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A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for

the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was

found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm

wide lane) [G. Ballihaut, F. Claverie, C. Pécheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection

of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively

Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874–6880]. Such improvement couldn't be ex-

plained solely by the difference of amount of material ablated, and then, was attributed to the aerosol prop-

erties. In order to validate this hypothesis, the characterization of the aerosol producedbynanosecond and high

repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate

femtosecond laser ablation strategy of 2-mmwide lane was found to produce aerosols of similar particle size

distribution compared to nanosecond laser ablation of 0.12-mmwide lane, with 38% mass of particles b1 µm.

However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was

shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 µm depth). Meanwhile,

scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger

ablation, thefineparticles ejected from the samplewere found to formagglomerates due tohigher ablation rate

and then higher collision probability. Additionally, investigations of the plasma temperature changes during

the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited

impact on the ICP source (ΔT~25±5 K). This suggests that the cohesion forces between the thin particles com-

posing these large aggregates were weak enough to have negligible impact on the ICPMS detection.

1. Introduction

The detection of metals and metalloids in proteins is of growing

concern in biochemical, toxicological and pharmacological sciences

[1]. However, their detection still remains a challenge due to the low

concentration levels that they exhibit in proteins. Traditionally, the

sensitive detection of heteroatoms in proteins separated by gel elec-

trophoresis was performed with autoradiography [2,3]. However, this

technique is limited by several drawbacks such as the use of radio-

active isotopes and the non-applicability to human samples. Allowing

its unique features, therewas an increased interest in laser ablation in-

ductively coupled plasmamass spectrometry (LA-ICPMS) in the grow-

ing proteomic field, and by the end of the 90s, McLeod et al. [4]

proposed the scanningof gels by laser ablation (LA). Since then, studies

on different element containing proteins after separation by gel elec-

trophoresis and detection by ICPMS after LA sampling have been

reported [2]. However this technique still suffers from some limited

analytical performances which are mainly due to the small amount of

protein effectively sampled for the analysis.

Previously [5], we developed a sensitivemethod based on the com-

bination of high repetition rate femtosecond (fs) LA-ICPMS with a fast

scanning beam device for the detection of selenoproteins in gel elec-

trophoresis. This technique allows the detection of the selenoproteins

in gel electrophoresis at the low-femtomolar levels. Compared to a

conventional nanosecond (ns) laser ablating 120-µm wide lanes, the

signal sensitivity was drastically improved by a factor of 40 by ablating

quasi-instantaneously 2-mmwide lanes of gels. However, the mass of
⁎ Corresponding author. Tel.: +33 559 407 757; fax: +33 559 407 781.
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material sampled was only 27 times higher than the mass sampled

with the ns laser. Therefore the amount of gel ablated cannot exclu-

sively explained the enhanced sensitivity obtained by the femtose-

cond 2-mmwide lane ablation. Such improvement could be assigned

to the nature of the aerosol produced by the shorter fs pulses with a

better particle distribution in a nanometer range [6,7]. Consequently,

the aerosols produced by LA should be investigated in detail to con-

firm this hypothesis and evaluate the direct effect of fs laser pulses on

aerosol composition and signal sensitivity.

The investigation of the aerosol is of great interest to improve the

quality of the signal and/or determine the existing particle fractiona-

tion. Parameters such as transport efficiency, stability, sensitivity and

fractionation have been widely studied in relation with particle size

distribution [8–12] and particle dispersion [13]. Separation devices,

filters, impactors and stabilizers were also investigated to remove

bigger particles and, thus, yield precise and stoichiometric measure-

ments [14–18] but this process is accompanied by a great loss of the

signal. Therefore, recent studies are more focused on the formation

of a fine aerosol by using well chosen laser parameters.

Indeed, the formation of the aerosol depends on the laser process

itself which is governed by the sample properties and the laser char-

acteristics. Furthermore, dependingon the sample studied, keyparam-

eters can appear. Thewavelength has to be associated with the sample

absorbance, as it determines the amount of molten micron-sized

spherical particles produced by nanosecond laser ablation [14,19,20].

The fluence has to be adapted to the sample studied, particularly for

metals whose high conductivity induces splashing of large droplets at

high energy density, and non-stoichiometric aerosol at too low energy

density [10,19]. Finally, pulse duration influences the laser-material

interaction. Indeed, short pulses below 1 ps have been demonstrated

to provide less thermal effects and less material damages compared

to nanosecond pulses: the occurrence of melting effects and cracks is

drastically reduced and smaller particles are produced [21,22]. Fur-

thermore, it results in a better vaporizationwithin the ICP and a mini-

mized fractionation [11,23]. The generation of these different particles

is complex and not clearly understood yet. Hergenröder [24] has re-

cently reviewed the particle formation processes highlighting the

numerous and complex mechanisms which can take place during LA.

Three modes of material removal can be distinguished: atomization

and subsequent gas-to-particle conversion, liquid droplet expulsion,

and solid material ejection.

