N

N

A Fanning Scheme for the Parallel Transport Along
Geodesics on Riemannian Manifolds
Maxime Louis, Benjamin Charlier, Paul Jusselin, Susovan Pal, Stanley

Durrleman

» To cite this version:

Maxime Louis, Benjamin Charlier, Paul Jusselin, Susovan Pal, Stanley Durrleman. A Fanning Scheme
for the Parallel Transport Along Geodesics on Riemannian Manifolds. STAM Journal on Numerical
Analysis, 2018, 56 (4), pp.2563-2584. 10.1137/17M1130617 . hal-01560787v2

HAL Id: hal-01560787
https://hal.science/hal-01560787v2
Submitted on 24 Jul 2017 (v2), last revised 7 Jan 2019 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01560787v2
https://hal.archives-ouvertes.fr

12
13
14
15
16
17
18
19
20
21

22
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Abstract. Parallel transport on Riemannian manifolds allows one to connect tangent spaces at
different points in an isometric way and is therefore of importance in many contexts, such as statistics
on manifolds. The existing methods to compute parallel transport require either the computation
of Riemannian logarithms, such as the Schild’s ladder, or the Christoffel symbols. The Logarithm is
rarely given in closed form, and therefore costly to compute whereas the number of Christoffel symbols
explodes with the dimension of the manifold, making both these methods intractable. From an
identity between parallel transport and Jacobi fields, we propose a numerical scheme to approximate
the parallel transport along a geodesic. We find and prove an optimal convergence rate for the
scheme, which is equivalent to Schild’s ladder’s. We investigate potential variations of the scheme
and give experimental results on the Euclidean two-sphere and on the manifold of symmetric positive
definite matrices.

Key words. Parallel Transport, Riemannian manifold, Numerical scheme, Jacobi field

1. Introduction. Riemannian geometry has been long contained within the field
of pure mathematics and theoretical physics. Nevertheless, there is an emerging trend
to use the tools of the Riemannian geometry in statistical learning to define models for
structured data. Such data may be defined by invariance properties, and therefore seen
as points in quotient spaces as for shapes, orthogonal frames, or linear subspaces. They
may be defined also by smooth inequalities, and therefore as points in open subsets of
linear spaces, as for symmetric definite positive matrices, diffeomorphisms or bounded
measurements. Such data may be considered therefore as points in a Riemannian
manifolds, and analysed by specific statistical approaches [12, 2, 8, 3]. At the core of
these approaches lies parallel transport, an isometry which allows the comparison of
probability density functions, coordinates or vectors that are defined in the tangent
space at different points on the manifold. The inference of such statistical models in
practical situations requires therefore efficient numerical schemes to compute parallel
transport on manifolds.

The parallel transport of a given tangent vector is defined as the solution of an
ordinary differential equation ([6] page 52). In small dimension, this equation is solved
using standard numerical schemes. However, this equation requires the computation of
the Christoffel symbols whose number explodes with the dimension of the manifold in
a combinatorial manner, which makes this approach intractable in realistic situations
in statistics.

An alternative is to use the Schild’s ladder [1], or its faster version in the case of
geodesics the Pole’s ladder [5]. These schemes essentially requires the computation
of Riemannian exponentials (Exzp) and logarithms (Log) at each step. Usually, the
computation of the exponential may be done by integrating Hamiltonian equations,
and do not raise specific difficulties. By contrast, the computation of the logarithm
must often be done by solving an inverse problem (Exp o Log(x) = x) with the use of
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2 M. LOUIS, B. CHARLIER, P. JUSSELIN, S. PAL, S. DURRLEMAN

an optimization scheme such as a gradient descent. Such optimization schemes are ap-
proximate and sensitive so the initial conditions and to hyper-parameters, which leads
to additional numerical errors at each step of the scheme. The effects of those numer-
ical errors on the global convergence of the scheme still remain to be studied. When
closed formulas exist for the Riemannian logarithm, or in the case of Lie groups, where
the Logarithm can be approximated efficiently using the Baker-Campbell-Haussdorff
formula (see [4]), the Schild’s ladder is an efficient alternative. When this is not the
case, it becomes hardly tractable.

Another alternative is to use an equation showing that parallel transport along
geodesics may be locally approximated by a well-chosen Jacobi field, up to the second
order error. This idea has been suggested in [10] with further credits to [9], but
without either a formal definition nor a proof of its convergence. It relies solely on
the computations of Riemannian exponentials.

In this paper, we propose a numerical scheme built on this idea, which tries
to limit as much as possible the number of operations required to reach a given
acuracy. We will prove that this scheme converges at linear speed with the time-
step, and that this speed may not be improved without further assumptions on the
manifold. Furthermore, we propose an implementation which allows the simultaneous
computation of the geodesic and of the transport along this geodesic. Numerical
experiments on the 2-sphere and on the manifold of 3-by-3 symmetric positive definite
matrices will confirm that the convergence of the scheme is of the same order as the
Schild’s ladder in practice. Thus, they will show that this scheme offers a compelling
alternative to compute parallel transport in high-dimensional manifolds with a control
over the numerical errors and the computational cost.

