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Abstract. A bilevel texture model is proposed, based on a local trans-
form of a Gaussian random field. The core of this method relies on the
optimal transport of a continuous Gaussian distribution towards the dis-
crete exemplar patch distribution. The synthesis then simply consists
in a fast post-processing of a Gaussian texture sample, boiling down to
an improved nearest-neighbor patch matching, while offering theoretical
guarantees on statistical compliancy.
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1 Introduction

Designing models for realistic and fast rendering of structured textures is a
challenging research topic. In the past, many models have been proposed for
exemplar-based synthesis, which consists in synthesizing a piece of texture hav-
ing the same perceptual characteristics as an observed texture sample with still
some innovative content. Several authors [2,24] have proposed non-parametric
methods based on progressive sampling of the texture using a copy-paste princi-
ple. This paved the way to many other successful synthesis methods relying on
patch-based sampling [16,3,12,11,13,19] (see [23] for a detailed review). Even if
these methods can be applied very efficiently [13], they do not offer much math-
ematical guarantees (except asymptotic results [14]) which reflects for example
in the growing garbage effect described in [2].

In contrast Gaussian texture models [4] are stationary and inherently respect
the frequency content of the input texture. They can be efficiently simulated on
the discrete plane Z2 [6] and even generalized to the framework of procedural
noises defined in the continuous domain R2 (see e.g. [7] and references therein).
They also allow for dynamic texture synthesis and mixing [25] and inpainting [5].
However the Gaussian model is intrinsically limited since the color distribution
of the output is always symmetric around the mean color and the local texture
patterns cannot contain salient features such as contrasted contours.

The main purpose of this work is to propose a theoretically sound post-
processing of the Gaussian model to cope with some of these limitations. Since



the color and local pattern information is a part of the patch distribution, we
propose to apply a local operation that will transform the patch distribution of
the Gaussian texture into the patch distribution of the input image. This can
naturally be addressed using a semi-discrete optimal transport plan.

Several tools from optimal transport (OT) have already been applied to tex-
ture synthesis: Rabin et al. [20] and Xia et al. [25] formulate texture mixing via
Wasserstein barycenters, Tartavel et al. [21] use Wasserstein distances in a varia-
tional formulation of texture synthesis, and Gutierrez et al. [9] apply discrete OT
in order to specify a global patch distribution. Here, we suggest to locally apply
a semi-discrete transport plan which can be seen as a tweaked nearest-neighbor
projection.

Indeed, semi-discrete OT corresponds to assign the centers of Laguerre cells
to each point of a well-designed Laguerre partition [1,17]. So far, determinis-
tic methods for solving semi-discrete methods have been limited to dimensions
D = 2 [17] and D = 3 [15] using explicit geometric construction of the Laguerre
tessellation. Recently, Genevay et al. [8] proposed several stochastic optimization
schemes for solving entropy-regularized OT problems.

In Section 2 we summarize the non-regularized semi-discrete OT framework
and the numerical solution given in [8]. In Section 3 we show how to use this
algorithm to transport patch distributions (in dimensions D = 27 or higher) thus
enriching the Gaussian texture model. The resulting bilevel algorithm, can be
seen as a non-iterative version of [11] with a global statistical constraint, which
is confirmed by the experiments of Section 4.

2 Semi-discrete Optimal Transport

In this section, we recall the framework for semi-discrete optimal transport and
the numerical solution given by Genevay et al. [8].

2.1 The Optimal Transport Problem and its Dual Formulation

Let µ, ν be two probability measures on RD. We assume that µ has a bounded
probability density function ρ and that ν is a discrete measure ν =

∑
y∈S νyδy

with finite support S. Let us denote byΠ(µ, ν) the set of probability measures on
RD×RD having marginal distributions µ, ν. If T is a measurable map, we denote
by T]µ the push-forward measure defined as T]µ(A) = µ(T−1(A)). If v ∈ RS ,
we define the c-transform of v with respect to the cost c(x, y) = ‖x − y‖2 as
vc(x) = miny∈S ‖x− y‖2 − v(y), and Tv the corresponding assignment uniquely
defined almost everywhere by

Tv(x) = argmin
y∈S

‖x− y‖2 − v(y). (1)

When v = 0, we get the nearest neighbor (NN) projection which assigns to x
the closest point in S (unique for almost all x).