However, materials expelled are alsomodified from the ablation cell

to their transfer into the ICP. Papers related to transport processes [25–

29] showed that using helium as carrier gas permits a better transport

efficiency whereas the geometry of the ablation cell influences only

the dispersion of the aerosol. Moreover, the transport tube has to be as

short as possible to avoid the deposition of particles which could be

source of fractionation [30]. The visualization of the aerosol inside the

ablation cell and the transport tubewas recently studied by Koch et al.

[13,31,32] in order to understand the behavior of the aerosol imme-

diately after the impact of the laser and during the transport. Such

studies revealed that femtosecond laser ablation (fs-LA) generally in-

duces a homogenously distributed aerosol on turbulent flow and a

more dynamic expansion perpendicular to the sample surface. Never-

theless, even if the use of fs pulses results in a more dispersive aerosol,

aggregates are formed as in the case of ns pulses. Different shapes of

agglomerates have been reported depending on the sample material:

cotton-like for CaF2 and linear-agglomerate for metals and silicates

[19]. The cohesion of these agglomerates can be strong or weak which

leads Gonzalez et al. [33,34] to define agglomerates as “hard” or “soft”

respectively. Despite the formation of these aggregates, the trans-

ported mass was at least 77% for fs-LA [29], which means that agglo-

merates can be transported until the ICP source.

Finally, laser-produced aerosols are vaporized in the ICP. The plasma

has to atomize nano-particles as well as agglomerates which could

present severe limitations when too large or too “hard agglomerates”

are produced.Moreover, the temperature of the plasma can be affected

by a mass overloading which results in preferential atomisation/ioni-

sation of elements [8] and/ or in a decrease of intensity ratios such as

Cu/Ca, Zn/Ca, Cd/Ca, and Pb/Ca [35]. Therefore, it can be stated that

ICPMS signal is dependent on the aerosol composition: particles not

completely atomized and/or important mass loading induce fractio-

nation, large particles induce signal fluctuations and, finally, smaller

particles are better transported, atomised and ionised which in turn

induce better sensitivity, signal stability and accurate results.

Therefore the characterization of an aerosol includes particle size

distribution measurements and morphology. Both have been widely

studied during the last years for a broad range of solid materials such

as glasses [34,36], metals [33,37], CaF2 and calcite [17]. Nevertheless,

even if some interesting applications are based on the analysis of pro-

teins included in gels, to our knowledge, complex matrices as poly-

acrylamide samples have not been studied so far as laser-produced

aerosol for LA-ICPMS analyses. Therefore, the aim of this study was to

investigate the nature of the particles produced by laser ablation of

polyacrylamide gels in order to explain the enhancement factor of 40

found between the nanosecond and femtosecond laser ablation [5].

Particle size distribution of aerosols produced by ns- and fs-LA was

determined using low-pressure impaction, and morphology of col-

lected aerosol particleswas visualized by scanning electronmicroscopy

(SEM). Additionally, the plasma temperature changeswere determined

to investigate possible plasma loading effects on the ICP.

2. Experimental section

2.1. Instrumentation

2.1.1. Laser ablation-ICPMS systems

Two laser ablation systemswere used in order to compare ablations

of polyacrylamide gels performed at nanosecond and femtosecond

pulses.

Aunique femtosecond laser ablation device (Novalase SA— France)

fitted with a diode-pumped KGW-Yb laser was employed. It delivers

360 fs pulses at an IR-wavelength of 1030 nm and operates at high

repetition rate from 1 Hz to 10 kHzwith a low energy of 0.1 to 100 µJ at

the sample surface. In these conditions, the beam size focused at the

sample surface is 17 µm (1/e2). A galvanometric scanning beamdevice

allows the laser beam (focused on a 50mm objective) to rapidly move

(up to 280 mm s−1) with a high repositioning precision (b1 µm).

Further, the ablation cell (10 cm3) ismounted on amotorisedXY stages

permitting the sample positioning. The software can synchronise the

sample (XY stages) and the laser beam (scanner) movements to per-

form complex trajectories. The combination of the high repetition rate

and the fast scanning beam allows ablating much larger surface than

the nominal 17 µm spot size, quasi-instantaneously at the detection

time scale of a quadrupole ICPMS [5,38–40]. The design features of the

laser are described elsewhere [38].

A UV 266-nm nanosecond (8 ns pulses) laser ablation system

model LSX-100 (Cetac, Omaha, NE) operated at 20 Hz and 1.1 mJ was

used as a reference system. A 5 cm diameter (30 cm3) ablation cell was

used. The lanewidth obtained at the selected experimental conditions

was of 120 µm.