2. Rationale.

2.1. Notations and assumptions. In this paper, we assume that v is a geo-
desic defined for all time ¢ € [0, 1] on a manifold M of finite dimension n € N provided
with the Riemannian metric g. We denote the Riemannian exponential Exp and V
the covariant derivative. For p € M, T, M denotes the tangent space of M at p.
For a vector w € T, »\M, for s,t € [0,1], we denote P, (w) € Ty M the parallel
transport of w from +(s) to y(t). It is the unique solution at time ¢ of the differential
equation V() Psu(w) = 0 for Py (w) = w. We also note J¥,) (h) the Jacobi Field
emerging from ~(t) in the direction w € T’y M, that is:

w 9 .
Yoy (h) = %, Exp ) (R(¥(t) + cw)) € Ty 140y M

for h € R small enough. It verifies the Jacobi equation (see for instance [6] page
111-119):

M) V2T () + RUT 0 (1), 3(R))3(h) = 0

where R is the curvature tensor. We denote ||- ||, the Riemannian norm on the tangent
spaces defined from the metric g, taken at the appropriate point. We use Einstein
notations. Throughout the paper, we suppose that there exists a global coordinate
system on M and we note ® : M — U the corresponding diffeomorphism, where U
is a subset of R™. This system of coordinates allows us to define a basis of the tangent
space of M at any point, we note 327_- » the i-th element of the corresponding basis

of TyM for any p € M.
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T S50y (%)

) FIGURE 1. The solid line
is the geodesic. The green
dotted line is formed by the
perturbed geodesics at time t.
The blue arrows are the initial
vector and its approximated
parallel transport at time t.

We assume that there exists a compact subset K of M such that v([0,1]) C K.
We also assume that there exists 7 > 0 such that injectivity radius of the manifold
M is strictly larger than 7.

2.2. The key identity. The numerical scheme that we propose arises from the
following identity, which is mentioned in [10]. Figure 1 illustrates the principle.

PROPOSITION 2.1. For allt >0, and w € T, )M we have

JY o (t
(2) Poi(w) = ”(?() +0(t?)

Proof. Let X(t) = Po+(w) be the vector field following the parallel transport
equation: X’ 4T}, X'4* = 0 with X (0) = w. In normal coordinates centered at ~(0),
the Christoffel symbols vanish at v(0) and the equation gives: X%(0) = 0. A Taylor
expansion of X (¢) near ¢ = 0 in this local chart then writes:

(3) X'(t) =w" +O(t?).

By definition, the i-th normal coordinate of Exp. gy (t(vo + ew)) is t(vg +ew*). There-
fore, the i-th coordinate of J¥, (t) = %|€=0Exp7(0) (t(%(0) + ew)) is tw'. Plugging
this into (3) yields the desired result. d

This control on the approximation of the transport by the Jacobi field suggests
to divide [0,1] into N intervals [£, #H1] of length h = & for k = 0,...,N — 1 and
to approximate the parallel transport of a vector w € T gy from v(0) to v(1) by a
sequence of vectors wy, € Tv( E )./\/l defined as:

Wy =W

(4) Wy = NJ:(,C%) ( % )

With the control given in the Proposition 2.1, we can expect to get an error of order
O(%) at each step and hence a speed of convergence in O(%) overall. There are
manifolds for which the approximation of the parallel transport by Jacobi field is
exact e.g. Euclidean space, but in the general case, one cannot expect to get a better
convergence rate. Indeed, we show in the next Section that this scheme for the sphere
S? has a speed of convergence exactly proportional to %

This manuscript is for review purposes only.
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4 M. LOUIS, B. CHARLIER, P. JUSSELIN, S. PAL, S. DURRLEMAN

2.3. Convergence rate on S?. In this Section, we assume that one knows the
geodesic path ~(¢) and how to compute any Jacobi fields without numerical errors,
and show that the approximation due to Equation (2) alone raises a numerical error
at least of order O(%)

Let p € S? and v € T,S?. (p and v are seen as vectors in R3). The geodesics are
the great circles, which may be written as:

. v
7(t) = Exp,,(tv) = cos(t[v])p + Sln(tIU\)m,
where | - | is the euclidean norm on R®. It is straightforward to see that the parallel
transport of w = p X v along v(t) has constant (6, ¢) coordinates.
We assume now that |v| = 1. Since w = p X v is orthogonal to v, we have

o)

e le=0 |v + ew| = 0. Therefore:

w 13
Iy (t) = $|E:OEpr(t(v + ew))
= Q|8:0 (cos(t|v + ew|)p + sin(tjv + Ew|)v+ew>

Oe v+ ew|

= sin(t)w

which does not depend on p. We have Jﬁy“(t) (t) = sin(t)w. Consequently, the se-
quence of vectors wy, built by the iterative process described in Equation (4) verifies
Wwi4+1 = Nwy sin (%) for k=0,...,N —1, and wy = woN sin (%)N In tangent space
coordinates, Py 1(wo) = wp, so that the numerical error, measured in those tangent

N\ N
space coordinates, is proportional to wq (1 — (%) ) We have:

(W)N — exp (Nlog (1 _ 6% +0(1/N2)>> —1— GLN +o(%)

yielding:

lwn — wol 1 1
lwo] 6N +olx)

It shows a case where the bound % is reached.
3. The numerical scheme.

3.1. The algorithm. Unless the metric has some nice properties, there are no
closed forms expressions for the geodesics and the Jacobi fields. Hence, in most
practical cases, these quantities also need to be computed using numerical methods.

Computing geodesics. In order to avoid the computation of the Christoffel sym-
bols, we propose to integrate the first-order Hamiltonian equations to compute geo-
desics (see [11]). Let z(t) = (z1(t), ..., z4(t))" be the coordinates of y(t) in a given
local chart, and «(t) = (ai(t),...,aq(t))" be the coordinates of the momentum
g(y())¥(t) € T7,)M in the same local chart. We have then:

(5)

This manuscript is for review purposes only.
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A FANNING SCHEME FOR THE PARALLEL TRANSPORT 5

Ye(trt1) FIGURE 2. One step of
™ J};étk)(h) the numerical scheme. The
&N T h dotted arrows represent the
steps of the Runge-Kutta

integrations for the main
P geodesic v and for the per-

'w(tk) ,.—’: ________ turbed geodesic v*. The blue
Peotin arrows are the initial w and
the obtained approximated

v(tr) transport using equation (6).

where K (z(t)), a d-by-d matrix, is the inverse of the metric g expressed in the local
chart. We will see that to ensure the convergence of the scheme we must use a Runge-
Kutta scheme of order at least 2 to integrate this equation, for which the error is in
O(3).

