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Abstract

This paper is devoted to the important yet little explored subject of the market impact
of limit orders. Our analysis is based on a proprietary database of metaorders - large orders
that are split into smaller pieces before being sent to the market. We first address the
case of aggressive limit orders and then, that of passive limit orders. In both cases, we
provide empirical evidence of a power law behaviour for the temporary market impact. The
relaxation of the price following the end of the metaorder is also studied, and the long-
term impact is shown to stabilize at a level of approximately two-thirds of the maximum
impact. Finally, a fair pricing condition during the life cycle of the metaorders is empirically
validated.

1 Introduction

It is a commonly acknowledged fact that market prices move during the execution of a trade -
they go up for a large buy order and decrease for a large sell order. This is, loosely stated, the
phenomenon known as market impact.

The market impact of large trading orders that are split into pieces - better known as
metaorders - and executed incrementally through a sequence of orders of smaller sizes is crucial
in describing and controlling the behaviour of modern financial markets. Being able to quantify
this impact is clearly a question of great relevance when studying the price formation process,
and it has also become a major practical issue for optimal trading. Indeed, in order to know
whether a trade will be profitable, it is essential to monitor transaction costs, which are directly
linked to market impact. Measuring and modelling market impact has therefore become a central
question of interest, both for researchers and practitioners, in the field of market microstructure.

Given the importance of the subject, there exists but a few research articles pertaining
to the empirical estimation of market impact, mostly due to the scarcity of data. In fact,
trades and quotes, or even order book databases are not sufficient to perform the analysis:
what is required is a clear identification of metaorders. Metaorders have started being recorded
as such in a systematic way only recently, and mostly in proprietary databases that are not
readily accessible to academic researchers in the field of market microstructure. The anal-
yses presented in [Almgren et al., 2005] [Moro et al., 2009] [Gatheral, 2010] [Toth et al., 2011]
[Bershova and Rakhlin, 2013] [Bacry et al., 2015] [Zarinelli et al., 2015] [Gomes and Waelbroeck, 2015]
essentially cover all that is published about the market impact of large orders.
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Although difficult to measure in practice, market impact has been studied from a theo-
retical point of view. In an economic theory perspective, the information held by investors,
which governs theirs decisions, should have some predictive power over future prices. This
point was thoroughly investigated by [Farmer et al., 2013], a paper which we find enlighten-
ing and use as reference for the theoretical measurements of market impact. In a related study,
[Bershova and Rakhlin, 2013] uses their own proprietary database to perform an empirical analy-
sis of a set of large institutional orders, and validates some predictions of the [Farmer et al., 2013]
model. Such a comparison will also be performed in the present work.

Our paper is a contribution to this strand of research, with a specific focus on the market
impact of limit orders. As a matter of fact, market orders are generally not used by institutional
investors because of the lack of control they imply. On the contrary, limit orders, whether they
are aggressive - crossing the spread - or passive, form the vast majority of orders that are actually
sent to the market during the execution of a large trade. As such, they should be the main subject
of interest in a study of market impact. To the best of our knowledge, ours is the first academic
study of market impact with an emphasis on limit orders. The statistical results presented in
this paper are obtained from a proprietary database consisting in appropriately selected limit
orders executed on the European equity market between January 2016 and December 2017.
The originality of our approach lies in the fact that the study relies on an algorithmic-based
identification and reconstruction of metaorders from the database of all orders.

The paper is organized as follows: Section 2 is a short review of the literature on market
impact. Section 3 introduces our main definitions of metaorders and market impact measures.
Section 4 presents our empirical results: They confirm that limit orders behave in agreement with
some stylized facts already established in the literature, and shed a new light on the influence of
passive orders in an execution strategy. Section 5 deals with the fair pricing condition concerning
our metaorders. Section 6 is a discussion of our results and their implications, including some
comparisons with the literature. Appendix A recalls for reference the framework and main
results of the theoretical, agent-based market impact model developed in [Farmer et al., 2013].

