
HAL Id: hal-01560555
https://hal.science/hal-01560555v1

Preprint submitted on 11 Jul 2017 (v1), last revised 15 Aug 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast exact algorithms for some connectivity problems
parametrized by clique-width

Benjamin Bergougnoux, Mamadou Moustapha Kanté

To cite this version:
Benjamin Bergougnoux, Mamadou Moustapha Kanté. Fast exact algorithms for some connectivity
problems parametrized by clique-width. 2017. �hal-01560555v1�

https://hal.science/hal-01560555v1
https://hal.archives-ouvertes.fr

FAST EXACT ALGORITHMS FOR SOME CONNECTIVITY
PROBLEMS PARAMETRIZED BY CLIQUE-WIDTH

BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Abstract. Given a clique-width expression of a graph G of clique-width k,
we provide 2O(k) ·nO(1) time algorithms for connectivity constraints on locally
checkable properties such as Connected Dominating Set, Connected Per-
fect Dominating Set or Node-Weighted Steiner Tree. We also propose
an 2O(k) ·nO(1) time algorithm for Feedback Vertex Set. The best running
times for all the considered cases were either 2O(k·log(k)) · nO(1).

1. Introduction

Tree-width [17] is probably the most well-studied graph parameter in the graph
algorithm community, and particularly by people working in Fixed Parameter Tractable
(FPT for short) algorithms, due partly to its numerous structural and algorith-
mic properties [4, 8]. For a while people used to think that for many connectiv-
ity constraints problems, e.g., Hamiltonian Cycle, Steiner Tree, the naive
kO(k) · nO(1) time algorithm, parametrized by tree-width, cannot be improved be-
cause it seems necessary to know the connected components of the partial solutions
in order to be able to extend them, and certify that the given solution is really
connected. But, quite surprisingly Bodlaender et al. showed in [1] that for some
of these connectivity constraints problems, one can indeed use the naive algorithm,
and instead of keeping all the possible partitions, keep a set of representatives that
is single exponential in the tree-width.

Nevertheless, despite the broad interest on tree-width, only sparse graphs can
have bounded tree-width. But, on many dense graph classes, some NP-hard prob-
lems admit polynomial time algorithms, and many of these algorithms can be ex-
plained by the boundedness of their clique-width, a graph parameter introduced by
Courcelle and al. (see the book [4]) and that emerges from the theory of graph
grammars.

Clique-width is defined in terms of the following graph operations: (1) addition
of a single labeled vertex, (2) addition of edges between vertices labeled i and
those labeled j, (3) renaming of labels, (4) disjoint union; and the clique-width of
a graph is the minimum number of labels needed to construct it, and the expression
constructing it is called clique-width expression. Clique-width generalises tree-width
in the sense that if a graph class has bounded tree-width, then it has bounded
clique-width [6], but the converse is false as cliques have clique-witdh at most 2
and an unbounded tree-width. Furthermore, clique-width appears also to be of big
importance in FPT algorithms [4]. While it is still open whether there exists an
FPT algorithm to compute an optimal clique-width expression of a given graph, one
can ask when clique-width behaves similarly as tree-width on important problems.

1991 Mathematics Subject Classification. F.2.2, G.2.1, G.2.2.
Key words and phrases. clique-width, single exponential algorithm, feedback vertex set, con-

nected σ, ρ-domination.
This work is supported by French Agency for Research under the GraphEN project (ANR-15-

CE-0009).
1

2 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Even though clique-width is far from behaving similarly as tree-width on some well-
studied and well-known difficult problems such as Hamiltonicity [9], Bui-Xuan et
al. [2, 3], and Ganian et al. [10, 11] managed to prove, after more substantial work
than for tree-width, that for locally checkable properties, and some sparse problems,
one can get single exponential time algorithms parametrized by clique-width, some
are proved to have a linear dependence on the clique-width, while for others only a
polynomial dependence is known. However, on connectivity constraints problems
nothing is known, except for some special cases such as Feedback Vertex Set1

for which a 2O(k log(k)) · nO(1) time algorithm was given in [2].

Our Contributions. We investigate connectivity constraints on locally checkable
properties, such as Connected Dominating Set,Connected Vertex Cover
or Steiner Tree. All of these problems are some special case of the connected
version of the so-called (σ, ρ)- Dominating Set problem. This problem was intro-
duced in [18] and studied in graphs of bounded clique-width in [3, 15]. (Definitions
are given at the end of Section 2.) We propose 2O(k) · n time algorithms, with
k the clique-width of the given graph, for the Feedback Vertex Set problem,
and the connected version of the (σ, ρ)- Dominating Set problem. While our
approach is the same as the rank-based one used in [1] and follows usual dynamic
programming, dealing with clique-width operations is known to be harder than ma-
nipulating tree-decompositions. One of the main reasons is that, on a particular
node of a tree-decomposition, the number of vertices, from the already processed
vertices, which have a neighbor in the rest of the graph is bounded, but for clique-
width, they can be only classified into a bounded number of equivalence classes
(with respect to having the same neighborhood in the rest of the graph). These
equivalence classes are the labels of a clique-with expression.

For both problems, we develop new “naive” dynamic programming algorithms,
each keeping tracking of the possible partitions (into connected components of the
partial solutions), resulting in 2k log(k) · n time algorithms. We then show how to
reduce the time complexity into 2O(k) ·n by adapting the rank-based approach from
[1] to our purposes. Our approach can be summarised as follows.

(1) For each problem, we present a dynamic programming whose steps are
the different operations of a given clique-width expression of width k. We
encode the partial solutions as partitions of labels. At each step of the
dynamic programming, we keep track of which labels are intersected by
the partial solutions and among them, which are expected to have a future
neighbor in the next step of the dynamic programing, i.e., to be part of
an operation adding edges with another intersected label. This last infor-
mation is the key of our dynamic programing, as the vertices in a label
expecting a future neighbor behave like a single vertex, in terms of connec-
tivity. Moreover, they are the only vertices that affect the connectivity of
the partial solution in the future steps of the dynamic programming, since
the other vertices are expected to have no future neighbor.

(2) For (σ, ρ)- Dominating Set, we need to store some additional information
to ensure the domination. For doing so, we use the notions of d-neighbor
equivalence introduced in [3].

(3) For Feedback Vertex Set, to ensure the acyclicity of the partial solu-
tions, we differentiate the labels intersected only once and those that are
intersected at least twice. We, moreover, define a notion of acyclicity be-
tween two partitions that is crucial for the fusion of two partial solutions.

1A feedback vertex set in a graph is a subset of its vertex set which deletion induces a
forest.

FAST FOR CWD 3

(4) For both problems, we more or less keep as indexes of the dynamic program-
ming tables the set of labels that are intersected. Each table has at most
2O(k) indexes, but the number of possible partitions is 2O(k log(k)), giving a
running time of 2O(k log(k)) · n. We reduce this to 2O(k) · n by adapting the
toolkit introduced in [1] to our needs. This toolkit allows us to improve the
running time of our dynamic programming to 2O(k) ·nO(1), by reducing the
number of partial solutions we need to keep at each step. Our main con-
tribution here was to incorporate the notion of acyclicity in the rank-based
approach. This contribution was necessary to solve Feedback Vertex
Set.

2. Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We
write A \B for the set difference of A from B, and we write A]B for the disjoint
union of A and B. We often write x to denote the singleton set {x}. For a mapping
f : A → B, and X ⊆ B, we let f−1(X) := {a ∈ A | f(a) ∈ X 6= ∅}. We let
min(∅) := +∞ and max(∅) := −∞. We let [k] := {1, . . . , k}. We denote by N the
set of non-negative integers and by F2 the binary field.

Partitions. A partition p of a set V is a collection of non-empty subsets of V that
are pairwise non-intersecting and such that ∪pi∈ppi = V ; each set pi in p is called a
block of p. The set of partitions of a finite set V is denoted by Π(V), and (Π(V),v)
forms a lattice where p v q if for each block pi of p there is a block qj of q with
pi ⊆ qj . The join operation of this lattice is denoted by t. Let]block(p) denote
the number of blocks of a partition p. Observe that ∅ is the only partition of the
empty set. We denote by V [X], for X ⊆ V , the partition of V where one block is X
and the other blocks are all singletons. For p ∈ Π(V) and X ⊆ V , let p↓X ∈ Π(X)
be the partition {pi ∩ X | pi ∈ p} \ {∅}, and for Y ⊇ V , let p↑Y ∈ Π(Y) be the
partition p ∪

⋃
y∈Y \V {{y}}.

