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Abstract

Semantic Textual Similarity (STS) mea-
sures the meaning similarity of sentences.
Applications include machine translation
(MT), summarization, generation, question
answering (QA), short answer grading, se-
mantic search, dialog and conversational
systems. The STS shared task is a venue
for assessing the current state-of-the-art.
The 2017 task focuses on multilingual and
cross-lingual pairs with one sub-track ex-
ploring MT quality estimation (MTQE)
data. The task obtained strong participa-
tion from 31 teams, with 17 participating
in all language tracks. We summarize per-
formance and review a selection of well
performing methods. Analysis highlights
common errors, providing insight into the
limitations of existing models. To support
ongoing work on semantic representations,
the STS Benchmark is introduced as a new
shared training and evaluation set carefully
selected from the corpus of English STS
shared task data (2012-2017).

1 Introduction
Semantic Textual Similarity (STS) assesses the
degree to which two sentences are semantically
equivalent to each other. The STS task is moti-
vated by the observation that accurately modeling
the meaning similarity of sentences is a founda-
tional language understanding problem relevant to
numerous applications including: machine trans-
lation (MT), summarization, generation, question
answering (QA), short answer grading, semantic
search, dialog and conversational systems. STS en-
ables the evaluation of techniques from a diverse
set of domains against a shared interpretable perfor-
mance criteria. Semantic inference tasks related to

STS include textual entailment (Bentivogli et al.,
2016; Bowman et al., 2015; Dagan et al., 2010),
semantic relatedness (Bentivogli et al., 2016) and
paraphrase detection (Xu et al., 2015; Ganitkevitch
et al., 2013; Dolan et al., 2004). STS differs from
both textual entailment and paraphrase detection
in that it captures gradations of meaning overlap
rather than making binary classifications of par-
ticular relationships. While semantic relatedness
expresses a graded semantic relationship as well, it
is non-specific about the nature of the relationship
with contradictory material still being a candidate
for a high score (e.g., “night” and “day” are highly
related but not particularly similar).

To encourage and support research in this area,
the STS shared task has been held annually since
2012, providing a venue for evaluation of state-of-
the-art algorithms and models (Agirre et al., 2012,
2013, 2014, 2015, 2016). During this time, di-
verse similarity methods and data sets1 have been
explored. Early methods focused on lexical se-
mantics, surface form matching and basic syntac-
tic similarity (Bär et al., 2012; Šarić et al., 2012a;
Jimenez et al., 2012a). During subsequent evalua-
tions, strong new similarity signals emerged, such
as Sultan et al. (2015)’s alignment based method.
More recently, deep learning became competitive
with top performing feature engineered systems
(He et al., 2016). The best performance tends to
be obtained by ensembling feature engineered and
deep learning models (Rychalska et al., 2016).

Significant research effort has focused on STS
over English sentence pairs.2 English STS is a

1i.a., news headlines, video and image descriptions,
glosses from lexical resources including WordNet (Miller,
1995; Fellbaum, 1998), FrameNet (Baker et al., 1998),
OntoNotes (Hovy et al., 2006), web discussion fora, plagia-
rism, MT post-editing and Q&A data sets. Data sets are sum-
marized on: http://ixa2.si.ehu.es/stswiki.

2The 2012 and 2013 STS tasks were English only. The
2014 and 2015 task included a Spanish track and 2016 had a
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well-studied problem, with state-of-the-art systems
often achieving 70 to 80% correlation with human
judgment. To promote progress in other languages,
the 2017 task emphasizes performance on Arabic
and Spanish as well as cross-lingual pairings of
English with material in Arabic, Spanish and Turk-
ish. The primary evaluation criteria combines per-
formance on all of the different language condi-
tions except English-Turkish, which was run as a
surprise language track. Even with this departure
from prior years, the task attracted 31 teams pro-
ducing 84 submissions.

STS shared task data sets have been used exten-
sively for research on sentence level similarity and
semantic representations (i.a., Arora et al. (2017);
Conneau et al. (2017); Mu et al. (2017); Pagliardini
et al. (2017); Wieting and Gimpel (2017); He and
Lin (2016); Hill et al. (2016); Kenter et al. (2016);
Lau and Baldwin (2016); Wieting et al. (2016b,a);
He et al. (2015); Pham et al. (2015)). To encourage
the use of a common evaluation set for assessing
new methods, we present the STS Benchmark, a
publicly available selection of data from English
STS shared tasks (2012-2017).

2 Task Overview
STS is the assessment of pairs of sentences accord-
ing to their degree of semantic similarity. The task
involves producing real-valued similarity scores
for sentence pairs. Performance is measured by the
Pearson correlation of machine scores with human
judgments. The ordinal scale in Table 1 guides
human annotation, ranging from 0 for no meaning
overlap to 5 for meaning equivalence. Intermediate
values reflect interpretable levels of partial overlap
in meaning. The annotation scale is designed to
be accessible by reasonable human judges with-
out any formal expertise in linguistics. Using rea-
sonable human interpretations of natural language
semantics was popularized by the related textual
entailment task (Dagan et al., 2010). The result-
ing annotations reflect both pragmatic and world
knowledge and are more interpretable and useful
within downstream systems.

3 Evaluation Data
The Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) is the primary evalu-
ation data source with the exception that one of the

pilot track on cross-lingual Spanish-English STS. The English
tracks attracted the most participation and have the largest use
of the evaluation data in ongoing research.

5

The two sentences are completely equivalent, as they
mean the same thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

4

The two sentences are mostly equivalent, but some
unimportant details differ.
Two boys on a couch are playing video games.
Two boys are playing a video game.

3

The two sentences are roughly equivalent, but some
important information differs/missing.
John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

2

The two sentences are not equivalent, but share some
details.
They flew out of the nest in groups.
They flew into the nest together.

1

The two sentences are not equivalent, but are on the
same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

0

The two sentences are completely dissimilar.
The black dog is running through the snow.
A race car driver is driving his car through the mud.

Table 1: Similarity scores with explanations and
English examples from Agirre et al. (2013).

cross-lingual tracks explores data from the WMT
2014 quality estimation task (Bojar et al., 2014).3

Sentences pairs in SNLI derive from Flickr30k
image captions (Young et al., 2014) and are labeled
with the entailment relations: entailment, neutral,
and contradiction. Drawing from SNLI allows STS
models to be evaluated on the type of data used to
assess textual entailment methods. However, since
entailment strongly cues for semantic relatedness
(Marelli et al., 2014), we construct our own sen-
tence pairings to deter gold entailment labels from
informing evaluation set STS scores.

Track 4b investigates the relationship between
STS and MT quality estimation by providing STS
labels for WMT quality estimation data. The data
includes Spanish translations of English sentences
from a variety of methods including RBMT, SMT,
hybrid-MT and human translation. Translations
are annotated with the time required for human cor-
rection by post-editing and Human-targeted Trans-
lation Error Rate (HTER) (Snover et al., 2006).4

Participants are not allowed to use the gold quality
estimation annotations to inform STS scores.

