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Comparison studies on active cross-situational
object-word learning using Non-Negative Matrix

Factorization and Latent Dirichlet Allocation
Yuxin Chen, Member, IEEE, Jean-Baptiste Bordes, and David Filliat

Abstract—Future intelligent robots are expected to be able
to adapt continuously to their environment. For this purpose,
recognizing new objects and learning new words through inter-
active learning with humans is fundamental. Such setup results
in ambiguous teaching data which humans have been shown
to address using cross-situational learning, i.e. by analyzing
common factors between multiple learning situations. Moreover,
they have been shown to be more efficient when actively choosing
the learning samples, e.g. which object they want to learn.
Implementing such abilities on robots can be performed by latent-
topic learning models such as Non-Negative Matrix Factorization
or Latent Dirichlet Allocation. These cross-situational learning
methods tackle referential and linguistic ambiguities, and can be
associated with active learning strategies. We propose two such
methods: the Maximum Reconstruction Error based Selection
(MRES) and Confidence Base Exploration (CBE). We present ex-
tensive experiments using these two learning algorithms through
a systematic analysis on the effects of these active learning
strategies in contrast with random choice. In addition, we study
the factors underlying the active learning by focusing on the use
of sample repetition, one of the learning behaviors that have been
shown to be important for humans.

Index Terms—developmental robotics, word-referent learning,
cross-situational learning, active learning, Non negative Matrix
Factorization (NMF), Latent Dirichlet Association (LDA).

I. INTRODUCTION

TODAY’S robots are mainly designed to perform special-
ized tasks in specific and controlled scenarios. In order

to be exploited at a further extent and become autonomous
agents, their ability to continuously adapt to their environment
and to learn to recognize new objects will be fundamental. In
the last decade, implementations of effective visual features
and powerful machine learning models have led to tremen-
dous progress in the task of object recognition. However,
performances are still limited in that they heavily rely on the
availability of good training data that are difficult to obtain.
In contrast, two years old children show an impressive ability
to learn to recognize new objects during simple everyday
interactions with adults. Inspired by the children’s capabilities
while following the developmental robotics approach, this
paper aims at developing object and name learning approaches.

In this paper, we target computational models that make it
possible to match objects to words for a humanoid robot using
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human interaction which is similar to the one taking place
between children and parents. Motivated by this objective,
we will compare two topic models, Non negative Matrix
Factorization (NMF) and Latent Dirichlet Association (LDA),
in the framework of cross-situational word-object learning. We
will also study how active learning strategies could improve
performances, by allowing the learner to choose which object
to learn, and compare them, in terms of behaviors, with human
active learning.

A. Cross-Situational Word-Object Learning

Word-referent learning refers to the task of labeling features
or objects (the so-called referents) with words in a social
context. It is still an open issue when multiple mappings from
word to referent can exist; a situation known as “indeter-
minacy of reference” [1]. Two main directions are explored
by recent studies in order to decrease the uncertainty of
potential referents: cross-situational learning [2], [3] and social
learning [4], [5]. In cross-situational learning, the learner
receives no feedback on its performance and has to analyze
the common factors between different ambiguous situations.
On the contrary, social learning requires the learner to receive
feedback during interaction [6].

However, both methods have in common the entailment
of incremental learning. Cross-situational learning provides
multiple scenes related to one specific word that the learner
is supposed to make use of, in order to devise the possible
referents. For interactive learning, the teacher has to provide
proper cues over potential mapping for the learner.

Despite the mechanisms and strategies already proposed,
ambiguity still generates obstacles for learning a word’s ref-
erent, that can fall in two categories:

1) Referential ambiguity: This ambiguity exists when sev-
eral possible correspondences exist between words and
visual features. This ambiguity is greater if multiple
objects are presented to a learner while only one gen-
eral descriptive sentence is given by the teacher. The
mapping of a set of keywords (among many) to its
corresponding object (among many) is also undefined.

2) Linguistic ambiguity: The sentences for the description
of an object or a set of objects might also contain
not only keywords but other grammatical words, mood
words, or speaking errors as well. The algorithm thus has
to distinguish keywords from other words considered as
noise in this context.
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B. Interactive Learning and Active Learning

The display of intelligence and curiosity by children discov-
ering the physical world is impressive. Developmental robotics
tries to bestow robots with incremental learning abilities by
taking inspirations from the mental developments of infants
according to the Piaget’s theory of cognitive development [7].
Our paper focuses specifically on two capabilities: interactive
learning and active learning, which remain as critical means
of upgrading the intelligence of a robot.

Interactive learning is an important medium promoting the
applications of social and biologically inspired learning mech-
anisms such as emulation, mimicking, imitation, and stimulus
enhancement [8], [9], to help robots take full advantage of
a human teacher while acquiring new skills. Whether using
guidance-based methods (eg. [10], [11]) or exploration-based
approaches (eg. [12], [13], [14]), the drawback of this process
is the high demand of human expertise in the interaction,
and improvements should be made to facilitate the rule of
interaction as well as the use of ordinary information sources
whose features and traits can be automatically discovered.
Therefore, the present paper focuses on scenarios in which
advantage is taken from weak supervision by a human teacher
in order to learn words and their corresponding visual def-
initions. Moreover, the experiments use data recorded from
speakers who do not have any knowledge of the underlying
algorithms which are used for learning.