The ICPMSmeasurements were performed with the Agilent model

7500 cs in the operating collision cell mode, which was daily opti-

mized with Xe gas. Helium was chosen as carrier gas in the ablation

cell and xenon was added by a Y connection at the outlet of the abla-

tion cell as external standard in order to check for ICPMS plasma

instability. Due to the high amount of polyacrylamide gel introduced

into the plasma, oxygenwas added to the Ar blend flow rate in order to

prevent carbon deposition on the cones. Oxygen was added for nano-

second laser ablation too in the same proportion. Experience showed

that oxygen was particularly required when large femtosecond laser

ablation rates were used since carbon deposition, as well as sensitivity



and reproducibility drifts were observed when insufficient oxygen

flow rate was added to the plasma. Because of the oxygen addition,

and due to potential formation of selenium oxide, the optimization

was also focused on the oxide level (156CeO/140Ce) to be below 5%. A

three-inlet interface was used to mix the laser-produced aerosol, and

the argon carrier gas containing 5% v/v O2. A 1.5 mm-i.d torch and a

platinum sampler and skimmer cones were used. This configuration

was used throughout this study except for the determination of the

plasma temperature changes where an ultrasonic nebuliser (USN

U5000AT+, Cetac) was connected to produce a quasi-dry aerosol per-

mitting the introduction of gallium and germanium. Operating condi-

tions of the ICPMS and characteristics of the laser ablation systems are

summarised in Table 1.

2.1.2. Low-pressure impaction

A commercial 13 detection stages impactor (ELPI — Ecomesure —

France) was connected to the laser systems in order to measure the

particle size distribution of the aerosol carried by the helium stream.

The low-pressure impaction system is designed for the collection of

airborne particles ranging from 7 nm to 10 µm aerodynamic diameter

in air.

The geometry of the ELPI imposes a total inlet flowof 10 Lmin−1 of

air in order to ensure an accurate particle size distribution measure-

ment. However, taking into account that He-transported particles are

mixed with an argon flow at the entrance of the ICP torch when the

laser is coupled to the ICPMS, an argon flow, instead of air flow, was

used to maintain a total flow rate (He+Ar) of 10 L min−1. Argon was

chosen in order to simulate as well as possible the gas property con-

ditions prevailing in the entrance of the torch. As a consequence,

Ar viscosity and molecular weight were selected in the ELPI software

to recalculate the actual aerodynamic diameter for each stage (10 nm,

36 nm, 69 nm, 115 nm, 185 nm, 303 nm, 436 nm, 691 nm, 1.06 µm,

1.777 µm, 2.65 µm, 4.417 µm, and 10.937 µm). Moreover, taking into

account the unknown density of the gels, mass values presented in the

following sections were only used as indicative values for comparison

between different ablations. In addition, it is possible to record in real

time particle size distribution during the ablation. An integration time

of 1 s was selected for this purpose providing a complete particle size

distribution each second.

2.1.3. Scanning electron microscopy

The laser generated aerosol particles were collected on polycarbo-

nate membrane filters with a pore size of 200 nm (Whatman nucleo-

pore), which were placed approximately 1 m behind the ablation cell.

Though not provided by the manufacturer, the collection efficiency of

these filters was found to be 100% since no signal could be detected

when the filters were placed online with the ICPMS. Next, these

membranes were glued on SEM-mounts using a conducting double

carbon tape and metallised during 4 min with palladium to remove

artefacts. Such metal coating was performed with a SEM coating

E5000 (Polaron Equipment LTD) at intensity levels between 16 and

18 mA under nitrogen atmosphere (2.37×10−4 atm). The scanning

electron microscope used was a SEM Field Emission Scanning JEOL

7000F (JEOL Ltd, Japan) operated at 5 kV.

2.2. Protocol

2.2.1. Preparation of polyacrylamide gel samples

The selenoprotein glutathione peroxidase (4.2 mg, 123 units mg−1

of solid and 673 unit mg−1 of protein) was purchased from Sigma-

Aldrich (St-Quentin Fallavier, France) and solubilized with 2 mL of

50 mM Tris–HCl, and 1 mM Tris(2-carboxyethyl)phosphine hydro-

chloride (TCEP) pH 9. The samplewas divided into 5 aliquots of 400 µL

each and kept frozen at −20 C until utilization. One aliquot was

partially dedicated to the determination of total selenium by ICPMS

and was found to contain 843.5 ng Se mL−1 by means of standard

addition method. The other part of this aliquot was analyzed by size

exclusion chromatography coupled to ICPMS under experimental con-

ditions described elsewhere [41] to determine the proteinous sele-

nium which was assessed to 90%.

The four other aliquots were used for SDS–PAGE allowing the

preparation of (1) a gel sample containing a unique lane with a wide

selenoprotein band to perform comparative measurements and (2) a

gel sample with different selenoprotein concentrations to realize a

calibration curve. Further details of the reagents and the experimental

procedure used to perform the gel electrophoresis are described in a

previous publication [5]. After electrophoresis, the gel was rinsed,

stained with Coomassie Blue, destained and vacuum-dryed on a filter

paper finalizing the preparation of the sample that is now ready to be

ablated.