2 A short review of the market impact literature

The strategic reasons underlying the incremental execution of metaorders were originally ana-
lyzed by [Kyle, 1985], where a model considering an insider trader with monopolistic information
about future prices is introduced. It is shown that the optimal strategy for such a trader con-
sists in breaking its metaorder into pieces and execute them incrementally at a uniform rate,
gradually incorporating its information into the price. In Kyle’s theory the total impact is a
linear function of size, and the price increases linearly with time as the auctions take place. The
prediction of linearity also appeared in the work of [Huberman and Stanzl, 2004]. They showed
that, in the case of constant liquidity providing, and in order to prevent arbitrage, the permanent
impact must be linear, i.e. incremental impact per share remains constant during the metaorder
life. It is however the case that real data contradict these predictions: metaorders do not exhibit
linear market impact. In fact, most empirical studies consistently highlight a concave impact,
in sharp contrast with the theoretical linear shape. The first relevant empirical study of market
impact is [Almgren et al., 2005], which directly measures the market impact of large metaorders
in the US equity market and provides empirical evidence of a concave temporary impact. Later
studies [Moro et al., 2009] [Toth et al., 2011] [Bacry et al., 2015] also find a concave market im-
pact, in rough agreement with a square root formula. Following these experimental findings,
some theoretical efforts have been made to reconcile Kyle’s model with a concave dependence
on size, essentially by adding the hypothesis that larger metaorders contain less information
per share than smaller ones. [Farmer et al., 2013] presents a model enriching Kyle’s approach
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with this concave dependence on size. Whereas Kyle considers a single, monopolistic informed
trader, [Farmer et al., 2013] introduces several competitive traders receiving a common informa-
tion signal and then choosing independently the size of the order they submit to an algorithmic
execution service. This set-up is close in spirit to the real-life organization of the major players
in the market, which operate by setting up an internal market with a stakeholder recovering all
the orders before executing them on the external market.

To be even more specific, market impact can be studied from two different perspectives.
The first one, introduced in the previous paragraph, addresses the effect of a metaorder being
executed on the price formation process. This effect is commonly termed the temporary market
impact. It is clearly an important explanatory variable of the price discovery and is studied
as such in several papers [Kyle, 1985] [Hautsch and Huang, 2012] [Farmer et al., 2004]. Tempo-
rary market impact is obviously the main source of trading costs, and models based on empirical
measurements can be used in optimal trading schemes [Almgren et al., 2005] [Gatheral, 2010]
[Lehalle and Dang, 2010] [Almgren and Chriss, 2001] [Gatheral and Schied, 2013], or used by an
investment firm in order to understand its trading costs [Bershova and Rakhlin, 2013] [Brokmann et al., 2015]
[Mastromatteo et al., 2014]. One common conclusion to the studies is that the temporary mar-
ket impact is mainly characterized by three components. The first, obvious one is the size of the
metaorder, suitably rescaled by a quantity reflecting the traded volume of the security under
scrutiny. The daily participation or trading rates capture most of the dynamics of this com-
ponent. Note that some empirical studies such as [Brokmann et al., 2015] prefer to consider as
a scaling factor the participation rate during the metaorder life. This approach presents the
advantage to include a duration effect not captured by the daily participation rate, and it will
be used in the present study. One must also allow for some dependency on the price uncertainty
while the metaorder is executed, and the volatility or the bid-ask spread are typical measures
of this uncertainty. Last but not least, it seems necessary to capture the information leakage
generated by the metaorder, the number of orders executed during the metaorder or its duration
being good proxies.

There is a second, more controversial type of market impact, pertaining to the persistence
of a shift in the price after the metaorder is fully executed. This effect is commonly called the
permanent market impact. Research papers dealing with permanent impact can be separated in
two categories. The first one considers the permanent impact as the consequence of a mechanical
process. The second ones consider the permanent impact as the trace of new information in the
price. Among those who share the mechanical vision of the permanent market impact, there are
two approaches. The first picture of [Farmer et al., 2013] and [Bershova and Rakhlin, 2013] says
that the permanent impact is important and roughly equals to 2/3 of the temporary impact.
This is derived from a fair-pricing hypothesis. In the second picture [Bouchaud, 2010], there is
actually no such thing as a permanent impact, the slow decay of the market impact being the
result of the long memory of the order flow. These two approaches are incompatible. In the
present paper, the studies performed on the price relaxation seem to advocate in favour of a
permanent impact at the approximate two-thirds level, in agreement with the existing empirical
literature as well as the fair pricing condition of [Farmer et al., 2013].

3 Definitions, Algorithm and Market Impact measures

3.1 Basic Definitions

Some basic concepts, and the algorithmic definition of a metaorder, are introduced here.

Definition 1. A limit order is an order that sets the maximum or minimum price at which
an agent is willing to buy or sell a given quantity of a particular stock.
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Definition 2. An aggressive limit order is one that instantaneously removes liquidity from
the order book by triggering a transaction. An aggressive order crosses the Bid–Ask spread. In
other words an aggressive buy order will be placed on the ask, and an aggressive sell order will
be placed on the bid.

A limit order that is not aggressive is termed passive. Passive orders sit in the order book
until they are executed or cancelled.