An important factor to accelerate the autonomous learning
of robots is the implementation of active learning strategies.
When facing the vast space of learning, curiosity often guides
the infants’ exploration and sets constraints for the learning
processes. Therefore, artificial curiosity [15], [16] was de-
veloped for simulating the intrinsic motivation of infants for
seeking new information. In this paper, active learning will be
used to improve the learning performance of an agent while it
learns word-referent associations.More specifically, the learner
will have to choose which objects he wants the teacher to
describe, depending on its current knowledge.

C. Contributions

As extension of works presented in [17] where modifications
have been made on NMF to better learn a concept and in
[18] in which two computational topic models have been built
by applying NMF, LDA and active learning to solve cross-
situational learning tasks, this paper proposes and analyses a
new active learning algorithm, Confidence Based Exploration
(CBE), in addition to the previously proposed one, Maximum
Reconstruction Error based Selection (MRES).

This paper also goes beyond the pure performance analysis
of learning algorithms and focuses also on the behavioral level,
especially the difference between the proposed algorithms
and humans in terms of exploitation of sample repetition.
Indeed, Immediate sample repetition has been shown to lower
referential ambiguities in word-referent learning games for
humans and thus both repeated and non-repeated words were
learned better [19]. It was also shown that the order of learning
trials and the temporal contiguity of certain trials would also
make a difference. Furthermore, Kachergis [20] shows that

humans rely on immediate sample repetition in active learning
situations.

In the remainder of this paper, related works of word-
referent learning will be presented in Section II. We then
present our own models and experimental settings in Section
III and IV. The experiments are presented in Section V and
focus on incremental scenarios of interactive learning. In these,
our proposed models will be challenged, from the simplest
experiment to more complex ones, by increasing ambiguities
and noise. Finally, Section VI discusses the relations between
the behavior of our models and those of humans, while Section
VII draws conclusions and outlines potential future work.

II. RELATED WORK

This problem of word-referent learning, in a larger per-
spective, can be stated as language grounding [21] or symbol
grounding [22], [23], [24], [25]. Much of these research
studies have been conducted with the goal of grounding varied
content, including personal pronouns [26], [27], colors, shapes
[28], set of multiple properties [29], locations [30] and spatial
relations [31], [32], [33], [34], [35], [36], [37]. A lot of them,
as in this paper, focus on the relatively simple, yet primary
task of learning words related to object identities or features,
and concentrate on studying various algorithmic aspects that
influence a system’s performance with data obtained by inter-
action with a human teacher.

Applying word-referent learning in a human-robot interac-
tive scenario leads to both theoretical and pragmatic problems,
mainly regarding the choice of modal feature perceptions (of-
ten concerning vision and speech), the choice of word-referent
learning algorithms, and the choice of learning strategies.
While the symbol grounding problems can be categorized (by
[38]) as physical symbol grounding [39] and social symbol
grounding [40], the word-referent learning in this paper is
assumed to refer to the former one, which is aimed at
grounding symbols to real world objects by a physical agent
(e.g., a robot) interacting in the real world.

Yu [41] presents a multimodal system able to ground
spoken names of objects in their physical referents from vocal
and vision input. For the audio part, a natural language
processing module processes raw audio data using lexical and
grammatical analysis on the utterance consisting of several
spoken words (i.e., keywords such as nouns) so as to convert
the continuous wave pattern into a series of recognized words
by considering phonetic likelihoods and grammars. For visual
processing, a head-mounted camera is used to get visual
features (including color, shape and texture description) that
are extracted as perceptual representations. These feature sets
are labeled with temporally co-occurring object name candi-
dates to form many-to-many word-meaning pairs. For learning,
the problem of multimodal clustering and correspondence is
finally solved by the proposed Generative Correspondence
Model.

Mangin [42] proposes an approach based on Non-negative
Matrix Factorization (NMF) for learning complex human
movements applied to data recordings. The learning system
associates motions perceived by a camera with sound and
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word labels. The motion part encodes the skeleton position
and velocity acquired from a single human dancer through
a Kinect device, and the sound information is a low level
representation of infant directed speech sentences taken from
the Acorns Caregiver dataset [43].

Araki [44] proposes a multimodal approach (including
vision, sound and haptic properties of objects) that is im-
plemented on a real robot, and focuses on learning ob-
ject concepts by using Latent Dirichlet Allocation (LDA).
The multimodal data are acquired autonomously by a robot
equipped with a 3D visual sensor, two arms and a small hand-
held observation table that serves as the platform for capturing
multi-view visual images of objects. This information is com-
plemented by a small amount of linguistic information from
human users.

Noda [45] uses deep neural networks to achieve the associ-
ation of cross-modal information, including image, sound and
motion trajectory. The memory retrieval, behavior recognition
and causality modeling experiments are tested on NAO, a
small humanoid robot.

The Talking Heads [23] is another model of language
acquisition among a population of agents, which consists of a
visual perception system, a symbolic communication channel,
and an associative memory. In this experiment, a pair of agents
are chosen randomly as “speaker” and “hearer” to accomplish
series of guessing games on an open-ended set of geometric
figures so that a shared lexicon, as well as the perceptually
grounded categorization of objects are self-organized within
this population without human intervention or prior speci-
fication. Learning is based on the gradual construction of
categorization trees that associate features and words.