The preimages of Tv define a partition of RD (up to a negligible set), called
the power diagram or Laguerre tessellation, the cells of which are defined as

Powv(y) = { x ∈ RD | ∀z ∈ S \ {y}, ‖x− y‖2 − v(y) < ‖x− z‖2 − v(z) }. (2)



The Kantorovich formulation of optimal transport consists in solving

min
π∈Π(µ,ν)

∫
RD×RD

‖x− y‖2dπ(x, y). (3)

It has been shown [1,15,10,22] that this problem admits solutions of the form
(Id×Tv)]µ where v solves the dual problem

argmax
v∈RS

H(v) where H(v) =

∫
RD

vc(x)ρ(x)dx+
∑
y∈S

v(y)νy. (4)

The same authors have shown that the function H is concave, C1-smooth,
and that its gradient is given by ∂H

∂v(y) = −µ(Powv(y)) + νy. Thus, v is a critical
point of H if and only if µ(Powv(y)) = νy for all y, which means that (Tv)]µ = ν.

2.2 Stochastic Optimization

Genevay et al. [8] have suggested to address the maximization of (4) by using a
stochastic gradient ascent, which is made possible by writing

H(v) = E[h(X, v)] where h(x, v) = vc(x) +
∑
y∈S

v(y)νy (5)

and whereX is a random variable with distribution µ. Notice that for x ∈ Powv(y),
v 7→ vc(x) is smooth with gradient −ey (where {ey}y∈S is the canonical basis
of RS). Therefore, for any w ∈ RS , for almost all x ∈ RD, v 7→ h(x, v) is
differentiable at w and ∇vh(x,w) = −eTw(x) + ν. (abusing notation (νy) ∈ RS)

In order to minimize −H, Genevay et al. propose the following averaged
stochastic gradient descent (ASGD) initialized with ṽ1 = 0{

ṽk = ṽk−1 + C√
k
∇vh(xk, ṽk−1) where xk ∼ µ

vk = 1
k (ṽ1 + . . .+ ṽk).

(6)

Since ∇vh(x, ṽk−1) exists x-a.s. and is bounded, the convergence of this algo-
rithm is ensured by [18, Th.7], in the sense max(H)−E[H(vk)] = O( log k√

k
). The

authors of [8] also proposed to address a regularized transport problem with a
similar method but we do not discuss it here due to lack of space.

3 A Bilevel Model for Texture Synthesis

In this section, we introduce a bilevel model for texture synthesis that consists in
first synthesizing a Gaussian version of the texture (with long range correlations
but no geometric structures) and next transforming each patch of the synthesis
with an optimal assignment (in order to enforce the patch distribution of the
exemplar texture).

To be more precise, let us denote by u : Ω → Rd the exemplar texture defined
on a discrete domain Ω ⊂ Z2. Let U : Z2 → Rd be the asymptotic discrete spot
noise (ADSN) [4,6] associated with u, which is defined as

∀x ∈ Z2, U(x) = ū+
∑
y∈Z2

tu(y)W (x− y) where

ū = 1
|Ω|

∑
x∈Ω u(x),

tu = 1√
|Ω|

(u− ū)1Ω
(7)



where 1Ω is the indicator function, and whereW is a normalized Gaussian white
noise on Z2 (the convolution between tu andW is computed in Fourier domain).
U is a stationary Gaussian random field whose first and second order moments
are the empirical mean and covariance of the exemplar texture. In particular

E[(U(x)− ū)(U(y)− ū)] = au(y−x) where au(z) =
∑
x∈Z2

tu(z)tu(x+z)T . (8)

Thus, U can be considered as a “Gaussianized” version of u, that has the correct
correlations but no salient structures.