3Previous years of the STS shared task include more data
sources. This year the task draws from two data sources and
includes a diverse set of languages and language-pairs.

4HTER is the minimal number of edits required for cor-
rection of a translation divided by its length after correction.
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Track Language(s) Pairs Source
1 Arabic (ar-ar) 250 SNLI
2 Arabic-English (ar-en) 250 SNLI
3 Spanish (es-es) 250 SNLI
4a Spanish-English (es-en) 250 SNLI
4b Spanish-English (es-en) 250 WMT QE
5 English (en-en) 250 SNLI
6 Turkish-English (tr-en) 250 SNLI

Total 1750

Table 2: STS 2017 evaluation data.

3.1 Tracks

Table 2 summarizes the evaluation data by track.
The six tracks span four languages: Arabic, En-
glish, Spanish and Turkish. Track 4 has subtracks
with 4a drawing from SNLI and 4b pulling from
WMT’s quality estimation task. Track 6 is a sur-
prise language track with no annotated training
data and the identity of the language pair first an-
nounced when the evaluation data was released.

3.2 Data Preparation

This section describes the preparation of the eval-
uation data. For SNLI data, this includes the se-
lection of sentence pairs, annotation of pairs with
STS labels and the translation of the original En-
glish sentences. WMT quality estimation data is
directly annotated with STS labels.

3.3 Arabic, Spanish and Turkish Translation

Sentences from SNLI are human translated into
Arabic, Spanish and Turkish. Sentences are trans-
lated independently from their pairs. Arabic trans-
lation is provided by CMU-Qatar by native Arabic
speakers with strong English skills. Translators
are given an English sentence and its Arabic ma-
chine translation5 where they perform post-editing
to correct errors. Spanish translation is completed
by a University of Sheffield graduate student who
is a native Spanish speaker and fluent in English.
Turkish translations are obtained from SDL.6

3.4 Embedding Space Pair Selection

We construct our own pairings of the SNLI sen-
tences to deter gold entailment labels being used
to inform STS scores. The word embedding sim-
ilarity selection heuristic from STS 2016 (Agirre
et al., 2016) is used to find interesting pairs. Sen-
tence embeddings are computed as the sum of in-

5Produced by the Google Translate API.
6http://www.sdl.com/languagecloud/

managed-translation/

dividual word embeddings, v(s) =
∑

w∈s v(w).7

Sentences with likely meaning overlap are identi-
fied using cosine similarity, Eq. (1).

simv(s1, s2) =
v(s1)v(s2)

‖v(s1)‖2‖v(s2)‖2 (1)

4 Annotation
Annotation of pairs with STS labels is performed
using Crowdsourcing, with the exception of Track
4b that uses a single expert annotator.

4.1 Crowdsourced Annotations

Crowdsourced annotation is performed on Amazon
Mechanical Turk.8 Annotators examine the STS
pairings of English SNLI sentences. STS labels
are then transferred to the translated pairs for cross-
lingual and non-English tracks. The annotation in-
structions and template are identical to Agirre et al.
(2016). Labels are collected in batches of 20 pairs
with annotators paid $1 USD per batch. Five anno-
tations are collected per pair. The MTurk master9

qualification is required to perform the task. Gold
scores average the five individual annotations.

4.2 Expert Annotation

English-Spanish WMT quality estimation pairs for
Track 4b are annotated for STS by a University of
Sheffield graduate student who is a native speaker
of Spanish and fluent in English. This track differs
significantly in label distribution and the complex-
ity of the annotation task. Sentences in a pair are
translations of each other and tend to be more se-
mantically similar. Interpreting the potentially sub-
tle meaning differences introduced by MT errors
is challenging. To accurately assess STS perfor-
mance on MT quality estimation data, no attempt
is made to balance the data by similarity scores.

5 Training Data
The following summarizes the training data: Ta-
ble 3 English; Table 4 Spanish;10 Table 5 Spanish-
English; Table 6 Arabic; and Table 7 Arabic-
English. Arabic-English parallel data is supplied
by translating English training data, Table 8.

7We use 50-dimensional GloVe word embeddings (Pen-
nington et al., 2014) trained on a combination of Gigaword
5 (Parker et al., 2011) and English Wikipedia available at
http://nlp.stanford.edu/projects/glove/.

8https://www.mturk.com/
9A designation that statistically identifies workers who

perform high quality work across a diverse set of tasks.
10Spanish data from 2015 and 2014 uses a 5 point scale

that collapses STS labels 4 and 3, removing the distinction
between unimportant and important details.
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Year Data set Pairs Source
2012 MSRpar 1500 newswire
2012 MSRvid 1500 videos
2012 OnWN 750 glosses
2012 SMTnews 750 WMT eval.
2012 SMTeuroparl 750 WMT eval.
2013 HDL 750 newswire
2013 FNWN 189 glosses
2013 OnWN 561 glosses
2013 SMT 750 MT eval.
2014 HDL 750 newswire headlines
2014 OnWN 750 glosses
2014 Deft-forum 450 forum posts
2014 Deft-news 300 news summary
2014 Images 750 image descriptions
2014 Tweet-news 750 tweet-news pairs
2015 HDL 750 newswire headlines
2015 Images 750 image descriptions
2015 Ans.-student 750 student answers
2015 Ans.-forum 375 Q&A forum answers
2015 Belief 375 committed belief
2016 HDL 249 newswire headlines
2016 Plagiarism 230 short-answer plag.
2016 post-editing 244 MT postedits
2016 Ans.-Ans. 254 Q&A forum answers
2016 Quest.-Quest. 209 Q&A forum questions
2017 Trial 23 Mixed STS 2016

Table 3: English training data.

Year Data set Pairs Source
2014 Trial 56
2014 Wiki 324 Spanish Wikipedia
2014 News 480 Newswire
2015 Wiki 251 Spanish Wikipedia
2015 News 500 Sewswire
2017 Trial 23 Mixed STS 2016

Table 4: Spanish training data.

English, Spanish and English-Spanish training
data pulls from prior STS evaluations. Arabic and
Arabic-English training data is produced by trans-
lating a subset of the English training data and
transferring the similarity scores. For the MT qual-
ity estimation data in track 4b, Spanish sentences
are translations of their English counterparts, dif-
fering substantially from existing Spanish-English
STS data. We release one thousand new Spanish-
English STS pairs sourced from the 2013 WMT
translation task and produced by a phrase-based
Moses SMT system (Bojar et al., 2013). The data
is expert annotated and has a similar label distribu-
tion to the track 4b test data with 17% of the pairs
scoring an STS score of less than 3, 23% scoring
3, 7% achieving a score of 4 and 53% scoring 5.