Graphs. Our graph terminology is standard, and we refer to [7]. The vertex set
of a graph G is denoted by V (G) and its edge set by E(G). An edge between two
vertices x and y is denoted by xy (respectively yx). The subgraph of G induced by
a subset X of its vertex set is denoted by G[X], and we write G \X to denote the
induced subgraph G[V (G) \X]. The set of vertices that is adjacent to x is denoted
by NG(x), and for U ⊆ V (G), NG(U) :=

(⋃
v∈U NG(v)

)
\ U . For a graph G, we

denote by CC(G) the partition {V (C) | C is a component of G} of V (G).

Clique-Width. A k-labeled graph is a pair (G, labG) with G a graph and labG a
function from VG to [k], called the labeling function; each set lab−1G (i) is called a
label class. The notion of clique-width is defined by Courcelle et al. [5] and is based
on the following operations.

(1) Create a graph, denoted by 1(x), with a single vertex x labeled with 1.
(2) For a labeled graph G and distinct labels i, j ∈ [k], relabel the vertices of

G with label i to j (denoted by reni→j(G)). Notice that there is no more
vertices labeled i in reni→j(G).

(3) for a labeled graph G and distinct labels i, j ∈ [k], add all the non-existent
edges between vertices with label i and vertices with label j (denoted by
addi,j(G)).

(4) Take the disjoint union of two labeled graphs G and H, denoted by G⊕H.
The labeling function of G⊕H is labG] labH .

A k-expression is a finite well-formed term built with the four operations above.
Each k-expression t evaluates into a k-labeled graph (val(t), labt). The clique-width
of a graph G, denoted by cwd(G), is the minimum k such that G is isomorphic to

4 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

val(t) for some k-expression t. We can assume without loss of generality that any
k-expression defining a graph G uses O(n) disjoint union operations and O(nk2)
unary operations [6].

It is worth noticing from the recursive definition of k-expressions, one can com-
pute in linear time in |t| the labeling function labt of val(t), and hence we will
always assume that it is given.

Considered Connectivity Problems. For all the problems in this article, we
consider the weight function to be on the vertices. Considering the weight to be
on the edges would make all the considered problems NP-hard even on graphs of
clique-width 2. A subset X ⊆ V (G) of the vertex set of a graph G is a feedback
vertex set if G \ X is a forest. The problem Feedback Vertex Set (FVS for
short) consists in finding a minimum feedback vertex set2. It is not hard to verify
that X is a minimum feedback vertex set of G if and only if G \X is a maximum
forest.

The problem Steiner Tree asks, given a subset of vertices K ⊆ V (G) called
terminals, a subset T of minimum weight such that K ⊆ T ⊆ V (G) and G[T] is
connected.

Let σ and ρ be (non-empty) finite or co-finite subsets of N. We say that a subset
D of V (G) (σ, ρ)-dominates a subset U if for every vertex u ∈ U , |NG(u) ∩D| ∈ σ
if u ∈ D, otherwise |NG(u) ∩D| ∈ ρ. A (σ, ρ)-dominating set D of V (G) is called
a connected (resp. out-connected) (σ, ρ)-dominating set of G if D (resp. V \ D)
is connected. The problem (Out-)Connected (σ, ρ) Dominating Set ask for a
minimum or a maximum (out-)connected dominating set. Examples of some vertex
subset properties expressible as (σ, ρ)-dominating set are shown on Table 1.

σ ρ Version Standard name
N N+ Connected Connected Dominating Set
N+ N+ Connected Connected Total Dominating Set
{d} N Connected Connected Induced d-Regular Subgraph
N {1} Connected Connected Perfect Dominating Set
{0} N Out-connected Connected Vertex Cover

Figure 1. Examples of (out)-connected (σ, ρ)-dominating sets,
N = {0, 1, . . . , } and N+ = {1, 2, . . . }.

3. Representing Sets of Weighted Partitions by Matrices

As with usual dynamic programming algorithms dealing with connectivity con-
straints, the partial solutions of our algorithms are weighted partitions. We modify
in this section the operators on weighted partitions defined in [1] in order to express
our dynamic programming algorithm for FVS in terms of these operations.

Let first define formally our notion of partial solution. Let V and S be two
disjoint finite sets. We denote by Π⊂(V, S) the set

⋃
X⊆S{X} × Π(V). A set of

weighted partitions on (V, S) is a subset of Π⊂(V, S)× N. For A ⊆ Π⊂(V, S)× N and
X ⊆ V ∪ S, we let A�X be {(p0, p, w) ∈ A | p0 = X}.

We will always denote the elements of Π⊂(V, S) as the ordered pairs (p0, p) with
p0 ⊆ S and p ∈ Π(V) assuming that the blocks of p are always denoted by p1, p2,
Indeed, elements of Π⊂(V, S) can be seen as partitions of Π(V ∪ S) where we have
identified two blocks, i.e., X and S \ X. Intuitively, V represents the intersected

2By a minimum (or maximum) set, we always mean a set of minimum (or maximum) weight.

FAST FOR CWD 5

labels that are expected to have a future and S represents the labels which do no
matter in the connectivity anymore. Each weighted partition (p0, p, w) ∈ Π⊂(V, S)×
N is intended to mean: there is a solution F of weight w that does not intersect
the sets lab−1G (p0), the intersected elements in lab−1G (S \ p0) are expected to have
no future neighbor and p is the transitive closure of the following relation on V :
i ∼ j if there exists x ∈ lab−1G (i) and y ∈ lab−1G (j) connected in G[F].

Definition 1. We let acyclic be the relation on Π(V, S)×Π(V, S) where acyclic(p, q)
holds exactly when |V |+]block(ptq)−(]block(p)+]block(q)) = 0. In other words,
if Fp := (V ,Ep) and Fq := (V,Eq) are forests with components p = CC(Fp) and
q = CC(Fq) respectively, then acyclic(p, q) holds if and only if Ep ∩ Eq 6= ∅ and
(V,Ep] Eq) is a forest.

Let us now redefine some of the operators introduced in [1]. Let V and S be two
disjoint finite sets.
Remove non-maximal copies. For A ⊆ Π⊂(V, S)× N, we define rmc(A) ⊆ A as

rmc(A) := {(p0, p, w) ∈ A | ∀(p0, p, w′) ∈ A, w′ ≤ w)}.

Ac-Join. Let V ′ and S′ be two disjoint finite sets. For A ⊆ Π⊂(V, S) × N and
B ⊆ Π⊂(V ′, S′)× N, we define acjoin(A,B) ⊆ Π⊂(V ∪ V ′, (S \ V ′) ∪ (S′ \ V))× N as

acjoin(A,B) := rmc ({(p0 \ (V ∪ S′)) ∪ (q0 \ (V ′ ∪ S)) ∪ (p0 ∩ q0), p↑V ′ t q↑V , w1 + w2) |
(p0, p, w1) ∈ A, (q0, q, w2) ∈ B and acyclic(p↑V ′ , q↑V)}) .

This operator is more or less the same as the one in [1], except that we incorporate
the acyclicity condition. It is used to construct partial solutions while guaranteeing
the acyclicity. Observe that if p0 and q0 are the labels not intersected by the partial
solution represented respectively by (p0, p, w1) and (q0, q, w2), then (p0 \ (V ∪S′))∪
(q0 \ (V ′ ∪S))∪ (p0 ∩ q0) represents the labels not intersected by the union of these
two partial solutions.

Project. ForX ⊆ (V ∪S) andA ⊆ Π⊂(V, S)×N, let proj(A, X) ⊆ Π⊂(V \X,S\X)×N
be

proj(A, X) := rmc
(
{(p0 \X, p↓(V \X), w) | (p0, p, w) ∈ A and ∀pi ∈ p, (pi \X) 6= ∅}

)
.

In other words, take the partitions for which each block is not completely con-
tained in X, and then remove X from those partitions. This operator is used to
remove from the partitions the label classes unused after a renaming or that are re-
quired to not have future neighbors, i.e., they will not matter in the connectivity of
the partial solutions. If a partition has a block fully contained in X, it means that
this block will remain disconnected in the future steps of our dynamic programming
algorithm, and that is why we remove such partitions.

