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Abstract

This paper is devoted to the important yet little explored subject of the market impact
of limit orders. Our analysis is based on a proprietary database of metaorders, that is,
large orders that are split into smaller pieces. It is divided into two distinct parts: the first
addresses the case of aggressive limit orders and the second, that of passive limit orders.
For both order types, we confirm a square root temporary impact in the participation rate.
In the case of aggressive orders, we also study the price relaxation after the end of the
metaorder, and show that the long-term impact reaches a level of approximately two-thirds
of the maximum impact. Finally, we propose a functional form for market impact given by

σ

√
Q

V
, where σ and

Q

V
respectively stand for the volatility and the participation rate.

1 Introduction

It is a commonly acknowledged fact that market prices move because of the execution of a trade
- they go up for a large buy order and decrease for a large sell order. This is, losely stated, the
phenomenon known as market impact.

The market impact of large trading orders that are split into pieces - better known as
metaorders - and executed incrementally by a succession of orders of smaller sizes is crucial
in describing and controlling the behaviour of modern financial markets. Being able to quantify
this impact is clearly a question of great relevance in studying the price formation process, and
it has also become a major practical issue for optimal trading. Indeed, to know whether a trade
will be profitable, it is essential to monitor transaction costs, which are directly linked to market
impact. Measuring and modelling market impact has therefore become a central question of
interest, both for researchers and practitioners, in the field of market microstructure.

Compared to the importance of the subject, there only exists a rather scarce literature
pertaining to the empirical estimation of market impact, mostly due to poor data availability.
In fact, trades and quotes, or even order book data are not sufficient to perform the analysis:
a clear identification and time stamping allowing the reconstruction of metaorders is required.
Metaorders have started being recorded as such in a systematic way only recently, and mostly
in proprietary databases that are not readily accessible to academic researchers in the field of
market microstructure. The analyses presented in [Almgren et al., 2005], [Moro et al., 2009],
[Gatheral, 2010], [Toth et al., 2011], [Bershova and Rakhlin, 2013], [Bacry et al., 2015],
[Gomes and Waelbroeck, 2015] essentially cover all that is published about the market impact
of large orders.
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Although difficult to measure in practice, market impact has been studied from a theo-
retical point of view. In an economic theory perspective, the information held by investors,
which governs theirs decisions, should have some predictive power over future prices. This
point was thoroughly investigated by [Farmer et al., 2013], a paper which we find enlighten-
ing and use as reference for the theoretical measurements of market impact. In a related study,
[Bershova and Rakhlin, 2013] uses their own proprietary database to perform an empirical analy-
sis of a set of large institutional orders, and validates some predictions of the [Farmer et al., 2013]
model. Such a comparison will also be performed in the present work.

Our paper is a contribution to this strand of research, with a specific focus on the market
impact of limit orders. As a matter of fact, market orders are generally not used by institutional
investors because of the lack of control they imply. On the contrary, limit orders, whether they
are aggressive - crossing the spread - or passive, form the vast majority of orders actually sent
to the market during the execution of a large trade. As such, they should be the main subject
of interest in a study of market impact. To the best of our knowledge, this paper is the first
academic study of market impact with such an emphasis.

The statistics we present are made on a proprietary database, formed of appropriately se-
lected limit orders executed on the European equity market between January and August 2016,
at an intraday scale. The originality of our approach lies in the fact that the study is not
carried out directly on raw order data, but rather relies on an algorithmic identification and
reconstruction of metaorders from the database of all orders.

The paper is organized as follows: Section 2 recalls for further reference the framework and
main results of the theoretical, agent-based market impact model developed in [Farmer et al., 2013].
Section 3 introduces our main definitions of metaorders and market impact measures. Section
4 presents our empirical results: They confirm that aggressive limit orders behave in agreement
with some stylized facts already established in the literature, and shed a new light on the be-
haviour of passive orders. Section 5 is a discussion of our results and their implications, including
some comparisons with the literature.

2 The Market Impact Model of [Farmer et al., 2013]

In this section, the main results of [Farmer et al., 2013] are recalled. This model presents a
theory for the market impact of large trading orders that are split into pieces and executed
incrementally, better known as metaorders. The central goal of the model is to understand
how order splitting affects market impact.

2.1 Model description

• A filtered probability space (Ω,F , (Ft),P) is given.

• At t = 0, before the opening of the market, the K long-term traders have a common
information signal α and each trader k = 1, ...,K formulate an order of size 0 ≤ nk(α) ≤
M
K and submit them to the algorithmic trading firm that bundles them together into a

metaorder of size N =

K∑
k=1

nk, where M,K, MK are all large positive numbers.

