
HAL Id: hal-01560865
https://hal.science/hal-01560865v1

Submitted on 12 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards Traceability Metamodel for Business Process
Modeling Notation

Saulius Pavalkis, Lina Nemuraite, Edita Milevičienė

To cite this version:
Saulius Pavalkis, Lina Nemuraite, Edita Milevičienė. Towards Traceability Metamodel for Business
Process Modeling Notation. 11th Conference on e-Business, e-Services, and e-Society (I3E), Oct 2011,
Kaunas, Lithuania. pp.177-188, �10.1007/978-3-642-27260-8_14�. �hal-01560865�

https://hal.science/hal-01560865v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards Traceability Metamodel for Business Process
Modeling Notation

Saulius Pavalkis1,2, Lina Nemuraite1, Edita Mileviciene2

1Kaunas University of Technology, Department of Information Systems,

Studentu 50308, LT-51368 Kaunas, Lithuania,

2No Magic Europe, Savanoriu av. 363, LT-49425 Kaunas, Lithuania,
saulius.pavalkis@nomagic.com, lina.nemuraite@ktu.lt,

edita.mileviciene@nomagic.com,

Abstract. This paper presents the traceability metamodel for Business Process
Model and Notation (BPMN) and its implementation in Cameo Business
Modeler plug-in for MagicDraw. There is no public standard traceability
metamodel defined for BPMN yet. We present solutions that we have already
applied in practice: we improve the traceability of BPMN models by defining
derived properties that are calculated by a modeling tool on the fly. In contrast
to other existing solutions, this approach does not require additional efforts
from users for defining and maintaining traceability, and does not overload
projects with redundant information. Using this approach, CASE tool
developers are able to supplement their tools with traceability analysis means
allowing users to access traceability information easier, to check completeness
and correctness of BPMN models, and to analyze the impact of changes.

Keywords: traceability, derived properties, BPMN, model consistency,
coverage analysis, change impact analysis.

1 Introduction

Today’s software is becoming more and more complex. Modeling takes an important
role in the software development because of the ability to raise the level of abstraction
from code to models using popular modeling languages such as UML [2], BPMN [1],
SysML [3], and others. Models become primary artifacts in software and systems
development. They cover all stages of software development from business analysis
and requirements definition to implementation, code generation, and testing, as
defined by Unified Software Development Process [4]. As a result, the complexity of
models is growing, and this leads to increased risk and higher costs of software
projects [5]. In this complex context, it becomes crucial to assure safety, reliability,
and quality of software and systems granting their integrity, avoiding redundancy,
managing development processes and changes. Model traceability can help to reach
these goals since it is able to reduce complexity by easing comprehension of design
decisions to stakeholders, decision makers, and developers.

Traceability is the important aspect of software development for analyzing risks
and costs during change management. On the other hand, BPMN (we are concerning
the second BPMN version, BPMN 2) is one of the most popular standards for
business process modeling. Many modeling tools support BPMN diagrams [6].
However, traceability of important elements of BPMN models is not assured.

In our viewpoint, the traceability information should be created, updated and
visualized in such a way that it would not cause more problems than advantages
received. It should not unpredictably increase the overhead and costs of the project.
This is especially important for business users (i.e. main users of BPMN) working
with visual representation of models. Traceability information should be presented in
a clear and comprehensive way in order to be understood and accepted by business
process modelers.

The traceability of BPMN models can be improved by using our proposed derived
property approach. The core of the approach is an extension of a metamodel of the
problematic modeling language with additional properties that can be calculated by a
modeling tool on the fly. In contrast to other existing solutions, this approach does not
require users defining and maintaining traceability relations in their projects, and does
not overload their projects with traceability information. Using this approach, CASE
tool developers are able to supplement their tools with traceability analysis means
allowing users to access traceability information easier, to check completeness and
correctness of BPMN models, and to analyze impact of changes.