One needs to perform the above operations efficiently, and this is guaranteed by
the following, which assumes that log(|A|) ≤ |V ∪S|O(1) for each A ⊆ Π⊂(V, S)×N.

Proposition 3.1 (Folklore). The operator acjoin can be performed in time |A|· |B| ·
|V ∪ S ∪ V ′ ∪ S′|O(1) and the sizes of their outputs are upper-bounded by |A| · |B|.
The operators rmc and proj can be performed in time |A| · |V ∪ S|O(1), and the size
of their outputs are upper-bounded by |A|.

We now define the notion of representative sets of weighted partitions which
is the same as the one in [1], except that we need to incorporate the acyclicity
condition as for the acjoin operator above.

6 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Definition 2. Let V and S be two disjoint finite sets and let A ⊆ Π⊂(V, S) × N.
For (q0, q) ∈ Π⊂(V, S), let

ac-opt(A, (q0, q)) := max{w | (q0, p, w) ∈ A, p t q = {V } and acyclic(p, q)}.

A set of weighted partitions A′ ⊆ Π⊂(V, S)×N ac-represents A if for each (q0, q) ∈
Π⊂(V, S), it holds that ac-opt(A, (q0, q)) = ac-opt(A′, (q0, q)).

Let Z be a finite set and V ′, S′ be two disjoint finite sets. A function f :

2Π⊂(V,S)×N×Z → 2Π⊂(V ′,S′)×N is said to preserve ac-representation if for eachA,A′ ⊆
Π⊂(V, S) × N and z ∈ Z, it holds that f(A′, z) ac-represents f(A, z) whenever A′
ac-represents A.

The following lemma is not difficult to prove. A proof is given in the appendix.

Lemma 3.2. The operators rmc, proj, acjoin and ∪ preserve ac-representation.

In the remaining we will prove that we can find for every set A ⊆ Π⊂(V, S) × N
a set A′ ⊆ A of size at most (|V |+ 1) · 2|V ∪S| that ac-represents A, in polynomial
time in A. We will encode the ac-representativity by a matrix over F2 and show
that this one has rank at most the desired bound. Next, we show that a basis can
be found using matrix multiplications, using the following lemma from [1]. The
constant ω denotes the matrix multiplication exponent.

Lemma 3.3 ([1]). Let M be an n × m-matrix over F2 with m ≤ n and let w :
{1, . . . , n} → N be a weight function. Then, one can find a basis of maximum (or
minimum) weight of the row space of M in time O(nmω−1).

Let v0 ∈ V and let tricuts(V, S) := {(U, V1, V2) | U ⊆ S∧V1]V2 = V ∧ v0 ∈ V1}.
Let α be a variable, that will be used to encode the edges induced by partitions.
Recall that for integers i and j, αi · αj = αi+j in any field.

LetM and C be, respectively, a (Π⊂(V, S),Π⊂(V, S))-matrix and a (Π⊂(V, S), tricuts(V, S))-
matrix, both over F2[α], such that

M [(p0, p), (q0, q)] :=

{
0 if p0 6= q0 or p t q 6= {V },
α2|V |−(]block(p)+]block(q)) otherwise.

C[(p0, p), (U, V1, V2)] :=

{
0 if p0 6= U or p 6v (V1, V2),

α|V |−]block(p) otherwise.

The following guarantees an efficient algorithm to reduce the number of partial
solutions we need to keep at each step of our dynamic programing.

Theorem 3.4. There exists an algorithm ac-reduce that given a set of weighted
partitions A ⊆ Π⊂(V, S)×N, outputs in time |A| · 2(ω−1)|V ∪S|−1 · |V |O(1) a subset A′
of A that ac-represents A and such that |A′| ≤ (|V |+ 1) · 2|V ∪S|−1.

Proof. We first prove that M = C · Ct. Notice that for each (p0, p) ∈ Π⊂(V, S)
and (U, V1, V2) ∈ tricuts(V, S), C[(p0, p), (U, V1, V2)] ∈ {0, 1, α1, . . . , α|V |}. Let
(p0, p), (q0, q) ∈ Π⊂(V, S). If p0 6= q0, then for each (U, V1, V2) either C[(p0, p), (U, V1, V2)] =
0 or C[(q0, q), (U, V1, V2)] = 0, hence (C ·Ct)[(p0, p), (q0, q)] = M [(p0, p), (q0, q)] = 0.

FAST FOR CWD 7

So, suppose that p0 = q0 = U . Then,

(C · Ct)[(U, p), (U, q)] =
∑

(U,V1,V2)∈tricuts(V,S)
pv(V1,V2)
qv(V1,V2)

α|V |−]block(p) · α|V |−]block(q)

=
∑

(U,V1,V2)∈tricuts(V,S)
pv(V1,V2)
qv(V1,V2)

α2|V |−(]block(p)+]block(q))

=
∑

(U,V1,V2)∈tricuts(V,S)
ptqv(V1,V2)

α2|V |−(]block(p)+]block(q)).

We are counting the triplets (U, V1, V2) ∈ tricuts(V, S) such that (V1, V2) is coarser
than both p and q, hence we are counting the triplets (U, V1, V2) such that (V1, V2)
is coarser than p t q. Since, this number is equal to the number of bipartitions
(V1, V2) of the blocks of p t q with v0 ∈ V1, we can conclude from the last equality
that

(C · Ct))[(U, p), (U, q)] = α2|V |−(]block(p)+]block(q)) + · · ·+ α2|V |−(]block(p)+]block(q))︸ ︷︷ ︸
2]block(ptq)−1

and because the characteristic of the field is 2 and 2]block(ptq)−1 is odd iff]block(ptq) = 1

(C · Ct))[(U, p), (U, q)] =

{
α2|V |−(]block(p)+]block(q)) if p t q = {V }
0 otherwise.

We can therefore conclude that M = C · Ct.
Let A be a set of weighted partitions. We can suppose w.l.o.g. that A = rmc(A).

For each 0 ≤ i ≤ |V |, let Ai be the set {(p0, p, w) ∈ A | |V |−]block(p) = i}, and let
CiA be the restriction of C to the rows in {(p0, p) | (p0, p, w) ∈ Ai}. Observe that
{A0, . . . ,A|V |} is a partition of A and each entry of CiA is either 0 or αi, and hence
one can see it as a matrix over F2 by transforming each αi by 1. The rank of CiA is
bounded by 2|V ∪S|−1 as the number of triplets in tricuts(V, S) is less than 2|V ∪S|−1,
and by Lemma 3.3 one can find a basis Bi of CiA of maximum weight, for all i, in
time bounded by |A| ·2(ω−1)·(|V ∪S|−1) · |V |O(1), where the weights are the weights of
the considered weighted partitions in A. Let A′i = { (p0, p, w) ∈ Ai | (p0, p) ∈ Bi},
and let A′ := A′0] A′1] · · ·] A′|V |. Observe that |A′| ≤ (|V | + 1) · 2|V ∪S|−1.
Moreover, for each (p0, p, w) ∈ Ai, there is B(p0, p) ⊆ Bi such that, for each
(U, V1, V2) ∈ tricuts(V, S),

C[(p0, p), (U, V1, V2)] =
∑

(q0,q)∈B(p0,p)

C[(q0, q), (U, V1, V2)].

We claim that A′ ac-represents A. Since A′ ⊆ A, it is sufficient to prove that
for all (p0, p, w) ∈ A and (r0, r) ∈ Π(V, S) such that p0 = r0, p t r = {V } and
acyclic(p, r), there exists (q0, q, w

′) ∈ A′ with w ≤ w′ and such that q0 = r0,
q t r = {V } and acyclic(q, r).

8 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

By definition of acyclic and of M , we have p0 = r0, pt r = {V } and acyclic(p, r)
if and only if M [(p0, p), (r0, r)] = α|V |−1. From the equality M = C · Ct, we have

M [(p0, p), (r0, r)] =
∑

(U,V1,V2)∈tricuts(V,S)

C[(p0, p), (U, V1, V2)] · Ct[(U, V1, V2), (r0, r)]

=
∑

(U,V1,V2)∈tricuts(V,S)

 ∑
(q0,q)∈B(p0,p)

C[(q0, q), (U, V1, V2)]

 · Ct[(U, V1, V2), (r0, r)]

=
∑

(q0,q)∈B(p0,p)

 ∑
(U,V1,V2)∈tricuts(V,S)

C[(q0, q), (U, V1, V2)] · Ct[(U, V1, V2), (r0, r)]


=

∑
(q0,q)∈B(p0,p)

M [(q0, q), (r0, r)].