• With probability µ the signal α has nonzero support over a continuous interval −αmax ≤
α ≤ αmax, where 0 < αmax <∞. With probability 1− µ, α = 0 which implies that there
will be no metaorder, i.e. nk = 0 for all k.
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• There are N auctions following each other t = 1, ..., N , N ≤ M , N representing the
number of orders necessary to execute fully the metaorder.

• At each auction t = 1, ..., N , each day trader submits a market order of size F (ηt) where
(ηt) is a zero mean iid random process and F an increasing function whose functional
form is not important. The market makers observe the order flow and formulate quotes
independently.

• At t = N + 1, the last instant in the game, i.e. the instant after the metaorder is fully
executed, is announced with the final price X̃N :

X̃N = G(X0, α, η1, ..., ηN ), if N > 0

where X0 is the initial price and G a function whose form is not important. We will use
the tilde notation to refer to a quantity depending on (ηt).

• Long-term traders only have the information signal α, they know that others traders
have received the same signal and submit an order of size nk(α) independently.

• Day traders receive a private information ηt at each period and mechanically submit an
order of size F (ηt), they play the role of noise traders.

• Market makers are competitive liquidity providers, able to take past order flow and
prices into account in setting their quotes. They know the initial price X0, the informa-
tion distributions P (α) and P̂ (ηt), the probability µ that a metaorder is present and the
function F relating the day trader’s information to their order size. During the course of
the game they can update their prior µ to make a time dependant estimate µ′t.

The respective roles of each agent are summarized in the table below (extracted from the
article).

Agent action period information
long-term investor submits order nk(α) to ATF 0 α

algorithmic trading firm (ATF) submits lot from metaorder t N =
∑K

k=1 nk(α)

day trader submits order F(ηt) t ηt

market maker (MM)
price quote, MM with best quote,
executes transactions at price S̃t t

combined order
sgn(α) + F (ηk)

Table 1: Agents in the model.
(extracted from [Farmer et al., 2013])

The long-term investor is the key agent, who must choose an order size nk at the beginning
of the game based on information α. The market makers are competitive profit optimizers who
set prices (but do not know α). The day trader and the algorithmic trading firm are mechanical
agents, the day trader provides a background of noisy order flow and the algorithmic trading
firm bundles up the long-term trades and submits them in lots of equal size.

2.2 Notations

• As regards statistical averages, S̃t denotes a specific realization of transaction prices,
whereas St stands for an average price over the day trader’s signal ηi. Likewise, X̃N

is a specific realization of the final price at the end of the metaorder whereas XN is an
average price over the day trader’s signal ηi;
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• The final price averaging over ηt is denoted by XN i.e XN = E[X̃N ];

• Xt−1 = St−1 −R−t−1, t = 2, ...,M and XM = SM thus R−M = 0;

• St = X0 +
t−1∑
i=0

R+
i , t = 1, ...,M , where R+

t = St+1 − St and R−t = St − Xt are the

corresponding incremental average impacts;

• It = St − X0 is the average immediate impact at t and IN = XN − X0 denotes the
average permanent impact;

• Let m ∈ {0, 1} an indicator variable where m = 1 if the metaorder is present and m = 0
if it is absent

• We will consider pt = P(t ≤ N < t + 1 |m = 1) at each period t and Pt the probability
that the metaorder will continue given that it is still active at timestep t, i.e.

Pt =

∑
i≥t+1

pi∑
i≥t

pi
= P(N ≥ t+ 1|N ≥ t,m = 1)

.

The possible price paths for a buy are summarized in the graph below:

Figure 1: Tree of possible price paths for a buy metaorder for different sizes N.
(extracted from [Farmer et al., 2013])

In Figure 1, the metaorder is supposed to be present and only expected price paths, averaged
over the day trader’s information (which is why the notation does not include tildes), are shown.

4



The price is initially X0, after the first lot is executed it is S1 = X0 +R+
0 . If N = 1 it is finished

and the price reverts to X1 = S1 − R−1 , but if N > 1 another lot is executed and it rises to
S2 = S1 + R+

1 . This proceeds similarly until the execution of the metaorder is completed. At
any given point the probability that the metaorder has size N > t, i.e. that the order continues,
is Pt. A typical price path (rather than the expected price paths shown here) subject to a large
day trader’s noisy information signal would look more like a random walk with a time-varying
drift caused by the impact of the metaorder.