The second step consists in a patchwise operation. Let ω = {−r, . . . , r}2 be
the patch domain with r ∈ N. Let us denote by µ the distribution of patches
of U , that is µ = N (ū, C) with C(x, y) = au(y − x), x, y ∈ ω. Let us denote
by ν the empirical distribution of patches of the exemplar texture u, that is
ν = 1

|S|
∑
p∈S δp, where S = { u|x+ω | x + ω ⊂ Ω }. Actually, in practice we

approximate it with ν = 1
J

∑J
j=1 δpj where p1, . . . , pJ are J = 1000 patches

randomly drawn from the exemplar texture. Thus, µ and ν are two probability
measures on RD with D = d(2r + 1)2. Besides, µ is a Gaussian distribution
that, except in degenerate cases, admits a probability density function ρ with
respect to the Lebesgue measure. Using the algorithm explained in Section 2.2,
we compute the optimal assignment Tv that realizes the semi-discrete OT from
µ to ν. We then apply this mapping Tv to each patch of the Gaussian synthesis
U , and we recompose an image V by averaging the “transported” patches: the
value at pixel x is the average of values of x in all overlapping patches. More
formally,

∀x ∈ Z2, Px = Tv(U|x+ω), (9)

∀x ∈ Z2, V (x) =
1

|ω|
∑
h∈ω

Px−h(h). (10)

Proposition 1. V is a stationary random field on Z2 and satisfies the fol-
lowing long-range independence property: if Γ denotes the finite support of the
auto-correlation function au defined in (8), then for every A,B ⊂ Z2 such that
(A−B) ∩ (Γ + 4ω) = ∅ the restrictions V|A, V|B are independent.

Proof. Since U is Gaussian, U(x) |= U(y) as soon as x − y /∈ Γ . Therefore, if
x − y /∈ Γ + 2ω, then U|x+ω |= U|y+ω and thus Px |= Py. After averaging we get
V (x) |= V (y) as soon as x − y /∈ Γ + 4ω. The generalization to subsets A,B is
straightforward.

This property is a guarantee of spatial stability for synthesis, meaning that
the synthesis algorithm will not start to “grow garbage” as may do the method
of [2]. We also have a guarantee on the patch distribution. Indeed, if Tv is the
true solution to the semi-discrete optimal-transport problem, then any patch Px
is exactly distributed according to ν. After recomposition, the distribution of
V|ω may not be exactly ν but is expected to be not too far away (as will be
confirmed in Fig. 4). In this sense, V still respects the long range correlations
(inherited from U) while better preserving the local structures.



4 Results and discussion

In this section, we discuss experimental results of texture synthesis obtained with
the proposed bilevel model. Fig. 1 compares the synthesis results obtained with
the Gaussian model before and after local transformation. One clearly observes
the benefit of applying the optimal transport in the patch domain: it restores
the color distribution of the exemplar and also creates salient features from the
Gaussian content. In particular (Rows 1 and 3), it is able to break the symmetry
of the color distribution which is a strong restriction of the Gaussian model.

Figs. 1 and 2 demonstrate that the optimal assignment (OT) is better suited
than the simple NN projection, as illustrated in Fig. 3(a). While these two op-
erators project on the exemplar patches, the assignment is optimized to globally
respect a statistical constraint. On Fig. 2 we also question the use of different
patch sizes. The simple 1× 1 case (which only amounts to apply a color map to
the Gaussian field) is already interesting because it precisely respects the color
distribution of the exemplar. Thus the bilevel model with 1 × 1 patch can be
seen as an extension of the ADSN model with prescribed marginal distributions.
For a larger patch size, we observe only minor improvements of the model with
slightly cleaner geometric structures.

