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the biogenesis of multiprotein complexes
in Saccharomyces cerevisiae

Annie Glatigny1, Philippe Gambette2, Alexa Bourand-Plantefol1, Geneviève Dujardin1

and Marie-Hélène Mucchielli-Giorgi1,3*
Abstract

Background: Large sets of protein-protein interaction data coming either from biological experiments or predictive
methods are available and can be combined to construct networks from which information about various cell
processes can be extracted. We have developed an in silico approach based on these information to model the
biogenesis of multiprotein complexes in the yeast Saccharomyces cerevisiae.

Results: Firstly, we have built three protein interaction networks by collecting the protein-protein interactions,
which involved the subunits of three complexes, from different databases. The protein-protein interactions come
from different kinds of biological experiments or are predicted. We have chosen the elongator and the mediator head
complexes that are soluble and exhibit an architecture with subcomplexes that could be functional modules, and the
mitochondrial bc1 complex, which is an integral membrane complex and for which a late assembly subcomplex has
been described. Secondly, by applying a clustering strategy to these networks, we were able to identify subcomplexes
involved in the biogenesis of the complexes as well as the proteins interacting with each subcomplex. Thirdly, in order
to validate our in silico results for the cytochrome bc1 complex we have analysed the physical interactions existing
between three subunits by performing immunoprecipitation experiments in several genetic context.

Conclusions: For the two soluble complexes (the elongator and mediator head), our model shows a strong clustering
of subunits that belong to a known subcomplex or module. For the membrane bc1 complex, our approach has
suggested new interactions between subunits in the early steps of the assembly pathway that were experimentally
confirmed. Scripts can be downloaded from the site: http://bim.igmors.u-psud.fr/isips.

Keywords: Protein-protein interactions, PPI network, Graph clustering, Protein complex, Subcomplex,
Complex assembly
Background
In silico approaches based on large sets of protein-
protein interaction data coming from biological experi-
ments can be used to construct protein-protein
interaction networks to model the biogenesis steps of
* Correspondence: marie-helene.mucchielli@i2bc.paris-saclay.fr
1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris
Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette,
France
3Sorbonne Universités, UPMC Univ Paris 06, UFR927, F-75005 Paris, France
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
multiprotein complexes in the yeast Saccharomyces
cerevisiae.
Protein-protein interaction (PPI) networks are built

from data coming from several methods but mainly from
two-hybrid screens or affinity purification followed by
mass spectrometry (for examples see [1–4]). The PPI def-
inition and concepts related to experiments data, as well
as the advantages and limitations of the strategies used to
identify and characterize PPI are described in [5, 6]. The
comparison of large-scale data sets and the different kinds
of biases introduced during the experiments is presented
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respectively in [7, 8]. Proteomic experiments often provide
incomplete datasets due to the difficulty for detecting
some PPI and to the asymmetry of the some experimental
assays. To compensate for these missing data, predicted
information that combined structural and non-structural
information can be added [9].
All PPI involved in a same biological process can be

depicted as a network or graph, where each protein is a
node and each interaction an edge between two nodes.
Most of these networks are too large to be understand-
able. Biological information can be then extracted by the
means of visualisation tools for the basis of the network
representation [10, 11] and by using network analysis
tools and clustering algorithms. From PPI interaction
networks obtained by integration of information coming
from different sources [12, 13] (PPI, literature, expres-
sion, evolution, genomic context), functional modules
can be identified [14–16] and complexes can be
predicted [15, 17–21]. To model the assembly of a
complex, it is not relevant to add genetic information as
they reflect functional relationships between proteins
and not structural interactions.
By taking into account these elements, we developed a

strategy that uses protein interaction networks to iden-
tify subcomplexes. By querying different databases, we
built a non-redundant and un-weighted protein
interaction network for each complex. This network is
composed of interactions between all single proteins of
the complex, named protein subunits, and proteins
interacting with any of them. During the biogenesis,
protein subunits assemble together to compose subcom-
plexes that are intermediaries of the entire complex. To
identify them, we apply a clustering strategy that groups
the subunits having the most interactors in common in
the network. The method also allows the identification
of proteins potentially involved in the complex biogen-
esis. It is applicable to any protein complexes even those
for which the 3D structure is not yet available. However,
the validation of the in silico model requires the 3D
structure of the complex.
We first tested our in silico method on two cytoplas-