Since the characteristic of the field is 2, M [(p0, p), (r0, r)] = α|V |−1 if and only if
there is an odd number of (q0, q) ∈ B(p0, p) such that M [(q0, q), (r0, r)] = α|V |−1.
Let i such that (p0, p, w) ∈ Ai. Thus, there exists (q0, q) ∈ B(p0, p) such that
M [(q0, q), (r0, r)] = α|V |−1, i.e., there exists (q0, q, w

′) ∈ A′i such that q0 = r0,
q t r = {V } and acyclic(q, r). Let (q0, q, w

′) ∈ A′i such that w′ is maximum and
q0 = r0, qtr = {V } and acyclic(q, r). Assume towards a contradiction that w′ < w.
Thus (p0, p) /∈ Bi. But, (Bi \ {(q0, q)}) ∪ {(p0, p)} is also a basis of CiA since the
set of independent row sets of a matrix forms a matroid. Since w > w′, the weight
of (Bi \ {(q0, p′)}) ∪ {(q0, p)} is strictly greater than the weight of Bi, yielding a
contradiction. Thus A′ ac-represents A. �

4. Feedback Vertex Set

Instead of computing a minimum feedback vertex set, we will compute a maxi-
mum forest. Contrary to the standard technique in which the label classes that are
intersected by the solutions is guessed, and for each such guess we store weighted
partitions which tell us how the partial solution is connected, we will encode the
non intersected label classes in the weighted partitions. As in [1] we express the
steps of our algorithm by using the operators on weighted partitions defined in Sec-
tion 3. But, because it is much easier with the framework to deal with connected
solutions, we will compute a maximum tree instead of a maximum forest. For doing
so, we introduce an hypothetical new vertex, denoted by v0, that is universal and
we compute a pair (F,E0) so that F is a maximum forest of G, E0 ⊆ {v0} × V (G)
and (V (F) ∪ {v0}, E(F) ∪E0) is a tree. For a weight function w on the vertices of
G and a subset S ⊆ V (G), we denote by w(S) :=

∑
v∈S w(v).

Definition 3. Let G be a k-labeled graph and let s : [k] → {1, 2,−2} be a total
function. If s−1(2) = {i1, . . . , ip}, we let V +

s be the set {x+i1 , . . . , x
+
ip
} disjoint

from V (G) ∪ {v0}. The entries of AG[s] are all weighted partitions (p0, p, w) ∈
Π⊂(s−1({1, 2})∪ {v0}, s−1(−2))×N such that there exist an induced subgraph F of
G and E0

s ⊆ {v0} × V (F) so that w(V (F)) = w,
(1) The set s−1(1) = {i ∈ [k] | |V (F) ∩ lab−1G (i)| = 1} and p0 = {i ∈ [k] |
|V (F) ∩ lab−1G (i)| = 0}.

(2) The graph F+ := (V (F) ∪ {v0} ∪ V +
s , E(F) ∪ E0

s ∪ E+
s) is a forest where

E+
s :=

⋃
1≤j≤p xij × (V (F) ∩ lab−1G (ij)).

(3) Each component C of (V (F)∪{v0}, E(F)∪E0
s) intersects lab−1G (s−1({1, 2}))∪

{v0}.
(4) The partition p equals (s−1({1, 2})∪ {v0})/ ∼F+ where i ∼ j if a vertex in

lab−1G (i)∩V (F) is connected in the graph F+ to a vertex in lab−1G (j)∩V (F);
we consider lab−1G (v0) = {v0}.

FAST FOR CWD 9

Our algorithm will store for each labeled graph G a table tabG[s] that ac-
represents AG[s].

The first condition says that the label classes that are not intersected by the
solution are stored in p0, those that are intersected once are in s−1(1) and those
that are intersected at least twice are in s−1({−2, 2})\p0. We expect the intersected
vertices that belong to a label class in s−1(2) to get exactly one future neighbor
in the possible extensions of the partial solutions. On the other hand, those that
belong to a label class in s−1(−2) are preventing from having a neighbor in any
extension of the corresponding partial solution. Condition (2) guarantees that
(V (F)∪{v0}, E(F)∪E0

s) is acyclic and can be extended into a forest. Each vertex
x+i` ∈ V

+
s is intended to represent the expected future neighbor of the intersected

vertices in lab−1(`). It is worth noticing that the acyclicity of F+ implies that two
vertices in V (F) ∩ lab−1G (i) with s(i) = 2 must be in different components in F ,
otherwise F+ would contain a cycle. Condition (3) implies that each component of
the solution (V (F)∪{v0}, E(F)∪E0

s) contains a vertex that will play a role in the
connectivity of possible extensions. Condition (4) tells us that p is a partition of
s−1({1, 2}) ∪ {v0} and that i and j are in the same block of p if there are vertices
x and y of V (F) labeled respectively i and j and that are in the same component
of F+. Observe that this describes an equivalence relation since, for each label
i ∈ s−1(2), the vertices labeled i are connected in F+ through x+i .

1

x+
2 x+

3

2 3 4

v0

5 6 7 8

Figure 2. Example of graph F+, here p = {{v0, 1}, {2, 3}, {4}},
s−1(1) = {1, 4}, s−1(2) = {2, 3}, s−1(−2) = {5, 6, 7, 8} and p0 =
{7, 8}.

Given a graph G and a k-expression t such that val(t) = G, we can find the size
of a maximum induced forest of G by checking whether (∅, {{v0}}, w) is the entry
of AG′ [sG′] with G′ = renk→1(ren(k−1)→1(. . . (ren2→1(t)) . . .)) and sG′(1) := −2.
By definition, if (∅, {{v0}}, w) belongs to AG′ [sG′], then there exist a set F ⊆ V (G)
and a set of edges E0 ⊆ {v0} × V (G) such that (F ∪ {v0}, E(G[F]) ∪ E0) is an
induced tree and w(F) = w is maximum.

Irredundant k-expressions. To simplify the algorithm, we will use irredundant
k-expressions. A k-expression is irredundant if whenever the operation addi,j is
applied on G, there is no edge between an i-vertex and an j-vertex in G. It is proved
in [6] that any k-expression can be transformed in linear time into an irredundant
k-expression.

Computing tabG for G = 1(x). For s : {1} → {1, 2,−2}, let

tabG[s] :=


{(∅, {{1, v0}},w(x)), (∅, {{1}, {v0}},w(x))} if s(1) = 1,

{({1}, {{v0}}, 0)} if s(1) = −2,

∅ if s(1) = 2.

Since |V (G)| = 1, there is no solution intersecting the label class 1 on at least
two vertices, and so the set of weighted partitions satisfying Definition 3 equals

10 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

the empty set for s(1) = 2. For the same reason, if s(1) = −2 then x is not in
the partial solution. If s(1) = 1, there are two possibilities, depending on whether
S0 = ∅ or S0 = {xv0}. We can thus conclude that tabG[s] = AG[s] is correctly
computed.

Computing tabG for G = reni→j(H). We can suppose that H is k-labeled. Let
s : [k] \ {i} → {1, 2,−2}, and let s1, s2, s3 : [k] → {1, 2,−2} with s1(`) := s2(`) :=
s3(`) := s(`) for ` /∈ {i, j}, and

• s1(j) = s(j), s1(i) = −2,
• If s(j) = −2, then s2(i) := s2(j) = −2, otherwise s2 is not defined,
• If s(j) ∈ {1, 2}, then s3(i) = s(j) and s3(j) = −2.

We let tabG[s] := ac-reduce(rmc(A)) where

A :=
⋃

X⊆s−1
1 (−2)

proj({i}, (tabH [s1])�X∪{i}) ∪
⋃

X⊆s−1
2 (−2)\{i}

proj({j}, (tabH [s2])�X∪{j}) ∪

⋃
X⊆s−1

3 (−2)\{i,j}

proj({i}, acjoin((tabH [s3])�X∪{j}, {([k] \ {i, j}, {{i, j}}, 0)})) ∪

⋃
∀`/∈{i,j}, sH(`)=s(`)

s(j)=−2,sH(i),sH(j)∈{1,−2}

⋃
X⊆s−1

H (−2)\{i,j}

proj({i, j}, (tabH [sH])�X) ∪

⋃
∀`/∈{i,j}, sH(`)=s(`)

s(j)=2,sH(i),sH(j)∈{1,2}

proj({i}, acjoin((tabH [sH]), {([k] \ {i, j}, {{i, j}}, 0)})).