The CELL model of Roy [46] (Cross-channel Early Lexical
Learning) is a cross-situational model of word-referent learn-
ing from multimodal sensory input. It has been implemented
in the experiment of grounding shape names acquired through
a word acquisition model based on directly processing raw
data from spontaneous infant-directed speech, which are paired
with video images of single objects. The main structure of
CELL is composed of speech processing, computer vision, and
machine learning algorithms together with STM (short-term
memory) and LTM (long-term memory) settings. STM serves
as a buffer where pairs of recurrent co-occurring utterance-
shape events (also known as audio-visual prototypes or AV-
prototypes) are filtered; and LTM further applies a recurrence
filtering by first clustering the AV-prototypes from STM and
then consolidating them based on a mutual information crite-
rion [47] as the final lexical units.

A limitation of the related work is the lack of comparison
of the performances of these algorithms, due to the diversity
of the input data and the large spectrum of algorithmic
approaches. While several models use specific learning al-
gorithms [46],[41],[23], other use very generic topic models
such as NMF [42] and LDA [44]. The latter ones provide a
sound definition of the problem (i.e., finding the hidden cause
that generates a visual feature and an associated word). We
therefore focus on the implementation of two cross-situational
learning models, based on NMF and LDA, applied on the
same dataset with the goal of evaluating their strength and

weaknesses in front of referential and linguistic ambiguities.
Furthermore, as presented in the introduction, active learn-

ing is a learning strategy that can improve learning perfor-
mance, but its implementation has been seldom studied in
this context [48]; most models simply process a pre-recorded
dataset. Moreover, its implementation is strongly linked to the
associated learning algorithm. While we are not proposing new
active learning approaches, we study how active learning could
be implemented in association with NMF and LDA, and how
its behavior relates to the behavior of humans.

III. MODEL PRESENTATION

In this section, the framework of the proposed learning mod-
els is described, including the presentation and pre-processing
of data and the learning algorithms as well as learning strate-
gies, much of which comes from [17], [18]. Therefore, we
mainly focus on the parts that are newly proposed, while
already presented parts will be more briefly described.

A. Multimodal Data Presentation
The input data, noted as a corpus V of vectors Vi (i =

1, 2, ..., n), present two parts: the appearance of an object and
an associated sentence pronounced by a human partner (see
the left half of Figure 1). The main characteristic required
by the learning algorithms (see Section III-C) is that these
representations are additive, i.e., that it is possible to construct
an object or a set of objects representation as a sum of their
individual features. We used histogram representations that
separate shape, color and language information to this end.

1) Histogram Presentation: The first part of each vector
contains a continuous channel for the presentation of visual
features, currently containing the color (V colori ) and shape
(V shapei ) of an object. Color is encoded by an histogram of
the pixel hue (from the HSV color space) of size 80. Shape
is encoded by reshaping a 30x30 pixels image of the object
as a 900 dimension vector (see [17] for more details). More
generic features could be used as well without modifying the
model. These visual features are encoded as vectors of constant
size. The second part is a binary vector of the size of the
dictionary of all known words (V wordi ) and represents the
word occurrences in the sentence. The dictionary is created
incrementally, starting from an empty dictionary and adding
each new word encountered in sentences at the end. Note that
multiple objects of interest (e.g., in Figure 2) are represented
by summing the description of each individual object, thanks
to the fact that the features are histograms.

In order to conduct comprehensive analysis through series
of experiments covering different cases in terms of both refer-
ential ambiguity and linguistic ambiguity, six different learning
scenarios are proposed and listed in Table I. Here “Keywords
only” (i.e., KW) indicates the scenario where a human tutor
only speaks feature-related words (ie. nouns and adjectives)
in contrast to the scenario of “Full sentence” (ie. FS) in
which the speaker uses natural sentences (including articles,
pronouns, verbs, etc.). Besides, Single (ie. S), Double (ie. D)
and Triple (ie. T) refer to how many objects (one, two and
three respectively) the teacher would present simultaneously
to a learner robot.
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Fig. 1. Diagram of vector quantification and clustering.

“Here are a red ring, a yellow cup 
and a green lego.”

Fig. 2. Example of an ambiguous teaching situation.

TABLE I
DATA AMBIGUITIES DEFINED IN DIFFERENT SCENARIOS AND CASES.

SCENARIO
CASE Single Double Triple

Keywords only KW&S KW&D KW&T
Full sentence FS&S FS&D FS&T

2) Vector Quantization (VQ): In order to apply LDA and
language filtering using Term Frequency-Inverse Document
Frequency (TF-IDF, see below), the non symbolic (visual)
channel in the observation vectors in V needs to be quantized.
A simple incremental clustering is implemented along with
the use of χ2 distance, which is well adapted for histogram
features:

χ2(x, y) =

d∑
k=1

(xk − yk)2/(xk + yk)

This process is illustrated in the right half of Figure 1. More
details can be found in [18].