Loosely speaking a metaorder is a large trading order that is split into small pieces and
executed incrementally. In order to perform rigorous statistical analyses, a more specific and
precise definition of a metaorder is required, and given in Definition 3 below:

Definition 3. A metaorder is a series of orders sequentially executed during the same day and
having those same attributes:

• agent i.e. a participant on the market (an algorithm, a trader...);

• product id i.e. a financial instrument (a share, an option...);

• direction (buy or sell);

The advantage of adopting such a definition is that it is no longer necessary to work directly
on raw metaorder data. Indeed, a series of orders executed by the same actor on the same
product on the financial market will behave like a metaorder and therefore can be considered as
such.

Figure 1: Sample of the history of orders before the identification process of the algorithm. Each
color corresponds to a different metaorder according to the methodology introduced in 3.
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Figure 2: Sample of the history of orders after the identification process of the algorithm. Each
color corresponds to a different metaorder according to the methodology introduced in 3.

Let us mention that the current study is not restricted to metaorders executed on a single
market, due to the fact that an instrument can be simultaneously traded on several markets.
Also note that orders executed during the same second are aggregated in order to avoid time
stamping issues: the quantities are summed up, the local VWAP is set as the execution price,
and the TIMESTAMP of the last order is retained for all orders during the same second. One
can see below how those simplifications reduce the complexity of Figure 2:

Figure 3: Sample of the history of the orders executed corresponding to the previous figure after
merging the orders. The yellow metaorder which was previously a metaorder of length N = 4 is
now a metaorder of length N = 2.

3.2 Algorithmic procedure

To carry out the study of market impact, the algorithm is trained and run on a proprietary
database. Figure 1 in the previous section represents the database in its initial state, as the
input of the algorithm. Figure 2 shows an intermediate state of the data extracted from the
initial data, during the metaorder reconstruction phase. Figure 3 displays the data in their final
state, directly exploitable for statistical studies. Note that the recovery and cleaning of market
data are done simultaneously during the metaorder reconstruction.

3.3 Market Impact definitions

The same framework as that in [Bacry et al., 2015] is adopted. Let Ω be the set of metaorders
under scrutiny, that is, metaorders that are fully executed during a single market session, and
pick ω ∈ Ω executed on an instrument S and during a given day d. Its execution starts at some
time t0(ω) and ends the same day at time t0(ω) + T (ω). Thus T (ω) represents the duration of
the metaorder. Denote by Q(ω) and N(ω) respectively the number of shares and the number of
orders that have been executed during the life cycle of the metaorder ω. Hence Q(ω) is the size
and N(ω) the length of ω. Let V (ω) be the volume traded the same day d on the instrument
S (summed over all European trading venues) between time t0 and t0 + T , i.e. during the life
cycle of ω. The sign of ω will be denoted by ε(ω) with ε = 1 for a buy order and ε = −1 for
a sell order. Clearly, all the quantities introduced in this section depend on ω. For the sake of
simplicity, we chose to omit this dependence whenever there is no ambiguity and will often write
T , N , Q, V , ε instead of T (ω), N(ω), Q(ω), V (ω), ε(ω).

The market impact curve of a metaorder ω measures the magnitude of the relative price
variation between the starting time of the metaorder t0 and the current time t > t0. Let It(ω)
be a proxy for the realized price variation between time t0 and time t0 + t. In line with many
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authors ([Almgren et al., 2005] [Bershova and Rakhlin, 2013] [Bacry et al., 2015]), we use the
return proxy defined by

It =
Pt − Pt0
Pt0

, (1)

where Pt represents either the execution price of the financial instrument S during the execution
part of the metaorder, or the mid-price during its relaxation part starting when the metaorder
has been fully executed. This estimation relies on the assumption that the exogenous market
moves Wt will cancel out once averaged, i.e. as a random variable,Wt should have finite variance
and basically satisfy E(ε(ω)Wt(ω)) = 0.

One can thus write
ε(ω)It(ω) = ηt(ω) + ε(ω)Wt(ω), (2)

where ηt(ω) represents the market impact curve and Wt(ω), the exogenous variation of the price
corresponding to the relative price move that would have occurred if the metaorder had not
been sent to the market.

4 Empirical study

4.1 Notations

Notation Definition
ω a metaorder

S(ω) financial instrument of the metaorder ω
d(ω) execution day of the metaorder ω
t0(ω) start time of the metaorder ω
T (ω) duration of the metaorder ω
N(ω) length of the metaorder ω
Q(ω) size of the metaorder ω

V (ω)
volume traded on the day d(ω) on the

instrument S(ω) during [t0(ω), t0(ω) + T (ω)]

ε(ω) sign of the metaorder ω
P (ω) price of S(ω)

Ω
set of all the metaorders identified by the

algorithm
Ωn∗ ⊂ Ω subset of the metaorders with N ≥ n∗

Table 1: Notations and definitions

Remark 1. As we only consider metaorders that have at least two executed transactions, Ω = Ω2.