The definition is explained in the next proof, but essentially for each partial
solution from tabH , we either add it to tabG by forgetting the label i or we check
that no vertex labeled i is in a same connected component as a vertex labeled j
(with the acjoin operator).

Lemma 4.1. Let G = reni→j(H) be a k-labeled graph. For each s : [k] \ {i} →
{1,−2, 2}, the table tabG[s] ac-represents AG[s] assuming that tabH [s′] ac-represents
AH [s′] for each s′ : [k]→ {1,−2, 2}.

Proof. Since the operators preserve the ac-representativity, it is enough to prove
that by substituting AH to tabH in the definition of A we have A = AG[s]. (This
will be also the case in all the subsequent correctness proofs.)

First, we prove that AG[s] ⊆ A. Let (p0, p, w) ∈ AG[s] satisfying Conditions
(1)-(4) of Definition 3 with F and E0

s the induced subgraph of G and the set of
edges associated. We claim that (p0, p, w) is added to A.

If V (F) ∩ lab−1H (i) = ∅, then (p0 ∪ {i}, p, w) associated with (F,E0
s) satis-

fies the conditions of the Definition 3 to be in AH [s1]. Therefore, (p0, p, w) ∈
proj({i},AH [s1]�p0∪{i}).

We may assume now that V (F)∩lab−1H (i) 6= ∅. Suppose that V (F)∩lab−1H (j) = ∅.
If s(j) = −2 then (p0∪{j}, p, w) associated with (F,E0

s) satisfies the conditions to be
in AH [s2] and (p0, p, w) ∈ proj({j},AH [s2]�p0∪{j}). Otherwise, if s(j) > 0 then let
p′ be the partition obtained from p where j as been substitute by i. It is easy to see
(p0∪{j}, p′, w) associated with (F,E0

s) satisfies the conditions to be in AH [s3]. One
then easily checks that (p0, p, w) ∈ proj({i}, acjoin(AH [s3]�p0∪{j}, {([k]\{i, j}, {(i, j)}, 0))).

From now, we assume that both V (F) ∩ lab−1H (j) and V (F) ∩ lab−1H (j) are non-
empty. Therefore, |V (F) ∩ lab−1G (j)| ≥ 2 and s(j) ∈ {−2, 2}. Let sH : [k] →

FAST FOR CWD 11

{1, 2,−2} with sH(`) = s(`) for ` ∈ [k] \ {i, j}, and for t ∈ {i, j},

sH(t) =

{
1 if |V (F) ∩ lab−1H (t)| = 1,

s(j) if |V (F) ∩ lab−1H (t)| ≥ 2.

Let p′ the partition on s−1H ({1, 2}) ∪ {v0} satisfying Condition (4) with F and
E0
s . Trivially, (p0, p

′, w) associated with (F,E0
s) satisfies the conditions to be in

AH [sH]. If s(j) = −2, then sH(i), sH(j) ∈ {1,−2} and (p0, p, w) is clearly added
by proj({i, j}, (AH [sH])�p0). Otherwise, if s(j) = 2 then sH(i), sH(j) ∈ {1, 2}. We
claim that acjoin({(p0, p′, w)}, {([k]\{i, j}, {{i, j}}, 0)}) 6= ∅. By definition of acjoin
and of acyclic, it is enough to prove that i and j are not in the same block of p′.
Assume towards a contradiction that i and j are in the same block of p′. It means
that a vertex x ∈ V (F) ∩ lab−1H (i) is connected to a vertex y ∈ V (F) ∩ lab−1H (j). It
is easy to see that this implies the existence of a cycle in F+ since x+j is adjacent to
both x and y in F+. This is contradiction since F+ is supposed to be acyclic. One
then easily checks, from the definition of proj and acjoin, that (p0, p, w) belongs to
proj({i}, acjoin({(p0, p′, w)}, {([k] \ {i, j}, {{i, j}}, 0)}) and is added to A.

Let us now prove that A ⊆ AG[s]. Assume that (p0, p, w) ∈ tabH [sH] and let
(F,E0

s) be the corresponding forest and set of edges which satisfy Conditions (1)-(4)
of the Definition 3. Let (p′0, p

′, w) be the produced weighted partition added to A
from (p0, p, w). If j ∈ p′0, i ∈ p0 or j ∈ p0 then (p′0, p

′, w) associated with (F,E0
s)

clearly satisfies the conditions to be in AG[s].
We may then assume that i /∈ p0 and j /∈ p0, i.e., both V (F) ∩ lab−1H (i) and

V (F) ∩ lab−1H (j) are non-empty, i.e., p′0 = p0. If s(j) = −2, we have done a
projection on {i, j} after ensuring that |V (F)∩ lab−1H ({i, j})| ≥ 2. By the definition
of projection and of (F,E0

s), we can therefore conclude that (p′0, p
′, w) associated

with (F,E0
s) satisfies the conditions to be in AG[s]. Observe in particular, that if

sH(i) = sH(j) = 1 then Condition (3) is satisfied because by definition of proj, {i}
and {j} cannot be blocks of p, i.e., the vertex in lab−1(i) and the vertex in lab−1(j)
must be connected to some vertex which label belongs to s−1({1, 2}). Otherwise,
if s(j) = 2, we first ensure that |V (F) ∩ lab−1H ({i, j})| ≥ 2, and we check that
two vertices in V (F) ∩ lab−1H ({i, j}) lie in different components (with the acjoin),
and remove i from the blocks of (p0, p, w) (with the operator proj). Now, since
the operator acjoin allows (p0, p

′, w) to satisfy Conditions (1)-(2) and (4), and the
projection removes i from p0, we can thus conclude that (p′0, p

′, w) associated with
(F,E0

s) also satisfies Conditions (1)-(4) to be in AG[s]. �

Computing tabG for G = addi,j(H). We can suppose that H is k-labeled. Let
s : [k]→ {1, 2,−2}. Let sH : [k]→ {1, 2,−2} such that sH(`) := s(`), for ` /∈ {i, j}
and

(sH(i), sH(j)) :=


(1, 1) if s(i) = s(j) = 1,

(2, 1) if (s(i), s(j)) = (−2, 1),

(1, 2) if (s(i), s(j)) = (1,−2).

Observe that sH may not exist if (s(i), s(j)) /∈ {(1, 1), (1,−2), (−2, 1)}. We let
tabG[s] := ac-reduce(rmc(A)) where

A :=
⋃

X⊆[k],X∩{i,j}6=∅

(tabH [s])�X

⋃
⋃

X⊆[k]\{i,j}

proj(s−1(−2) ∩ {i, j}, acjoin((tabH [sH])�X , {([k] \ {i, j}, {{i, j}}, 0)}).

12 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Lemma 4.2. Let G = addi,j(H) be a k-labeled graph. For each s : [k]→ {1,−2, 2},
the table tabG[s] ac-represents AG[s] assuming that tabH [s′] ac-represents AH [s′]
for each s′ : [k]→ {1,−2, 2}.

Proof. We first recall that labG(x) = labH(x) for all x ∈ V (G) = V (H).
First, we prove that AG[s] ⊆ A. Let (p0, p, w) ∈ AG[s] satisfying Conditions

(1)-(4) of Definition 3 in G with F and E0
s the induced subgraph of G and the set

of edges associated. If {i, j} ∩ p0 6= ∅, then F is an induced forest of H and clearly
(p0, p, w) associated with (F,E0

s) satisfies the conditions to be in AH [s]. We can
thus conclude that (p0, p, w) is added in A from (AH)�p0 .

So, assume that {i, j}∩p0 = ∅. LetXi := V (F)∩lab−1G (i), Xj := V (F)∩lab−1G (j),
and let FH := (V (F), E(F) \ (Xi × Xj)). Observe that (s(i), s(j)) must be in
{(1, 1), (1,−2), (−2, 1)}, otherwise, F+ would not be acyclic. For example, if s(i) =
2, Xi contains at least two vertices which are adjacent to x+i and the vertices in
Xj , since G = addi,j(H), we can find a C4 in F+. Thus, sH is well defined and
by definition, the Condition (1) is satisfied by sH and FH . Because we consider
only irredundant k-expressions, we know that (Xi × Xj) ∩ E(H) = ∅, i.e., FH is
an induced subgraph of H. Now, it is easy to see that F+

H is acyclic because F+

is acyclic. Let p′ the partition on s−1H ({1, 2}) ∪ {v0} satisfying Condition (4) with
FH . By the definition of sH and of FH it is straightforward to check then that
(p0, p

′, w) associated with (FH , E
0
s) satisfies all the conditions to be in AH [sH].