Computing Jﬁ(t)(h). The Jacobi field may be approximated with a numerical
differentiation from the computation of a perturbed geodesic v¢ with initial position
~(t) and initial velocity 4 + ew where ¢ is a small parameter:

_ Expy iy (h(3(2) + ew)) — Bxp, ) (R(5(2))

(6) 32 (1) = - ,

where the Riemannian exponential may be computed by integration of the Hamilto-
nian equations (5) over the time interval [¢, ¢ 4 h] starting at point v(t), see Figure 2.
We will also see that, in general, a choice for € ensuring a O(%) order of convergence
ise = %

The algorithm. Let N € N. We divide [0,1] into N intervals [tg,tx4+1], and
initialize with v9 = v(0), 90 = 4(0) and wy = w. The algorithm we propose consists
in iteratively computing, at step k :

(i) The momentum in the cotangent space corresponding to the vector wg: B =
K (k) wg
(ii) The new point on the main geodesic vx4+1, by integration of the Hamiltonian
equations using a second-order Runge-Kutta method.
(iii) The perturbed geodesic starting at 75 with initial tangent vectors 4y + ewy, at
time h, that we denote 7;,; using a second-order Runge-Kutta method.
(iv) The estimated parallel transport before renormalization :

. 71?+1 — Vk+1

Wit 1 .

(v) The new estimated parallel transport :

W41 = OpWht1 + BrVe+1

where oy, and [, are normalization factors ensuring ||w(tx41)||g = ||w(to)]lg and
g(Wit1,Yk+1) = g(wo, o) : those quantitites should be conserved during the
transport. This comes at a small cost, and we will see in Proposition 4.2 that
it allows to put a uniform bound on the approximation of the transport by the
Jacobi field.

This manuscript is for review purposes only.
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Figure 2 illustrates the principle. A complete pseudo-code is given in appendix A.
It is remarkable that we can substitute the computation of the Jacobi Field with only
four calls to the hamiltonian equations (5) at each step, including the calls necessary to
compute the main geodesic. Note however that the (i) step of the algorithm requires to
solve a linear system, which is an operation whose cost increases with the dimension,
in a polynomial manner.

3.2. Order of the approximations and quantity conservations. As we will
see below, the orders of the different approximations presented above are optimal in
the sense that they are minimal to ensure linear convergence of the scheme. We could
increase the order of the Runge-Kutta integration in the steps (ii) or (iii), or increase
the order of the finite difference approximation of the derivative in step (iii) e.g. by
computing two perturbed geodesics and using a central finite difference:

v Exp(AG () + ew)) — Bxp(h(3(0) — cw)
'y(t)( )_ % )

which is of order 2 instead of the assymetric first-order approximation proposed here.
This method requires 6 calls to the Hamiltonian equations, instead of 4. We will study
both of these in Section 6 to identify the most cost-effective method to reach a given
precision.

Remark. To ensure the conservations of both these quantities, we can either solve
the linear system to find « and 8 at step (v), or we can alternatively split w into two
components : w| = gﬁ;’iﬁ)v being the component of w parallel to the initial velocity
and w, the orthogonal component, transport them separately while ensuring simple
renormalizations and combining the results in the end. It is an alternative with a

different implementation that might be convenient in some cases.

3.3. The convergence Theorem. We obtained the following convergence re-
sult, guaranteeing a linear decrease of the error with the size of the step h.

THEOREM 3.1. Let N € N. Let w € Ty yM. We denote oy = || Po,¢,, (w) — W2
where Wy, is the approrimate value of the parallel transport of w along v at time ti
and where the 2-norm is taken in the coordinates of our global chart. We note ¢ the
parameter used in the step (iii) and h = % the size of the step used of the Runge-Kutta
approximate solution of the geodesic equation.

With the hypotheses stated in Section 2.1, if we take € = %, then we have:

1
on = O( N).

We will see in the proof and in the numerical experiments that choosing ¢ = h
is a recommended choice for the size of the step in the differentiation of the per-
turbed geodesics, that further decreasing ¢ has no visible effect on the accuracy of the
estimation and that choosing a larger € lowers the quality of the approximation.

Note that our result controls the 2-norm of the error in the global system of
coordinates, but not directly the metric norm in the tangent space at (1). This
is due to the fact that our knowledge of the main geodesic is approximate, with a
residual error preventing us from using the metric g at (1) as a measure of the error.
However, studying the convergence in the global system of coordinates corresponds
to a relevant notion of convergence, since the error on the approximation of v(1) is of
order O(hz) and the metric is smooth.

This manuscript is for review purposes only.
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Before giving a proof of this theorem in Section 5, we prove some lemmas allowing
uniform controls on the different sources of error in the numerical scheme. In Section
4.1, we prove an intermediate results allowing uniform controls on norms of tensors, in
Section 4.2, we prove a stronger result than Proposition 2.1, with stronger hypotheses
and in Section 4.3, we prove a result allowing to control the accumulation of the error.