Note that each of the resulting shape cluster will be labeled
as st ∈ S, while all member vectors within a cluster will
be averaged as vst ∈ VS , then S and VS act as entries
and corresponding contents of the shape dictionary. The same
procedure takes place for the formation of the color dictionary
{C : VC}. A corpus (D) of vector-quantized samples di,
(i = 1, 2, ..., n) is then established by finding the items si ∈ S
and ci ∈ C whose member vectors are most similar to V shapei

and V colori , respectively, by applying χ2 distance. Using the
words wi whose corresponding indexes in V wordi are positive,

di indicates a collection of symbols, containing all words in
wi plus si and ci.

B. Language filtering

The language filtering tries to filter out keywords from
natural sentences in the FS scenario. LDA filters keywords
thanks to its statistical properties, however, NMF provides
better performance after an initial filtering of keywords [17].
It does so by relying on statistics on the word occurrences
through the Term Frequency-Inverse Document Frequency
(TF-IDF) popular approach [49] in text processing.

This paper inherits the modified version of TF-IDF with the
use of adaptive thresholds on the IDF value, as detailed in [18]

idflow = idfmin + ηlow(idfmax − idfmin)
idfhigh = idfmin + ηhigh(idfmax − idfmin)

(1)

where idfmin and idfmax are the maximum and minimum
of idf values for all words. The pairs (si,ci) are treated as
documents, while ηlow and ηhigh values are optimized to reach
the highest possible final performance on the testing set in each
scenario.

C. Learning Algorithms

The learning algorithms implemented in our experiments
include NMF and LDA:

1) NMF: NMF is an algorithm which computes the follow-
ing decomposition:

Vm×n ≈Wm×kHk×n Vshape
Vcolor
Vword


m×n

≈

 Wshape

Wcolor

Wword


m×k

[H1, H2, ...,Hn]k×n
(2)

where V is the matrix containing the observations in columns,
and W and H are the matrices computed by NMF. W contains
the k latent topics we are looking for, and H is the weights
to reconstruct the observations from the topics.
W and H are solved by minimizing the Kullback-Leibler

divergence:

DKL(V ‖WH)=
∑
ij

(Vij ln
Vij

(WHi)j
−Vij+(WHi)j) (3)

using the multiplicative updates proposed by Lee and Seung
[50].
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In [17], an initialization setting of W and a normalization
rule during multiplicative iterations are proposed to address
the problem of instability of the decomposed results. This
initialization strategy leads to an efficient concept learning in
the form of “one modality-one symbol”, where one word is
associated to its definition in one of the feature spaces.

2) LDA: LDA is used to infer statistical correlation between
visual channel and keywords. Every sample di is thus seen
as a collection of exchangeable discrete items ωj (which can
be colors ci, shapes si or words wi) and is modeled as
a generative mixture model over a set of K hidden topics
{z1, . . . , zK}, defined by a probability distribution on the
items p(ωj |zk, β). The likelihood of a sample is thus given
by (see [51] for details):

LLDA(di) =

∫
θ

p(θ|α)

∏
j

∑
zk

p(zk|θ)p(ωj |zk, β)

 (4)

where p(θ|α) is a Dirichlet distribution defining the topic
mixture, p(zk|θ) is the probability of the topic zk for this
mixture and p(ωj |zk, β) the probability of an item for a
given topic. The parameters to be estimated include the α of
the Dirichlet distribution and the β defining the probabilities
p(ωj |zk, β), which are available by maximizing the likelihood
of the corpus

LLDA(D) =

n∏
i=1

LLDA(di)

using Collapsed Gibbs Sampling1. In practice, we observe that
for a given k, the distribution p(., zk, β) is only significantly
above zero for a couple (cj , wj) or a couple (sj , wj), thus
leading to relevant word-referent associations.

D. Active learning

Our active learning strategies have the objective to select,
among the available training samples describing objects, the
ones that will lead to faster performance improvement. Fol-
lowing [15], these strategies can be either Error Maximization
based or Progress Maximization based. Our investigation with
Progress Maximization approaches failed to obtain satisfactory
results, possibly due to the limited size of the dataset used,
which is not sufficient for estimating the learning progress cor-
rectly. Besides, many existing algorithms in the literature, such
as [48] ,are either unsuitable for our experimental scenario or
not showing superiority over random learning performance.
We therefore propose here a variant of the Success-Threshold
Strategy and Last Result Strategy from [48] applied in our
experiments, in addition to the previously proposed MRES
[18].

1) MRES: The maximum reconstruction error based selec-
tion (MRES) favors the sample(s) with the worst reconstruc-
tion quality, as the indicator of the current limitation of the
learned knowledge. Inheriting the notions from Section III-C,

1We use the implementation of https://github.com/ariddell/lda with all
parameters initialized with default settings

the generalized KL divergence is used as the reconstruction
error measure with NMF:

DKL(V·j ‖WH ) =
∑
i

(Vij ln
Vij

(WHi)j
− Vij + (WHi)j)

and the likelihood function is used for LDA (eq. 4) where
V·j represents the jth sample in the training database for NMF,
and di indicates a single document for LDA.