mic complexes, the elongator Elp complex [22–24] and
the mediator head complex [25–28]. For both com-
plexes, 3D structures are available and the organization
of their subunits into subcomplexes is well known. We
also tested our method on the bc1 complex of the
respiratory chain because it is located in the inner
mitochondrial membrane and moreover one of its
subunits is encoded by the mitochondrial genome. The
3D structure of the bc1 complex has been determined
[29] and several models of the assembly process have
been proposed [30–32]. The interactions between
subunits involved in the early steps of our in silico
model of the bc1 complex were experimentally tested.
Results and discussion
ISIPS a new in silico approach to identify the
subcomplexes of a multiprotein complex
To identify the subcomplexes involved in the biogen-
esis of a multiprotein complex, we developed ISIPS
(In Silico Identification of Protein Subcomplexes), a
new approach that identifies subcomplexes, i.e. sets
of subunits. The method is based on the assumption
that subunits belonging to the same subcomplex
interact with the same proteins during the dynamic
of assembly. Therefore, in the PPI network, subunits
of a subcomplex have more interactors in common
than with the other subunits of the complex. These
interactors are not only proteins specific of the com-
plex assembly process since some of protein interac-
tions are promiscuous. The workflow of the R script
of ISIPS is discribed in Fig. 1. Starting from the list
of the subunits which are the components of the
studied complex (listed in the input file) and from
databases containing all the experimental and pre-
dicted PPI of Saccharomyces cerevisiae (see Methods),
the first step of ISIPS consists of the identification of
proteins interacting with the subunits of the com-
plex. The second step of ISIPS consists of an aggre-
gative clustering of the subunits or subcomplexes of
the complex based on the PPI network built in the
first step. The principle of the clustering is to pro-
gressively aggregate the subunits or the subcomplexes
having the most interactors in common. The formula
of the distance allowing the aggregation of subunits
or subcomplexes and the details on the clustering
algorithm are given in the Methods section; the re-
sult of the clustering is depicted by a tree. For each
subcomplex, the list of proteins interacting with all
its members is provided. An illustration of the
agglomerative clustering approach is given for an
artificial network in Fig. 2.

Characteristics of the network
Our method was applied to three multiprotein com-
plexes of Saccharomyces cerevisiae that are composed
of subcomplexes or functional modules whose subunit
compositions are known: the elongator complex (Elp
complex), the mediator head complex and the bc1com-
plex of the respiratory chain. The list of the subunits
of each of these complexes is given in Table 1. From
this list, our script ISIPS.R generates the network of
the protein interactions of each complex. These PPI
are experimental or predicted physical interactions
(see Methods) and self interactions of a protein are
removed.
The network of the Elp complex that is composed

of six subunits (Elp1 to Elp6) contained 116 proteins
and 197 interactions. The seven subunits of mediator
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Fig. 1 Computational workflow. An overview of the functions and facilities of the script
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head (Med6, Med8, Med11, Med17, Med18, Med20,
Med22) [28] belong to a network composed of 452
proteins and 802 interactions. The network obtained for
the bc1 complex that is composed of ten subunits (Cob,
Cor1, Cyt1, Qcr2, Qcr6, Qcr7, Qcr8, Qcr9, Qcr10, Rip1)
contains 249 proteins and 522 interactions.
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Fig. 2 Example of the agglomerative clustering of a PPI network. Panel a T
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Identification of the subcomplexes
The results of ISIPS on the identification of the tested
subcomplexes presented above are very satisfying. Elp
complex is known to be composed of two modules,
{Elp1, Elp2, Elp3} and {Elp4, Elp5 and Elp6}; this second
module is known to form a dimer that makes a
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he initial protein interaction network where nodes represent proteins
ance is highlighted in black. It is composed of five subunits: squares in
b The network after the first round of clustering, its associated



Table 1 Number of interactions for each subunit of the complexes

Elp sub-unit Extra PPI Total PPI Mediator HEAD sub-unit Extra PPI Total PPI bc1 sub-unit Extra PPI Total PPI

Elp1 2 68 Med6 37 75 Cob 11 26

Elp2 14 52 Med8 28 66 Cor1 9 150

Elp3 3 35 Med11 28 49 Qcr2 12 91

Elp4 1 20 Med17 60 204 Cyt1 13 40

Elp5 1 21 Med18 68 124 Qcr6 28 45

Elp6 0 16 Med20 102 153 Qcr7 30 58

Med22 112 152 Qcr8 19 38

Qcr9 26 41

Qcr10 14 26

Rip1 28 50

extra PPI are added by using PrePPI database
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hexameric ATPase [23]. Our script leads to a hier-
archical tree with two groups of three subunits that
correspond to the two functional modules (Fig. 3).
Moreover, in this tree, the subunit Elp2 is separated
from the subcomplex Elp1-Elp3, as showed in [23].
For the mediator head module, the result of ISIPS is

also in broad agreement with the subcomplexes identi-
fied biologically [26, 27]. In our model, Med20 is found
alone. This result is consistent with the 3D structure of
the complex (Fig. 4b) where: Med20 is the most exter-
nal protein. Med17 and Med22 form a subcomplex, as
it has been identified in in-vitro experiments [26],
together with Med11, which in our in silico model is
found along the subunit Med8. Cross-linking experi-
ments [28] showed that Med11 interacts with Med8,
Med22 and Med17. We find a subcomplex composed
of Med11 and Med8, probably because these two
subunits are buried inside the complex and they have a
small number of interactions with proteins not belong-
ing to the complex. Their distance is very low since
their partners are mostly the same.
A B 