4. Proofs of the lemmas.

4.1. A lemma to change coordinates. We recall that we suppose the geodesic
contained within a compact subset K of the manifold. We start with a result con-
trolling the norms of change-of-coordinates matrices. Let p in M and ¢ € M within
the radius of the exponential map at p. We consider two basis on T, M: one defined
from the global system of coordinates, that we note , and another made of the normal
coordinates (defined from the global system of coordinates ®) centered at p, that we
note B;I' . We can therefore define A(p, q) as the change-of-coordinates matrix between
B and B,/. The operators norms ||| - [|| of these matrices are bounded over K in the
following sense :

LEMMA 4.1. There exists L > 0 such that for all p € K, for all ¢ € K such that
q = Exp,(v) for some v € TyM, with |[v|, < 5 then :

A, )] < L

and

A~ (p, q)||| < L.

Proof. Let p € M. We identify T, M with R™ to get a norm || - ||¢,) on R™. This
norm is equivalent to the 2-norm || - |2 so that there exists A > 0 such that for all
v € R, |lv]l2 < Alv]l4(p)- Because K is compact and g varies smoothly, there exists
a constant A’ > 0 which makes this majoration valid at any point, i.e. such that for
all p e M, for all v € R", we have :

(7) lvllz < A"flllg

We note B(0, 547 ) the closed ball of radius 5% in (R™, [|-[|2). Let (p,v) € KxB(0, 45).
We note ¢ = Exp,(v). The application A : (p,v) — [|[[A(p,v)]|| is smooth, because
the change of basis matrices smoothly depend on the metric g and on the positions
of p and gq. Moreover, A is defined on a compact set and hence reaches its maximum
L > 0. Thanks to the upper bound in (7), when v spans B(0, 5%7) in (R", || - [|2), it
does stay within B(0, 3) in (T,M, | - ||g) so that the bound L on A is valid for all
p € M and for all g such that ¢ = Exp,(v) with [[v||; < 3. We proceed similarly for
AL d

This lemma allows us to translate any bound on the components of a tensor in the
global system of coordinates into a bound on the components of the same tensor in
any of the normal systems of coordinates centered at a point of the geodesic, and wvice
versa.

4.2. A stronger version of Proposition 2.1. From there, we can prove a
stronger version of Proposition 2.1. We use here the assumption that the manifold
has a strictly positive injectivity radius n on K.

This manuscript is for review purposes only.
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8 M. LOUIS, B. CHARLIER, P. JUSSELIN, S. PAL, S. DURRLEMAN

PROPOSITION 4.2. There exists A > 0 such that for all t € [0,1], for all w €
T, 4M and for all h < max (m, 1—1):

RO
h

Proof. Let t € [0,1], w € TyyM and h < max(m,l —t) i.e. such that

< AR?||wlly.
g

Py in(w)

nyu(t)(h) is well defined. The following identity, satisfied for any smooth vector field
on M:
k d* 1
0 VEV(0) = 2 PV (E+ 1)

which will be proved in Appendix B.1 provides us with a way to compute the successive
derivatives of Pt’_tih(‘];”(t)(h)).

We have J%,(0) = 0, V5J%,(0) = w, V2J%,(0) = —R(J%,(0),5(0))5(0) = 0

using equation (1) and finally:

V5750 (M)llg = 11V5 (B) (T30 (R), 7 (R)F(R) + R(V 4T3 (h), 4(h) (Bl

(9) : :
< IV5 Rl 7 (WG 1750 ()l + I Rllsc 15 (R)IG IV 5 Ttey (Bl
where the oo-norms, taken over the geodesic and the compact K, are finite because
the curvature and its derivatives are bounded. In normal coordinates centered at ~(t),
we have J¥ (h)" = hw'. Therefore, if we note g;;(y(t + h)) the components of the
metric in the normal coordinates, we get:

| ;"@)(h)lli = h%g;;(v(t + h))w'w?.

To obtain an upper bound for this term which does not depend on ¢, we note that the
coefficients of the metric in the global coordinate system are bounded on K. Using
the Lemma 4.1, we get a bound into a bound M > 0 valid on all the normal system
of coordinates centered at a point of the geodesic, so that:

1750 (9l < hM [[wllo.

By equivalence of the norms as seen in the lemma (4.1), and because g varies smoothly,
there exists N > 0 such that:

(10) 175y (@)llg < M N ||lwllg

where the dependence of the majoration on ¢ has vanished, and the result stays valid
for all h < max (m, 1 —t) and all w. Similarly, there exists C' > 0 such that :
(11) V5 T3 (W] < Cllwllg,

at any point and for any h < max (W, 1 —¢). Gathering equations (9), (10), (11)
g

, we get that there exists a constant A > 0 which does not depend on ¢, h or w such

that:

(12) |2 7500 ®)], < Allwll.

This manuscript is for review purposes only.
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Now using equation (8) with V' = J¥

) and a Taylor’s formula, we get :

L5y (h) = AP ppn(w) + Pegin(r(w, b))
where we noted r the remainder of the expansion. Therefore :

‘ T2 (h)

Now, because the parallel transport is an isometry and thanks to the equation (12):

h
’ ey (h)

h - P t,t+h(w)

4.3. A lemma to control the accumulation of the error. At every step of
the scheme, we compute a Jacobi field from an approximate value of the transported
vector. We need to control the error made with this computation from an already
approximate vector. We provide a control on the 2-norm of the corresponding error,
in the global system of coordinates.