2.3 Martingale condition

In this section, (S̃t) is supposed to be a martingale: E[S̃t+1|Ft] = S̃t. Therefore, the following
properties hold true:

• E[S̃t+1|Ft] = P(m = 1|Ft)E[S̃t+1|Ft,m = 1] + P(m = 0|Ft)E[S̃t+1|Ft,m = 0], and:

P(m = 1|Ft) = µ′t.

due to the fact that µ′t is the market maker’s best estimate of the probability that the
metaorder is present;

• For the price in the next period, it is necessary to average over three possibilities :

E[S̃t+1|Ft,m = 1] = P(N = t|Ft,m = 1)E[S̃t+1|Ft,m = 1, N = t]

+ P(N > t|Ft,m = 1)E[S̃t+1|Ft,m = 1, N > t]

with :

? E[S̃t+1|Ft,m = 1, N > t] = S̃t +R+
t

? E[S̃t+1|Ft,m = 1, N = t] = S̃t −R−t
? E[S̃t+1|Ft,m = 0] = S̃t

? P(N > t|Ft,m = 1) = P(N ≥ t+ 1|N ≥ t,m = 1) = Pt.

thus :

S̃t = µ′t(Pt(S̃t +R+
t ) + (1− Pt)(S̃t −R−t )) + (1− µ′t)S̃t

PtR+
t − (1− Pt)R−t = 0

Since (S̃t) is a martingale, there holds :

Proposition 1.

R+
t

R−t
=

1− Pt
Pt

, t ≥ 2

2.4 Fair pricing condition

The martingale condition derived in the previous section only sets the value of the ratio R+
t /R

−
t

at each auction t. Another condition is required to derive the values of R+
t and of R−t and

therefore, to obtain the expression for the immediate and the permanent impact.

• The fair pricing condition states that for any N ,
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πN =
1

N

N∑
t=1

St −XN = 0

This implies that we have

IN =
1

N

N∑
t=1

It

Assuming that the martingale conditions holds for t = 1, ...,M and the fair pricing condition
condition holds for t = 2, ...,M − 1 leads to a system of 2M − 2 homogeneous equations with
2M − 1 unknowns, so we choose R+

1 as an undetermined constant.

Proposition 2. The system of martingale conditions and fair pricing conditions has the solution

R+
t =

1

t

1− Pt
Pt

1

P1P2...Pt−1
R+

1 , t ≥ 2

R−t =
1

t

1

P1P2...Pt−1
R+

1 , t ≥ 2

that can be rewritten as :

R+
t =

1

t

pt∑
i≥t+1

pi

1− p1∑
i≥t

pi
R+

1

considering the fact that : ∑
i

pi = 1

Corollary 1. The immediate impact is

It = St −X0 = R+
0 +R+

1

(
1 +

t−1∑
k=2

1

k

1− Pk
Pk

1

P1...Pk−1

)
, t ≥ 2

Since XN −X0 = XN − SN + SN −X0 = IN −R−N , we have

Corollary 2. The permanent impact is

IN = R+
0 +R+

1

(
1 +

N−1∑
k=2

1

k

1− Pk
Pk

1

P1...Pk−1
− 1

N

1

P1...PN−1

)
, N ≥ 2

2.5 Dependence on the metaorder size distribution

According to [Farmer et al., 2013] which cite a host of other relevant studies, there is a consid-
erable evidence that - in the large size limit and for most major equity markets - the metaorder
size V is distributed as P(V > v) ∼ v−β , with β ≈ 1.5.

• P(V > v − 1) − P(V > v) ∼ v−β

((
1− 1

v

)−β
− 1

)
≈ β

vβ+1
: an exact zeta distribution

for all n ≥ 1 is considered,

pn =
1

ζ(β + 1)

1

nβ+1
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so that

Pt =
ζ(1 + β, t+ 1)

ζ(1 + β, t)
≈

∫ +∞

t+1

dx

xβ+1∫ +∞

t

dx

xβ+1

=

(
1 +

1

t

)−β
∼ 1− β

t
;

• As a consequence,

R+
t =

1

t2+β

ζ(1 + β)

ζ(1 + β, t)ζ(1 + β, t+ 1)
R+

1 ∼
1

t2−β
;

• Thus, the immediate impact It behaves asymptotically for large t as

It ∼
{

tβ−1 for β 6= 1
log(t+ 1) for β = 1

;

• Recalling the fact that the fair pricing gives IN =
1

N

N∑
t=1

It, there holds

IN ∼
1

N

∫ N

0
xβ−1 dx =

1

β
Nβ−1.

Finally

Proposition 3.

IN
IN

=
1

β

for further use, one can observe that for a value of β = 1.5, we have
IN
IN

=
2

3
.

3 Definitions, Algorithm and Market Impact measures

3.1 Basic Definitions

Some basic concepts, and the algorithmic definition of a metaorder, are introduced here.

Definition 1. A (passive) limit order is an order that sets the maximum or minimum price
at which an agent is willing to buy or sell a given quantity of a particular stock.