2.2.2. Nebulization solution

A solution containing 0.1 µg L−1 of germanium and gallium was

prepared from CCS5 solution (Inorganic Ventures, Lakewood, NJ, USA)

and a gallium solution (Sigma-Aldrich). Ultra-purewaterwas obtained

from a Milli-Q system (18.2 MW, Millipore, USA) and ultrapure nitric

acid (Ultrex) was purchased from J. T. Baker (Phillipsburg, NJ, USA).

This nebulization solution was used for the study of the plasma tem-

perature changes.

2.2.3. Ablation strategies

The main objective of the present work was to explain the en-

hanced sensitivity obtained by using the 2-mmwide lane femtosecond

laser ablation strategy at 10 kHz [5] compared to smaller lane width

generally produced by conventional nanosecond laser ablation (typi-

cally 0.12 mm in our previous work [5]). These ablation strategies are

denoted as the “reference femtosecond ablation” and the “reference

nanosecond ablation” all along this paper.

The nanosecond laser system used in this study (CETAC LSX 100)

allows only the movement of the sample while the laser beam is kept

in the sameposition. In contrast, the femtosecond laser device (Alfamet

Novalase) permits to realise complex trajectories in two dimensions

(2D), by moving at the same time the laser beam and the sample.

By combining these 2D ablation trajectories (using the fast laser

beam movement together with the sample movement) with the high

repetition rate of the laser (up to 10 kHz) it is then possible to increase

considerably the amountof ablatedmaterial introduced into the ICPMS

compared to conventional nanosecond laser ablation. As it can be

seen from Table 2, the 2D ablation consisted in a back-and-forth

vertical movement of the laser beam, combined with the horizontal

Table 1

Operating conditions of the ICPMS and characteristics of the ablation systems.

ICP-MS Agilent model 7500cs

Argon gas 0.81 L min−1

O2 40 mL min−1 (5% v/v argon blend)

Collision cell gas (H2) 3.4 mL min−1

RF power 1500 W

Torch injector 1.5 mm

Cones Pt

Isotopesa 77Se, 78Se, 80Se, 82Se, 69Ga, 71Ga,
70Ge, 72Ge, 74Ge, 124Xe, and 126Xe

Laser ablation system ALFAMET Novalase SA LSX-100 Cetac

Laser type KGW-Yb Nd-YAG

Wavelength 1030 nm 266 nm

Pulse duration 360 fs 8 ns

Repetition rate 1–10000 Hz 20 Hz

Pulse energy b100 µJ pulse−1 1.1 mJ pulse−1

Crater diameter 17 µm 120 µm

Carrier gas flow rate (He) 700 mL min−1 700 mL min−1

a Gallium and germanium were analyzed only for the investigation of the plasma

loading.



displacement of the sample. Changing the ablation parameters

(fluence, speed of the laser beam, sample movement and repetition

rate) allowed the control of the amount of gel ablated.

The “reference nanosecond ablation” resulted in a 0.12 mm×

0.07mm (Width×depth) lane. As the femtosecond laser system allows

controlling the depth of ablation by adjusting the number of shots

per surface unit, the same amount of material (0.12 mm×0.07 mm

(width×depth)) was ablated with the femtosecond laser in order to

study the impact of shorter pulses. Additional lane widths (0.5, 1, 1.5

and 2 mm) were also ablated while keeping the same resulting depth

(0.07 mm) in order to study the impact of the amount of particles

introduced into the ICP. It consists in modifying the repetition rate

(from 600 Hz to 10 kHz) and the scanner speed (from 6 mm s−1 to

100 mm s−1) in order to obtain the same pulse overlapping (pulse

density per surface unit) which results in the same ablation depth.

The “reference femtosecond ablation” corresponds to a 2-mmwide

lane performed at high repetition rate (10 kHz). In order to study

the aerosol generation processes at this repetition rate, 0.12, 0.5, 1, 1.5

and 2-mmwide lanes were ablated while keeping the same scanning

speed in each case (100mms−1). The ablation depths obtained ranged

from 75 µm to 285 µm depending on the width of the lane.

Finally, two ablation strategies (the “reference femtosecond abla-

tion” and a 1-mmwide lane ablation at 5 kHz) were realised at 4 dif-

ferent fluence values in order to evaluate the impact of this parameter

on the aerosol properties.

The depth and the ablation rate were calculated owing to the to-

pography of the ablations which was performed with an optical sur-

face profilometer Micromesure CHR150 (STIL society, France).

3. Results and discussion

3.1. Particle size distribution of the laser generated aerosol

Particle size measurements have been widely studied to under-

stand the impact of laser parameters on the ICPMS signal. The influ-

ence of the laser wavelength on fractionation for different samples

[20,27] as well as the influence of the carrier gas [27], the fluence [36,

37] and the pulse duration [11,37] were recently reported and related

to the particle sizes of the aerosol. Different techniques have been

evaluated by Kuhn et al. [42], for this purpose and particle impaction

was found to be a suitable technique for aerosol studies thanks to its

working range which is large enough for the analysis of this kind of

mixed aerosols.