LEMMA 4.3. There exists B > 0 such that for all t € [0,1], for all wy,ws €

TyyM, for all h < m small enough, we have :

= || Pt txn(r(w, h))lg-
g

- Pt,t+iz(w)

A
< €h2||w||g~
g D

J;’J(lt) (h) — ny“é) (h)
h

S (1 + Bh)le — ’LU2||2.
2

(13) |

Proof. Let t € [0,1] and h € [0,1 — t]. We note p = ¥(t), ¢ = v(t + h). We use
the exponential map to get normal coordinates on a neighborhood of V' of p from the

of T, M. Let’s note Bzi

basis 527 |p

the corresponding basis on the tangent space
,

at any point r of V. Let wi,ws € T,M and note wf for i € {1,2}, j € {1,...,n}

the coordinates in the global system. By definition, the basis (0

5oF and the basis
v lp

(a% p) coincide, and in particular, for ¢ € {1, 2}:

R
Oxk »

0

p

If ¢ € {1,2}, j € {1,...,n}, the j-th coordinate of J;”(/"t)(h) in the basis <£i

q)izl,...,n

(h(v + ewy))? = hw’.
e=0

1S:

0

w; J—
JU (h) 5

v(t)

;0
. (exp, (h(v + ew;)))’ = %

Let A(y(t + h),~(t)) be the change-of-coordinate matrix of T;4p) from the basis

_0_
oyk

when h = 0. Hence, we can write an expansion :

> to the basis (a% q). A varies smoothly with ¢ and h, and is the identity
q

A(y(t + h),~(t)) = Id + hV (t) + O(h?)

This manuscript is for review purposes only.
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The second order term depends on the second derivative of A with respect to h.
Restricting ourselves to a compact subset, as in the Lemma 4.1, we get a uniform
bound on the norm of this second derivative thus getting a control on the operator
norm of A(vy(t + h),~(t)), that we can write, for h small enough :

HAGY(E+R), @) < (1 + Bh)

where B is a positive constant which does not depend on h or t. Now we get :

which is the desired result. O

T (h) — T ()
h

L [A(y(E 4 h), 7 () (w1 — wa)ly < (1+ Bh) [lwr —wall,

5. Proof of the convergence Theorem 3.1.

Proof. Let k € N. We build an upper bound on the error d;; from d;. We have :

Ok41 = w1 — Wiy,

J5e (h) J5e(h) 5k (h)
< el Vi e
B Hwk+1 h 2 h h 2

) @)
Iok(h) ISk (h)

Tk
+ h h 9 * h h
2
(3) (4)
where

e 7 is the approximation of the geodesic coordinates at step k.
o wy = Py, (w) is the exact parallel transport.
e 1y is its approximation at step k
e Jis the approximation of the Jacobi field computed with finite difference.

. Jg’: (h) is the Jacobi field computed with the approximations @, 4 and 7.
We control each of these terms.
(1). This is the intrinsic error when using the Jacobi field. We showed in Propo-
sition 4.2 that for i small enough :
i (1)

Ptk7tk'+1 (wk) -

N < Ah?|lwglg = AR?[|woll,

9(v(te+1))

Now, since g varies smoothly and by equivalence of the norms, there exists A’ > 0
such that :

(14) < AW Jlwollg

2

5 (h)
Ptkik-ﬂ (wk) - %

(2). We showed in Section 4.3 below that for h small enough:

Tt (M) 560 ()

h h

< (1+ Bh)di
2

(15) |
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(3). This term measures the error linked to our approximate knowledge of the
geodesic v. It is proved in Appendix B.2 that there exists a constant C' > 0 which
does not depend on k or h such that :

Jok(h) T2k (h)

Yk

h h

< Ch?
2

(16) |

(4). This is the difference between the analytical computation of J and its ap-
proximation. It is proved in Appendix B.3 and B.4 that if we use a Runge-Kutta
method or order 2 to compute the geodesic equations and a second-order method to
compute the Jacobi field, or if we use a single perturbed geodesic and a first-order
method to compute the Jacobi field, there exists D > 0 which does not depend on k
such that :

w w
Tyt = ()

(17) .

< D(h? + eh)||wol|-
2

Note that D does not depend on k since we renormalize @ at each step, thus gaining
a control on the norm which is used in Section B.3 and B.4.

Gathering equations (14), (15), (16) and (17), there exists a constant F' > 0 such
that for all k:

Ska1 < (14 Ah)Sy + F(h? + he).

Combining those inequalities for k = 1, ..., N, we obtain a geometric series whose sum
yields:

2
< F(h* + he)

N+1
on < 1 (1+ Ah)

Here we see that choosing € = h yields an optimal rate of convergence : choosing a
larger value deteriorates the accuracy of the scheme while choosing a lower value still
yields a % error. Setting € = h and recalling that h = %:

2F A 2F 1
O < (14 )N+ = A —
NS o 2 = 2 ep(4) 4 o)
Eventually, there exists G > 0 such that, for N € N large enough:
G
It seems that choosing a lower value or € could improve the performance, however
the numerical experiments showed that the accuracy of the differentiation of J seems
to be quickly saturated, and the other approximations become limiting.

6. Numerical experiments.

6.1. Setup. We implemented the numerical scheme on simple manifolds where
the paralllel transport is known in a closed form, allowing us to evaluate the numerical
error '. We present two examples :

A modular Python version of the code is available here: https://gitlab.icm-institute.org/

maxime.louis/parallel-transport
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e S? : in spherical coordinates (0, ¢) the metric is g = <(1) sin(()Q)Q

expressions for geodesics and parallel transport in Section 2.3.

e The set of 3 x 3 symmetric positive-definite matrices SPD(3). The tangent
space at any points of this manifold is the set of symmetric matrices. In [2],
the authors endow this space with the affine-invariant metric: for ¥ € SPD(3),
V,W € Sym(3) :

) . We gave

gs(V, W) = tr(Z7VE~Iw)

Through an explicit computation of the christoffel symbols, they derive ex-
plicit expressions for any geodesic 3(t) starting at X9 € SPD(3) with initial
tangent vector X € Sym(3) :

S(t) = T2 exp(tX)SE

where exp : Sym(3) — SPD(3) is the matrix exponentiation. Deriving an ex-
pression for the parallel transport can also be done using the explicit Christof-
fel symbols, see [7]. If 3y € SPD(3) and X, W € Sym(3), then :

t _ o
Py (W) = eXp(§XEO Hhw eXp(§20 1X)

The code for this numerical scheme can be written in a generic way and used for
any manifold by specifying the Hamiltonian equations and the metric.