We claim that acjoin({(p0, p′, w)}, {([k] \ {i, j}, {{i, j}}, 0)}) 6= ∅. It is sufficient
to prove that {i, j} is not a block of p′. Since there is no edge between Xi and
Xj , if {i, j} is a subset of a block in p′, then there is a path in F+

H between a
vertex x of Xi and a vertex y of Xj . Let us choose a shortest one Pxy among all
such paths. Because the set of neighbors, in F+

H , of x+i if sH(i) = 2 (resp. x+j if
sH(j) = 2) is Xi (resp. Xj), the path Pxy does not go through x+i nor x+j , if they
exists in F+

H . Since V (F+
H) \ {x+i , x

+
j } = V (F+), P is also a path of F+. Moreover,

P does not use the edges from Xi × Xj , since they do not exists in F+
H . Thus,

there exists a cycle in F+. This is a contradiction. It is easy to see that p is the
partition obtained from p′ by joining the blocks containing i and those containing
j and by removing s−1(−2) ∩ {i, j} from this new block. One then easily checks
that (p0, p, w) ∈ proj(s−1(−2)∩{i, j}, acjoin(AH [sH]�p0 , {([k] \ {i, j}, {{i, j}}, 0)})).

It remains to prove that A ⊆ AG[s]. Let (p0, p, w) ∈ tabH [sH] and (FH , E
0
sH)

its associated induced subgraph of H and set of edges. If p0 ∩ {i, j} 6= ∅, then
(p0, p, w) ∈ A and clearly (p0, p, w) associated with (FH , E

0
sH) satisfies the con-

ditions of the Definition 3 to be in AG[s]. So, assume that {i, j} ∩ p0 = ∅ and
let (p′0, p

′, w) ∈ proj(s−1(−2)∩ {i, j}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).
Let F = (V (FH), E(FH) ∪ (Xi ×Xj) where Xt = V (FH) ∩ lab−1H (t) for t ∈ {1, 2}.
Clearly F is an induced subgraph of G. We claim that F+ is a forest. For the
same reasons evoked earlier, {i, j} cannot be a subset of a block of p thus the ver-
tices in Xi and those in Xj are in different components of F+

H . If |Xi| = |Xj | = 1

then F+ = (V (F+
H), E(FH) ∪ (Xi ×Xj)) and it is clearly a forest. Otherwise, by

definition of sH , either |Xi| = 1 and |Xj | ≥ 2 or the inverse. Suppose w.l.o.g.
that we are in the first case. Then, F+ can be obtained from F+

H by identifying
the vertex x+j and the vertex in Xi, and this operation clearly keeps the graph
acyclic since the vertex in Xi and x+j are not connected in F+

H . Thus (F,E0
sH)

satisfies Condition (2). Moreover, (F,E0
sH) clearly satisfies Conditions (1) and (3).

Condition (4) is also satisfied since it is easy to see that p′ is obtained from p by
joining the block containing i and the one containing j and by removing i or j if
respectively s(i) = −2 or s(j) = −2. We can therefore conclude that tabG[s] is
correctly updated. �

FAST FOR CWD 13

Computing tabG for G = G1 ⊕ G2. We can suppose that G1 and G2 are both
k-labeled. Let s : [k]→ {1, 2,−2}. For Y1, Y2 ⊆ s−1(−2), we say that s, s1 : [k]→
{1, 2,−2} and s2 : [k]→ {1, 2,−2} u-agree on (Y1, Y2) if for each i ∈ [k],

s(i) =



s1(i) = s2(i) = −2 if i ∈ Y1 ∩ Y2,

s2(i) if i ∈ Y1,

s1(i) if i ∈ Y2,

2 if i ∈ [k] \ (Y1 ∪ Y2) and s1(i), s2(i) ∈ {1, 2},
−2 if i ∈ [k] \ (Y1 ∪ Y2) and (s1(i), s2(i)) ∈ {(1,−2), (−2, 1), (1, 1), (−2,−2)}.

Typically, for i ∈ {1, 2}, Yi will represent the set of non-intersected labels of a
partial solution of Gi. Observe that if (s1(i), s2(i)) = (1, 1) then s(i) can take as
values 2 or −2.

We let tabG[s] := ac-reduce(rmc(A)) where,

A :=
⋃

Y1,Y2⊆s−1(−2)

⋃
s,s1,s2

u-agree on
(Y1,Y2)

acjoin(proj(s−1(−2) \ Y1, (tabG1 [s1])�Y1
), proj(s−1(−2) \ Y2, (tabG2 [s2])�Y2

)).

Lemma 4.3. Let G = G1 ⊕G2 be a k-labeled graph. For each s : [k]→ {1,−2, 2},
the table tabG[s] ac-represents AG[s] assuming that tabG1

[s′] and tabG2
[s′] ac-

represents AG1
[s′] and of AG2

[s′], respectively, for each s′ : [k]→ {1,−2, 2}.

Proof. First, we prove that AG[s] ⊆ A. Let (p0, p, w) ∈ AG[s] and (F,E0
s) its

associated induced subgraph and set of edges according to Definition 3. For t ∈
{1, 2}, let Ft := Gt[V (F) ∩ V (Gt)] and E0

st := {v0} × V (Ft) ∩E0
s , wt := w(V (Ft)),

pt0 := {i ∈ [k] | V (Ft) ∩ lab−1Gt
(i) = ∅}, and let st : [k]→ {1, 2,−2} such that

st(i) :=


−2 if i ∈ pt0,
1 if |V (Ft) ∩ lab−1Gt

(i)| = 1,

s(i) if |V (Ft) ∩ lab−1Gt
(i)| ≥ 2.

It is a straightforward check to verify that (s, s1, s2) u-agree on (p10, p
2
0). Let pt

the partition on s−1t ({1, 2})∪{v0} satisfying Condition (4) with F+
t . Let t ∈ {1, 2}.

We claim that (pt0, pt, wt) associated with (Ft, E
0
st) satisfies the conditions to be

in AGt [st]. By definition of pt0, pt and st, and of (Ft, E
0
st) it is straightforward

to check that Conditions (1) and (4) are satisfied. Because s−1t (2) ⊆ s−1(2), and
F = F1⊕F2, we can conclude that F+

t is an induced subgraph of F+. Because F+ is
acyclic, we can conclude that F+

t is acyclic, i.e., Condition (2) is satisfied. Because
F = F1⊕F2, each component C of F is either a component of F1 or of F2. Now, if
a component C does not intersect s−1t ({1, 2})∪{v0}, then it is entirely contained in⋃
j∈s−1

t (−2) V (Ft)∩ lab−1Gt
(j). But, this yields a contradiction with (F,E0

s) satisfying
Condition (3) because s−1t (−2) ⊆ s−1(−2), and C is a component of F . Therefore
Condition (3) is also satisfied. We can thus conclude that Conditions (1)-(4) are
satisfied by (Ft, E

0
st) and (pt0, pt, wt). It remains to prove that

(p0, p, w) ∈ acjoin(proj(s−1(−2) \ Y1, {(p10, p1, w1)}), proj(s−1(−2) \ Y2, {(p20, p2, w2)})).

First, observe that, for t ∈ {1, 2}, we have proj(s−1(−2) \ Yt, {(pt0, pt, wt)})) 6= ∅
since Ft satisfies Condition (3). Let V = s−1({1, 2})∪{v0} and let p′t = ((pt)↓V)↑V .
We claim that acyclic(p′1, p

′
2) holds. Assume towards a contradiction that it is not

the case. By the graphical definition of acyclic, we can easily see that it implies the
existence of a sequence i1, . . . , i2r of s−1({1, 2}) ∪ {v0} such that

i2r ∼F+
1
i1 and for all 1 ≤ α < r, we have i2α−1 ∼F+

2
i2α and i2α ∼F+

1
i2α+1.