5.1 Training vs. Evaluation Data Analysis

Evaluation data from SNLI tend to have sentences
that are slightly shorter than those from prior years
of the STS shared task, while the track 4b MT qual-

Year Data set Pairs Source
2016 Trial 103 Sampled ≤ 2015 STS
2016 News 301 en-es news articles
2016 Multi-source 294 en news headlines,

short-answer plag.,
MT postedits,
Q&A forum answers,
Q&A forum questions

2017 Trial 23 Mixed STS 2016
2017 MT 1000 WMT13 Translation Task

Table 5: Spanish-English training data.

Year Data set Pairs Source
2017 Trial 23 Mixed STS 2016
2017 MSRpar 510 newswire
2017 MSRvid 368 videos
2017 SMTeuroparl 203 WMT eval.

Table 6: Arabic training data.

ity estimation data has sentences that are much
longer. The track 5 English data has an average
sentence length of 8.7 words, while the English
sentences from track 4b have an average length of
19.4. The English training data has the following
average lengths: 2012 10.8 words; 2013 8.8 words
(excludes restricted SMT data); 2014 9.1 words;
2015 11.5 words; 2016 13.8 words.

Similarity scores for our pairings of the SNLI
sentences are slightly lower than recent shared task
years and much lower than early years. The change
is attributed to differences in data selection and
filtering. The average 2017 similarity score is 2.2
overall and 2.3 on the track 7 English data. Prior
English data has the following average similarity
scores: 2016 2.4; 2015 2.4; 2014 2.8; 2013 3.0;
2012 3.5. Translation quality estimation data from
track 4b has an average similarity score of 4.0.

6 System Evaluation

This section reports participant evaluation results
for the SemEval-2017 STS shared task.

6.1 Participation

The task saw strong participation with 31 teams
producing 84 submissions. 17 teams provided 44
systems that participated in all tracks. Table 9 sum-
marizes participation by track. Traces of the focus
on English are seen in 12 teams participating just
in track 5, English. Two teams participated exclu-
sively in tracks 4a and 4b, English-Spanish. One
team took part solely in track 1, Arabic.
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Year Data set Pairs Source
2017 Trial 23 Mixed STS 2016
2017 MSRpar 1020 newswire
2017 MSRvid 736 videos
2017 SMTeuroparl 406 WMT eval.

Table 7: Arabic-English training data.

Year Data set Pairs Source
2017 MSRpar 1039 newswire
2017 MSRvid 749 videos
2017 SMTeuroparl 422 WMT eval.

Table 8: Arabic-English parallel data.

6.2 Evaluation Metric

Systems are evaluated on each track by their Pear-
son correlation with gold labels. The overall rank-
ing averages the correlations across tracks 1-5 with
tracks 4a and 4b individually contributing.

Track Language(s) Participants
1 Arabic 49
2 Arabic-English 45
3 Spanish 48
4a Spanish-English 53
4b Spanish-English MT 53
5 English 77
6 Turkish-English 48

Primary All except Turkish 44

Table 9: Participation by shared task track.

6.3 CodaLab

As directed by the SemEval workshop organizers,
the CodaLab research platform hosts the task.11

6.4 Baseline

The baseline is the cosine of binary sentence vec-
tors with each dimension representing whether an
individual word appears in a sentence.12 For cross-
lingual pairs, non-English sentences are translated
into English using state-of-the-art machine trans-
lation.13 The baseline achieves an average corre-
lation of 53.7 with human judgment on tracks 1-5
and would rank 23rd overall out the 44 system sub-
missions that participated in all tracks.

11https://competitions.codalab.org/
competitions/16051

12Words obtained using Arabic (ar), Spanish (es) and En-
glish (en) Treebank tokenizers.

13http://translate.google.com

6.5 Rankings

Participant performance is provided in Table 10.
ECNU is best overall (avg r: 0.7316) and achieves
the highest participant evaluation score on: track
2, Arabic-English (r: 0.7493); track 3, Spanish (r:
0.8559); and track 6, Turkish-English (r: 0.7706).
BIT attains the best performance on track 1, Arabic
(r: 0.7543). CompiLIG places first on track 4a,
SNLI Spanish-English (r: 0.8302). SEF@UHH
exhibits the best correlation on the difficult track
4b WMT quality estimation pairs (r: 0.3407). RTV
has the best system for the track 5 English data (r:
0.8547), followed closely by DT Team (r: 0.8536).

Especially challenging tracks with SNLI data
are: track 1, Arabic; track 2, Arabic-English; and
track 6, English-Turkish. Spanish-English perfor-
mance is much higher on track 4a’s SNLI data than
track 4b’s MT quality estimation data. This high-
lights the difficulty and importance of making fine
grained distinctions for certain downstream appli-
cations. Assessing STS methods for quality estima-
tion may benefit from using alternatives to Pearson
correlation for evaluation.14

Results tend to decrease on cross-lingual tracks.
The baseline drops > 10% relative on Arabic-
English and Spanish-English (SNLI) vs. mono-
lingual Arabic and Spanish. Many participant sys-
tems show smaller decreases. ECNU’s top ranking
entry performs slightly better on Arabic-English
than Arabic, with a slight drop from Spanish to
Spanish-English (SNLI).

6.6 Methods

Participating teams explore techniques ranging
from state-of-the-art deep learning models to elabo-
rate feature engineered systems. Prediction signals
include surface similarity scores such as edit dis-
tance and matching n-grams, scores derived from
word alignments across pairs, assessment by MT
evaluation metrics, estimates of conceptual simi-
larity as well as the similarity between word and
sentence level embeddings. For cross-lingual and
non-English tracks, MT was widely used to convert
the two sentences being compared into the same
language.15 Select methods are highlighted below.

14e.g., Reimers et al. (2016) report success using STS labels
with alternative metrics such as normalized Cumulative Gain
(nCG), normalized Discounted Cumulative Gain (nDCG) and
F1 to more accurately predict performance on the downstream
tasks: text reuse detection, binary classification of document
relatedness and document relatedness within a corpus.