3.1.1. Nanosecond versus femtosecond ablation

First, the particle size distribution of the generated aerosol was

measured after nanosecond and femtosecond laser ablation to com-

pare the analytical performances of both systems for the analysis of

polyacrylamide gels. An identical ablation lane was realized with both

lasers taking into account the depth and the width of the scan (in the

order of 80 µm and 0.12 mm, respectively). Furthermore, femtosecond

analysis was performed at 17 J cm−2 with a repetition rate of 600 Hz

and a scanner speed of 6 mm s−1 in order to draw a 0.12-mm wide

lane with the same laser pulses overlapping and at the same fluence

than the reference femtosecond ablation. Fig. 1a and b shows respec-

tively the particle size distribution in mass percentage of the laser-

produced aerosol after the nano- and femtosecond laser ablation of

polyacrylamide gels. Shorter pulses were found to produce finer par-

ticles though in a limited extent showing a mass percentage of nano-

metric particles (b1 µm) of 44±4% in comparison with 38±3% for

the nanosecond laser ablation. Such effect demonstrated only a slight

positive impact of the femtosecond pulses on the aerosol formation

which cannot explain the great improvement factor of sensitivity

reported in our previous paper [5]. Moreover, Fig. 1c represents the

particle size distribution obtained for the reference femtosecond

ablation and, as it can be observed, the mass percentage of nanometerT
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particles was quite similar (38%) than for the reference nanosecond

ablation (Fig. 1a).

The expansion of the ablation lane width from 0.12 to 2 mm in

femtosecond ablation (keeping the same crater overlapping, depth,

and fluence) produced a slight mass distribution shift toward thicker

particles (from 44% to 38% of nano-particles). The calculated ablation

rate was 3.93×10−4mm3 s−1 and 6.98×10−3mm3 s−1 for the 0.12-

mm and the 2-mm wide lanes respectively, which represents an 18

fold increase in the mean particles density into the cell. Such a high

particle density prevailing into the cell may favor more collisions

and aggregation of nano-particles into micro-particles and it was

confirmed by the particle size distribution in number as shown in

Fig. 2.

These results underline the importance of investigating more

in detail the morphology of the laser generated particles in order to

understand the complex processes involved in the aerosol formation

and transport. It is known from brass studies that IR femtosecond

pulses produces smaller particles than nanosecond pulses [22,37].

Previous studies by scanning electron microscopy revealed that the

aerosols produced by fs laser pulses were constituted of smaller par-

ticles and larger agglomerates compared to nanosecond laser ablation

[11,23,33,34,43]. This will be investigated in our case in a following

section.

3.1.2. Effect of the high repetition rate

A particularity of the laser system used in this study is its high

repetition rate of 10 kHz compared to conventional laser systemwork-

ing from 1 to 100 Hz. In order to study in detail the impact of this

parameter, all ablations were performed at 10 kHz changing the

ablated wide lane from 0.12 to 2 mm. The speed of the scanner was

kept at 100 mm s−1 and the sample movement at 50 µm s−1 (see

Table 2). Under these conditions, the number (N) of back-and-forth

cycles made by the scanner during a given period of time is inversely

proportional to the ablation width. Hence, when the ablation width

decreases, N increases as well as the number of shots per surface unit

resulting in a deeper ablation lane ranging from 0.075 mm for the 2-

mm wide lane to 0.285 mm for the 0.12-mm wide lane. The mass

percentage of particles under 1 µm for ablation width ranging from

0.12 mm to 2 mm is presented in Fig. 3. Up to 77% of the particles were

below 1 µm when ablating a 0.12×0.285 mm2 (width×depth) lane

which contrasts with the 2×0.075 mm2 (width×depth) lane where

38% of the particles were below 1 µm. Moreover, this drop of nano-

particles showed a linear trend with the ablation rate. These results

clearly indicated that the particle size was shifted toward finer

particles when the ablation rate decreased and the depth of the lane

increased.

Fig. 1. Particle size distribution in mass percentage of the laser generated aerosol of

polyacrylamide gels. The uncertainty (standard deviation) was calculated from 3 repli-

cates. (a) Nanosecond laser ablation at 20 Hz (reference nanosecond ablation: 0.12-mm

wide lane). (b) Femtosecond laser ablation at 600 Hz (0.12-mm wide lane). (c) Femto-

second laser ablation at 10 kHz (reference femtosecond ablation: 2-mmwide lane).

Fig. 2. Cumulative particle size distribution, normalized to unit, for ablations at the

same depth. The uncertainty (standard deviation) was calculated from 3 replicates.

Fig. 3. Evolution of the mass percentage of particles below 1 µm for ablations at 10 kHz.

Each point represents “a width×a depth” ablation.