Elp2 

Elp6 

Elp5 

Elp4 

Elp1 

Elp3 El

Fig. 3 The assembly model of the Elp complex. Panel a hierarchical tree re
Panel b structural model obtained from biological experiments
Results obtained with these two complexes suggest
that our software can be used to detect subcom-
plexes involved in the biogenesis of soluble com-
plexes. The results on the bc1 complex allows to test
whether it can be also used for membrane and/or
mitochondrial protein complexes since the bc1
complex is located in the inner membrane of the
mitochondria. More precisely, the 3D structure of
the yeast mitochondrial bc1 complex [29] is
composed of nine strongly interconnected subunits
that protrude either on the matrix side (Cor1, Qcr2,
Qcr7), or into the inter-membrane space side (Cyt1,
Rip1, Qcr6) or are imbedded within the inner
membrane (Cob, Qcr8, Qcr9) (Fig. 5a), Cob being
the first to be co-translationally inserted within the
mitochondrial membrane. The tenth subunit, Qcr10
that is not present in the crystal is not essential for
the function. A model of the assembly process has
been proposed (Fig. 5b) [30–32]. According to this
model, the subunit Cob, that is encoded by the
mitochondrial genome, together with Qcr7 and Qcr8
Elp2 
Elp2 

Elp6 

Elp6 

Elp5 

Elp5 

Elp4 

Elp4 

p1 

Elp1 

Elp3 Elp3 

presenting the distances between the six subunits of the Elp complex.
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Fig. 4 The assembly model of the Mediator Head complex. Panel a hierarchical tree representing the distances between the seven subunits of
the Mediator Head complex. Panel b structural model obtained from biological experiments
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would form a first assembly intermediate that would
interact with Cyt1, Cor1, Qcr2, Qcr6, Qcr9 to form
the pre-complex III, also called the late core (Fig. 5b).
By collecting protein-protein interactions and

clustering the subunits of the complex with ISIPS, we
obtained a hierarchical tree (Fig. 5c): the subunit Cob is
found alone when it is associated with Qcr7 and Qcr8 in
A 

Qcr9

Qcr6

Cor1

Qcr2

Qcr8

Qcr7

Cyt1 Rip1

Cob

B

C

Q

Fig. 5 The assembly model of the bc1 complex. Panel a Structure of the S.
experiments [29, 30]. The first steps of the assembly process were confirme
Qcr8, Qcr9 and Qcr10 is still undetermined. Panel c hierarchical tree represe
The experimentally validated subcomplex is surrounded by a grey dotted lin
the biological models and Cyt1 is found alone when it is
associated with Cor1 and Qcr2 in the biological models.
In order to understand the discrepancy between the in
silico and in vivo models, we have tested the in vivo
model by performing immunoprecipitation experiments
in various mutants affecting the assembly of the bc1
complex.
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Fig. 6 Biological experiments Mitochondrial proteins from wild type
(wt) and mutant cells expressing Qcr2-HA were purified. Proteins were
resolved on 12% SDS–PAGE followed by immunoblotting with
antibodies against Cob, Cyt1 and HA. See list of mutants in Table 2.
Panel a Accumulation of bc1 subunits: Cyt1, Qcr2 and Cob, in the wild
type and in Δcyt1, Δcor1 and Δcpb3. In absence of the translation factor
Cbp3, Cob is absent. Panel b Mitochondria were solubilised in 1%
digitonine and immunoprecipitated with HA coupled agarose beads.
The different fractions were analyzed. T: Total mitochondrial proteins; S:
supernatant; W: wash; IP: immunoprecipitate. na: not applicable. Qcr2 is
subjected to some degradation in absence of Cor1 unless the presence
of a cocktail of anti-proteases. Panel c Model for the first step of the
assembly of complex III
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Biological experiments to validate the bc1 complex
assembly process
Biological models proposed that Cyt1 might interact
with Cor1 and Qcr2 during the first steps of the assem-
bly of the bc1 complex [31, 32], but the in silico results
suggest that Cyt1 is separate from Cor1 and Qcr2. In
order to test the interaction between Cob, Cyt1, and
Qcr2, we have constructed wild type and mutant strains
where Qcr2 is tagged with three copies of the
Hemagglutinin (HA) epitope at its C-terminal (Qcr2-
HA) and purified mitochondria from these cells. The
steady state level of the subunits Cob, Cyt1 and Qcr2
was analyzed by Sodium Dodecyl Sulfate
PolyAcrylamide Gel Electrophoresis (SDS-PAGE) and
western blot in the wild type and three mutants, each
abolishing the synthesis of either Cyt1 (Δcyt1), or Cor1
(Δcor1) or Cob (Δcbp3) Fig. 6a. Cbp3 is essential for the
translation of the COB mRNA. Thus Cob is not detected
in the Δcbp3 mutant. In Δcyt1 and Δcbp3, the steady
state level of Qcr2 is as in the wild type (Fig. 6a). In
Δcor1, some proteolysis of Qcr2-HA occurs suggesting
that Cor1 protects Qcr2 from proteolysis. The steady
state level of Cyt1 is stable in absence of Cob or Cor1,
and the amount of Cob decreases in the absence of
Cyt1, or Cor1, suggesting that these subunits protect
Cob from the degradation.
In order to determine if there are some physical interac-