The rest of the paper is structured as follows. Section 2 analyzes related works.
Section 3 presents the traceability metamodel for BPMN and its implementation in
Cameo Business Modeler tool using custom derived properties dedicated for
traceability. Finally, section 4 presents conclusions and future works.

2 Traceability Concepts and Related Works

In the IEEE Standard Glossary of Software Engineering Terminology [7], the
traceability is defined as “The degree to which a relationship can be established
between two or more products of the development process, especially products having
a predecessor–successor or master–subordinate relationship to one another”. In order
words, traceability is understood as the ability to identify direct or indirect relations
among project elements. There are many other traceability definitions; however, most
of them are similar to the presented ones.

Traceability is classified in different ways on the base of various aspects.
According to [8], there are some fundamental classifications, like forward [9],
backwards [10], horizontal [11, 12], and vertical traceability [11].

Ramesh and Edwards [11] define the distinction between horizontal and vertical
traceability. Traceability that considers links among artifacts belonging to the same
project phase or level of abstraction is defined as horizontal traceability; traceability
that links artifacts belonging to different phases or levels is defined by vertical
traceability. In this paper, we will focus on horizontal traceability links within BPMN
models.

Traceability schema, or metamodel of a particular domain defines what relations
between specific model elements are treated as traceability relations, and what
semantics they carry. Multiple authors have proposed traceability metamodels
[1316] but no common understanding of a complete traceability metamodel [9] is
defined yet. The limitation of these approaches arises because of inflexible types of
relationships while needs and practices of organizations are changing. A relevant
solution should provide traceability metamodel, which supports customization and
extensibility of traceability links giving possibility to define new types of links,
artifacts, and transitive relations. Such capabilities and predefined schemas are
provided in our derived properties based approach which is already applied to UML
and SysML.

BPMN role in software development is discussed in multiple sources [17].
However, there is no standard traceability metamodel for BPMN. The lack of
traceability in BPMN models causes a number of problems:

1st problem. Resource roles take part in BPMN activities that belong to some
process. However, there is no direct relation between resource role and process in
BPMN metamodel. This means it is impossible to trace information about processes
in which the resource role takes part. For solving this problem, we introduce a
traceability rule defining relation between resource role and process, and vice versa.

2nd problem. Identification of business concepts is crucial for business process
modeling, and we apply UML class diagram for this purpose [17]. Instances of
concepts taking part in workflows of business process models are represented as
objects. However, it is not possible to find out in which processes business concepts
take part. We propose a traceability rule defining relation between business concept
(class or BPMN resource) and processes, in which it takes part, and vice versa.

3rd problem. Participants take part in sending and receiving messages during
process execution. In BPMN metamodel, there is no direct relation between
participants and messages sent or received by them. Consequently, we introduce a
traceability rule defining messages sent and received by participants.

One of the most important aspects of traceability analysis tools is their ability to
represent results. Winkler et al. emphasizes matrices, cross-references, and graph-
based representations as main methods for traceability visualization [9], and
summarizes other traceability benefits: prioritizing requirements, estimating change
impact, proving system adequateness, understanding the system, supporting design
decisions, validating and much more.

Cameo Business Modeler covers methods for traceability visualization together
with other visualization and analysis means. Also, we provide other capabilities for
analyzing models on the base of traceability information: change impact analysis [18],
checking consistency and completeness of models.

3 Traceability Metamodel for Business Process Model and
Notation

We solve BPMN traceability problems by applying custom derived properties
approach which allows to extend UML metamodel for derived properties
specification and enables its customization as a part of MagicDraw DSL engine a
core of Cameo Business Modeler [19]. As the mentioned BPMN traceability
problems are caused by absence of direct relations between elements, we use derived
properties for creating such relations. Definition and calculation of derived properties
are presented in section 3.1 “Derived Properties Framework and Metamodel” (full
description may be found in [20]).

We define BPMN traceability rule expressions as property chains (Table 1) where
column “Rule name” shows the name of the derived property; “Source element”
identifies the owner of that derived property; “Target element” corresponds to a value
of the derived property.