At least three phenomena could explain these results. First, as it

has been demonstrated by Guillong et al. [14], scanningmode ablation

produces larger particles in comparison to the crater mode because

of its occurrence at the sample surface (using the crater mode, the

particle size diameter decreased with the increasing of the depth).

However, though raster ablation mode was used in our experiments,

the combination of the high repetition rate and the scanning beam

device permitted to go deeper in the gels and, therefore, to produce

smaller particles. Further, after electrophoresis, the gel is dried on a

piece of paper which could be ablated with the smallest and then the

deepest ablation lanes. By visualizing the edge of the gels, the thick-

nesswas evaluated around 200 µm and, therefore, it is possible that a

part of the aerosol particles produced by an ablation lane of 0.12 mm

at high repetition rate was coming from the paper support. However,

the point corresponding to the 0.12 mm ablation lane where small

amount of paper has been ablated fits perfectly with the slope pre-

sented in Fig. 3 showing that the influence of the paper is of limited

importance in these conditions.

On the other hand, the ablation rate plays an important role on

the composition of the laser-produced aerosol. Indeed, when a large

amount of gel is ablated, the probability of collision and, thus, of ag-

gregation increases. The thin particles ejected from the sample

can then more easily stick to each other to form bigger agglomerates

during laser ablation processes and transport. Fig. 4 shows the evolu-

tion of the number of particles above and below 1 µm recorded in real

time during the ablation of 2×0.075 mm2 lane. The number of nano-

particles (black line) dropped drasticallywith time during the ablation

while the number of micrometric particles increased (dashed line).

This demonstrates that the accumulation of particles inside the abla-

tion cell shifted the particle size distribution toward larger diameter.

This graph corroborates the hypothesis of the aggregation of nano-

particles due to the large amount of particles present inside the abla-

tion cell and additionally these results suggest that, under the selected

experimental conditions, agglomerates are not collected on the stages

of their corresponding primary particles but in a bigger range in con-

trast to the results reported by Koch et al. [36,42]. This is likely due to

the much higher aerosol density of polyacrylamide gels produced by

our laser ablation strategy which is 3 to 4 orders of magnitude higher

than those used in previous works. In this work, ablation rates were

in the range of 1×10−3
–7×10−3 mm3 s−1 for polyacrylamide gels

compared to 8×10−7
–3.2×10−6 mm3 s−1 for glasses or metals as

reported by Gonzalez et al. [33,34]. In addition, ablations of poly-

acrylamide gels were performed for various lane widths keeping the

ablation depth constant (Table 2). As shown in Fig. 2, similar trends

were observed for the five lanes investigated and the number of

smaller particles dropping with the increase of the ablated area, prob-

ably because of an intensification of the collisions of tiny particles.

Based on the ICPMS signal drop after ablation, the washout time of the

ablation cell was measured to be in the range of 23 s for a 90% signal

drop and in the range of 53 s for a 99% signal drop. In these conditions,

the probability of condensation is obviously increased. A solution to

avoid this important aerosol density in the ablation cell could be the

use of a shortwashout ablation cell, as it has been recently proposed by

Garcia et al. [29]. However, this kind of ablation cell design demon-

strated a poor repeatability, which could be a critical parameter for the

development of accurate and precise quantitativemethods of analysis.

The HEAD (high efficiency aerosol dispersion) ablation cell designed

by Pisonero et al. [44] could be a better solution as it permits to reduce

the formation of agglomerates.

Finally, another explanation could be the use of the high repetition

rate. Fernandez et al. [40], who worked also at 10 kHz, reported that

the agglomerates coming from the femtosecond ablation of soils and

sediments were not collected on their primary particle size by the

low-pressure impactor. Moreover, it can be highlighted that the drop

of current signals of smaller particles showed on the reference femto-

second ablation (Fig. 4) appears particularly for the high repetition

rate ablation and the high ablation rate. Thus, the formation of aggre-

gates is not only due to the ablation rate but also to the time between

one pulse and the other. Indeed, if pulses are close, the particles have

not enough time to expand before getting in touch and therefore they

tend to stick to each other and agglomerate. In this study, the time

difference between one laser pulse and the other (100 µs) corre-

sponds to a shift of 10 µm in the gel. Taking into account these values

and the analysis of the temporal progression of expansion of the
Fig. 4. Real time particle number obtained for the reference femtosecond ablation with

the low-pressure impactor.

Fig. 5. Effect of the fluence parameter on the femtosecond laser generated aerosol of

polyacrylamide gels (reference femtosecond ablation). a) Particle size distribution in

mass andb) 80Se ICPMS signal. ⁎Average ablation rate per pulse expressed inmm3/pulse.



aerosol in helium shown by Koch et al. [31], it is highly likely that the

aerosol of the first pulse still remains close to the surface before a

second pulse occurs. Therefore the collision between the particles

ablated by one pulse and the following one are more probable.