tions between the subunits in the different mutant con-
texts, we performed immunoprecipitation experiments
using the HA tag (Fig. 6b). As expected, in the wild type
control the four subunits (Cob, Cyt1, Qcr2) are pulled
down together. However, in the absence of Cyt1 (Δcyt1),
although a substantial level of Cob is still detected in SDS-
PAGE analysis, it no longer co-immunoprecipitates with
Qcr2 suggesting that Cob does interact stably with Qcr2
in absence of Cyt1. Reciprocally, in the absence of the Cob
(Δcbp3), although the steady state level of Cyt1 and Qcr2
is not decreased as compared to wild type, Cyt1 no lon-
ger co-immunoprecipitates with Qcr2 suggesting that
Cyt1 does not stably interact with Qcr2 in absence of
Cob. Finally, in the absence of Cor1, neither Cob, nor
Cyt1 interact with Qcr2. Thus the three subunits ap-
pear to be interdependent for their assembly and no
subcomplex Cyt1-Qcr2 is formed in absence of Cob.
Thus, the immunoprecipitation experiments are con-
sistent with the prediction of the in silico model regard-
ing the first steps of the assembly of the bc1 complex
(compare Figs. 5a and 6c).
It would be also interesting to test in vivo the exist-

ence of the subcomplex Cob/Qcr7/Qcr8 proposed by
the biological model and not found by the in silico
model. We plan to carry out these experiments in the
future when antibodies against the two small subunits
Qcr7 and Qcr8 will be available.
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Comparison of the results obtained using different
similarity scores
Different similarity scores (http://elib.uni-stuttgart.de/
bitstream/11682/2573/1/Evert2005phd.pdf ) have been
tested to find subcomplexes and their clustering results
have been compared. For the three complexes (Elp, me-
diator head and bc1) the pseudo-Jaccard index gives the
in silico model that is the nearest to the biological
models and our biological results.
For the Elp complex, the Dice score (http://elib.uni-

stuttgart.de/bitstream/11682/2573/1/Evert2005phd.pdf )
gives the same clustering results as the pseudo-Jaccard
index because the number of proteins that interact with
two subunits is low. The other similarity scores do not
distinguish the two functional modules (Elp1, Elp2, Elp3
vs Elp4, Elp5, Elp6).
For the mediator head, the Dice score and the pseudo-

Jaccard index are the only similarity scores that give a
model where Med20 is the last subunit to be added,
which fits well with the 3D structure of the mediator
head. The difference between these two models
(Additional file 1: Figure S1) is that the location of the
subunit Med11 in the tree, is separated from the subunit
Med8 using the Dice score, while both subunits are in
the same subcomplex using the pseudo-Jaccard index.
Still, it is difficult to decide between these two models in
view of the 3D structure of the mediator head.
For the bc1 complex, the three models obtained by

using the Dice, Minimum Sensitivity (MS) and pseudo-
Jaccard scores are very similar except for the subunit
Qcr7 that is split from Qcr9 in the tree obtained using
the Dice score (Additional file 1: Figure S1). None of
these three models match the biological models [30–32]
where Qcr7 and Qcr8 form an early core subcomplex.
Indeed, Qcr8 shares more protein partners with Qcr10
than with Qcr7; moreover Qcr7 interacts with many
more proteins than Qcr10 and the chance that it is in
the same subcomplex as Qcr8 is lower than the chance
of Qcr10 and Qcr8 being in the same subcomplex. We
can also note that Qcr7 interacts with a lot of proteins
of the OXidative PHOSphorylation (OXPHOS)
complexes, that is not the case of Qcr10.