Remark. Note that even though the computation of the gradient of the inverse of
the metric with respect to the position, VK, is required to integate the Hamiltonian
equations (5), VK can be computed from the gradient of the metric using the fact

that any smooth map M : R — GL,(R) verifies dj\g; =—M~14M =1 This is how

we proceeded for SPD(3): it spares some potential difficulties if one does not have
access to analytical expressions for the inverse of the metric.

6.2. Results. Errors measured in the chosen system of coordinates confirm the
linear behavior in both cases, as shown on Figures 3 and 4.

We assessed the effect of a higher order for the Runge-Kutta scheme in the in-
tegration of geodesics. Using a fourth order method increases the accuracy of the
transport in both cases, by a factor 2.3 in the single geodesic case. A fourth order
method is twice as expensive as a second order method in terms of number of calls to
the Hamiltonian equations, hence in this case it is the most efficient way to reach a
given accuracy.

We also investigated the effect of enforcing the conservations of the norm and of
the scalar product with the velocity, as discussed in 3.2. Doing so yields an exact
transport for the sphere, because it is of dimension 2, and a dramatically improved
transport of the same order of convergence for SPD(3) (see Figure 4). The complexity
of this operation is very low, and we recommend to always use it. It can be expected
however that the effect of the enforcement of these conservations will lower as the
dimension increases, since it only fixes two components of the transported vector.

We also confirmed numerically that without a second-order method to integrate
the geodesic equations, the scheme does not converge.

Finally, using two geodesic to compute a central-finite difference for the Jacobi
Field is 1.5 times more expensive than using a single geodesic, in terms of number of
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sl oOne perturbed geodesic, Runge-Kutta 2 o |
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FIGURE 3. Relative error for the 2-Sphere in defferent settings, as functions of the step size,
with initial point, velocity and initial w kept constant. The dotted lines are linear regressions of the

measurements.
T T T
40 - ° One perturbed geodesic, Runge-Kutta 2 N B
°One perturbed geodesic, Runge-Kutta 2, without conservation '
. One perturbed geodesic, Runge-Kutta 4
* Two perturbed geodesic, Runge-Kutta 2
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FIGURE 4. Relative errors for SPD(3) in different settings, as functions of the step size, with
initial point, velocity and initial w kept constant. The dotted lines are linear regressions.

122 calls to the Hamiltonian equations, and it is therefore more efficient to compute two
423 perturbed geodesics in the case of the symmetric positive-definite matrices.

424 6.3. Comparison with the Schild’s ladder. We compared the relative errors
425 of the fanning scheme with the other Christoffel-less method : the Schild’s ladder.
126 We implemented the Schild’s ladder on the sphere, and compare the relative errors of
427 both schemes on a same geodesic and vector. We chose this vector to be orthogonal
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to the velocity, since the transport with the Schild’s ladder is exact if the transported
vector is colinear to the velocity. We use a closed form expression for the Riemannian
logarithm in the Schild’s ladder, and closed form expressions for the geodesic. The
results are given in Figure 5. The fanning scheme is 1.6 times more accurate.

T T T
oOne perturbed geodesic, Runge-Kutta 2
° Schild’s ladder
12 -
10 o R
S
= 8 [ o ¢
o
b
— o
@ 6 ° N
E :
S 4 e :
m 0° ° o
il /f% gl |
0 i
| | | | |
0 0.02 0.04 0.06 0.08 0.1
Step size

FIGURE 5. Relative error of the Schild’s ladder scheme compared to the fanning scheme (double
geodesic, Runge-Kutta 2) proposed here, in the case of S2.

The constants in the speed of convergence don’t differ much.

7. Conclusion. We proposed a new method, the fanning scheme, to compute
parallel transport along a geodesic on a Riemannian manifold using Jacobi Fields.
At variance with the Schild’s ladder, this method does not require the computation
of Riemannian logarithms, which are in a lot of cases not given in closed form and
potentially hard to approximate. We proved that the error of the scheme is of order
O(%) where N is the number of discretization steps, and that it cannot be improved
in the general case, yielding the same convergence rate as the Schild’s ladder. Note
also that, to the best of our knowledge, no convergence result is available for the
Schild’s ladder when extra approximations, which are often necessary, are made —e.g.
approximate Riemannian logarithm through gradient descent or using the Baker-
Haussdorf-Campbell formula. We also showed that only four calls to the Hamiltonian
equations are necessary at each step to provide a satisfying approximation of the
transport, two of them being used to compute the main geodesic. We confirmed the
rate of convergence numerically, and showed empirically that ensuring the conserva-
tions of the norm and of the scalar product with the velocity can yield significative
improvements to the approximation, although this fact still needs to be confirmed in
high dimensions.

A limitation of this scheme is to only be applicable when parallel transporting
along geodesics, and an extension to a more general family of curves would be an inter-
esting perspective. Besides, the Hamiltonian equations are expressed in the cotangent
space whereas the velocity lies in the tangent space. Going back and forth from cotan-
gent to tangent space at each iteration can be costly : it typically requires a matrix
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multiplication, and potentially the inversion of the metric. In very high dimensions
this might limit the performances of the scheme.