Table 1. BPMN traceability rules solving traceability problems

Rule name Source element Target element Description
Resource Role – BPMN Process traceability
1. Taking Part in
Process

Resource Role BPMN Process Defines processes, in which
activity resource role takes part.

2. Activity
Resources

BPMN Process Resource Role Defines resources roles taking
part in process activities.

Business Concept – BPMN Process
3. Taking Part in
Process

Class or BPMN
resource

BPMN Process Defines processes, in which
business concepts takes part.

4. Business concepts

BPMN Process Class or BPMN
resource

Defines business concepts,
which take part in business
process.

Participant – Message
5. Sent Messages

Participant Message Participants take part in sending

and receiving messages during
process execution. Property
defines messages sent by
participant

6. Received
Messages

Participant Message Participants take part in sending
and receiving messages during
process execution. Property
defines messages received by
participant via message flow
from representing pools.

3.1 Derived Properties Framework and Metamodel

In order to be able to define derived properties in modeling environment we extended
a modeling language for specifying derived property details. UML and other
modeling languages provided by Object Management Group (OMG) have the
standard extension mechanism – profiling.

UML extension for derived properties reuses UML properties and MagicDraw
DSL engine [19] constructs; it introduces only one stereotype with a single property
for specifying derived properties.

The stereotype DerivedPropertySpecification extends UML metaclass Property for
specification of derived property expression that defines how this property is
calculated. UML properties of stereotyped property element are used for specifying a
derived property as well: one can define the name, type, multiplicity, isUnique,
isOrdered, isDerived, isReadOnly, and body of comment.

Stereotyped property with DerivedPropertySpecification stereotype is added into
MagicDraw DSL [19] customization class (i.e. class stereotyped as customization).
The definition of tag customizationTarget of this class specifies in which element type
(UML or extended one) derived property will be created (for more details of
specifying derived properties please refer to [20]).

The heart of the derived property is the expression according to which it is
calculated. Several different types of such expressions are available in Cameo
Business Modeler: simple through UML properties and relationships; more
advanced ones use OCL expressions, property chains, scripting languages or Java
code.

Most popular are simple expressions and property chains. Property chain
expression type (i.e. path through metamodel and properties) is used for navigating
from a context element to a final linked property for gathering the resulting elements
as derived property values. A property chain expression defines navigation path
consisting of metaclass/stereotype and property/tag pairs. For example, for derived
property “Taking Part in Process” (Fig. 2), the property chain expression is
ResourceRole.opposite(BPMNActivity.resources).owner [20]. For derived property
“Received Messages” (Fig. 8) property chain expression is Participant.
opposite(ActivityPartition.represents).opposite(DirectedRelationship.source).
messageRef [20].

Derived property expressions could be written in OCL. For example, derived
property “Taking Part in Process” expression could by written in OCL as

context ResourceRole::takingPartInProcess:BPMNProcess
 derive: self.BPMNActivity.owner,

and “Received Messages” could be written in OCL as

context Participant::receivedMessage:Bag(Message)
 derive:self.activityPartition.directedRelationship
 select(n| n.oclIsKindOf(MessageFlow)).messageRef

However, our current traceability implementation in MagicDraw allows users to
specify property chains in a simpler way by choosing required elements and
properties in dialog. OCL expressions could be applied for more complex situations.

3.2 Traceability Rules

Resource Roles taking part in BPMN activities (tasks and subprocesses) are shown in
Fig. 1. BPMN standard property Resources shows all resource roles taking part in a
particular activity.

Fig. 1. BPMN process diagram representing registration for open training class

For assuring Resource Role – Process traceability, we introduce bidirectional
traceability relation between resource role and BPMN process (Fig. 2). In result, we
can see all resources, participating in activities of a particular BPMN process, in the
specification of that process (Fig. 3).