15Within the highlighted submissions, the following use a
monolingual English system fed by MT: ECNU, BIT, HCTI
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Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
Team Primary AR-AR AR-EN SP-SP SP-EN SP-EN-WMT EN-EN EN-TR

ECNU (Tian et al., 2017) 73.16 74.40 74.93• 85.59• 81.31 33.63 85.18 77.06•
ECNU (Tian et al., 2017) 70.44 73.80 71.26 84.56 74.95 33.11 81.81 73.62
ECNU (Tian et al., 2017) 69.40 72.71 69.75 82.47 76.49 26.33 83.87 74.20
BIT (Wu et al., 2017)* 67.89 74.17 69.65 84.99 78.28 11.07 84.00 73.05
BIT (Wu et al., 2017)* 67.03 75.35 70.07 83.23 78.13 7.58 81.61 73.27
BIT (Wu et al., 2017) 66.62 75.43• 69.53 82.89 77.61 5.84 82.22 72.80
HCTI (Shao, 2017) 65.98 71.30 68.36 82.63 76.21 14.83 81.13 67.41
MITRE (Henderson et al., 2017) 65.90 72.94 67.53 82.02 78.02 15.98 80.53 64.30
MITRE (Henderson et al., 2017) 65.87 73.04 67.40 82.01 77.99 15.74 80.48 64.41
FCICU (Hassan et al., 2017) 61.90 71.58 67.82 84.84 69.26 2.54 82.72 54.52
neobility (Zhuang and Chang, 2017) 61.71 68.21 64.59 79.28 71.69 2.00 79.27 66.96
FCICU (Hassan et al., 2017) 61.66 71.58 67.81 84.89 68.54 2.14 82.80 53.90
STS-UHH (Kohail et al., 2017) 60.58 67.81 63.07 77.13 72.01 4.81 79.89 59.37
RTV 60.50 67.13 55.95 74.85 70.50 7.61 85.41 62.04
HCTI (Shao, 2017) 59.88 43.73 68.36 67.09 76.21 14.83 81.56 67.41
RTV 59.80 66.89 54.82 74.24 69.99 7.34 85.41 59.89
MatrusriIndia 59.60 68.60 54.64 76.14 71.18 5.72 77.44 63.49
STS-UHH (Kohail et al., 2017) 57.25 61.04 59.10 72.04 63.38 12.05 73.39 59.72
SEF@UHH (Duma and Menzel, 2017) 56.76 57.90 53.84 74.23 58.66 18.02 72.56 62.11
SEF@UHH (Duma and Menzel, 2017) 56.44 55.88 47.89 74.56 57.39 30.69 78.80 49.90
RTV 56.33 61.43 48.32 68.63 61.40 8.29 85.47• 60.79
SEF@UHH (Duma and Menzel, 2017) 55.28 57.74 48.13 69.79 56.60 34.07• 71.86 48.78
neobility (Zhuang and Chang, 2017) 51.95 13.69 62.59 77.92 69.30 0.44 75.56 64.18
neobility (Zhuang and Chang, 2017) 50.25 3.69 62.07 76.90 69.47 1.47 75.35 62.79
MatrusriIndia 49.75 57.03 43.40 67.86 55.63 8.57 65.79 49.94
NLPProxem 49.02 51.93 53.13 66.42 51.44 9.96 62.56 47.67
UMDeep (Barrow and Peskov, 2017) 47.92 47.53 49.39 51.65 56.15 16.09 61.74 52.93
NLPProxem 47.90 55.06 43.69 63.81 50.79 14.14 64.63 43.20
UMDeep (Barrow and Peskov, 2017) 47.73 45.87 51.99 51.48 52.32 13.00 62.22 57.25
Lump (España Bonet and Barrón-Cedeño, 2017)* 47.25 60.52 18.29 75.74 43.27 1.16 73.76 58.00
Lump (España Bonet and Barrón-Cedeño, 2017)* 47.04 55.08 13.57 76.76 48.25 11.12 72.69 51.79
Lump (España Bonet and Barrón-Cedeño, 2017)* 44.38 62.87 18.05 73.80 44.47 1.51 73.47 36.52
NLPProxem 40.70 53.27 47.73 0.16 55.06 14.40 66.81 47.46
RTM (Biçici, 2017)* 36.69 33.65 17.11 69.90 60.04 14.55 54.68 6.87
UMDeep (Barrow and Peskov, 2017) 35.21 39.05 37.13 45.88 34.82 5.86 47.27 36.44
RTM (Biçici, 2017)* 32.91 33.65 0.25 56.82 50.54 13.68 64.05 11.36
RTM (Biçici, 2017)* 32.78 41.56 13.32 48.41 45.83 23.47 56.32 0.55
ResSim (Bjerva and Östling, 2017) 31.48 28.92 10.45 66.13 23.89 3.05 69.06 18.84
ResSim (Bjerva and Östling, 2017) 29.38 31.20 12.88 69.20 10.02 1.62 68.77 11.95
ResSim (Bjerva and Östling, 2017) 21.45 0.33 10.98 54.65 22.62 1.99 50.57 9.02
LIPN-IIMAS (Arroyo-Fernández and Meza Ruiz, 2017) 10.67 4.71 7.69 15.27 17.19 14.46 7.38 8.00
LIPN-IIMAS (Arroyo-Fernández and Meza Ruiz, 2017) 9.26 2.14 12.92 4.58 1.20 1.91 20.38 21.68
hjpwhu 4.80 4.12 6.39 6.17 2.04 6.24 1.14 7.53
hjpwhu 2.94 4.77 2.04 7.63 0.46 2.57 0.69 2.46
compiLIG (Ferrero et al., 2017) 83.02• 15.50
compiLIG (Ferrero et al., 2017) 76.84 14.64
compiLIG (Ferrero et al., 2017) 79.10 14.94
DT TEAM (Maharjan et al., 2017) 85.36
DT TEAM (Maharjan et al., 2017) 83.60
DT TEAM (Maharjan et al., 2017) 83.29
FCICU (Hassan et al., 2017) 82.17
ITNLPAiKF (Liu et al., 2017) 82.31
ITNLPAiKF (Liu et al., 2017) 82.31
ITNLPAiKF (Liu et al., 2017) 81.59
L2F/INESC-ID (Fialho et al., 2017)* 76.16 1.91 5.44 78.11 2.93
L2F/INESC-ID (Fialho et al., 2017) 69.52
L2F/INESC-ID (Fialho et al., 2017)* 63.85 15.61 5.24 66.61 3.56
LIM-LIG (Nagoudi et al., 2017) 74.63
LIM-LIG (Nagoudi et al., 2017) 73.09
LIM-LIG (Nagoudi et al., 2017) 59.57
MatrusriIndia 68.60 76.14 71.18 5.72 77.44 63.49
NRC* 42.25 0.23
NRC 28.08 11.33
OkadaNaoya 77.04
OPI-JSA (Śpiewak et al., 2017) 78.50
OPI-JSA (Śpiewak et al., 2017) 73.42
OPI-JSA (Śpiewak et al., 2017) 67.96
PurdueNLP (Lee et al., 2017) 79.28
PurdueNLP (Lee et al., 2017) 55.35
PurdueNLP (Lee et al., 2017) 53.11
QLUT (Meng et al., 2017)* 64.33
QLUT (Meng et al., 2017) 61.55
QLUT (Meng et al., 2017)* 49.24
SIGMA 80.47
SIGMA 80.08
SIGMA 79.12
SIGMA PKU 2 81.34
SIGMA PKU 2 81.27
SIGMA PKU 2 80.61
STS-UHH (Kohail et al., 2017) 80.93
UCSC-NLP 77.29
UdL (Al-Natsheh et al., 2017) 80.04
UdL (Al-Natsheh et al., 2017)* 79.01
UdL (Al-Natsheh et al., 2017) 78.05

cosine baseline 53.70 60.45 51.55 71.17 62.20 3.20 72.78 54.56
* Corrected or late submission