4.2 Aggressive Limit Orders

The subject of interest of this section is the metaorders generated by aggressive limit orders, that
is, limit orders that actually cross the spread in order to trigger an immediate transaction. Such
orders are sometimes rather loosely considered as market orders in the modelling literature on
limit order books, but it is clear that they behave differently, as their execution price is always
equal to that of the best available limit and can never trigger transactions at higher (buy) or
lower (sell) price.
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4.2.1 Data

• Study period : 1st Jan 2016 - 31st Dec 2017

• Markets : European Equity Markets

• Order types : Aggressive Limit Orders

• Filters : metaorders ω ∈ Ω

• Number of metaorders : 1 561 505

4.2.1.1 Duration distribution

Figure 4: Duration distribution of the aggressive metaorders

One can observe that, in agreement with the intuition, metaorders with shorter durations
are more frequent.

4.2.1.2 Length distribution

Figure 5: Length distribution of the aggressive metaorders

mean 8
median 4
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As already observed for the duration, shorter metaorders (in length) are more represented.
This observation is obviously not a surprise, since the quantities N and T are expected to
be highly positively correlated. A log-log scale (Figure 6) gives a more precise idea of the
distribution of N . The apparently linear relation suggests that N follows a discrete Pareto
distribution.

Figure 6: Fitting Length distribution of the aggressive metaorders

̂P(N = n) stands for the natural frequency estimator of the probability P(N = n). As regards
the parameter β introduced in [Farmer et al., 2013] - see Section A.5 - one obtains the estimate
β ≈ 1.4. Therefore, N is distributed as a power law, in agreement with [Vaglica et al., 2008]
who reconstructed metaorders on the Spanish stock exchange using data with brokerage codes
and found that N is distributed as power law for large N with β ≈ 1.7.

4.2.1.3 Participation rate distribution

Figure 7:
Q

V
distribution of the aggressive metaorders

Similar to the observations for duration and length, metaorders with smaller participation

rates are more represented. Again, and as expected, the quantitiesN and
Q

V
are highly positively

correlated.
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4.2.2 Market Impact curves

The main results of Section 4.2 are now given, namely, the market impact curves for aggressive
metaorders. In order to plot the market impact dynamics, a bucketing method is used: Consider
for example that one wants to plot y as a function of x, x, y being two arrays of data. One
starts by ordering the couple of values (xi, yi) according to the values of x and then divides the
sorted (by x) distribution (x, y)sorted into Nbucket. This procedure yields Nbucket subsets of
the distribution (x, y)sorted, (xi, yi)i∈I1 , (xi, yi)i∈I2 , ..., (xi, yi)i∈INbucket

, and for each bucket Ik
the mean values (xk, yk) is computed. The last step of this bucketing method is to plot the
points (x1, y1), (x2, y2), ..., (xNbucket

, yNbucket
).

4.2.2.1 Market Impact Dynamics

To study the dynamics of the market impact, one plots (ε(ω)It(ω))ω∈Ω,t0(ω)≤ t≤t0(ω)+2T (ω). The
first sub-interval t0(ω) ≤ t ≤ t0(ω) + T (ω) corresponds to the execution of the metaorder,
whereas the second t0(ω) +T (ω) ≤ t ≤ t0(ω) + 2T (ω) corresponds to the relaxation. The study
of relaxation presents a degree of arbitrariness, since a choice has to be made as to the elapsed
time after the metaorder is completed. For the sake of homogeneity, the relaxation is measured
over the same duration as the execution. This choice seems to be a good compromise to cope
with two antagonistic requirements, one being to minimize this elapsed time because of the
diffusive nature of prices, the other being to maximize it so as to make sure that the relaxation
is achieved. Further studies performed on our database actually show very little dependence of
the permanent impact level on this time parameter, a result which we found quite comforting,
and in line with some previous results in the literature, see e.g. [Gomes and Waelbroeck, 2015].

In order to perform an extensive statistical analysis involving metaorders of varying lengths
in physical and volume time, a rescaling in time is necessary, see e.g. [Bacry et al., 2015]. With
this convention, all orders are executed on the time interval [0, 1] and price relaxation occurs in
the time interval [1, 2]. For each metaorder ω, one considers [0, 1] instead of [t0(ω), t0(ω)+T (ω)](

[0, 1] =
[t0(ω), t0(ω) + T (ω)]− t0(ω)

T (ω)

)
for the execution part of ω and [1, 2] instead of [t0(ω) +

T (ω), t0(ω) + 2T (ω)] for the relaxation part of ω, and then averages using the bucketing method
previously described on the time-rescaled volume quantities.