14 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Now observe that for all 1 ≤ α ≤ r, if iα ∼F+
t
iα+1 then there exists a vertex

in lab−1G (iα) ∩ V (Ft) connected to a vertex in lab−1G (iα+1) ∩ V (Ft). We can then
construct a cycle in F+ from this sequence since V (F1) ∩ V (F2) = ∅, F+

1 and
F+
2 are subgraphs of F+ and for all iins−1(2), the vertices labeled i are connected

in F+ through v+i . This is a contradiction since F+ verifies Condition (2), thus
acyclic(p′1, p

′
2) holds. One then easily checks that

(p10∩p20, p′1tp′2, w1+w2) ∈ acjoin(proj(s−1(−2)\Y1, {(p10, p1, w1)}), proj(s−1(−2)\Y2, {(p20, p2, w2)})).

Now, we can claim that p = p′1 t p′2. For doing so, it is sufficient to look the
definition of t and to observe that ∼F+ is the transitive closure of the relation R
where iRj if i ∼F+

1
j or i ∼F+

2
j. One then easily checks that w = w1 + w2 and

p0 = p10 ∩ p20 and concludes then that (p0, p, w) is added to A through (p10, p1, w1)
and (p20, p2, w2).

We now prove thatA ⊆ AG[s], i.e., if (p0, p, w) ∈ acjoin(proj(s−1(−2)\p10, {(p10, p1, w1)}),
proj(s−1(−2) \ p20, {(p20, p2, w2)})) is added to tabG[s], then (p0, p, w) ∈ AG[s]. Let
(F1, E

0
s1) and (F2, E

0
s2) be associated with (p10, p1, w1) ∈ tabG1 [s1] and (p20, p2, w2) ∈

tabG2 [s2], respectively, with s, s1, s2 u-agreeing in (p10, p
2
0). We claim that (p0, p, w)

associated with (F,E0
s1 ∪E

0
s2) where F = (V (F1)∪V (F2), E(F1)∪E(F2)), satisfies

Conditions (1)-(4), i.e., (p0, p, w) ∈ AG[s]. Because s, s1, s2 u-agree on (p10, p
2
0),

then p0 = p10∩p20 and by the definition of the entries of the tables, and of (p0, p, w),
we can conclude that p ∈ Π(s−1({1, 2}) ∪ {v0}). Also, because s, s1, s2 u-agree on
(p10, p

2
0) it is easy to prove that Condition (1) is also satisfied. Assume towards a

contradiction that Condition (2) is not satisfied, i.e., there exists a cycle C in F+.
Since both F+

1 and F+
2 are acyclic, C must be a cycle alternating between paths

in F+
1 and paths in F+

2 . One can easily check that this implies the existence of a
sequence i1, . . . , i2r of s−1({1, 2}) ∪ {v0} such that

i2r ∼F+
1
i1 and for all 1 ≤ α < r, we have i2α−1 ∼F+

2
i2α and i2α ∼F+

1
i2α+1.

Moreover, it is easy to infer, from this sequence and the graphical definition of
acyclic, that acyclic(((p1)↓V)↑V , ((p2)↓V)↑V) doesn’t hold, where V = s−1({1, 2}) ∪
{v0}. This is a contradiction since (p0, pt) is supposed to be added in A from
(p10, p1, w1) and (p20, p2, w2). If we suppose that Condition (3) is not satisfied, then
there is a connected component C of F that does not intersect s−1({1, 2}) ∪ {v0},
i.e., C is fully contained in lab−1G (s−1(−2)). Since F = F1 ⊕ F2, C is either a
connected component of F1 or of F2. Suppose w.l.o.g. that C is a connected
component of F1. Observe that C intersects lab−1G1

(s−11 ({1, 2})) because F1 satisfies
Condition (3) in G1. Moreover, C does not intersect lab−1G1

(s−11 (2)), otherwise C
would intersect lab−1G (s−1(2)) since s1(i) = 2 implies s(i) = 2, for all i ∈ [k]. Thus
C is a connected component of F+

1 and bC := {i ∈ s−11 (1) | C ∩ lab−1G1
(i) 6= ∅} is,

by definition, a block of p1. Moreover, we have bC ⊆ s−1({−2}) \ p10 since C does
not intersect any vertex in s−1({1, 2}) ∪ {v0}. Thus, by definition of proj, we have
proj(s−1(−2) \ p10, {(p10, p1, w1)}) = ∅ which contradicts the fact that (p0, p, w) is
produced from (p10, p1, w1) and (p20, p2, w2). Condition (2) is then satisfied.

For all i ∈ [k], let Xi := F ∩ lab−1G (i), and Xv0 := {v0}. It remains to prove
that Condition (4) is satisfied, i.e., for all labels i, j, we have i and j are in the
same block of p if and only if a vertex in Xi is connected, in F+, to a vertex in
Xj . By definition of acjoin and proj, we have p = ((p1)↓V)↑V t ((p2)↓V)↑V where
V = s−1({1, 2}) ∪ {v0}. Thus two labels i and j are in the same block of p if and
only if there exists a sequence b1, b2, . . . , br of blocks that alternatively belong to
p1 and p2 and such that i ∈ b1, j ∈ br and for all l ∈ [r − 1], bl ∩ bl+1 6= ∅. Hence,
it is sufficient to prove that for all b′1 ∈ p1 and b′2 ∈ p2, we have b′1 ∩ b′2 6= ∅ if and
only if for all i ∈ b′1 and j ∈ b′2, a vertex of Xi is connected to a vertex of Xj in

FAST FOR CWD 15

F+. Let (i, j) ∈ b′1 × b′2 and l ∈ b′1 ∩ b′2. Since p1 satisfies Condition (4), a vertex
of Xi is connected, in F+

1 , to a vertex from Xl and since F+
1 is a subgraph of F+,

we can also conclude that a vertex of Xi is connected, in F+, to a vertex from Xl.
Symmetrically, a vertex of Xl is connected, in F+, to a vertex from Xj . If |Xl| = 1
(i.e., l = v0) then we are done, otherwise s(l) = 2 and by definition of F+ all the
vertices in Xl are connected to x+l . Hence, Condition (4) is also satisfied.

We can therefore conclude that tabG[s] is correctly updated. �

Theorem 4.4. There is an algorithm that, given an n-vertex graph G and an
irredundant clique-width k-expression of G, computes a minimum feedback vertex
set in time 33k · 2(ω+1)k · n · kO(1).

Proof. We do a bottom-up traversal of the clique-width expression and at each step
we update the tables as indicated above. The correctness of the algorithm follows
from Lemmas 4.1-4.3. Let us discuss the time complexity now. If G = addi,j(H) or
G = reni→j(H), and s : [k] → {1, 2,−2}, then we update tabG[s] from a constant
number of tables from tabH , each identified in O(k) time from s. Since each table
contains at most (k+1) ·2k entries, we can thus update tabG in time 2(ω−1)k ·kO(1).
If G = G1⊕G2 and s : [k]→ {1, 2,−2}, then one can easily bound the size of A by
the sum over all functions s1, s2 : [k] → {1, 2,−2} of |tabG1

[s1]| · |tabG2
[s2]|. Since

there is at most 32k such functions, we can conclude that |A| ≤ 32k · 22k · kO(1).
Therefore, tabG[s] is computed in time 32k · 2(ω+1)k · kO(1), i.e., we update tabG in
time 33k · 2(ω+1)k · kO(1). Because the size of a clique-width expression is linear in
n, we can conclude that a minimum feedback vertex set can be computed in the
given time. �

5. (Out)-Connected (σ, ρ)-Dominating Sets

We will show here how to use the operators defined in [1] in order to obtain singly-
exponential time algorithms for computing minimum or maximum connected (σ, ρ)-
dominating sets in graphs of bounded clique-width. We let opt ∈ {min,max}, i.e.,
we are interested in computing a (out)-connected (σ, ρ)-dominating set of maximum
(or minimum) weight if opt = max (or opt = min). Let us first give some definitions.

Let V and S two disjoint finite sets. As defined in Section 3, rmc works only
for the case opt = min, we redefine it as follows in order to take into account
maximisation problems. For A ⊆ Π⊂(V, S)× N, we define rmc(A) ⊆ A as

rmc(A) := {(p0, p, w) ∈ A | ∀(p0, p, w′) ∈ A, opt(w,w′) = w}.