Thus, the high aerosol density and the close pulse-to-pulse ablation

increased the probability of aggregation. Consequently, the ablated

particles were not found at the impactor stage corresponding to fine

particles (primary particles of the aggregates) but at that characteristic

of larger agglomerates. The ease of disintegration of agglomerates in

the ICPMS was investigated further on.

3.1.3. Effect of the fluence

Fluence is one of the key parameters influencing the ablation rate

and as a result may induce changes in the characteristics of the gen-

erated aerosol. In order to study the influence of this parameter on the

particle size distribution, four different fluence values in the range of

2.2 to 17 J cm−2 were investigated by using the “reference femto-

second ablation” strategy. In agreement with previously reported ob-

servations [27,45], the ablation ratewas found to be proportional to the

fluence (results not shown).Moreover, as shown in Fig. 5a, the amount

of particles increased with the fluence although the particle size dis-

tribution was very similar whatever the fluence applied (the lower

signal gave a poor signal with the ELPI). These results were in agree-

ment with those reported by Jeong et al. [9] for the analysis of glass

samples.

In addition, LA-ICPMS measurements were performed for each of

the fluence values studied. The transient signal was recorded when

the selenoproteinwas ablated and integrated (peak area). As it can be

clearly seen in Fig. 5b, the signal detected was proportional to the

fluence from 4 to 17 J cm−2 which is in good agreement with our

previous observation where the ablation rate was proportional to the

fluence. However, lower fluences (close to the ablation threshold) did

not follow the same linear trend, indicating different processes as

previously described by Margetic et al. [46].

3.2. Morphology of the transported aerosol

The size and morphology of the produced particles was evaluated.

The laser generated aerosol was collected on filters and analyzed using

a scanning electron microscope. It is worth noticing that when stored

under ambient conditions, these fine particles rapidly swelled up with

ambient humidity due to the hydrophilic nature of the polyacrylamide

gels, showing a melted aspect clearly identified by SEM. Special care

was then required for a correctobservationof suchparticles. And there-

fore, in order to keep the particle morphology unchanged, the filters

were immediately stored after sampling in the presence of silica gel,

under argon, until their introduction into the SEM coating unit. The

particle collection time was the same for each ablation in order to

compare the amount of material sampled.

Fig. 6 shows typical SEM images of the collected aerosol particles

obtained for polyacrylamide gels using femtosecond laser ablation. For

0.12-mm wide lane ablation, only a few particles were found on the

filter, whereas the 2-mm wide lane ablation provided much higher

particles density made of large agglomerates. While the SEM images

cannot be used to provide quantitative information about particle size

distribution due to the non-uniform distribution of particles on filter

surface, they reveal the shape and texture of the particles which pro-

vide crucial information about particle formation processes. It was

observed that the agglomerates (in the range of several micrometers)

were composed of particles of 100 nm or lower.

Fig. 6. Scanning electron microscope (SEM) images of the collected aerosol particles produced by (a) the reference femtosecond ablation and (b) a 0.12-mmwide lane femtosecond

ablation at 10 kHz with top picture and bottom picture respectively zoom and enlarged views.



3.3. Plasma loading effect: temperature changes

Plasma loading effects were recently studied by Koch et al. [8] to

examine the impact of the amount of particles introduced into the ICP on

the accuracy of the results. A great change of temperature caused by the

plasma loading was found to affect preferentially elements with higher

ionization potential and thus, to provoke fractionation because of the

difference of ionizationpotential between elements. As in thiswork, only

one element (selenium) was studied and calibration was performed

using similarmatrices, fractionationwas not a critical benchmark to take

into account. Plasma temperature changes were studied in order to

investigate the impact of the rather important particle loading on the ICP

ionization efficiency. For this purpose, analyses were performed by

ablating gels while nebulizing a standard solution containing two

elementswith different ionization energy. As has beenpreviously shown

byO'Connoret al. [47], awet plasma ismuch tolerantof increased sample

loading without reducing plasma robustness and, therefore, an ultra-

sonic nebuliser (USN) was used to keep similar dry plasma conditions

compared to the routine analysis of polyacrylamide gels.

Then, Ga and Ge were chosen as thermometric elements taking

into account the impurities present on the gels and they were intro-

duced using a USN. These elements were associated with respect to

their ionization energy (579 kJ mol−1 and 762 kJ mol−1 respectively)

and their close atomic number (Δ=1 uma). The same simplified Saha

equation used by Koch et al. [8] was employed to calculate the tem-

perature difference ΔT:

ΔT = NakT
2
×

ln R1 = R2½ �

IGe − IGa

where Na is Avogadro's number, k is Boltzmann's constant, T the tem-

perature of the ICP without loading, I the ionisation energy of Ge which

is more difficult to ionize thanGa, and R1 and R2 the
72Ge/71Ga response

ratio for the minimum and the maximum mass loading respectively.