Definition 2. An aggressive limit order is one that instantaneously removes liquidity from
the order book by triggering a transaction. An aggressive order crosses the Bid–Ask spread. In
other words an aggressive buy order will be placed on the ask, and an aggressive sell order will
be placed on the bid.

Loosely speaking a metaorder is a large trading order that is split into small pieces and
executed incrementally. In order to perform rigorous statistical analyses, a more specific and
precise definition of a metaorder is required, and given in Definition 3 below:
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Definition 3. A metaorder is a series of orders sequentially executed during the same day and
having those same attributes:

• agent i.e. a participant on the market (an algorithm, a trader...);

• product id i.e. a financial instrument (a share, an option...);

• direction (buy or sell);

The advantage of adopting such a definition is that it is no longer necessary to work directly
on raw metaorder data. Indeed, a series of orders executed by the same actor on the same
product on the financial market will behave like a metaorder and therefore can be considered as
such.

Figure 2: Sample of the history of orders before the identification process of the algorithm. Each
color corresponds to a different metaorder according to the methodology introduced in 3.

Figure 3: Sample of the history of orders after the identification process of the algorithm. Each
color corresponds to a different metaorder according to the methodology introduced in 3.

Let us mention that our study is not limited only to metaorders executed on a same market,
due to the fact that an instrument can be simultaneously traded on several markets. Besides,
orders executed during the same second are aggregated in order to avoid time stamping issues:
the quantities are summed up, the local VWAP is set as the execution price, and the TIMES-
TAMP of the last order is retained for all orders during the same second. One can see below
how those simplifications reduce the complexity of Figure 3:
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Figure 4: Sample of the history of the orders executed corresponding to the previous figure after
merging the orders. The yellow metaorder which was previously a metaorder of length N = 4 is
now a metaorder of length N = 2.

3.2 Algorithmic procedure

To carry out the study of market impact, the algorithm is trained and run on a proprietary
database. Figure 2 in the previous section represents the database in its initial state, as the
input of the algorithm. Figure 3 shows an intermediate state of the data extracted from the
initial data, during the metaorder reconstruction phase. Figure 4 displays the data in their final
state, directly exploitable for statistical studies. Note that the recovery and cleaning of market
data are done simultaneously during the metaorder reconstruction.

3.3 Market Impact definitions

We adopt the same framework as that presented in [Bacry et al., 2015]. Let Ω be the set of
metaorders under scrutiny, that is, metaorders that are fully executed during a single market
session, and pick ω ∈ Ω executed on an instrument S and during a given day d. Its execution
starts at some time t0(ω) and ends the same day at time t0(ω) + T (ω). Thus T (ω) represents
the duration of the metaorder. Denote by Q(ω) and N(ω) respectively the number of shares and
the number of orders that have been executed during the life cycle of the metaorder ω. Hence
Q(ω) is the size and N(ω) the length of ω. Let V (ω) be the volume traded the same day d on
the instrument S (summed over all European trading venues) between time t0 and t0 + T , i.e.
during the life cycle of ω. The sign of ω will be noted ε(ω) (i.e. ε = 1 for a buy order and ε = −1
for a sell order). Clearly, all the quantities introduced in this section depend on ω. For the sake
of simplicity, we chose to omit this dependence whenever there is no ambiguity and will often
write T , N , Q, V , ε instead of T (ω), N(ω), Q(ω), V (ω), ε(ω).

The market impact curve of a metaorder ω quantifies the magnitude of the relative price
variation between the starting time of the metaorder t0 and the current time t > t0. Let It(ω)
be a proxy for the realized price variation between time t0 and time t0 + t. In line with many
authors ([Almgren et al., 2005], [Bershova and Rakhlin, 2013], [Bacry et al., 2015]), we use the
return proxy defined by

It =
Pt − Pt0
Pt0

, (1)

where Pt represents the execution price of the financial instrument S during the execution part
of the metaorder, and the mid-price of S during its relaxation part, i.e. the decay of the im-
pact, which starts when the metaorder has been fully executed. This estimation relies on the
assumption that the exogenous market moves Wt will cancel out once averaged, i.e. as a random
variable, Wt should have finite variance and basically satisfy E(ε(ω)Wt(ω)) = 0.
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One can thus write
ε(ω)It(ω) = ηt(ω) + ε(ω)Wt(ω), (2)

where ηt(ω) represents the market impact curve and Wt(ω), the exogenous variation of the price
corresponding to the relative price move that would have occurred if the metaorder had not
been sent to the market.