We then select the new training sample such that:

ĵ = argmax
j

(DKL(V·j
∥∥WH(P2) )/Gini(H)) (5)

for NMF and:

d̂ = argmin
i

(LLDA(di)) (6)

for LDA, where j ∈ {1, 2, ..., n}, di ∈ {1, 2, ..., D} are the
new samples that can be considered for learning. H(P2) are
the weight coefficients derived from H2 by making use only of
the two highest values while discarding all others, and updated
via the reconstruction by minimizing DKL(V·j

∥∥WH(P2) ).
Gini(H) is the Gini index that estimates the sparsity of the
H vector. Note that the index ĵ = argmax

j
(DKL(V·j ‖WH ))

was used in [18], however, the version in Equation (6) pro-
duces better results, as these modifications have the objective
of promoting the samples that need more than 2 dictionary
components to be correctly reconstructed. This is based on
the idea that these samples are not currently well known.

Equation 6 can be used to select 1, 2 or 3 samples (accord-
ing to the scenario) with the worst reconstruction. However,
in practice, if certain sample(s) which are chosen do not
efficiently improve the current knowledge status, this/these
sample(s) will be selected over and over again, resulting in
a stagnation of the performance. A slack strategy introducing
some stochasticity has therefore been applied and proved
to efficiently improve the learning progress, especially for
learning via NMF. Instead of choosing the 1, 2 and 3 samples
with worst reconstruction, we randomly selected these samples
among the 6, 9 or 12 ones with the worst reconstruction so as
to ensure some diversity in the object choice.

2) CBE: The Confidence-based exploration (CBE) is de-
rived from Success-Threshold Strategy and Last Result Strat-
egy in [48], with the idea that a learner seeks to explore
unknown objects only when confident enough about what has
been learned already. In practice, we calculate the average
reconstruction error of all used samples as the confidence
indicator, noted as Dn′

KL and L
D′(d)
LDA , for NMF and LDA,

respectively:

Dn′

KL =
∑n′

j=1[DKL(V·j ‖WH )]/n′

LD
′

LDA =
∑D′

d=1[LLDA(d)]/D
′

(7)

where n′ and D′ represent number of used samples in NMF
and LDA learning.

When feeling confident, Dn′

KL ≤ thresholdDKL
LD

′

LDA ≥
thresholdLLDA

the learner will explore by randomly choosing
candidate objects among those that do not contain the features

2computed by finding the H that minimizes DKL(V·j ‖WH ) first
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Fig. 3. The 39 objects used for the experiments.

(relating color and shape) which already exist in any used
samples. On the contrary, when the confidence is not sufficient,
sample selection will favor already encountered color and
shapes. We choose the worst reconstructed sample(s) by using
the previous MRES method3 from the pool of samples that
have features already encountered in previous samples.

Note that as the incremental learning proceeds, there are less
and less unknown features up to the point where all features
have been seen at least once, while there still remain unused
samples. In that case, the explorer has no samples to choose
from, and resorts to random choice among all unused samples.

IV. EXPERIMENTAL SETUP

In the experiment, a camera is installed over a table, facing
down to capture objects while a microphone is used for
receiving voice signals. The database consists in 39 objects
(Figure 3), corresponding to 5 colors and 10 shapes. Therefore,
15 keywords exist in total.

A. Training stage
153 samples are recorded by ten volunteers, every object

is described at least three times. Each object is described by
at least two keywords as well as some others words (such as
“this is”, “that is”), the mean recorded sentence length is 4.026
words. A training set is established by selecting 3 samples for
each one of the 39 objects (a total of 117 samples) while the
remaining 36 samples, covering all the keywords, act as testing
data for the evaluation of learning performance.

We perform training of the two algorithms by optimizing
Equation 3 for NMF and Equation 4 for LDA. In order to
focus on the performances of active learning approaches, we
do not use the incremental version of NMF and LDA but
simulate incremental learning by performing batch training
with a growing set of samples. New samples are selected either
randomly or from one of the active learning strategies.

B. Testing stage
After each training stage, the testing consists in a simulation

of the situation where the learner has to find an object
described by the teacher(denoted as “T2img”, for “Text to
Images”, in the remainder of the paper). Technically, the
teacher utters a textual description encoded as a binary format
Tj about an object j and the learner has to choose the right
object from the pool of all 36 testing objects. The testing
protocol differs according to the method which is used:

3without the slack strategy

1) Testing with NMF:
1) The coefficient vector of hidden topics Hi asso-

ciated with the visual description of each testing
object i is computed by minimizing the distance
DKL([V

shape
i , V colori ] ‖ [W shape,W color]THi).

2) The textual description of each object is reconstructed
using the formula: V wordi =WwordHi.

3) The object in the testing set whose textual description is
the closest to Tj is found by computing χ2(Tj , V

word
i )

for all i.
2) Testing with LDA:
1) The hidden topic distribution associated to Tj is esti-

mated using the following formula: P (z|Tj),
2) The associated vision feature channel is reconstructed

using P (ωj |Tj) =
∑
k P (ωj |zk, Tj) · P (zk|Tj), with

ωj ∈ S ∪ C.
3) For every testing sample di, the log-likelihood

L(di|Tj) =
∑
l

Cnt(ωl) · lnP (ωl|Tj) is computed, with

ωl ∈ S ∪ C , where Cnt(ωl) is the number of occur-
rences of the visual cluster ωl from the testing sample
di.

4) The object whose likelihood is the highest among the
candidates is taken as the output of the system.

In both cases, the percentage of right answers among the 36
testing objects is used as the performance rate.

V. PERFORMANCE ANALYSIS OF ACTIVE LEARNING

Previous works [17], [18] have established the following
conclusions :

1) With the currently proposed experimental protocol,
NMF achieves high performance for learning the objects
of the database when the sentence consists only in
keywords and with one object per sample.