The time variable t ∈ [0, 1] in Figure 8 is actually the volume time, i.e., the ratio between
the part of the metaorder already executed at the time of the observation and the total size of
the metaorder - of course, at the end of the execution part this quantity is always equal to 1.
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Figure 8: market impact dynamics during the execution part in the case of the aggressive
metaorders (set : Ω, 1 561 505 metaorders, power law fit : y = 0.54× x0.45)

(a) (b)

Figure 9: market impact dynamics during the execution part

(a) set : Ω10, 275 969 metaorders, power law fit : y = 0.63× x0.51

(b) set : Ω30, 65 683 metaorders, power law fit : y = 0.80× x0.53

The analysis clearly yields an increasing, concave market impact curve. The decay observed
in the last points of the curve is an artifact that can be explained by the larger number of
metaorders of smaller lengths and with lower impact, as shown in Figure 5. Also note that on
the three figures 8, 9a and 9b, the larger the metaorders, the higher the impacts: 0.53, 0.60 and
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then 0.71 for the temporary market impact. However, the last curve 9b indicates that, for large
metaorders, the impact reaches a plateau, as if the market has adjusted to the information it
received in such a way that the execution of the metaorder no longer affects it.

Figure 10: market impact dynamics with relaxation in the case of the aggressive metaorders (set
: Ω, 1 561 505 metaorders, temporary impact : 0.53, permanent impact : 0.35)

(a) (b)

Figure 11: market impact dynamics with relaxation in the case of the aggressive metaorders
(a) set : Ω10, 275 969 metaorders, temporary impact : 0.60, permanent impact : 0.40
(b) set : Ω30, 65 683 metaorders, temporary impact : 0.71, permanent impact : 0.48

The blue points correspond to execution prices and the red points correspond to mid-prices
observed at identical times starting from the end of the metaorder. The isolated points observed
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in Figures 10 and 11a are due to the fact that we have considered all metaorders, so metaorders
with a small length, especially those with length N = 2 are over-represented in volume time
= 1.0, therefore inducing a bias towards the end of the curve. One can make this artifact vanish
when considering only metaorders with larger sizes, see e.g. 11b.

Figures 10 11a and 11b clearly exhibit the concave shape of market impact during the
execution part, followed by a convex and decreasing relaxation. Simply by eyeballing Figure 10,
one can safely assume that relaxation is complete and stable at a level around 0.35. However, on
Figures 11a and 11b, relaxation does not seem to be quite complete. This behaviour for larger
metaorders is quite probably due to the fact that it is not always possible to reach the final time
2T during the intraday observation period. Hence, the relaxation of larger metaorders may be
hindered by the closing of the market.

A conclusion to this section is that the concave shape of the temporary impact and the convex
relaxation curve are in line with the empirical results in [Bacry et al., 2015] and [Bershova and Rakhlin, 2013].
Also, and more interestingly, the market impact and relaxation curves confirm the theoretical
findings of [Farmer et al., 2013] that the impact should be concave and increasing, and that
the final impact after the execution is performed should relax to about two-thirds of the peak
impact.

4.3 Execution strategies

The purpose of this section is to analyse metaorders executed via passive limit orders, and
compare the resulting market impact curves with those previously obtained.

At this stage, some comments are in order: by nature, passive limit orders are not always
executed and therefore, the notion of market impact for such orders has to be taken with a grain
of salt. When an agent places a new passive limit order, especially within the bulk of the order
book, it is not clear whether this should indicate that the market is moving in any direction at
all, and an impact should not always be expected. In fact, a strategy purely based on limit orders
can be even considered to have only negative market impact, since the order is executed only
after the price has moved in favour of the agent. And of course, an execution strategy relying
only on limit orders will often fail to achieve its target, thereby facing an implementation shortfall
that will have to be dealt at some point in the future.

In order to cope with this inherent difficulty and also to present results that are consistent
with the task at hand, namely the study of market impact during the execution of a metaorder,
the analyses in this section are performed on a database of execution strategies. Metaorders
in this database are executed using (on average) ∼ 65% of passive limit orders and ∼ 30% of
aggressive limit orders, the remaining 5% consisting in orders of various types (market, market
on close...).

4.3.1 Data

• Study period : 1st Jan 2016 - 31st Dec 2017

• Markets : European Equity Markets

• Order types : All Orders1

• Filters : metaorders ω ∈ Ω

• Number of metaorders : 74 552

1∼ 65% passive limit orders, ∼ 30% aggressive limit orders and 5% others

12



4.3.1.1 Duration distribution

Figure 12: Duration distribution in seconds of the execution metaorders

As expected, and previously shown for the aggressive metaorders, see Figure 4, one observes
again (Figure 12) that, the shorter the metaorders are, the more they are represented. Different
from the case of the aggressive metaorders, the distribution is seen to have a fatter tail, an
indication of the "intelligence" of the execution strategies.