Table 10: STS 2017 rankings ordered by average correlation across tracks 1-5. Performance is reported
by convention as Pearson’s r × 100. For tracks 1-6, the top ranking result is marked with a • symbol
and results in bold have no statistically significant difference with the best result on a track, p > 0.05
Williams’ t-test (Diedenhofen and Musch, 2015).
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ECNU (Tian et al., 2017) The best overall sys-
tem is from ENCU and ensembles well perform-
ing a feature engineered models with deep learn-
ing methods. Three feature engineered models
use Random Forest (RF), Gradient Boosting (GB)
and XGBoost (XGB) regression methods with fea-
tures based on: n-gram overlap; edit distance;
longest common prefix/suffix/substring; tree ker-
nels (Moschitti, 2006); word alignments (Sul-
tan et al., 2015); summarization and MT evalua-
tion metrics (BLEU, GTM-3, NIST, WER, ME-
TEOR, ROUGE); and kernel similarity of bags-
of-words, bags-of-dependencies and pooled word-
embeddings. ECNU’s deep learning models are
differentiated by their approach to sentence em-
beddings using either: averaged word embeddings,
projected word embeddings, a deep averaging net-
work (DAN) (Iyyer et al., 2015) or LSTM (Hochre-
iter and Schmidhuber, 1997). Each network feeds
the element-wise multiplication, subtraction and
concatenation of paired sentence embeddings to
additional layers to predict similarity scores. The
ensemble averages scores from the four deep learn-
ing and three feature engineered models.16

BIT (Wu et al., 2017) Second place overall is
achieved by BIT primarily using sentence informa-
tion content (IC) informed by WordNet and BNC
word frequencies. One submission uses sentence
IC exclusively. Another ensembles IC with Sul-
tan et al. (2015)’s alignment method, while a third
ensembles IC with cosine similarity of summed
word embeddings with an IDF weighting scheme.
Sentence IC in isolation outperforms all systems
except those from ECNU. Combining sentence IC
with word embedding similarity performs best.

HCTI (Shao, 2017) Third place overall is ob-
tained by HCTI with a model similar to a convolu-
tional Deep Structured Semantic Model (CDSSM)
(Chen et al., 2015; Huang et al., 2013). Sentence
embeddings are generated with twin convolutional
neural networks (CNNs). The embeddings are then
compared using cosine similarity and element wise
difference with the resulting values fed to addi-
tional layers to predict similarity labels. The archi-

and MITRE. HCTI submitted a separate run using ar, es and
en trained models that underperformed using their en model
with MT for ar and es. CompiLIG’s model is cross-lingual
but includes a word alignment feature that depends on MT.
SEF@UHH built ar, es, and en models and use bi-directional
MT for cross-lingual pairs. LIM-LIG and DT Team only par-
ticipate in monolingual tracks.

16The two remaining ECNU runs only use either RF or GB
and exclude the deep learning models.

tecture is abstractly similar to ECNU’s deep learn-
ing models. UMDeep (Barrow and Peskov, 2017)
took a similar approach using LSTMs rather than
CNNs for the sentence embeddings.

MITRE (Henderson et al., 2017) Fourth place
overall is MITRE that, like ECNU, takes an ambi-
tious feature engineering approach complemented
by deep learning. Ensembled components in-
clude: alignment similarity; TakeLab STS (Šarić
et al., 2012b); string similarity measures such as
matching n-grams, summarization and MT metrics
(BLEU, WER, PER, ROUGE); a RNN and recur-
rent convolutional neural networks (RCNN) over
word alignments; and a BiLSTM that is state-of-
the-art for textual entailment (Chen et al., 2016).

FCICU (Hassan et al., 2017) Fifth place overall
is FCICU that computes a sense-base alignment us-
ing BabelNet (Navigli and Ponzetto, 2010). Babel-
Net synsets are multilingual allowing non-English
and cross-lingual pairs to be processed similarly to
English pairs. Alignment similarity scores are used
with two runs: one that combines the scores within
a string kernel and another that uses them with a
weighted variant of Sultan et al. (2015)’s method.
Both runs average the Babelnet based scores with
soft-cardinality (Jimenez et al., 2012b).

CompiLIG (Ferrero et al., 2017) The best
Spanish-English performance on SNLI sentences
was achieved by CompiLIG using features in-
cluding: cross-lingual conceptual similarity using
DBNary (Serasset, 2015), cross-language Multi-
Vec word embeddings (Berard et al., 2016), and
Brychcin and Svoboda (2016)’s improvements to
Sultan et al. (2015)’s method.

LIM-LIG (Nagoudi et al., 2017) Using only
weighted word embeddings, LIM-LIG took sec-
ond place on Arabic.17 Arabic word embeddings
are summed into sentence embeddings using uni-
form, POS and IDF weighting schemes. Sentence
similarity is computed by cosine similarity. POS
and IDF outperform uniform weighting. Combin-
ing the IDF and POS weights by multiplication is
reported by LIM-LIG to achieve r 0.7667, higher
than all submitted Arabic (track 1) systems.

DT Team (Maharjan et al., 2017) Second place
on English (track 5)18 is DT Team using feature en-

17The approach is similar to SIF (Arora et al., 2017) but
without removal of the common principle component

18RTV took first place on track 5, English, but submitted
no system description paper.
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Genre Train Dev Test Total
news 3299 500 500 4299
caption 2000 625 525 3250
forum 450 375 254 1079
total 5749 1500 1379 8628

Table 11: STS Benchmark annotated examples
by genres (rows) and by train, dev. test splits
(columns).

gineering combined with the following deep learn-
ing models: DSSM (Huang et al., 2013), CDSSM
(Shen et al., 2014) and skip-thoughts (Kiros et al.,
2015). Engineered features include: unigram over-
lap, summed word alignments scores, fraction of
unaligned words, difference in word counts by type
(all, adj, adverbs, nouns, verbs), and min to max
ratios of words by type. Select features have a mul-
tiplicative penalty for unaligned words.

SEF@UHH (Duma and Menzel, 2017) First
place on the challenging Spanish-English MT pairs
(Track 4b) is SEF@UHH. Unsupervised similar-
ity scores are computed from paragraph vectors
(Le and Mikolov, 2014) using cosine, negation
of Bray-Curtis dissimilarity and vector correlation.
MT converts cross-lingual pairs, L1-L2, into two
monolingual pairs, L1-L1 and L2-L2, with aver-
aging used to combine the monolingual similarity
scores. Bray-Curtis performs well overall, while
cosine does best on the Spanish-English MT pairs.