2) NMF with TF-IDF filtering of the full sentences is able
to learn with good performance in scenarios of linguistic
noisy data with one object by sample.

3) Both NMF and LDA prove to be compatible with
the implementation of active learning with MRES for
incremental learning tasks.

In the current paper, the following experiments focus on
how active learning (i.e., MRES as well as CBE) improves
the learning progress in more complex scenarios. We perform
automatic determination of the dictionary size (i.e., the number
of topics for NMF or components for LDA) as presented in
[18]4 and will allow the possibility of choosing among all
the 117 training samples for the next learning step, so as to
highlight the ability of active learning to efficiently ignore the
already known samples.

The simulation experiments were performed 50 times in
total. The results are presented by the curves of the 75th,
50th and 25th percentile of performance among all repetitions
Figure 5 and 6 illustrate results for training using FS data and
Figure 8 and 9 in Appendix A for KW data. Note that in order

4At each training step, being K the previous number of topics, the learner
will learn using both K and K+1 topics. If the later setting has lower error,
the topic number will be increased by 1.
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to enhance the comparability among all cases, we deliberately
let initial samples (at the first learning step) be the same.

To facilitate quantitative comparison of the different curves,
the area under the curves is computed and we use it as a
global measure of learning performance. Figure 4 shows the
relative performance (area under the curves, normalized by
being divided by the maximum value of all cases) in different
cases by using different learning models and data, which will
be discussed subsequently.
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Relative performance values of "T2img"
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Fig. 4. Relative performance values of the models for the “T2img” image
recognition task. S, D and T refer to how many objects (one, two and three
respectively) are presented to the learner, colors indicate the sample choice
strategy and shapes indicate the learning algorithm used.

A. Active learning vs. random learning by applying NMF

The performances of NMF with Full Sentences (FS) data
is illustrated in Figure 5 (performance with KW data are in
Figure 8). In terms of the effects of active learning, first of
all, the superiority over random choice is clearly visible in
the 50th percentile curve in terms of speed of progress and
overall quality when single object training data (S) are used,
especially for MRES. However, this difference is limited in
most cases as the 25th and 75th percentile curve often overlap.
The difference in learning progress is however more clear
in the most difficult cases (full sentences with 3 objects -
FS&T). Considering the area under the curves (Figure 4),
MRES exhibits overall better quality than CBE when S and D
data are utilized, yet CBE performs better with KW&T data.

In these results, even if the active learning strategies con-
tribute strongly to the good performance, the effect of TF-
IDF should not be overlooked. Indeed the optimization of
the parameters settings (see Section III-B) for one type of
experiment cannot accommodate all possible sequences of
learning samples. This is particularly true for the random
choice strategy, where a lot of samples are used multiple
times, while for MRES and CBE, we could easily find the
best parameters that lead to the results illustrated in Figure 5.

B. Active learning vs. random learning by applying LDA

As shown in Figure 6 and 9, the 50th percentile curve shows
an improvement on the learning speed for active learning
scenarios, but a clear difference is only notable in the more

ambiguous situation. This difference is particularly visible in
the triple scenario, in which MRES clearly outperforms CBE,
which is very close to the random choice

A point to be noted is that active learning strategies achieve
higher performance with LDA when linguistic noise is added
compared to the case with keywords only (see discussion
below).

C. Discussion regarding the overall performances

Looking at Figure 4, it makes sense that the increase on
referential ambiguity (i.e., using data from S, D to T) leads to
decrease in performance under the same scenario and with the
same strategy. Besides, NMF performs better almost always
than LDA in KW scenario. However, LDA outperforms NMF
in FS scenario, which corresponds to the conclusion about
the different abilities of dealing with linguistic ambiguities
between NMF and LDA.

1) Comparing performances of KW and FS: The perfor-
mances using KW are supposed to surpass those using FS as
the scenario is less ambiguous in terms of linguistics. Notably,
in Figure 4, exceptions can be found in the performance of
LDA learning, using S data while applying MRES, CBE and
random choice, respectively, as well as using D data while
applying MRES.

The explanation is related to the effect of noise on the
learned topics. Indeed a small part of the topics are noisy:
either multiple words corresponding to a vision feature, a
word associating a vacant meaning or a wrong feature. The
difference between KW and FS lies in the fact that in
FS, are almost always the noisy words that result in the
above ill-defined topics. However, in KW this occurs for
keywords. As a consequence, when performing “T2img” tests,
the learner is more misled by the noisy topics in the KW
case (corresponding to a real keyword) than in the FS case
(corresponding to a noisy word).

2) Comparing performances of MRES and CBE: Based
on the results displayed in Section V-A and V-B, MRES’s
performances are better than random choice learning strategies
in most scenarios, but it only shows clear superiority in the
most complex scenarios. As for CBE, its gain is less clear, as
the results most of the time overlap with those of random
sampling. We therefore conclude that MRES is the most
relevant strategy, but only in the more complex scenarios that
deal with part of the complexity of human language.