4 Empirical study

4.1 Notations

Notation Definition
ω a metaorder

S(ω) financial instrument of the metaorder ω
d(ω) execution day of the metaorder ω
t0(ω) start time of the metaorder ω
T (ω) duration of the metaorder ω
N(ω) length of the metaorder ω
Q(ω) size of the metaorder ω

V (ω)
volume traded on the day d(ω) on the

instrument S(ω) during [t0(ω), t0(ω) + T (ω)]

ε(ω) sign of the metaorder ω
P (ω) price of S(ω)

F (ω)
future price of the domestic index which

contains S(ω)

βcapm(ω)
beta coefficient of S(ω) estimated from 6

months close-to-close data

σ∗(ω)
volatility of S(ω) estimated from 6 months

close-to-close data

σ(ω)
volatility normalized to the duration of the

metaorder ω, i.e. σ(ω) =
σ∗(ω)×

√
T (ω)√

252× 8.5× 3600

Ω
set of all the metaorders identified by the

algorithm
Ωn∗ ⊂ Ω subset of the metaorders with N ≥ n∗

Ωn∗,t∗ ⊂ Ω
subset of the metaorders with N ≥ n∗ and

T ≥ t∗

Ωn∗,t∗,∗ ⊂ Ω
subset of the metaorders with N ≥ n∗, T ≥ t∗

and t0 + 2T ≤ closing time

Q(S, d)
quantity total traded by all the bank agents on

the instrument S on the day d
T ∗ reference constant of a duration in seconds

(Q/V )∗ reference constant of a participation rate
I∗ reference constant of a positive impact

Table 2: Notations and definitions

Remark 1. The notations T ∗, (Q/V )∗ and I∗ are some constants.
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4.2 Aggressive Limit Orders

The subject of interest of this section is the metaorders generated by aggressive limit orders,
that is, limit orders that actually cross the spread in order to trigger an immediate transaction.

4.2.1 Data

• Study period : 1st Jan 2016 - 30th Aug 2016

• Markets : Euronext + Xetra European Equity Markets

• Order types : Aggressive Limit Orders

• Filters : metaorders ω ∈ Ω10,600,∗ i.e. with a length N ≥ 10, a duration T ≥ 600
s and t0 + 2T≤ closing time

• Number of metaorders : 33054

4.2.1.1 Duration distribution

Figure 5: Duration distribution in seconds of the intraday aggressive metaorders

mean 1.83× T ∗
median 1.24× T ∗

One can observe that, in agreement with the intuition, metaorders with shorter length (in
time) are proportionally more represented.
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4.2.1.2 Length distribution

Figure 6: length distribution of the intraday aggressive metaorders

mean 25
median 16

As for the duration, shorter metaorders (in length) are also more represented. This ob-
servation is not surprising, since the quantities N and T are expected to be highly positively
correlated. A log-log scale (Figures 7, 8) gives a more precise idea of the distribution of N : The
apparently linear relation suggests that N follows a discrete Pareto distribution, as was already
observed in [Bershova and Rakhlin, 2013] and theoretically proven in the market impact model
of [Farmer et al., 2013].

Figure 7: length distribution of the intraday aggressive metaorders in log-log scale
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Figure 8: Fitting Length distribution of the intraday aggressive metaorders.

̂P(N = n) stands for the natural frequency estimator of the probability P(N = n). Consid-
ering the same definition of β in [Farmer et al., 2013] reminded in section 2.5, we have β = 1.46
and βAllianceBernstein = 1.56 in [Bershova and Rakhlin, 2013].
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4.2.1.3 Participation rate distribution

Figure 9:
Q

V
distribution of the intraday aggressive metaorders

mean 0.1× (Q/V )∗

median 0.055× (Q/V )∗

Similar to the case of duration and length, metaorders with smaller participation rates are

more represented. Moreover, as one would expect, the quantities N and
Q

V
are highly positively

correlated, a fact that is underlined in Figure 10 below.

Figure 10: Length N of metaorders as a function of participation rates
Q

V
in the case of the

aggressive metaorders.
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There is a clear positive correlation between the quantities N and
Q

V
- with the exception

of the last point. However this last point has no real statistical meaning, as it is the result of
averaging on the last bucket, thereby mixing very different values of lengths and participation
rates on a large range. This singularity appears clearly on the graph.

4.2.2 Market Impact curves

The main results of Section 4.2 are now given, namely, the market impact curves for aggressive
metaorders. In order to plot explanatory variables, a bucketing method is used: Consider for
example that one wants to plot y as a function of x, x, y being two arrays of data. One starts
by ordering the couple of values (xi, yi) by x and then divides the sorted (by x) distribution
(x, y)sorted into Nbucket. Hence one has Nbucket subsets of the distribution (x, y)sorted, (xi, yi)i∈I1 ,
(xi, yi)i∈I2 , ..., (xi, yi)i∈INbucket

and calculates for each bucket Ik the mean values (xk, yk). The
last step of this average procedure is to plot the points (x1, y1), (x2, y2), ..., (xNbucket

, yNbucket
).