7 Analysis

Figure 1 plots model similarity scores against hu-
man STS labels for the top 5 systems from tracks
5 (English), 1 (Arabic) and 4b (English-Spanish
MT). While many systems return scores on the
same scale as the gold labels, 0-5, others return
scores from approximately 0 and 1. Lines on the
graphs illustrate perfect performance for both a 0-5
and a 0-1 scale. Mapping the 0 to 1 scores to range
from 0-5,20 approximately 80% of the scores from
top performing English systems are within 1.0 pt of
the gold label. Errors for Arabic are more broadly
distributed, particularly for model scores between
1 and 4. The English-Spanish MT plots the weak
relationship between the predicted and gold scores.

Table 12 provides examples of difficult sentence
pairs for participant systems and illustrates com-
mon sources of error for even well-ranking systems
including: (i) word sense disambiguation “making”

19ECNU, BIT and LIM-LIG are scaled to the range 0-5.
20snew = 5× s−min(s)

max(s)−min(s)
is used to rescale scores.

and “preparing” are very similar in the context of
“food”, while “picture” and “movie” are not similar
when picture is followed by “day”; (ii) attribute
importance “outside” vs. “deserted” are smaller
details when contrasting “The man is in a deserted
field” with “The man is outside in the field”; (iii)
compositional meaning “A man is carrying a ca-
noe with a dog” has the same content words as
“A dog is carrying a man in a canoe” but carries
a different meaning; (iv) negation systems score
“. . . with goggles and a swimming cap” as nearly
equivalent to “. . . without goggles or a swimming
cap”. Inflated similarity scores for examples like
“There is a young girl” vs. “There is a young boy
with the woman” demonstrate (v) semantic blend-
ing, whereby appending “with a woman” to “boy”
brings its representation closer to that of “girl”.

For multilingual and cross-lingual pairs, these is-
sues are magnified by translation errors for systems
that use MT followed by the application of a mono-
lingual similarity model. For track 4b Spanish-
English MT pairs, some of the poor performance
can in part be attributed to many systems using MT
to re-translate the output of another MT system, ob-
scuring errors in the original translation.

7.1 Contrasting Cross-lingual STS with MT
Quality Estimation

Since MT quality estimation pairs are translations
of the same sentence, they are expected to be min-
imally on the same topic and have an STS score
≥ 1.21 The actual distribution of STS scores is
such that only 13% of the test instances score be-
low 3, 22% of the instances score 3, 12% score 4
and 53% score 5. The high STS scores indicate
that MT systems are surprisingly good at preserv-
ing meaning. However, even for a human, inter-
preting changes caused by translations errors can
be difficult due both to disfluencies and subtle er-
rors with important changes in meaning.

The Pearson correlation between the gold MT
quality scores and the gold STS scores is 0.41,
which shows that translation quality measures and
STS are only moderately correlated. Differences
are in part explained by translation quality scores
penalizing all mismatches between the source seg-
ment and its translation, whereas STS focuses on
differences in meaning. However, the difficult in-
terpretation work required for STS annotation may

21The evaluation data for track 4b does in fact have STS
scores that are≥ 1 for all pairs. In the 1,000 sentence training
set for this track, one sentence that received a score of zero.
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(c) Track 4b: English-Spanish MT

Figure 1: Model vs. human similarity scores for top systems.

Pairs Human DT Team ECNU BIT FCICU ITNLP-AiKF
There is a cook preparing food. 5.0 4.1 4.1 3.7 3.9 4.5
A cook is making food.
The man is in a deserted field. 4.0 3.0 3.1 3.6 3.1 2.8
The man is outside in the field.
A girl in water without goggles or a swimming cap. 3.0 4.8 4.6 4.0 4.7 0.1
A girl in water, with goggles and swimming cap.
A man is carrying a canoe with a dog. 1.8 3.2 4.7 4.9 5.0 4.6
A dog is carrying a man in a canoe.
There is a young girl. 1.0 2.6 3.3 3.9 1.9 3.1
There is a young boy with the woman.
The kids are at the theater watching a movie. 0.2 1.0 2.3 2.0 0.8 1.7
it is picture day for the boys

Table 12: Difficult English sentence pairs (Track 5) and scores assigned by top performing systems.19

Genre File Yr. Train Dev Test
news MSRpar 12 1000 250 250
news headlines 13/6 1999 250 250
news deft-news 14 300 0 0
captions MSRvid 12 1000 250 250
captions images 14/5 1000 250 250
captions track5.en-en 17 0 125 125
forum deft-forum 14 450 0 0
forum ans-forums 15 0 375 0
forum ans-ans 16 0 0 254

Table 13: STS Benchmark detailed break-down by
files and years.

increase the risk of inconsistent and subjective la-
bels. The annotations for MT quality estimation
are produced as by-product of post-editing. Hu-
mans fix MT output and the edit distance between
the output and its post-edited correction provides
the quality score. This post-editing based proce-
dure is known to produce relatively consistent esti-
mates across annotators.

8 STS Benchmark

The STS Benchmark is a careful selection of the
English data sets used in SemEval and *SEM STS
shared tasks between 2012 and 2017. Tables 11
and 13 provide details on the composition of the
benchmark. The data is partitioned into training,

development and test sets.22 The development set
can be used to design new models and tune hy-
perparameters. The test set should be used spar-
ingly and only after a model design and hyperpa-
rameters have been locked against further changes.
Using the STS Benchmark enables comparable as-
sessments across different research efforts and im-
proved tracking of the state-of-the-art.

Table 14 shows the STS Benchmark results for
some of the best systems from Track 5 (EN-EN)23

and compares their performance to competitive
baselines from the literature. All baselines were
run by the organizers using canonical pre-trained
models made available by the originator of each
method,24 with the exception of PV-DBOW that

22Similar to the STS shared task, while the training set
is provided as a convenience, researchers are encourage to
incorporate other supervised and unsupervised data as long as
no supervised annotations of the test partitions are used.

23Each participant submitted the run which did best in the
development set of the STS Benchmark, which happened to
be the same as their best run in Track 5 in all cases.