Effect of the false and true positives on the in silico model
Proteomic experiments often provide incomplete data
due to the difficulty of detecting some PPI. Since it is
impossible to know if a PPI is missing or if it does not
really exist, the two cases are indistinguishable in the
network and considered as a negative. In the network
the PPI correspond to stable interactions because the
transient interactions are more difficult to identify
experimentally. Thus, as these interactions are often
missing in the network, our algorithm can be biased
towards the most stable subcomplexes. To limit the
effect of these missing PPI, interactions predicted by
combining structural and non-structural information are
added (see Methods). However, these predicted interac-
tions may contain false PPI that could be then filtered
when their confidence score is lower than a relevant cut-
off (see the section “Choice of the cut-off of confidence
score”). False PPI can also be introduced by different
kinds of experiments [7]. They cannot be filtered out be-
cause all databases do not provide confidence scores and
when those are available, they are not computed in the
same manner [12, 33, 34]. Moreover, it is important to
note that two interacting proteins detected by “physical”
methods are just identified in a same molecular assem-
bly and are not systematically in contact. Then, many in-
teractions are due to the steric overcrowding and to
some proteins that are more abundant and/or more
stable and/or more stiky than others. The pseudo-
Jaccard index used as proximity score to cluster the
subunits is well adapted to take these kind of drawbacks
into account (see section methods).

Robustness of the algorithm to the update of the databases
It is important to note that due to the high number of
false positive and false negative PPI in the databases,
each update can change the protein interaction network
of the complex of interest. Some interactions can be
added and other removed, which may change the
probability of two subunits (or subcomplexes) to form a
subcomplex and then alter the results of the clustering
process.
The in silico models of the assembly of three com-

plexes (Elp Mediator head and bc1) were not affected by
the update of the databases during the 18 months of this
study, despite changes in the networks. That would not
be the case if the network was clustered with graph par-
tition methods based on the density (MCODE [35] and
ClusterOne [36]) or on the modularity (Tfit [37]).

Choice of the cut-off of confidence score of the interactions
from PrePPI database and impact on the subcomplexes
identified with ISIPS
To complement the PPI network, predicted PPI from
the PrePPI database [38, 39] are added to the experi-
mental PPI. We choose this database because it inte-
grates a high number of criteria combined to provide
confidence scores. When the biogenesis of the complex
is partially known, a cut-off on the predicted PPI score
can be adjusted to remove the less reliable PPIs and at
the same time to keep PPIs known to modify the biogen-
esis of the studied complex. The default cut-off of the
database PrePPI is equal to 0.5. For the Elp complex, the
tree representing the distance between the subunits of
the complex is always the same irrespective to the cut-
off on the PrePPI score because the number of the

http://elib.uni-stuttgart.de/bitstream/11682/2573/1/Evert2005phd.pdf
http://elib.uni-stuttgart.de/bitstream/11682/2573/1/Evert2005phd.pdf
http://elib.uni-stuttgart.de/bitstream/11682/2573/1/Evert2005phd.pdf
http://elib.uni-stuttgart.de/bitstream/11682/2573/1/Evert2005phd.pdf
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added interactions remains low (Table 1). But for the
mediator head complex, the distance between the seven
subunits of the complex changes depending on the cut-
off value. We have chosen a cut-off value equal to zero,
i.e. no filtering of the predicted PPI. Indeed, the medi-
ator head complex being linked with the RNA polymer-
ase II and transcription factors [40], interactions
involving the subunits of these two complexes have then
to be added in the network though they have low scores
due to the lack of evidence sources used for the predic-
tion. For the bc1 complex, when we lower the cut-off
value, we get proteins involved in general processes such
as members of the chaperone family. While with the
cut-off value equal to 0.5, most of the added interactions
are located in mitochondria and were not described
previously.
When the predicted PPI are not added to the experi-

mental PPI, all the subcomplexes detected by the experi-
ments are not in agreement with those found in silico.
This is also the case if one uses only the predicted PPI.