4.2.2.1 Market Impact Dynamics

To study the dynamics of the market impact, one plots (ε(ω)It(ω))ω∈Ω,t0(ω)≤ t≤t0(ω)+2T (ω). The
first sub-interval t0(ω) ≤ t ≤ t0(ω) + T (ω) corresponds to the execution of the metaorder,
whereas the second t0(ω) + T (ω) ≤ t ≤ t0(ω) + 2T (ω) corresponds to the relaxation.

To perform an extensive statistical analysis over metaorders of varying lengths in physical or
volume time, a rescaling in time is necessary, see e.g. [Bacry et al., 2015]. With this convention,
all orders are executed during the time interval [0, 1], and the price relaxation occurs in the
time interval [1, 2]: For each metaorder ω, one considers [0, 1] instead of [t0(ω), t0(ω) + T (ω)](

[0, 1] =
[t0(ω), t0(ω) + T (ω)]− t0(ω)

T (ω)

)
for the execution part of ω and [1, 2] instead of [t0(ω) +

T (ω), t0(ω) + 2T (ω)] for the relaxation part of ω, and then averages using the bucketing method
previously described on the time-rescaled volume quantities.

The time variable t ∈ [0, 1] in Figure 11 is actually the volume time i.e. the ratio between
the part of the metaorder already executed at the time of the observation and the total size of
the metaorder - of course, at the end of the execution part this quantity is always equal to 1.

Figure 11: market impact dynamics during the execution part in the case of the aggressive
metaorders.
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(a) (b)

(c)

Figure 12: market impact dynamics during the execution part and relaxation part
(a) metaorders of Ω0,0,∗, (b) metaorders of Ω10,0,∗ (with N ≥ 10) and (c) metaorders of Ω20,0,∗
(with N ≥ 20).

The analysis yields an increasing, concave market impact curve. The decay observed in the
part of the curve points is only a lure and can be explained by the fact that metaorders of smaller
lengths are more numerous and associated with lower impacts as shown in Figure 10.

The blue points correspond to execution prices and the red points correspond to mid prices
taken at symmetrical times from the end of the metaorder, thus the interval [1, 2] has no physical
sense and it is just an obvious choice in order to normalize the shape of the curve. The two
isolated points observed in 12a are due to the fact that we have considered all metaorders,
so metaorders with a small length, especially those with length N = 2 are over-represented
in %volume = 1.0, therefore inducing a bias towards the end of the curve. One can make
this artifact vanish when considering metaorders with larger sizes, for which the impact clearly
increases (cf. 12b and 12c). Those curves confirm the fact advocated in [Farmer et al., 2013] that
the impact is concave and increasing, and that the final impact after the execution is performed
relaxes to about two-thirds of the peak impact.

The concave permanent impact and the convex relaxation that follows have already been
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underlined by [Bacry et al., 2015]. Also, the relaxation to about two-thirds of the peak impact,
predicted by [Farmer et al., 2013], had been observed in [Bershova and Rakhlin, 2013].

On Figures 12a, 12b and 12c, one observes a concave dynamics of the market impact followed
by a convex and decreasing relaxation. We note that on the three graphs, as we retain the largest
metaorders, we observe higher market impacts: 1.5×I∗, 2×I∗ and then 2.5×I∗ for the temporary
market impact. On Figure 12a, one can safely assume that relaxation is complete and stable at
a level around I∗. However, on Figure 12c, relaxation seems to only begin its stabilization phase
and does not appear quite finished. This rather predictable observation expresses the fact that
relaxation takes even longer for larger metaorders.

4.2.2.2 Market Impact as a function of the participation rate

We plot here the market impact observed at the end of the execution part, i.e. the temporary

market impact, as a function of the participation rate
Q

V
.

Figure 13: temporary market impact as a function of QV

This graph also shows an increasing concave curve. The first point corresponds to weak
participation rates, which rather suffer from market movements than impose them. Similarly,
the last point has no real statistical value because it is the result of averages on the last bucket
which contains less data than the previous ones and mixes values of participation rates on a
very large range of values.
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Figure 14: temporary market impact as a function of QV - power law fitting on buckets

One observes a concave market impact increasing with the participation rate Q
V . We fit

here with a log-log scale keeping only the positive y-axis plots and neglecting the last point
from the Figure 13, a power law to measure the temporary market impact of the aggressive
metaorders. Following the framework introduced by [Farmer et al., 2013] we obtain two different
measurements of β − 1, one obtained from the distribution of N and the other one from the

participation rate
Q

V
: 0.46 and 0.48. In all cases these two values are close to 0.5 and seem to

argue in favor of a concave temporary market impact following a square root law also for our
aggressive limit metaorders.