Fig. 7a and b shows the ratio of the thermometric elements ob-

tained when the multielemental solution was introduced at the same

time than the ablated aerosol. Two ablation strategies were performed

in order to produce different aerosols: a 0.12-mmwide lane ablation at

10 kHz (7a) and the femtosecond reference ablation (7b). A ratio of

0.365 was found without ablation or with a 0.12-mm wide lane abla-

tion whereas a ratio 0.361 was found for the reference femtosecond

ablation. Therefore, it can be stated that no significant changes were

found and the calculated decrease on plasma temperature was about

25±5 K (from the mean of 3 replicates). This suggests that the cohe-

sion forces between the thin particles composing the large aggregates

of the aerosol of polyacrylamide gels are weak enough to have negli-

gible impact on the ICPMS detection.

In addition, the ICPMS signal intensity (peak area) was measured

for different particle mass loadings determined by the ELPI for various

ablation lanes at 10 kHz (results not shown). The intensity increased

linearly with the amount of particles introduced into the plasma sug-

gesting neithermatrix effect nor significant plasma loading altered the

plasma robustness. The fact that the particle size distribution was

shifted toward bigger particles when the particle density increased,

suggests that these large particles were easily atomized in the plasma.

This result corroborates the previous observation of a very low plasma

temperature change as a function of the amount of polyacrylamide

particles introduced.

These studies demonstrated that the presence of aggregates and

the large amount of particles brought to the ICPMS have very limited

negative effects on the Se detection. This may be due to the fact that

the fine particles are agglomerated by weak interactions such as e.g.

van der Waals forces or ionic/covalent bonds, and then such particles

have no significant impact on the ICP source efficiency.

Fig. 7. 80Se ICPMS signal and 72Ge/71Ga ratio for (a) a femtosecond ablation of 0.12-mmwide lane at 10 kHz and (b) a femtosecond ablation of 2-mmwide lane at 10 kHz (reference

femtosecond ablation). The inset represents the topography of the considered ablation measured by profilometry.



3.4. Calibration curves

Two LA-ICPMS calibrations were performed on gel samples with

different selenoprotein concentrations in order to compare the two

ablation strategies: the reference femtosecond ablation and a 0.5-mm

wide lane ablation performed at 10 kHz. A linear trend was obtained

for both strategies between 0 and 400 ng g−1 (y=12824×+12481

with R2=0.9994; and y=3690.4×+1 697.3 with R2=0.9988 for

2-mm and 0.5-mm wide lanes respectively). However, a factor of 3.5

was foundbetween slopeswhile the ablation rate differed bya factor of

1.9. This loss of sensitivity could be due to the depth of the 0.5-mm

wide lane ablation. Indeed, this strategy is able to remove all the

selenoprotein from the gel as its ablation depth corresponds to the

thickness of the gel (200 µm). However, as the drying stage of the gel is

not controlled enough to obtain a constant thickness all along the gel,

the amount of gel ablated could be overestimated. Finally, the particle

mass loading measured by the ELPI shows a factor of 3.7 between the

two ablation strategies, which is quite similar with the factor found

between the slopes of the calibration curves. This demonstrates a

lower transport efficiency of the particles coming from the deeper

ablation and even if the particle size distribution shows smaller

particles for the deeper ablation, the extraction of the aerosol from

high depths alter the sensitivity of the analytical method. Therefore,

the 2-mm wide lane ablation seems to be the best strategy for the

determination of selenoproteins in gel electrophoresis.

4. Conclusions

The characteristics of the aerosols produced by high repetition rate

IR femtosecond laser ablation were investigated in terms of particle

size distribution, with a low-pressure impactor, and morphology by

the use of scanning electron microscopy. This study revealed that this

laser generated aerosol was composed of thin particles aggregated

into micrometric agglomerates which were formed into the plasma

plume and during the transport toward the ICPMS. The formation of

these aggregates was facilitated by the high ablation rate and the high

repetition rate employed which increases the collision probability

between particles. In this sense, ablations of narrow lanes at high

repetition rate showed important proportion of thin particles (up to

77% in mass of particles below 1 µm) but demonstrated a lower

transport efficiency of the particles coming from the deepest ablation.

Moreover, fluence was not found to influence the particle size

distribution but permitted to increase the amount of particles ablated.

Finally, 2-mmwide lane ablation was demonstrated to be suitable for

sampling as it permitted to bring sufficient amount of material

without affecting significantly the ICP ionization efficiency. Neither

significant plasma temperature changes nor matrix effect could be

detected. As a consequence, the detection limit was improved. The

signal sensitivity improvement between our 2D high repetition rate

femtosecond laser ablation (2-mm wide lane) and the more

conventional nanosecond ablation (0.12-mmwide lane) can therefore

be partly attributed to the characteristics of the aerosol. Further

studies should be carried out to evaluate the transport efficiency

which could be responsible for the sensitivity improvement between

both laser ablation strategies. Furthermore, the role of the large

amount of carbon introduced into the ICP under high repetition

rate conditions might be an additional route explaining selenium

signal response enhancement [48] that will be considered in further

studies.
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