Weakness of our method
We saw previously that some subcomplexes of the bc1
complex identified with ISIPS, contradict the biological
models described in the literature: The subunit Cob is
found alone when it is associated with Qcr7 and Qcr8 in
the biological models [30–32]. This result may be
explained by the fact that mitochondrially-encoded Cob
is the most hydrophobic subunit of the bc1 complex (8
transmembrane segments) and might be more difficult
to identify in mass spectrometry experiments. Indeed,
we remarked that in the databases it does not interact
with the same proteins as the other subunits.
Another issue with the bc1 complex is the fact that

some subunits of the complex are more stable than
others. The subunits inside the membrane are less stable
because if they are not quickly assembled, they are
degraded because they can disrupt the cohesion of the
membrane. However, our algorithm is based on stable
interactions since the instable interactions are not
present in the network. Then, it does not allow us to
identify subcomplexes formed by subunits located inside
the membrane, which are less stable than the other
subunits.
The PPI between subunits of a complex could be

weighted by the measure of their stability, but the differ-
ent published results [41, 42] are not mutually consistent
because the experimental conditions used are different.
Hence, they cannot be used in the distance computation.

Conclusion
Many tools have been developed to identify protein
complexes and protein functional modules from static
or dynamic PPI networks [43, 44]. To refine the
detection of the complexes, network clustering algo-
rithms are still being developed [45] but so far, there is
no method of this type to study their biogenesis. We de-
veloped ISIPS, a tool to identify subcomplexes and pro-
teins involved in the building of the Sacchoromyces
cerevisiae and other species complexes. To validate our
approach, we choose three complexes for which the
structure and subcomplexes are already known: Elp,
mediator head and bc1. They belong to the small
number of complexes for which subcomplexes have
been described by different kinds of experiments.
ISIPS proposes different proximity scores to cluster

the subunits in subcomplexes, but we show for the three
examples that the pseudo-Jaccard index gives the
clustering results the closest to the biological models.
ISIPS is an approach that is based only on a PPI

network. It does not take abundance, half-life, affinity
and localization of proteins into account. However, these
data are important since PPI depend on the number of
occurrences of proteins at a precise time and place. To
understand the in silico results, such information must
be taken into account a posteriori.
Another aspect to keep in mind is that some com-

plexes interact strongly with other complexes to form
supercomplexes. Thus, when a complex is part of a
supercomplex, the network built from its proteins in-
volves interactions with the supercomplex proteins that
influence the in silico model of the complex biogenesis.
Therefore, it does not always reflect what is happening
biologically.
The new approach presented in this article, despite its

limitations, can help biologists to choose experiences
that allow them to describe the assembly process of a
complex. It also permits to reduce the combinatorial
space for modeling and simulation interfaces between all
the subunits of a complex.

Methods
Our aim is to extract information from the protein inter-
actions network involving subunits of a protein complex
in order to identify the subcomplexes that form it. The
different steps of the methodology are: 1) the construc-
tion of the PPI network; 2) the identification of subcom-
plexes; 3) the identification of proteins interacting with
the subcomplexes.

Construction of the protein-protein interaction network
To build the network, we used the interactions involving
the subunits of the complex of interest from the 14th

release of iRefIndex [46] that collects data from eight
primary databases. We split the file (in our case:
559,292.mitab.04072015) into eight “database” files
stored in a unique folder. Within each database file,
Taxon A and B must be the same, else the
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corresponding interactions are removed. We also used
the most recent version of some frequently updated
databases such as BioGRID [47] and Intact [33]. In
addition, we used the PrePPI database [39] a repository
that provides predicted or experimental PPI with asso-
ciated confidence scores. Indeed, we needed to add
predicted PPIs because some subunits of protein
complexes do not have any partner in common with
the other subunits and therefore would not be in-
cluded in the model. The PPI involving the proteins of
the studied complex are downloaded from the site:
https://honiglab.c2b2.columbia.edu/PrePPI/ and those
having a confidence score greater than a cut-off (0.5 by
default) are stored in a file in the same format as the
other database files (see Additional file 2: Table S1).
To construct and cluster the PPI network of the

complex of interest, we developped the R script
ISIPS.R which workflow is described in Fig. 1. This
script inputs a list of Uniprot identifiers (ID) of the
proteins subunits of the complex of interest, stored in
the “inputlist.txt” file. The script also requires specify-
ing the directory containing the previously mentioned
databases. First, we search for interactions involving
the proteins of the studied complex (predicted or ex-
perimentally identified by physical methods) and we
discard self interactions. Three text files are generated:
one with the complete list of interactions, one with
partially redundant interactions (PPI with the same
publication ID are removed) and one non-redundant.
The network is unweighted but the number of Pubmed
IDs corresponding to each column is indicated in the
last file. This information is a criterion of reliability of
the interaction that is not used here.
Source code of ISIPS.R, examples and guides for the

complexes presented in this article are available on:
http://bim.igmors.u-psud.fr/isips.
Identification of the subcomplexes involved in the
assembly of the complex
Our method to identify subcomplexes involved in the
assembly of the complex is based on the hypothesis
that within the network, assembly intermediaries are
represented by subgraphs of strongly interconnected
proteins. Indeed, the proteins of a subcomplex share
more partners between them than with the rest of the
network. Two subunits and/or subcomplexes are
“close” as they share more partners, by “close” we
mean that they have a high probability to form a
subcomplex.
Then, to evaluate the probability of two subunits (or

subcomplexes) x and y to form a subcomplex, we
compute j(x,y), a pseudo-Jaccard similarity index
between x and y, defined as:
j x; yð Þ ¼ N X∩Yð Þð Þ−N SUx∩SUy
� �

=N X∪Yð Þ−N SUx∪SUy
� �

where X is the set of proteins interacting with the
subunit (or the subcomplex) x; Y is the set of proteins
interacting with the subunit (or the subcomplex) y;
N(X∩Y) is the number of proteins that interact with x
and y; N(X⋃Y) is the number of proteins that interact
with x or y; SUx and SUy are the number of subunits of
the complex interacting with x and y respectively;
N(SUx∩SUy) is the number of subunits interacting with x
and y; N(SUx ⋃ SUy) is the number of subunits interact-
ing with x or y.
Note that this metric is not exactly the Jaccard index

of the neighbours of proteins belonging to the complex,
because we choose to ignore the interactions within the
complex by subtracting in our formula the number of
subunits of the complex interacting with x and/or y. It is
actually the relative number of interactants external to
the complex and sharing two subunits (or subcom-
plexes) that allows to compute their chance to belong to
a same subcomplex.
For the identification of the subcomplexes involved in

the assembly of the complex, an agglomerative
clustering is used, which requires a distance measure
(see Fig. 2). This distance d(x,y) is equal to 1-j(x,y). As an
example, in Fig. 2, the distance d(x,y) between subunits
A and B is equal to d(A,B) = 1-(6-3)/(10-3) = 4/7.

Advantage of the distances between sub-units and/or
sub-complexes used in ISIPS
The pseudo-Jaccard index presented above is a similarity
score between two sets easy to compute and to under-
stand. In our case, we can simply describe the pseudo-
Jaccard index between two subcomplexes (or subunits)
as the proportion, among all proteins outside the
complex interacting with at least one of the two
subcomplexes (or subunits), of proteins that interact
with both. One of the advantages of this index is to be
inherently symmetric. Furthermore, it will be more
favorable to pairs of subcomplexes (or subunits) that
have a small number of interacting proteins. On the
contrary, if one of the two subcomplexes (or subunits)
has a lot of interacting proteins, a big proportion of
these proteins, which are not involved in the complex
assembly, can be considered as noise since they cannot
guide our task of complex assembly. Therefore, using a
formula that penalizes these kinds of subcomplexes (or
subunits) with a lot of interacting proteins, it allows to
focus on those whose neighborhood in the PPI graph
carries the most relevant information.
In order to allow users to compare this index with

other alternatives, we have included five other statistical
formulas to compute similarity between two subcom-
plexes in ISIPS. These formulas depend on the sizes of 4

https://honiglab.c2b2.columbia.edu/PrePPI/
http://bim.igmors.u-psud.fr/isips


Table 2 List of the strains used

Name Genotype Origin

Cor2-HA Cor2-HA-Sphis5 This work

Cor2-HAΔcyt1 Cor2-HA-Sphis5 cyt1::LEU2 This work

Cor2-HA Δcbp3 Cor2-HA-Sphis5 cbp3::G418 This work

Cor2-HA Δcor1 Cor2-HA-Sphis5 cor1::HIS3 This work

Δbcs1 bcs1::URA3 [52]
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sets of proteins outside the complex (proteins interact-
ing with none of those two subcomplexes, with only the
first one, with only the second one, or with both of
them). They can be normalized between zero and one.
Introduced in various contexts and summarized in a
unified formalism (http://elib.uni-stuttgart.de/bitstream/
11682/2573/1/Evert2005phd.pdf ), they are described in
details in the user manual of ISIPS (http://bim.igmors.u-
psud.fr/isips).
The clustering algorithm developed to identify the

sequence of subcomplex by using the similarity scores
defined above is a bottom-up agglomerative clustering.
Our motivation to use this algorithm is the assumption
that the proteins or subcomplexes with the most specific
common interacting proteins have a higher probability
to be in a same subcomplex. On the contrary, proteins
interacting with a lot of proteins unrelated with the
complex will have more interacting possibilities in the
cell, and will therefore presumably not be involved in
the first subcomplexes. First, the algorithm starts by
computing the distances between all the subunits and
then groups the subunits having the smallest distance.
This cluster is considered as the first subcomplex in the
model. Second, it computes the distances between this
first subcomplex and the remaining subunits. Third, it
replaces in the previous distance matrix the lines and
the columns corresponding to the subunits of the
subcomplex by the distances between the subcomplex
and the other subunits. Previous steps are iteratively
repeated to gradually aggregate the subunits. This
process terminates when all subunits are (see Fig. 2b).