4.2.3 Conclusion

In this section we have observed that aggressive metaorders have behaviors often well de-
scribed in the scientific literature such as the concave increasing shape of the market impact
and the convex decreasing shape of the relaxation. Those issues have been mainly discussed
in [Bershova and Rakhlin, 2013], [Farmer et al., 2013], [Bacry et al., 2015], [Gatheral, 2010] and
[Gatheral et al., 2011]. Besides we notice that the impact relaxed to about two-thirds of peak
impact, and thus the price moves of our aggressive metaorders could be well described by a
VWAP AFS model presented in [Gatheral et al., 2011].
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4.3 Passive limit orders

The subject of interest of this section is the metaorders generated by passive limit orders, mainly
through order execution strategies.

4.3.1 Data

• Study period : 1st Jan 2016 - 30th Aug 2016

• Markets : All European Equity Markets

• Order types : All Orders (> 90% passive limit orders)

• Filters : metaorders ω ∈ Ω5,600,∗ with a length N ≥ 5, a duration T ≥ 600 s and
t0 + 2T≤ closing time

• Number of metaorders : 16581

4.3.1.1 Duration distribution

Figure 15: Duration distribution in seconds of the intraday execution metaorders

mean 1.63× T ∗
median 0.71× T ∗

As expected, and previously shown for aggressive metaorders (cf. Figure 5), one observes
again (Figure 15) that, the shorter the metaorders are, the more they are represented. Contrarily
to the case of the aggressive metaorders, the distribution is seen to have a fatter tail, an indication
of the ‘intelligence’ of the execution strategies.
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4.3.1.2 Length distribution

Figure 16: length distribution of the intraday execution metaorders

mean 54
median 24

The shape of the distribution in Figure 16 is very similar to the one observed for the aggressive
metaorders in Figure 6.

Figure 17: length distribution of the intraday execution metaorders with a log-log scale

Again, a linear relation in log-log scale seems clear. This confirms the relevancy of the discrete
Pareto distribution independently of the nature (passive, aggressive...) of the orders.
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4.3.1.3 Participation rate distribution

Figure 18:
Q

V
distribution of the intraday execution metaorders

mean 0.18× (Q\V )∗

median 0.11× (Q\V )∗

Again the quantitiesN , T and
Q

V
are highly positively correlated. Besides, it is not surprising

to note that the execution metaorders have participation rates during their life cycle bigger than
those observed for the aggressive metaorders (Figure 9).

4.3.2 Market Impact Dynamics

The market impact study proceeds along the same lines as those presented in 4.2.2.1. Hence,
for plotting (ε(ω)It(ω))ω∈Ω,t0(ω)≤ t≤t0(ω)+T (ω), one has to consider its rescaled time version
(ε(ω)Is(ω))ω∈Ω,0≤ s≤1, i.e. for each metaorder ω we consider [0, 1] instead of [t0(ω), t0(ω)+T (ω)]

such as [0, 1] =
[t0(ω), t0(ω) + T (ω)]− t0(ω)

T (ω)
.
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Figure 19: market impact dynamics during the execution part in the case of the intraday execu-
tion metaorders.

One observes a positive increasing and concave market curve. Note that the impacts are more
important than those obtained for the aggressive metaorders (Figure 11). This is essentially
due to the fact that the metaorders involved in an execution strategy are generally bigger than
aggressive ones.

4.3.3 Market Impact Models

4.3.3.1 Methodology

In this section, we calibrate a phenomenological model for the market impact of execution
strategies.

Starting from all values of It =
Pt − P0

P0
, we try to minimize the noise in order to infer

efficiently a market impact model.

It being a return value, it seems natural to consider Ft =
Ft − F0

F0
as an explanatory variable

due to the fact that the Future moves are often highly positively correlated with the Spot moves.
So we are thinking of inferring a market impact model considering the residual terms. And then
we shape our model including incrementally relevant explanatory variables such as the volatility

σ, the participation rate term
Q

V
.
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4.3.3.2 Models

• Model M1 : It = β ×Ft + cst

Figure 20: results execution strategies Model M1
The Futures moves explain 22% of the Stock moves.

• Model M2 : It = β × βcapm ×Ft + cst

Figure 21: results execution strategies Model M2
When normalizing the Futures moves using stock’s βcapm, one explains 3% more of the stock

returns.
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• Model M3 : It = β × βcapm ×Ft + k × ε× Q

V
+ cst

Figure 22: results execution strategies Model M3
Adding the signed participation rate one observes an improvement of 1.3% in the explanation.