Fig. 2. BPMN metamodel extension for traceability relation between resource role and BPMN
process

Fig. 3. Derived property “Activity Resources” in the BPMN process specification

Definition of business processes can start from identifying business concepts. For this
purpose, we can use UML class diagram [17]. Business concepts (classes or BPMN
resources) taking part in the workflows of business processes are represented as data
objects (Fig. 4). However, there is no possibility to trace from business concepts to
processes where instances of concepts (data objects) are used.

Fig. 4. BPMN diagram for Order Handling Process

Metamodel for solving Business Concept BPMN Process traceability problem is
presented in Fig. 5. This metamodel introduces a relation between business concept
(class or BPMN resource) and process in which it takes part.

This extension allows to show all business concepts, taking part in BPMN process,
in MagicDraw Dependency Matrix (Fig. 6). Resource which is not used as business

concept will still have traceability property, but it will not have a value pointing to
BPMN process.

Fig. 5. Parts of BPMN and UML metamodels extended with traceability relation between
Resource and BPMN process

Fig. 6. Visualization of traceability property “Taking Part in Process” with Dependency Matrix

Similarly, BPMN collaboration diagram is the only place where participants and
messages sent or received by them can be seen (Fig. 7). There are no direct relation
between participant and message in BPMN metamodel. For assuring this kind of
traceability, we introduce two traceability relations between Participant and Message
(Fig. 8). These relations allow to show messages of a particular participant in its
specification (Fig. 9).

Fig. 7. BPMN Collaboration diagram showing messages sent between participants

Fig. 8. Parts of BPMN and UML metamodels extended with traceability relation between
participants and messages sent or received by the participant

Fig. 9. Participant specification extended with derived traceability properties – Sent Messages
and Received Messages

3.3 Visualization and Analysis of Traceability Rules

Once derived properties are specified, they appear in specification dialog of the
corresponding elements and other places in the same way as regular BPMN
properties. Now, by visualizing and analyzing traceability information, we can
discover related elements, which will be impacted by model changes (i.e. we can
perform impact analysis). Impact analysis is performed by discovering impacted parts
– the ones related with traceability relations. The following paragraph overviews
methods for discovery of impacted parts. Also, we can validate model consistency by
performing coverage analysis for discovering whether all requirements are satisfied
by design and verified with test cases, or not.

Transitive traceability can be visualized by Relation Map a graph based
visualization that allows review and analysis of multilevel relations. Dependency
Matrix represents traceability relations between requirements and design. Traceability
properties also can be visualized on diagram using standard MagicDraw mechanism
for displaying property values in notes. Traceability property groups can be seen in
the contextual menu of an element.

Generic table is an easy way for performing coverage analysis e.g. empty cells in
the rows indicate a lack of consistency in the model. Coverage analysis report can be
generated using documentation generation capability. All the derived properties,
together with custom BPMN properties, can be accessed when creating user specific
report templates.

Finally, you can check completeness of traceability and validate non-existence of
cyclic relationships by using CBM validation feature. Predefined validation suite for

traceability checks model for empty traceability properties and elements involved in
both forward and backward traceability relations with another elements.

4 Conclusions and Future Works

1. Analysis of traceability in current BPMN 2 models had shown the lack of
traceability between BPMN concepts, from which we first had taken into
consideration processes and resource roles, BPMN processes and business
concepts, participants and messages as most required ones.

2. As the solution for these problems, we propose traceability metamodel based on
UML derived properties. Our proposed derived property approach is already
tried in practice for UML and SySML, and could be adopted by other developers
in other tools and for other languages as currently we have done for BPMN.

3. In contrast to other proposals, derived property based traceability framework
supports customization and extensibility of traceability links giving possibility to
define new types of links, artifacts, and transitive relations. Also, it has
advantages with significant decrease of overhead as derived properties are
automatically calculated by a modeling tool and dynamically updated according
to changes in models. No manual work is required to specify traceability
information it is created and updated fully automatically.