4.3.1.2 Length distribution

Figure 13: Length distribution of the execution metaorders

mean 50
median 17

The shape of the distribution in Figure 13 is very similar to that obtained for the aggressive
metaorders in Figure 5.
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Figure 14: Length distribution of the execution metaorders with a log-log scale

Again, a linear relation in log-log scale seems rather clear, although it is noisier, with β ≈ 1.8 in
this case. This tends to confirm the relevance of the discrete Pareto distribution independently
of the nature of the orders.

4.3.1.3 Participation rate distribution

Figure 15:
Q

V
distribution of the execution metaorders

Once again the quantities N , T and
Q

V
are highly positively correlated. Besides, and not

surprisingly, the execution metaorders have larger participation rates than those observed in the
aggressive case (Figure 7).
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4.3.2 Market Impact Dynamics

The market impact study proceeds along the same lines as those presented in 4.2.2.1. Hence, to
plot (ε(ω)It(ω))ω∈Ω,t0(ω)≤ t≤t0(ω)+T (ω), one has to consider its rescaled time version (ε(ω)Is(ω))ω∈Ω,0≤ s≤1,
i.e. for each metaorder ω we consider [0, 1] instead of [t0(ω), t0(ω) + T (ω)] such as [0, 1] =
[t0(ω), t0(ω) + T (ω)]− t0(ω)

T (ω)
.

Figure 16: market impact dynamics during the execution part in the case of the execution
metaorders (set : Ω, 74 552 metaorders, fit : y = 0.37× x0.60)

One observes a positive, increasing and concave market impact curve. The impacts appears
to be smaller than in the aggressive case (Figure 8) although participation rates are higher
and metaorders last longer. Moreover, the three curves Figures 8 9a and 9b show that the
impact is insensitive to the size of the metaorders. These two features are a clear indication that
it is beneficial to use passive limit orders. An execution metaorder has the main constraint of
executing on the market a known and predefined size in advance, whatever the chosen strategy is.
The choice of an execution strategy less brutal than one relying solely on aggressive metaorders
allows to limit and control its impact.
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(a) (b)

(a) set : Ω10, 47 243 metaorders, power law fit : y = 0.37× x0.61

(b) set : Ω30, 27 710 metaorders, power law fit : y = 0.40× x0.62

Figure 18: market impact dynamics with relaxation in the case of the execution metaorders (set
: Ω, 74 552 metaorders, temporary impact : 0.34, permanent impact : 0.22)

At first glance, see Figures 18 and 19, the dynamic seems fairly similar to that obtained in the
aggressive case, with a slightly rougher curve due to a much smaller data set for the execution
metaorders: There is an increasing, concave temporary impact curve and a decreasing, convex
relaxation curve that finishes at about two-thirds of the peak impact. However, the monotonicity
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(a) (b)

Figure 19: market impact dynamics with relaxation in the case of the execution metaorders

(a) set : Ω10, 47 423 metaorders, temporary impact : 0.36, permanent impact : 0.23
(b) set : Ω30, 27 710 metaorders, temporary impact : 0.37, permanent impact : 0.24

and convexity of the relaxation curve are less pronounced. Two possible explanations come to
mind. The first is that the relaxation is faster because the temporary impacts are less important
and therefore, a return to equilibrium is easier. In this hypothesis we can consider the end of
the relaxation curve as an other metaorder starting in the market. The second hypothesis is
that this is a noisy artifact due to a smaller data set.

5 Fair Pricing

In this final, short section, the fair pricing condition for metaorders is examined. In the interest
of homogeneity, we consider normalized prices, so that for every stock and at every time, the
value of the price is 1 whenever the execution of a metaorder begins.

First of all, the VWAP of a metaorder ω is defined by

PVWAP (ω) =

N−1∑
i=0

Qi(ω)Pti(ω)(ω)

Q(ω)
,

where t0(ω), ..., tN−1(ω) represent the transaction times of the metaorder ω andQ(ω) =

N−1∑
i=0

Qi(ω).

Hence, we want to compare 1 +RVWAP =
PVWAP

Pt0
with 1 +Rt0+2T =

Pt0+2T

Pt0
.

The red lines in Figure 20 represent the perfect fair pricing condition, corresponding to the
identity 1 +RVWAP = 1 +Rt0+2T .