One possible explanation could be the slow convergence speed in very high
dimensions of the stochastic gradient descent scheme. In this non-smooth setting
(∇v(x, ·) is not Lipschitz continuous), the convergence rate given in [18] is only
O( log k√

k
). Besides, in our setting, we apply this algorithm for 106 iterations with

gradient step parameter C = 1 in a very high-dimensional space RD (D = 27
for 3 × 3 RGB patches), and with discrete target distributions ν having large
support (J = |S| = 103). Updating all coordinates of v during the gradient
descent requires to visit enough all the power cells. As a consequence, even in
the 1D case, practical convergence can be very slow (see on Fig. 3(b) for C = 10).

This means that in our experiments for texture synthesis, the convergence
is not reached, and yet the OT solution provides better synthesis results than
a simple NN approach, which is confirmed by examining the output patch dis-
tribution (Fig. 4). Interestingly, it is also true after patch recomposition (which
remains to be properly justified).

The results obtained with this bilevel model raise several questions. First,
one may very well question the use of the `2-distance for patch comparison,
both in the transport problem and the recomposition step. It is already well
known [11] that using other distances for recomposition may improve the visual
quality of the results (less blur than with the `2 average). Also, it would be
interesting to analyze more precisely the effect of the recomposition step on the
patch distribution.

Acknowledgments This work has been partially funded by Project Texto
(Projet Jeunes Chercheurs du GdR Isis).



Original ADSN Bilevel (OT) Bilevel (NN) Bilevel (WN)

Fig. 1. Bilevel synthesis. Each row displays an exemplar texture, a sample of the
associated ADSN model, and samples of the bilevel models obtained with 3× 3 patch
optimal assignment (OT) or patch nearest neighbor projection (NN), and the one with
white noise initialization (WN). The OT assignment better preserves patch statistics
than the NN projection. Besides, the last column illustrates the importance to start
from a spatially correlated Gaussian model at the first level.

O
T

N
N

1× 1 3× 3 5× 5 Original 1× 1 3× 3 5× 5

Fig. 2. Influence of the patch size. On the middle column we display two original
textures and on the other columns we display samples of the bilevel models with varying
patch size using the patch optimal assignment (OT, first row) and the patch nearest
neighbor projection (NN, second row). The OT performs in general better than a NN
(it better preserves the color/patch statistics) but fails to reproduce complex geometry
(like in the right example).
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(a) Power diagram Powv of a 1D gaussian
µ matching a set of J = 12 points ν.

(b) Convergence of the ASGD algo-
rithm (6) in 1D for J points, and C = 10

Fig. 3. Illustration of the semi-discrete OT and the convergence of ASGD (6)
in 1D. (a) Semi-discrete Transport of a Gaussian distribution µ (red curve) towards a
set of points ν (blue dots with J = 12). The corresponding power diagram Powv (in red
lines) is compared to the Voronoi diagram Pow0 (blue lines). The optimal transport
plan Tv (black lines) is compared to the nearest-neighbor matching T0 (grey dotted
lines). (b) ASGD in 1D. Evolution of the relative error, defined as E(k) = ‖vk−v?‖

‖v?‖
where v? is the (closed-form) optimal solution and k the number of iterations. The
curves are shown for J = 10, 102, and 103 points, using the same random sequence.
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Fig. 4. Patch distribution (three first principal components). For the first
image of Fig. 1 we plot the estimated distribution of patches in the three first principal
components (columns) for different patch sizes (rows). The PCA transform is obtained
on the exemplar patch distribution. We compare the patch distributions of the exemplar
image (legend “ref”), of the synthesized image before patch recomposition (legend “OT”)
and after (legend “OT recomp”), and of the transformed patch with nearest-neighbor
projection (legend “NN”). Even if we only approximate the optimal transport mapping,
it suffices to reproduce the reference patch distribution better than the NN projection.
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