24sent2vec: https://github.com/epfml/
sent2vec, trained model sent2vec twitter unigrams;
SIF: https://github.com/epfml/sent2vec
Wikipedia trained word frequencies enwiki vocab min200.txt,
https://github.com/alexandres/lexvec em-
beddings from lexvec.commoncrawl.300d.W+C.pos.vectors,
first 15 principle components removed, α = 0.001, dev
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STS 2017 Participants on STS Benchmark
Name Description Dev Test
ECNU Ensemble (Tian et al., 2017) 84.7 81.0
BIT WordNet+Embeddings (Wu et al., 2017) 82.9 80.9
DT TEAM Ensemble (Maharjan et al., 2017) 83.0 79.2
HCTI CNN (Shao, 2017) 83.4 78.4
SEF@UHH Doc2Vec (Duma and Menzel, 2017) 61.6 59.2

Sentence Level Baselines
sent2vec Sentence spanning CBOW with words & bigrams (Pagliardini et al., 2017) 78.7 75.5
SIF Word embedding weighting & principle component removal (Arora et al., 2017) 80.1 72.0
InferSent Sentence embedding from bi-directional LSTM trained on SNLI (Conneau et al., 2017) 80.1 75.8
C-PHRASE Prediction of syntactic constituent context words (Pham et al., 2015) 74.3 63.9
PV-DBOW Paragraph vectors, Doc2Vec DBOW (Le and Mikolov, 2014; Lau and Baldwin, 2016) 72.2 64.9

Averaged Word Embedding Baselines
LexVec Weighted matrix factorization of PPMI (Salle et al., 2016a,b) 68.9 55.8
FastText Skip-gram with sub-word character n-grams (Joulin et al., 2016) 65.3 53.6
Paragram Paraphrase Database (PPDB) fit word embeddings (Wieting et al., 2015) 63.0 50.1
GloVe Word co-occurrence count fit embeddings (Pennington et al., 2014) 52.4 40.6
Word2vec Skip-gram prediction of words in a context window (Mikolov et al., 2013a,b) 70.0 56.5

Table 14: STS Benchmark. Pearson’s r × 100 results for select participants and baseline models.

uses the model from Lau and Baldwin (2016)
and InferSent which was reported independently.
When multiple pre-trained models are available for
a method, we report results for the one with the
best dev set performance. For each method, input
sentences are preprocessed to closely match the
tokenization of the pre-trained models.25 Default

experiments varied α, principle components removed and
whether GloVe, LexVec, or Word2Vec word embeddings
were used; C-PHRASE: http://clic.cimec.unitn.
it/composes/cphrase-vectors.html; PV-
DBOW: https://github.com/jhlau/doc2vec,
A P - N E W S trained apnews dbow.tgz; LexVec: https:
//github.com/alexandres/lexvec, embedddings
lexvec.commoncrawl.300d.W.pos.vectors.gz; FastText:
https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md, Wikipedia trained embeddings from wiki.en.vec; Para-
gram: http://ttic.uchicago.edu/˜wieting/,
embeddings trained on PPDB and tuned to WS353 from
Paragram-WS353; GloVe: https://nlp.stanford.
edu/projects/glove/, Wikipedia and Gigaword
trained 300 dim. embeddings from glove.6B.zip;
Word2vec: https://code.google.com/archive/
p/word2vec/, Google News trained embeddings from
GoogleNews-vectors-negative300.bin.gz.

25sent2vec: results shown here tokenized by tweetTok-
enize.py constrasting dev experiments used wikiTokenize.py,
both distributed with sent2vec. LexVec: numbers were con-
verted into words, all punctuation was removed, and text
is lowercased; FastText: Since, to our knowledge, the tok-
enizer and preprocessing used for the pre-trained FastText
embeddings is not publicly described. We use the follow-
ing heuristics to preprocess and tokenize sentences for Fast-
Text: numbers are converted into words, text is lowercased,
and finally prefixed, suffixed and infixed punctuation is re-
cursively removed from each token that does not match an
entry in the model’s lexicon; Paragram: Joshua (Matt Post,
2015) pipeline to pre-process and tokenized English text; C-
PHRASE, GloVe, PV-DBOW & SIF: PTB tokenization pro-
vided by Stanford CoreNLP (Manning et al., 2014) with post-
processing based on dev OOVs; Word2vec: Similar to Fast-

inference hyperparameters are used unless noted
otherwise. The averaged word embedding base-
lines compute a sentence embedding by averaging
word embeddings and then using cosine to com-
pute pairwise sentence similarity scores.

While state-of-the-art baselines for obtaining
sentence embeddings perform reasonably well on
the benchmark data, improved performance is ob-
tained by top 2017 STS shared task systems. There
is still substantial room for further improvement.
To follow the current state-of-the-art, visit the
leaderboard on the STS wiki.26

9 Conclusion
We have presented the results of the 2017 STS
shared task. This year’s shared task differed sub-
stantially from previous iterations of STS in that
the primary emphasis of the task shifted from
English to multilingual and cross-lingual STS in-
volving four different languages: Arabic, Spanish,
English and Turkish. Even with this substantial
change relative to prior evaluations, the shared task
obtained strong participation. 31 teams produced
84 system submissions with 17 teams producing
a total of 44 system submissions that processed
pairs in all of the STS 2017 languages. For lan-
guages that were part of prior STS evaluations

Text, to our knownledge, the preprocessing for the pre-trained
Word2vec embeddings is not publicly described. We use the
following heuristics for the Word2vec experiment: All num-
bers longer than a single digit are converted into a ‘#’ (e.g.,
24→ ##) then prefixed, suffixed and infixed punctuation is
recursively removed from each token that does not match an
entry in the model’s lexicon.

26http://ixa2.si.ehu.es/stswiki/index.
php/STSbenchmark
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(e.g., English and Spanish), state-of-the-art sys-
tems are able to achieve strong correlations with
human judgment. However, we obtain weaker
correlations from participating systems for Ara-
bic, Arabic-English and Turkish-English. This
suggests further research is necessary in order to
develop robust models that can both be readily
applied to new languages and perform well even
when less supervised training data is available. To
provide a standard benchmark for English STS, we
present the STS Benchmark, a careful selection
of the English data sets from previous STS tasks
(2012-2017). To assist in interpreting the results
from new models, a number of competitive base-
lines and select participant systems are evaluated
on the benchmark data. Ongoing improvements
to the current state-of-the-art is available from an
online leaderboard.
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2014. Findings of the 2014 workshop on statisti-
cal machine translation. In Proceedings of WMT
2014. http://www.aclweb.org/anthology/W/W14/W14-
3302.pdf.

11
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Jérémy Ferrero, Laurent Besacier, Didier Schwab, and
Frédéric Agnès. 2017. CompiLIG at SemEval-2017 Task
1: Cross-language plagiarism detection methods for seman-
tic textual similarity. In Proceedings of SemEval-2017.
http://www.aclweb.org/anthology/S17-2012.

Pedro Fialho, Hugo Patinho Rodrigues, Luı́sa Coheur, and
Paulo Quaresma. 2017. L2f/inesc-id at semeval-2017
tasks 1 and 2: Lexical and semantic features in word
and textual similarity. In Proceedings of SemEval-2017.
http://www.aclweb.org/anthology/S17-2032.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of NAACL/HLT 2013.
http://cs.jhu.edu/ ccb/publications/ppdb.pdf.