We conclude from Figure 20 that the fair pricing condition can reasonably be assumed
to hold. It also appears that, the greater the absolute price variations, the more one moves
away from the perfect fair pricing condition. This last point was predictable: high variations
are generally associated to longer and larger metaorders that are therefore more affected by the
diffusive nature of the prices. Note that, in the model of [Farmer et al., 2013], the discrete Pareto
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(a) (b)

Figure 20: fair pricing condition in the case of the aggressive and the execution metaorders

(a) aggressive metaorders
(b) execution metaorders

distribution of N of parameter β+1 = 2.5 associated with martingale and fair pricing conditions
(see Appendix A) leads to a relaxation at 2/3 of the peak impact, a level that is experimentally
verified in our study as well as in the already cited papers [Bershova and Rakhlin, 2013] and
[Zarinelli et al., 2015].

6 Conclusion

The work presented here is an empirical study of a large set of metaorders executed using limit
orders in the European equity markets. A new algorithmic definition of a metaorder has been
proposed. The statistical results show a good agreement with some predictions of the market
impact model in [Farmer et al., 2013] in the case of limit orders.

Our study contains two distinct subgroups of orders: a set of aggressive limit orders, and a
database of execution strategies predominantly composed of passive limit orders. In both cases,
the analysis shows that the temporary market impact is increasing and concave, and it also
confirms that the length distribution of metaorders follows a Pareto distribution of parameter
β + 1 with β ≈ 1.4 in the case of the aggressive metaorders and β ≈ 1.8 in the case of the
execution metaorders.

As for the relaxation phase, a convex, decreasing functional form is obtained, as mentioned
in [Bacry et al., 2015] and other related studies. More precisely, the price reversion after the
completion of a trade yields a permanent impact such that its ratio to the maximum impact
observed at the last fill is roughly 2/3 as predicted in the article of [Farmer et al., 2013] and
highlighted empirically [Bershova and Rakhlin, 2013].

Finally, we have shown that the fair pricing condition seems to be empirically verified: the
VWAP of a meatorder is equal to the final price of the security after the relaxation phase is
over.
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A The Market Impact Model of [Farmer et al., 2013]

The main results of [Farmer et al., 2013] are recalled. The central goal of the model is to
understand the way order splitting affects market impact.

A.1 Model description

• A filtered probability space (Ω,F , (Ft),P) is given.

• At t = 0, before the opening of the market, the K long-term traders have a common
information signal α and each trader k = 1, ...,K formulate an order and submit it to
the algorithmic trading firm that bundles them together into a metaorder which will be
executed in lots of equal size.

• There are N auctions following each other t = 1, ..., N , N representing the number of
orders necessary to execute fully the metaorder is bounded, N ≤M .

• At t = N + 1, corresponding to the relaxation, the last instant in the game, i.e. the
instant after the metaorder is fully executed, is announced with the final price X̃N =
G(X0, α, η1, ..., ηN ), N > 0, where X0 is the initial price and G a function whose form is
not important. We will use the tilde notation to refer to a quantity depending
on (ηt), where (ηt) is a zero mean i.i.d random process modeling market noise.

A.2 Notations

• As regards statistical averages, S̃t denotes a specific realization of transaction prices,
whereas St stands for an average price over the signal ηi. Likewise, X̃N is a specific
realization of the final price at the end of the metaorder whereas XN is an average price
over the signal ηi;

• The final price averaging over ηt is denoted by XN i.e XN = E[X̃N ];

• Xt−1 = St−1 − R−t−1, t = 2, ...,M and XM = SM thus R−M = 0, M corresponding to the
end of the market session;

• St = X0 +

t−1∑
i=0

R+
i , t = 1, ...,M , where R+

t = St+1 − St and R−t = St − Xt are the

corresponding incremental average impacts;

• It = St − X0 is the average immediate impact at t and IN = XN − X0 denotes the
average permanent impact;

• Let m ∈ {0, 1} an indicator variable where m = 1 if the metaorder is present and m = 0
if it is absent

• We will consider pt = P(t ≤ N < t + 1 |m = 1) at each period t and Pt the probability
that the metaorder will continue given that it is still active at timestep t, i.e.

Pt =

∑
i≥t+1

pi∑
i≥t

pi
= P(N ≥ t+ 1|N ≥ t,m = 1)
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.

The possible price paths for a buy are summarized in the graph below:

Figure 21: Tree of possible price paths for a buy metaorder for different sizes N.
(extracted from [Farmer et al., 2013])

In Figure 21, the metaorder is supposed to be present and only expected price paths, averaged
over the day trader’s information (which is why the notation does not include tildes), are shown.
The price is initially X0, after the first lot is executed it is S1 = X0 +R+

0 . If N = 1 it is finished
and the price reverts to X1 = S1 − R−1 , but if N > 1 another lot is executed and it rises to
S2 = S1 + R+

1 . This proceeds similarly until the execution of the metaorder is completed. At
any given point the probability that the metaorder has size N > t, i.e. that the order continues,
is Pt. A typical price path (rather than the expected price paths shown here) subject to a large
day trader’s noisy information signal would look more like a random walk with a time-varying
drift caused by the impact of the metaorder.