Acknowledgements. This work has been partially funded by the European Re-
search Council (ERC) under grant agreement No 678304, European Union’s Horizon
2020 research and innovation programme under grant agreement No 666992, and the
program ”Investissements d’avenir” ANR-10-IATHU-06.

Appendix A. Pseudo-code for the algorithm. We give a pseudo-code
description of the numerical scheme. We note G the metric.

1: function PARALLELTRANSPORT(xq, ag, wo, N)
> 29 coordinates of (0)
> g coordinates of G(v(0))5(0) € T3 oM
> wp coordinates of w € T, (q)
> N number of time-steps

2: h=1/N,e=1/N
3: for k=0,...,(N—1) do
> integration of the main geodesic
4: J:,H_%:xk—i—%vk
5: Qg1 =g+ by (zy, o)
6: xk_,_l:IkJrhV(kar%,OékJr%)
7: Qg1 = o + hF(zp 1, 0 1)
> perturbed geodesic equation in the direction wyg
8: Bk = K(ax) wy
9: ap = o + Bk
10: x2+% :xk—l—%(vk—&—swk)
11: aiJr% =af + Lr(zk, af)
12: xiJrl:xiJrhV(szr%,a;Jr%)
13: Jpr1 = % > Jacobi field by finite differences
> Conserve quantities
14: V41 = V(x;.H_l, Oék+1)
15: Solve for a, b :
16: G(wo, wo) = G(aJk+1 + bvk+1, aJk+1 + bl}k+1),
17: G(Uo, U}O) = G(aJk+1 + bugy1, Uk+1)
18: Wit1 = 41 + vk > parallel transport
19: end for

return zy,an, WN
>z approximation of (1)
> an approximation of G(v(1))%(1)
> wy approximation of P o) (1) (wo)
20: end function

21: function v(z, «)
22: return K(z)a
23: end function

24: function F(z, @)

25:  return —1V, (oTK(z)a) > in closed form or by finite differences
26: end function
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27: function K(x)
28: return K(z) (or G(z)™1) > in closed form
29: end function

Appendix B. Proofs.

B.1. Transport and connection. We prove a result connecting successive co-
variant derivatives to parallel transport:

PROPOSITION B.1. Let V be a vector field on M. Lety : [0,1] — M be a geodesic.
Then:

(15) VV(3(8) = P (VA + h)

Proof. Let E;(0) be an orthonormal basis of T’y M. Using the parallel transport
along vy, we get orthonormal basis FE;(s) of T M for all t. We have:

v "~ d¥a;(t + h)
dhthHh(V(V(t-l-h)) dhk tHhZazt—i—h t+h ZiEZ(t)'

On the other hand:

iy vkzal B(1) = Y V@) B _Z N g

by definition of F;(s). 0

B.2. Proof that we can compute the geodesic simultaneously with a
second-order method. We give here a control on the error made in the scheme
when computing the main geodesic approximately and simultaneously with the par-
allel transport. We assume that the main geodesic is computed with a second-order
method, and we need to control the subsequent error on the Jacobi field. The com-
putations are made in coordinates, and the error measured by the 2-norm on those
coordinates.

PROPOSITION B.2. There exists A > 0 such that for all t € [0,1], for all h €
0,1 —t], for all w € Ty M :

Jo(R)  J*(h)
Yk _ Tk < Ah2
h heo,

Proof. Let t € [0,1], for all h € [0,1 —¢], for all w € T, ;) M. As previouslt, the
term rewrites :

Loy | 35w || Bxp, (h + zw) OExps (b + aw)
( ) h h 9 N or =0 ox —olly

This is the difference between the derivatives of two solutions of the same differential
equation (5) with respect to an initial parameter. More precisely, we define II :
D(K) x Brn (0, |3 ]| +2¢]|w||) x [0,1]) — R™ such that II(pg, v, h) are the coordinates
of the solutions of the Hamiltonian equation at time h with initial coordinates py and
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initial velocity «g. II is the flow, in coordinates, of the geodesic equation. We can
now rewrite Equation (19):

Iok(h)  J5k(h)

_ Tk

h h

Ok, Yk + €p, )
Oe

Oe

_ H O (i, Ak + €Wy, h)

9 e=0 e=0112

By Cauchy-Lipschitz theorem, the flow II of the Hamiltonian equation is smooth.
Hence, its derivatives are bounded over its compact set of definition. Hence there
exists a constant A such that:

I IEh)
h h

<A =l + |5 =7],)
2

where we can once again assume A independent of ¢ or h. In coordinates, we use
a second-order Runge-Kutta method to integrate the geodesic equation so that the
cumulated error is of order h2. Hence, there exists a positive constant B which does
not depend on h, t or w such that :

I () IE )

< Bh2.
- <

2 O

B.3. Numerical approximation with a single perturbed geodesic. We
suppose here that the computation to get the Jacobi field is done with a first-order
method i.e. with the computation of a single perturbed geodesic computed with a
second-order Runge-Kutta method. We prove the following lemma :

LEMMA B.3. For all L > 0, There exists A > 0 such that for allt € [0,1[, for all
h € 10,1 —1], for all w € T,y M with ||w||2 < L ~in the global system of coordinates
— we have:

I3y (B) = 35, (h)

- < A(h? + ¢h)

2

where jﬁy”(t)(h) is the numerical approzimation of Jﬁy”(t)(h) computed with a single per-
turbed geodesic and a first-order differentiation method. We consider that this approx-
imation is computed in the global system of coordinates.