Basma Hassan, Samir AbdelRahman, Reem Bahgat, and
Ibrahim Farag. 2017. FCICU at SemEval-2017 Task
1: Sense-based language independent semantic textual
similarity approach. In Proceedings of SemEval-2017.
http://www.aclweb.org/anthology/S17-2015.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with convolu-
tional neural networks. In Proceedings of EMNLP. pages
1576–1586. http://aclweb.org/anthology/D15-1181.

Hua He and Jimmy Lin. 2016. Pairwise word interaction
modeling with deep neural networks for semantic sim-
ilarity measurement. In Proceedings of NAACL/HLT .
http://www.aclweb.org/anthology/N16-1108.

Hua He, John Wieting, Kevin Gimpel, Jinfeng Rao, and
Jimmy Lin. 2016. UMD-TTIC-UW at SemEval-
2016 Task 1: Attention-based multi-perspective
convolutional neural networks for textual similar-
ity measurement. In Proceedings of SemEval 2016.
http://www.anthology.aclweb.org/S/S16/S16-1170.pdf.

John Henderson, Elizabeth Merkhofer, Laura Strickhart, and
Guido Zarrella. 2017. MITRE at SemEval-2017 Task 1:
Simple semantic similarity. In Proceedings of SemEval-
2017. http://www.aclweb.org/anthology/S17-2027.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences from
unlabelled data. In Proceedings of NAACL/HLT .
http://www.aclweb.org/anthology/N16-1162.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–1780.
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes: The
90% solution. In Proceedings of NAACL/HLT 2006.
http://aclweb.org/anthology/N/N06/N06-2015.pdf.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex
Acero, and Larry Heck. 2013. Learning deep structured
semantic models for web search using clickthrough data.
In Proceedings of CIKM. https://www.microsoft.com/en-
us/research/publication/learning-deep-structured-
semantic-models-for-web-search-using-clickthrough-
data/.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and
Hal Daumé III. 2015. Deep unordered composition rivals
syntactic methods for text classification. In Proceedings
of ACL/IJCNLP. http://www.aclweb.org/anthology/P15-
1162.

12



Sergio Jimenez, Claudia Becerra, and Alexander Gelbukh.
2012a. Soft cardinality: A parameterized similarity func-
tion for text comparison. In Proceedings of *SEM 2012/Se-
mEval 2012. http://www.aclweb.org/anthology/S12-1061.

Sergio Jimenez, Claudia Becerra, and Alexander Gelbukh.
2012b. Soft Cardinality: A parameterized similarity func-
tion for text comparison. In Proceedings of *SEM 2012/Se-
mEval 2012. http://aclweb.org/anthology/S/S12/S12-
1061.pdf.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for ef-
ficient text classification. CoRR abs/1607.01759.
http://arxiv.org/abs/1607.01759.

Tom Kenter, Alexey Borisov, and Maarten de Rijke.
2016. Siamese cbow: Optimizing word embeddings
for sentence representations. In Proceedings of ACL.
http://www.aclweb.org/anthology/P16-1089.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S.
Zemel, Antonio Torralba, Raquel Urtasun, and Sanja Fi-
dler. 2015. Skip-thought vectors. CoRR abs/1506.06726.
http://arxiv.org/abs/1506.06726.

Sarah Kohail, Amr Rekaby Salama, and Chris Biemann.
2017. STS-UHH at SemEval-2017 Task 1: Scoring
semantic textual similarity using supervised and unsu-
pervised ensemble. In Proceedings of SemEval-2017.
http://www.aclweb.org/anthology/S17-2025.

Jey Han Lau and Timothy Baldwin. 2016. An em-
pirical evaluation of doc2vec with practical insights
into document embedding generation. In Proceed-
ings of ACL Workshop on Representation Learning for
NLP. http://www.aclweb.org/anthology/W/W16/W16-
1609.pdf.

Quoc V. Le and Tomas Mikolov. 2014. Distributed represen-
tations of sentences and documents. CoRR abs/1405.4053.
http://arxiv.org/abs/1405.4053.

I-Ta Lee, Mahak Goindani, Chang Li, Di Jin, Kristen Marie
Johnson, Xiao Zhang, Maria Leonor Pacheco, and Dan
Goldwasser. 2017. PurdueNLP at SemEval-2017 Task
1: Predicting semantic textual similarity with paraphrase
and event embeddings. In Proceedings of SemEval-2017.
http://www.aclweb.org/anthology/S17-2029.

Wenjie Liu, Chengjie Sun, Lei Lin, and Bingquan
Liu. 2017. ITNLP-AiKF at SemEval-2017 Task 1:
Rich features based svr for semantic textual simi-
larity computing. In Proceedings of SemEval-2017.
http://www.aclweb.org/anthology/S17-2022.

Nabin Maharjan, Rajendra Banjade, Dipesh Gautam,
Lasang J. Tamang, and Vasile Rus. 2017. Dt team at
semeval-2017 task 1: Semantic similarity using align-
ments, sentence-level embeddings and gaussian mix-
ture model output. In Proceedings of SemEval-2017.
http://www.aclweb.org/anthology/S17-2014.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language process-
ing toolkit. In Proceedings of ACL 2014 Demonstrations.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation
of compositional distributional semantic models.
In Proceedings of LREC 14. http://www.lrec-
conf.org/proceedings/lrec2014/pdf/363 Paper.pdf.

Yuan Cao Gaurav Kumar Matt Post. 2015. Joshua 6: A
phrase-based and hierarchical statistical machine transla-
tion. The Prague Bulletin of Mathematical Linguistics
104:516. https://ufal.mff.cuni.cz/pbml/104/art-post-cao-
kumar.pdf.

Fanqing Meng, Wenpeng Lu, Yuteng Zhang, Jinyong Cheng,
Yuehan Du, and Shuwang Han. 2017. QLUT at SemEval-
2017 Task 1: Semantic textual similarity based on
word embeddings. In Proceedings of SemEval-2017.
http://www.aclweb.org/anthology/S17-2020.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. 2013b. Distributed representations of
words and phrases and their compositionality. In Pro-
ceedings of NIPS 2013. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-and-
their-compositionality.pdf.

George A. Miller. 1995. WordNet: A lexical
database for english. Commun. ACM 38(11):39–41.
https://doi.org/10.1145/219717.219748.

Alessandro Moschitti. 2006. Efficient convolution kernels for
dependency and constituent syntactic trees. In Proceed-
ings of ECML’06. http://dx.doi.org/10.1007/11871842 32.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017. Rep-
resenting sentences as low-rank subspaces. CoRR
abs/1704.05358. http://arxiv.org/abs/1704.05358.

El Moatez Billah Nagoudi, Jérémy Ferrero, and Didier
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