4. Implementation of traceability metamodel in Cameo Business Modeler (CBM)
allows reusing existing CBM means as dependency matrices, report templates,
and validation rules for traceability information analysis, visualization and
navigation.

5. Proposed BPMN 2 traceability metamodel and rules provide information about
dependencies between BPMN processes and resource roles, processes and
business concepts, participants and messages. This allows validating BPMN 2
models for correctness and completeness of these aspects, and analyzing impact
of changes.

6. In our future work, we will concentrate on extending the traceability metamodel
for BPMN 2 as well as defining specific traceability metamodels for modeling
databases and enterprise architectures.

 Acknowledgement. The authors would like to thank No Magic, Inc, especially the
MagicDraw and Cameo Business Modeler product teams for comprehensive support.

References

1. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.3.
OMG Document Number: formal/2010-05-05 (2010)

2. OMG: Business Process Model and Notation (BPMN), Version 2.0. OMG Document
Number: formal/2011-01-03 (2010)

3. OMG: OMG Systems Modeling Language (OMG SysML), Version 1.2. OMG Document

Number: formal/2010-06-01 (2010)
4. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.

Addison-Wesley Professional, Boston, MA (1999)
5. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P.: Value-based software

engineering. Springer-Verlag New York, Inc. Secaucus, NJ, USA (2005)
6. Allweyer, T.:BPMN 2.0 Introduction to the Standard for Business Process Modeling.

Books on Demand GmbH (2010)
7. IEEE Standards Board.: IEEE Standard Glossary of Software Engineering Terminology,

IEEE Std 610.12-1990. IEEE Press, Piscataway (1990)
8. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM

Systems Journal, 45(3), 515526 (2006)
9. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and model-

driven development. Software and Systems Modeling, 9(4), 529565 (2010)
10. IEEE Standards Board: IEEE Guide to Software Requirements Specification, ANSI/IEEE

Std 830-1984. IEEE Press, Piscataway (1984)
11. Ramesh, B., Edwards, M.: Issues in the development of a requirements traceability model.

In: Proceedings of the IEEE International Symposium on Requirements Engineering, pp.
256–259. IEEE Computer Society, New York (1993)

12. Briand, L. C., Labiche, Y., Yue, T.,: Automated traceability analysis for UML model
refinements. Information and Software Technology, 51, 512527 (2009)

13. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE
Transactions on Software Engineering, 27(1), 5893 (2001)

14. Pinheiro, F. A. C., Goguen, J. A.: An Object-Oriented Tool for Tracing Requirements.
IEEE Software, 13(2), 5264 (1996)

15. Dick, J.: Rich Traceability. In: Proceedings of the 1st International Workshop on
Traceability in Emerging Forms of Software Engineering, pp. 1823, Edinburgh, Scotland
(2002)

16. Letelier, P.: A Framework for Requirements Traceability in UML-Based Projects. In:
Proceedings of the 1st International Workshop on Traceability in Emerging Forms of
Software Engineering, pp. 3041, Edinburgh, Scotland (2002)

17. Silingas D., Butleris R.: Towards implementing a framework for modeling software
requirements in MagicDraw UML. Information Technology and Control, 38(2), 153164.
(2009)

18. Crnković, I., Asklund, U., Persson-Dahlqvist, A.: Implementing and Integrating Product
Data Management and Software Configuration Management. Artech House, London
(2003)

19. Silingas, D., Vitiutinas, R., Armonas, A., Nemuraite, L:. Domain-specific modeling
environment based on UML profiles. In: Information Technologies' 2009: proceedings of
the 15th International Conference on Information and Software Technologies, IT 2009,
Kaunas, Lithuania, April 23-24, 2009, pp. 167177. Kaunas University of Technology,
Technologija, Kaunas (2009)

20. UML Profiling and DSL User Guide, https://secure.nomagic.com/files/manuals/
UML%20Profiling%20and%20DSL%20UserGuide.pdf