Proof. Let L > 0. Let t € [0,1[, h € [0,1 —t] and w € T ;) M. We split the error
term in two parts :

oM oW _|[75e® _ Explh(i(t) + ew)] - Exp[hi(t)
h h ) - eh )
1)
. H Exp((h(3(t) + cw)] = Explhy(t)] _ Explh(3(t) + cw)] — Exp[hi (1)
eh eh 5

(2

where Exp is the Riemannian exponential at v(t) and Exp is the numerical approxima-
tion of this Riemannian exponential computed thanks to the Hamiltonian equations.
When running the scheme, these computations are done in the global system of coor-
dinates.
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(1). Let i € {1,...,n} and let F': (x,t,w) — Exp[h¥(t) + zw]’. We have:

T Explh(3(t) +ew))’ — Exp[hi(t))'

h eh
1 OF (eh,t,w)  F(eh,t,w) — F (0, w)
" h Oe a eh
_ OF(x,t,w) F'(eh,t,w) — F*(0,t,w)
B 9r .o eh

Now, F" is smooth hence its derivatives are bounded over the compact set [0, 7] x
[0,1] x Bgn (0, L). Using the mean-value theorem, there exists B > 0 such that for all
i, for all ¢, for all h and for all w with ||w|2 < L:

T ()" Explhi(t) + ehw]’ — Explhi(e)]’
h ch

< Beh

so that there exists C' > 0 such that for all ¢, for all h and for all w with ||w|js < L :

(M) Bxp[hi(t) + chw] — Exp[hy(t)]
h ch

< Ceh
2

(2). We rewrite the Hamiltonian equation #(t) = Fi(z(t),«(t)) and &(t) =
Fy(z(t),a(t)). We note z.,af the solution of this equation (in the global system
of coordinates) with initial conditions z.(0) = x¢ and of = K(z¢) ' (¥ + ew). The
term (2) rewrites:

all(@(h) —°(h)) — (2°(h) — 2°(h))]l2
First, we develop z¢ in the neighborhood of 0:
2 h (h o t)2
(20) xzf(h) = zo + ha®(0) + —°(0) + / ———rf(t)dt
0

We have, for the last term:
ho(p 2. hop 42 ... horpte (2 L.
‘/ ng(t)dt—/ B =" 5 yar / / (=17 5 3 (u, #)dtdu

0
¢ being solution of a smooth ordinary differential equation with smoothly varying
initial conditions, it is smooth in time and with respect to €. Hence, when the initial
conditions are within a compact, d.x° is bounded, hence there exists D > 0 such that:

/Oh (87 3 t)zié(t)dt — /Oh (-t 5 t)zy};‘j(t)dt

2 2

< Dh3¢

2

For the other terms:

2%(0) = K(xo)ag =% + ew

This manuscript is for review purposes only.



584

585

586

588

589

590

591

592

593

594

610

A FANNING SCHEME FOR THE PARALLEL TRANSPORT 19

and
dK (z°(t))a (1)
de t=0
= (Vo K)(0) (Y + ew)ag + K (o) F2(20, o)

#(0) =

Now we focus on the approximation that we compute with the second-order Runge-
Kutta scheme, denoting it with a tilde:

i‘s(h) =x9+ hI} (.TO + %F1(.130, ag),ag + %FQ(Z‘(), 048))

We replace F and af by their expressions:

i°(h) = zo + hK (zo + 2F (20, 0f)) (of + LF2 (0, af))
=20 + hK (20 + 2(¥ + cw)) (of + 5 Fa(wo, 0f))

We use a Taylor expansion for K:

K(z0 + (3 + cw)) = K (w0) + B(V,K)(20) (5 + ew) + V2K (20) (5 + ew) + O (%)
So that:

2

5 (h) = 20 + h(y + ew) + 22 [K(xo)Fg(xo, af) + Vo K (20) (4 + ew)ag}
+ B |:V;UK(-'I:O)(;Y + ew) Fa (o, af) + 2 V2K (20) (¥ + Ew)ag} +O(hY

The third order terms of 2 — 29 is:

VK (20) [ (3 + £w) Fa(ao, f) = () Fa(ao,af)|
+ 3| V2K (@0)(3 + cw)ag — V2K (o) ()

Both these terms are the differences of smooth functions at points whose distance is of
order e]|w||2. Because those functions are smooth, and we are only interested in these
majorations for points in K and tangent vectors in a compact ball in the tangent space,
this third order term is bounded by Eh3¢||w|, where E is a positive constant which
does not depend on the position on the geodesic. Finally, the differences between the
second order terms of x° and ¢ is zero, so that :

[[(2°(h) — 2°(h)) = (&°(h) — 2°(h)) 2 < (Dh% + ER’e)||w],
which concludes. 0

B.4. Numerical approximation with two perturbed geodesics. We sup-
pose here that the computation to get the Jacobi field is done with a central finite
difference method. We prove the following lemma:

LEMMA B.4. For all L > 0, there exists A > 0 such that for all t € [0,1], for all
h € 10,1 —1], for all w € Ty M with ||wl|2 < L ~in the global system of coordinates
— we have:

T3 () = 5 (0)
h

< A(h? + ¢h)
2

This manuscript is for review purposes only.



611
612
613

614

615

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

20

where J Iy

M. LOUIS, B. CHARLIER, P. JUSSELIN, S. PAL, S. DURRLEMAN

w(t)(h) is the numerical approzimation of J%,) (h) computed with two perturbed

geodesics and a central finite differentiation method. We consider that this approxi-
mation is computed in the global system of coordinates.

The proof is similar to the one above.
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