In practice, the parameters have to be tuned carefully so
as to exhibit as much potential of the strategies as possible.
In MRES, the adopted slack strategy (Section III-D) has
been observed as important in improving the performance
with NMF using data of more ambiguities (ie. “D” or “T”
scenarios). However, even without the slack strategy, MRES
can still work efficiently with LDA, which remains effective
in outperforming random choice. In CBE, finding the correct
confidence threshold, whose optimized value differs according
to different experimental scenarios, is essential to obtain good
performances, showing a greater sensibility of this method to
parameter settings. While this sensibility makes it difficult to
draw definitive conclusions on the absolute algorithm perfor-
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(a) “T2img” results using FS&S
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Fig. 5. Comparisons in performances between MRES, CBE and random choice by applying NMF with FS data.
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Fig. 6. Comparisons in performances between MRES, CBE and random choice by applying LDA with FS data.

mances, the higher stability of LDA and MRES makes them
a better choice for a more realistic future application.

VI. BEHAVIORAL ANALYSIS OF ACTIVE LEARNING

In [20], comparative studies of active learning and random
learning have been tested on human participants. Kachergis et
al first proposed that most learners use immediate repetition to
disambiguate pairings, and then further confirmed that those
who repeat multiple pairs per trial outperform those who repeat
only one pair per trial. Their experiment, learning names of
objects presented by groups of 4, was quite different from ours,
and comparing human performances on our task and theirs
would make little sense. However, from the point of view
of our model, learning 4 different object names or learning
two different features of two objects is equivalent as these
situations would be both represented by sums of histograms
representing objects or features. We therefore compare the
behavior of our model to the reported human behavior with
the objective of testing whether the choice made by humans
could be closer to the choices made by the MRES or CBE
algorithms.

A. Use of instant repetitions

In order to evaluate this repetition behavior on our pro-
posed model, we choose the learning model of LDA which
appears more compatible, as previously concluded, with the
implementation of active learning strategies. The cases of

KW and FS with data S, D and T respectively, using both
MRES and CBE, were chosen. We performed the protocol
detailed in Section V-B and compute “R-NXT”, which denotes
the average number of repetition of descriptive keywords for
samples in successive trial, equivalent to the term “immediate
repetition” in [20]. We obtained the statistical results presented
in Table II.

TABLE II
AVERAGE NUMBER OF WORD REPETITIONS IN SUCCESSIVE TRIAL AND

FEATURE REPETITION WITHIN TRIAL IN ACTIVE LEARNING EXPERIMENTS
USING LDA LEARNING MODEL.

Case
Repetition Strategy

MRES CBE random

R-NXT R-WHT R-NXT R-WHT R-NXT R-WHT

KW
S 0.29 0.00 0.31 0.00 0.31 0.00
D 0.84 1.00 1.15 0.34 1.17 0.30
T 1.74 2.04 2.38 0.89 2.41 0.90

FS
S 0.34 0.00 0.32 0.00 0.32 0.00
D 0.98 1.00 1.16 0.34 1.17 0.31
T 1.92 2.02 2.38 0.87 2.41 0.88

Compared to human behavior, the strategy resulting from
our algorithms seems different: in the T scenario, for instance,
random sample choices (for both KW and FS cases) lead
to “R-NXT” as 2.41 words in successive steps, however,
concerning active choices, both MRES and CBE led to fewer
word repetitions, especially for MRES, resulting in “R-NXT”
as 1.74 in KW and 1.92 in FS. In fact, this phenomenon fits
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almost all cases 5, particularly in D and T scenarios in which
referential ambiguities prominently appear. This could be
linked to the fact that, unlike computational models, humans
are less efficient at keeping a long-term memory of the past
co-occurring records and hence “R-NXT” is more preferred
by humans but not for our models.

It should be noted that in our experimental scenarios,
especially in D and T cases, the same features (either shape
or color) from different objects could appear in a double or
a triple. We measured this phenomenon by computing within-
trial feature repetition (“R-WHT”) as the average number
of repetition of the same features from samples within a
trial. These repetitions have the effect of simply reducing the
complexity of each trial and is extensively used by our active
learning strategies. For instance in the T scenario, “R-WHT”
is 0.88 (in FS) and 0.90 (in KW) with the random strategy
and 2.02 (in FS) and 2.04 (in KW) with the MRES. This is in
contrast with [20], where such “R-WHT” is impossible, every
trial consisting in four mutually different objects.

It is also interesting to observe (by referring to the results
in Table II and Figure 4) the tendency that the larger the “R-
WHT”, the better the learning performance is. As a conclusion,
within-trial repetition is exploited in priority by an effective
active learning strategy to reduce ambiguity.

B. Case of prevented within-trial repetition

Although a comparison of learning behaviors has been
conducted between the behavior of our proposed models and
humans, the within-trial repetition was strongly exploited in
our experiments by active learners. Hence, in order to conduct
a more effective comparison with the results in [20], we set
restrictions on all active learning experiments in Section V-B
such that “R-WHT” is inhibited in each trial. The learning
progress using FS data is illustrated in Figure 7; the per-
formance gains for active learning versus random learning
measured by the area under the curve are shown in Table III,
and repetition statistics are recorded in Table IV.

TABLE III
PERFORMANCE GAIN OF ACTIVE LEARNING OVER RANDOM LEARNING IN

“T2IMG” WHEN “R-WHT” IS INHIBITED.