Results obtained with the ISIPS method
The script generates different types of results:

1) The distance matrices computed at each step of the
clustering are stored successively in a file.

2) The result of the clustering, stored in a file having a
linear format where two aggregated subunits or group
of subunits are written between parentheses and
separated by a comma. The distance between the two
aggregated elements is indicated after the elements
and separated by a colon. The groups of subunits (or
subunit alone) are ordered according to the progress
of their formation, from the left to the right.

3) A graphical representation of proximities between
the subunits and/or subcomplexes. We choose to
represent the results of our clustering method by a
rooted dendrogram (the root is the final complex),
drawn horizontally in order to have enough space to
display the labels representing the subunits. We
warn the users that the vertical ordering of the
subunits, or the clusters, should not be interpreted
as a chronological ordering. Therefore, we also
provide the user with the corresponding tree in a
text file, so that it can be used in any representation
tool with a different vertical ordering, in order to
represent a hypothesis on the order of subcomplex
assembly. Branches separating two sets A and B of
subunits are long if they are strongly supported by
the proximity matrix, that is if two elements within
the same subunit (A or B) are expected to have a
larger proximity index than two elements in different
subunits. More precisely, the length of a branch which
separates A and B is set to the rate of well designed
triples [48] that is the proportion of sets {x,y,y’}, with x
in A and y and y’ in B (or x and B and y and y’ in A)
such that j(y, y′) ≥max(j(x, y), j(x, y′)), where j is the
proximity index between subunits presented above.

4) A list of proteins interacting with at least two
proteins of the subcomplex.

Strains construction
Each deletion mutant was constructed in the CW252
strain that has the W303 nuclear background MAT
alpha ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3112 can1-
100 (see Table 2).
Qcr2 was tagged at its C-terminus with the HA epi-

tope using the Schizosaccharomyces pombe marker gene
his5 (Sphis5 complements the S. cerevisiae mutation
his3) as described in [49].
In each case, the correct integration of the mutation

or the tag was confirmed by PCR amplification and
sequencing. We verified that the tags did not modify the
respiratory phenotype.

Biochemical analyses
Mitochondrial proteins from wild type and mutant cells
expressing Qcr2-HA were isolated from galactose grown
cells by differential centrifugations after digestion of cell
walls with Zymoliase-100 T [50]. For immunoprecipita-
tion experiments, mitochondrial proteins were solubi-
lised in 1% digitonine. The suspension was centrifuged
for 15 min at 4 °C at 100000 g. Monoclonal HA anti-
bodies coupled agarose beads (Sigma) were added to the
supernatant. Samples were incubated under gentle shak-
ing for 90 min at 4 °C in presence of PhenylMethaneSul-
fonylFluoride (PMSF) and the complete protease
inhibitor cocktail (Roche). The beads were washed twice

http://elib.uni-stuttgart.de/bitstream/11682/2573/1/Evert2005phd.pdf
http://elib.uni-stuttgart.de/bitstream/11682/2573/1/Evert2005phd.pdf
http://bim.igmors.u-psud.fr/isips
http://bim.igmors.u-psud.fr/isips
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with the lysis buffer and the different fractions were ana-
lyzed by SDS-PAGE and western blotting experiments.
Proteins were separated on 12% SDS–PAGE followed by
immunoblotting with antibodies against Cob, Cyt1, HA.
Polyclonal antibodies against Cob and Cyt1 were raised
in the laboratory and used at 1/10,000. The monoclonal
anti body anti-HA (1/10,000) was from Santa Cruz
Biotechnology.

Additional files

Additional file 1: Figure S1. Assembly models obtained with different
similarity scores. Panel A: hierarchical tree representing the distances
between the seven subunits of the Mediator Head complex. Upper Part:
tree obtained with the Dice similarity score. Lower part: tree obtained
with the pseudo-Jaccard similarity score. Panel B: hierarchical trees
representing the distances between the ten subunits of the bc1 complex.
Upper part: tree obtained with the Dice similarity score. Lower part: tree
obtained with the MS or pseudo-Jaccard similarity score. (PDF 107 kb)

Additional file 2: List of the proteins interacting with the subcomplexes
of the studied complexes. The file includes three sheets, one for each
complex: ELP, mediator head and bc1. (XLS 32 kb)
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