• Model M4 : It = β × βcapm ×Ft + k × ε×
√
Q

V
+ cst

Figure 23: results execution strategies Model M4
Using the square root gives better results, one observes an improvement of 0.4% in the

explanation.
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• Model M5 : It = β × βcapm ×Ft + k × ε× σ ×
√
Q

V
+ cst

Figure 24: results execution strategies Model M5
Adding the volatility factor enhances the results, one observes an improvement of 0.2% in the

explanation.

We conclude this section by plotting the R2 coefficient as a function of γ in the following
model

It = β × βcapm ×Ft + k × ε× σ ×
(
Q

V

)γ
+ cst

Figure 25: R2 as a function of γ in the model M5
One notices that the R2 factor reaches its maximum in γ = 0.60. We have β = 0.69, k = 1.2

and R2 = 0.271.

As a remark, let us add that we also tried some multi-factor models but those models do not
really perform better than model M5, so we decided to keep a single factor model.
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4.3.3.3 Stability

The subject of interest of this section is the stability over time of the following model

It = β × βcapm ×Ft + k × ε× σ ×
(
Q

V

)γ
+ cst

In order to do this, we proceed as in the previous section over a 3 month sliding window. The
results are summarized in the table below.

period Nb metaorders γ R2
adj β k

1 Jan 2016 - 30 Mar 2016 7859 0.42 0.271 0.6295 0.8352
1 Feb 2016 - 30 Apr 2016 7991 0.92 0.240 0.6676 2.4797
1 Mar 2016 - 30 May 2016 7654 0.52 0.221 0.5854 0.8734
1 Apr 2016 - 30 Jun 2016 6786 0.87 0.270 0.7924 2.9644
1 May 2016 - 30 Jul 2016 5505 0.42 0.336 0.7901 0.8829
1 Jun 2016 - 30 Aug 2016 3709 0.39 0.377 0.8423 0.6801

Table 3: Stability for each period with the optimal power law formula

period Nb metaorders γ R2
adj β k

1 Jan 2016 - 30 Mar 2016 7859 0.50 0.271 0.6318 1.1044
1 Feb 2016 - 30 Apr 2016 7991 0.50 0.239 0.6598 0.6226
1 Mar 2016 - 30 May 2016 7654 0.50 0.221 0.5849 0.8149
1 Apr 2016 - 30 Jun 2016 6786 0.50 0.267 0.7801 0.8955
1 May 2016 - 30 Jul 2016 5505 0.50 0.335 0.7970 1.1436
1 Jun 2016 - 30 Aug 2016 3709 0.50 0.376 0.8543 0.9646

Table 4: Stability for each period with a square root formula

One can conclude from these two tables and the graphs just below (Figure 26) that choosing
γ close to 0.5 is a reasonable assumption. Also, the values of β and k seem to be more stable with
a square root formula. This tends to confirm the commonly agreed upon square root behaviour
for the impact of execution strategies.

As a conclusion to this short modelling section, one can observe that significant improvements
occur as we shape our model with appropriate factors. As expected, the returns of the Futures
price is the most relevant factor.

Moreover, concerning the execution metaorders, the participation rate
Q

V
and the volatility

σ seem to be the most relevant factors, and market impact is seen to behave like σ ×
(
Q

V

)γ
with γ ≈ 0.5.

5 Conclusion

The work presented here is an empirical study of a large set of metaorders executed in the
European equity markets. A new algorithmic definition of a metaorder has been proposed. The
statistical results show a good agreement with some predictions of the market impact model in
[Farmer et al., 2013] in the case of limit orders.

Our study contains two distinct subgroups of orders: a set of aggressive limit orders, and a
database of execution strategies predominantly composed of passive limit orders. In both cases,
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(a) (b)

(c) (d)

(e) (f)

Figure 26: R2 coefficient as a function of γ for each period in the model M5
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the analysis shows that the temporary market impact is increasing and concave, and it also
confirms that the length distribution of metaorders follows a Pareto distribution of parameter
β + 1 with β ≈ 1.5 in both cases.

Moreover, in the case of aggressive metaorders, we have been interested in the relaxation
phase. A convex, decreasing functional form is obtained, as mentioned in [Bacry et al., 2015]
and other related studies. More precisely, the price reversion after the completion of a trade
yields a permanent impact is also a square root function of trade volume duration and that its
ratio to the maximum impact observed at the last fill is roughly 2/3 as predicted in the article
of [Farmer et al., 2013] and highlighted empirically [Bershova and Rakhlin, 2013].

Finally, in the case of passive limit orders, we have shown that the market impact of

metaorders is well described by a square root formula σ

√
Q

V
, σ being the volatility and

Q

V
,

the participation rate.
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