Case

Strategy
MRES over ramdom CBE over ramdom

D T D T
R-WHT
inhibited

KW 0.003 0.022 0.01 0.004
FS 0.033 0.022 0.006 0.011

From these experiments, we observe in Table III a sudden
fall of performance, up to 40% compared to the experiments
where “R-WHT” is possible, in terms of learning speed, along
with an obvious shrink of the gain difference between active
and random learning. However, active choice still slightly
outperforms random choice, and an increase of “R-NXT” in
the process of active learning can be observed by comparing
Table II and IV.

5despite the fact that an exception occurs when MRES is applied in FS
with S data

TABLE IV
WORD REPETITIONS MEAN VALUE IN SUCCESSIVE TRIALS WHEN

“R-WHT” IS INHIBITED.

Case
Repetition Strategy

MRES CBE random

R-NXT R-NXT R-NXT

KW
S 0.30 0.32 0.32
D 1.18 1.24 1.27
T 2.74 2.83 2.80

FS
S 0.33 0.33 0.32
D 1.27 1.27 1.25
T 2.85 2.84 2.84

As for the conclusion in [20] regarding the fact that active
human learners who repeat multiple pairs (of word and object)
perform better than those that repeat just one pair, the data
in Table IV partially agree with it. However, despite these
statistics not being significantly different from random sample
selection, computational learning models use comparatively
less immediate repetitions than humans.

C. Discussion on the active learning behavior

Finally, we go back to the summary at behavioral level
about the learning performance. First of all, “R-WHT” plays
a predominant role in disambiguation, and acts as the main
power to make active learning effective for computational
algorithms. Note that while it is not shown in Kachergis et
al., it could also be consistent with human learning experience.
For example, it is shown in [52] that giving multiple samples
that share similarities concerning category within a trial leads
to better conceptual understanding compared to giving just a
single sample to human participants. This behavior is also a
more plausible scenario for a human actively asking samples
with multiple objects. Indeed, a human would probably more
naturally ask for object with some features in common and
take advantage of feature repetition (e.g., present several red
objects).

Furthermore, immediate repetition (“R-NXT”), while exten-
sively used by humans, is used almost at the same level for
both active and random learning when “R-WHT” is inhibited.
This difference does not only shed little light on the relation
between human and algorithmic active learning, but mainly
highlights the important role of repetitions to compensate for
the relatively low performance of human memory as compared
to learning algorithms that can exploit the disambiguation via
the repetition of features seen long ago.

VII. CONCLUSION AND FUTURE WORK

Inspired by the infants’ ability to learn to recognize and
name objects during parent-child interactions, two cross-
situational learning models associated with active learning
strategies were investigated: Non-Negative Matrix Factoriza-
tion (NMF) and Latent Dirichlet Association (LDA). These
strategies are Maximum Reconstruction Error based Selection
(MRES) and Confidence Base Exploration (CBE). As an
extension of the complete computational models proposed in
[17], [18], a systematic analysis of the effects of active learning
was conducted.
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(a) “T2img” results using FS&S
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Fig. 7. Comparisons in performances between MRES, CBE and random choice by applying LDA with FS data when “R-WHT” is inhibited.

According to the experimental results reported here, evalu-
ated with an image recognition task that simulates the every-
day testing of a learner’s achievements, both active learning
strategies – MRES and CBE – prove to be well-adapted to
the proposed cross-situational models. Although they exhibit
slight superiority over random sample selection in almost all
cases in terms of learning speed and overall quality, they
only show clear advantage in the more ambiguous scenarios.
Analyses of the models’ behavior were also performed, first
by observing the immediate repetition of features between
trials, which was observed in [20]. This led to the result
that active learning algorithms show less use of immediate
repetitions while applying more within-trial feature repetitions
than humans. As for the preference of repeating multiple word-
object pairs rather than a single pair, as concluded in [20] for
humans, this paper to some extent supports it, and indicates
that computational learning models use comparatively less
immediate repetitions than humans, who have to rely on short-
term memory.

In future work, we imagine extending our work to more
complex datasets, including more diverse objects and a larger
number of words. This would probably be more straightfor-
ward through the use of LDA which is more efficient in dealing
with the language noise, but would require a better object
representation so that the clustering required by LDA remains
efficient. We plan to use features learned through deep learning
[53] for this objective.

The proposed cross-situational learning models should be
further compared to other word-referent learning approaches,
on the one hand to models that have the goal of modeling
human behaviors [54], and on the other hand to models, such
as Canonical Correlation Analysis, used for the closely related
task of image captioning [55].

Finally, we plan to extended our model to capture syn-
onymous and polysemous relationships as well as to have a
hierarchical extension of NMF [56] or LDA [57] to tackle
the nested categories of concepts (e.g., Animals ⇒ Mammals
⇒ Dogs). In addition, more comparative studies concerning
learning behaviors between artificial learner and real humans
can be conducted to shed light on the essence of active learning
mechanisms. In particular, implementing a short term memory
in our learning algorithms would be important to further study

the sample repetition effects.

APPENDIX
PERFORMANCES OF LEARNING USING KW DATA

Figures 8 and 9 show the performances of NMF and LDA
with samples using only keywords.
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Fig. 8. Comparisons in performances between MRES, CBE and random choice by applying NMF with KW data.
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(a) “T2img” results using KW&S
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