A.3 Martingale condition

In this section, (S̃t) is supposed to be a martingale: E[S̃t+1|Ft] = S̃t. Therefore, the following
properties hold true:

• E[S̃t+1|Ft] = P(m = 1|Ft)E[S̃t+1|Ft,m = 1] + P(m = 0|Ft)E[S̃t+1|Ft,m = 0], and:

P(m = 1|Ft) = µ′t

considering that µ′t is the market maker’s best estimate of the probability that the metaorder
is present;
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• For the price in the next period, it is necessary to average over three possibilities :

E[S̃t+1|Ft,m = 1] = P(N = t|Ft,m = 1)E[S̃t+1|Ft,m = 1, N = t]

+ P(N > t|Ft,m = 1)E[S̃t+1|Ft,m = 1, N > t]

with :

? E[S̃t+1|Ft,m = 1, N > t] = S̃t +R+
t

? E[S̃t+1|Ft,m = 1, N = t] = S̃t −R−t
? E[S̃t+1|Ft,m = 0] = S̃t

? P(N > t|Ft,m = 1) = P(N ≥ t+ 1|N ≥ t,m = 1) = Pt.

thus :

S̃t = µ′t(Pt(S̃t +R+
t ) + (1− Pt)(S̃t −R−t )) + (1− µ′t)S̃t

PtR+
t − (1− Pt)R−t = 0

Since (S̃t) is a martingale, there holds :

Proposition 1.

R+
t

R−t
=

1− Pt
Pt

, t ≥ 2

A.4 Fair pricing condition

The martingale condition derived in the previous section only sets the value of the ratio R+
t /R

−
t

at each auction t. Another condition is required to derive the values of R+
t and of R−t and

therefore, to obtain the expression for the immediate and the permanent impact.

• The fair pricing condition states that for any N ,

πN =
1

N

N∑
t=1

St −XN = 0

This implies that we have

IN =
1

N

N∑
t=1

It

Assuming that the martingale conditions holds for t = 1, ...,M and the fair pricing condition
holds for t = 2, ...,M − 1 leads to a system of 2M − 2 homogeneous equations with 2M − 1
unknowns, so we choose R+

1 as an undetermined constant.

Proposition 2. The system of martingale conditions and fair pricing conditions has the solution

R+
t =

1

t

1− Pt
Pt

1

P1P2...Pt−1
R+

1 , t ≥ 2

R−t =
1

t

1

P1P2...Pt−1
R+

1 , t ≥ 2

Corollary 1. The immediate impact is
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It = St −X0 = R+
0 +R+

1

(
1 +

t−1∑
k=2

1

k

1− Pk
Pk

1

P1...Pk−1

)
, t ≥ 2

Since XN −X0 = XN − SN + SN −X0 = IN −R−N , we have

Corollary 2. The permanent impact is

IN = R+
0 +R+

1

(
1 +

N−1∑
k=2

1

k

1− Pk
Pk

1

P1...Pk−1
− 1

N

1

P1...PN−1

)
, N ≥ 2

A.5 Dependence on the metaorder size distribution

According to [Farmer et al., 2013] which cite a host of other relevant studies, there is a consid-
erable evidence that - in the large size limit and for most major equity markets - the metaorder
size V is distributed as P(V > v) ∼ v−β , with β ≈ 1.5.

• P(V > v − 1) − P(V > v) ∼ v−β

((
1− 1

v

)−β
− 1

)
≈ β

vβ+1
: an exact zeta distribution

for all n ≥ 1 is considered,

pn =
1

ζ(β + 1)

1

nβ+1

so that

Pt =
ζ(1 + β, t+ 1)

ζ(1 + β, t)
≈

∫ +∞

t+1

dx

xβ+1∫ +∞

t

dx

xβ+1

=

(
1 +

1

t

)−β
∼ 1− β

t
;

• As a consequence,

R+
t =

1

t2+β

ζ(1 + β)

ζ(1 + β, t)ζ(1 + β, t+ 1)
R+

1 ∼
1

t2−β
;

• Thus, the immediate impact It behaves asymptotically for large t as

It ∼
{

tβ−1 for β 6= 1
log(t+ 1) for β = 1

;

• Recalling the fact that the fair pricing gives IN =
1

N

N∑
t=1

It, there holds

IN ∼
1

N

∫ N

0
xβ−1 dx =

1

β
Nβ−1.

Finally

Proposition 3.

IN
IN

=
1

β

for further use, one can observe that for a value of β = 1.5, we have
IN
IN

=
2

3
.
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