
between the 3D iterative problem and the data refinement.

For the first part, as regards the iterative code itself, the bot-
tleneck is the computation of the data fidelity term. At each
iteration this step can take several minutes since it requires 3D
and 2D Fourier transforms and extraction of spherical caps in
the Fourier domain. In the realm of tomographic diffractive
microscopy, some works have shown that an intelligent use of
GPU programming can dramatically reduce this step to just a
few seconds [29]. In the case of the RWPE1 reconstruction (sec-
tion 3.B) this would represent a gain of ∼ 10 h on the ∼ 18 h
dedicated to the iterative process.

Concerning the second part, the alignment steps were per-
formed sequentially. Since then, we implemented a multi-
threaded solution aligning the data by batches in parallel. In
our case, the registration process is directly divided by 12, our

number of cores. In the case of the RWPE1 reconstruction (sec-
tion 3.B) the time dedicated to the alignment process would
decrease from ∼ 12 h to ∼ 1 h. Furthermore, the alignment
method is based on the minimisation of the Least Squares be-
tween the simulated data and the experimental intensities. This
solution has the advantage to work out the relative angle but can
be very time consuming. In the refinement step, the simulated
and experimental data are already relatively close and other
faster alignment techniques may be implemented.”

Another track for improvement concerns the choice of the
hyper-parameters. In this work, they were empirically chosen
for both methods C.2 and C.3 to provide reasonable results. A
more thorough study of their effects and an optimised choice,
maybe based on simulations, could also improve the quality
of the reconstruction. It may also influence the large standard
deviation of the background signal mentioned above: further
studies are necessary to determine if it comes from the method
and if a better choice for the hyper-parameters would solve
the issue or if the area is not as empty as it seems. Indeed the
presented cultures were grown in Matrigel®. It presents good
optical properties for standard microscopy [30, 31]. but can be
a very heterogeneous structure with a possible formation of
fibrils or agglomerates, not adapted to diffractive microscopy.
Some other extracellular matrices could be tested [32]. The opti-
misation of the hyper-parameters and the extracellular matrix
represents an extensive study which will be subject of future
work.

Finally, we showed that the sectioning capabilities outclass
the focused/unfocused estimation of 2D standard microscopes.
But to better quantify the resolution on the z-axis, comparisons
with classical optical 3D microscopes such as confocal or light-
sheet microscopes are needed .

For biological applications, it would be interesting to test
the limitation of the proposed tool with stained or pigmented
cells. Indeed, the reconstruction algorithms are based on the
assumption that the sample is transparent. Nonetheless staining
is often used in biology to label specific cells or structures. Some
works have shown the possibility to use lens-free devices to
image such 2D samples [33], a need which will also appear in
3D samples.

In addition, an adaptation of the device to incubator condi-
tions would open the field of time-lapse microscopy to large
volumes analysis of overall sparse 3D cell cultures, dedicated to
screening assays for example.
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