Join. Let V ′ and S′ be two disjoint finite sets. For A ⊆ Π⊂(V, S) × N and B ⊆
Π⊂(V ′, S′)× N, we define join(A,B) ⊆ Π⊂(V ∪ V ′, (S \ V ′) ∪ (S′ \ V))× N as

join(A,B) := rmc
(
{(p0 \ (V ′ ∪ S′)) ∪ (q0 \ (V ∪ S)) ∪ (p0 ∩ q0), p↑(V ′) t q↑(V), w1 + w2) |

(p0, p, w1) ∈ A, (q0, q, w2) ∈ B}) .

This operator is the one from [1]. It is used mainly to construct partial solutions
of G⊕H from partial solutions of G and H.

Proposition 5.1 (Folklore). The operator join can be performed in time |A| · |B| ·
|V ∪ S ∪ V ′ ∪ S′|O(1) and the size of its output is upper-bounded by |A| · |B|.

The following is the same as Definition 2, but does not require acyclicity.

Definition 4 ([1]). For A ⊆ Π⊂(V, S)× N and (q0, q) ∈ Π⊂(V, S), let

opt(A, (q0, q)) := opt{w | (q0, p, w) ∈ A, p t q = {V \ q0}}.

16 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

A set of weighted partitions A′ ⊆ Π⊂(V, S) × N represents A if for each (q0, q) ∈
Π⊂(V, S), it holds that opt(A, (q0, q)) = opt(A′, (q0, q)).

Let Z be a finite set and V ′, S′ be two disjoint finite sets. A function f :

2Π⊂(V,S)×N × Z → 2Π⊂(V ′,S′)×N is said to preserve representation if for each A,A′ ⊆
Π⊂(V, S) × N and z ∈ Z, it holds that f(A′, z) represents f(A, z) whenever A′
represents A.

Lemma 5.2 ([1]). The operators rmc, proj, join and ∪ preserve representation.

Proof. Since, for all (q0, q) ∈ Π⊂(V, S), we have, by definition, opt(A, (q0, q)) =
opt(A�q0 , (q0, q)), we can conclude that A′ represents A if and only if A′�X repre-
sents A�X for all X ⊆ S. Also,

opt(join(A,A′), (r0, r)) = optX⊆V {opt(join(A�X ,A′), (r0, r))}.

Since it is proved in [1] that the operators rmc, proj, join and ∪ preserve the repre-
sentativeness on (Π⊂(V, S)× N)�X for all X ⊆ S, we are done. �

Theorem 5.3 ([1]). Let X be a subset of S. There exists an algorithm reduce
that given a set of weighted partitions A ⊆ X × Π(V \ X) × N, outputs in time
|A|·2(ω−1)|V |·|V |O(1) a subset A′ of A that represents A, and such that |A′| ≤ 2|V |−1

and
∑

(p0,p,w)∈A′ w is optimum.

We now concentrate on connected (σ, ρ)-dominating sets (the modifications for
computing out-connected (σ, ρ)-dominating sets are then after straightforward). We
also let (σ, ρ) be a fixed pair of non-empty finite or co-finite subsets of N. Moreover,
let d := max{d(σ), d(ρ)}, where d(N) := 0, and for a (non-empty finite or co-finite)
subset µ ⊂ N , d(µ) := max(µ) if µ is finite, otherwise, d(µ) := max(N \µ) + 1. We
will use the symbol +∞ in order to decide if a set of vertices of size greater than d
is included in a (σ, ρ)-dominating set. For each D ⊆ V (G) and i ∈ [k], let

riG(D) :=

{
+∞ if lab−1G (i) ⊆ D and |lab−1G (i)| > d,

min(d, |lab−1G (i) ∩D|) otherwise,

and let rG(D) := (r1G(D), . . . , rkG(D)). If D ⊆ V (G) is a partial solution then the
sequence rG(D) will be the information we keep to describe how D intersects the
different label classes. For all i ∈ [k], observe that lab−1G (i) ⊆ D if and only if
rG(D) = rG(lab−1(i)). Moreover, notice that |{rG(D) | D ⊆ V (G)}| ≤ (d+ 2)k.

We now define a graph from G that describes future extensions of G using clique-
width operations. Let V + := {v11 , . . . , v1d, v21 , . . . , v2d, . . . , vk1 , . . . , vkd} be a set disjoint
from V (G) and of size d · k. For R′ := (R1, . . . , Rk) ⊆ {0, 1, . . . , d}k, let V +(R′) :=
V +(R′1) ∪ · · · ∪ V +(R′k) with

V +(R′i) :=

{
∅ if R′i = 0,

{vi1, . . . , viR′i} otherwise,

and let fR′(G) be the graph with vertex set V (G) ∪ V +(R′) and edge set E(G) ∪
E1∪· · ·∪Ek with Ei = lab−1G (i)×V +(R′i). Observe that Ei is empty if lab−1G (i) = ∅
or V +(R′i) = ∅. The following describes the tables manipulated by our algorithm.

FAST FOR CWD 17

Definition 5. For a k-labeled graph G and R ∈ {0, . . . , d,+∞}k, R′ ∈ {0, . . . , d}k,
let p0 = {i ∈ [k] | Ri = 0 or R′i = 0},

DG[R,R′] :=
{

(p0, p, w) ∈ Π⊂([k] \ p0, p0) | ∃D ⊆ V (G), rG(D) = R,w(D) = w,

D ∪ V +(R′) (σ, ρ)-dominates V (G) in fR′(G),

p = ([k] \ p0)/ ∼fR′ (G), and

G[D] is connected if R′ = {0}k, otherwise
∀C ∈ CC(G[D]), ∃x ∈ C with labG(x) /∈ p0

}
.

Where ∼fR′ (G) is the equivalence relation such that i ∼fR′ (G) j if there exists a vertex in
lab−1

G (i) connected to a vertex in lab−1
G (j) in fR′(G).

It is straightforward to check that the optimum value is the optimum over all
R ∈ {0, 1, . . . , d,+∞}k of opt{w | ([k], ∅, w) ∈ DG[R, {0}k]} for a k-labeled graph
G. As in Section 4 our dynamic programming algorithm will store a subset of
DG[R,R′] of size 2k−1 that represents it. Recall that we suppose that any graph is
given with an irredundant clique-width k-expression. Also, in order to simplify the
steps of the algorithm, we will always assume that the given graph is k-connected,
at the cost of adding the non-necessary labels in p0 for each considered weighted
partition (p0, p, w).

Computing tabG for G = 1(x). For R ∈ {0, . . . , d,+∞}k, R′ ∈ {0, . . . , d}k, let

tabG[R,R′] :=



∅ if R1 /∈ {0, 1} or Ri 6= 0 for i 6= 1,

{ ([k], ∅, 0) } if R1 = 0 and R′1 ∈ ρ,
{ ([k] \ {1}, ∅, w(x)) } if R1 = 1, R′ = {0}k and 0 ∈ σ,
{ ([k] \ {1}, {{1}}, w(x)) } if R1 = 1, R′1 6= 0 and R′1 ∈ σ,
∅ otherwise.

Since there is only one vertex in G, which is labeled 1, only R1 may be different
from 0 and cannot exceed 1. Also, the possible solutions are either to put x in the
solution (R1 = 1) or to discard it (R1 = 0); in both cases we should check that it is
(σ, ρ)-dominated. Also, when we include it in a solution, whenever R′ 6= {0}k, R′1
should be different from 0. Thus, the fact that tabG[R,R′] represents DG[R,R′] is
clear from the construction.

Computing tabG for G = reni→j(H). We can suppose that H is k-labeled. Let
R ∈ {0, . . . , d,+∞}k and R′ ∈ {0, . . . , d}k. If Ri 6= 0, we let tabG[R,R′] := ∅.
Otherwise, we let S′ ∈ {0, . . . , d}k such that S′` = R′`, ∀` 6= i and S′i = R′j and we
set tabG[R,R′] := reduce(rmc(A)) with

A :=


⋃
S∈S

tabH [S, S′] if Rj = 0 or R′j = 0,

join({([k], ∅, 0)}, proj({i}, A′)) otherwise,

where

A′ :=
⋃
S∈S

join(tabH [S, S′], {([k] \ {i, j}, {{i, j}}, 0)}).

and

S :=
{
S ∈ {0, . . . , d,+∞}k | (∀` /∈ {i, j}, S` = R`) ∧

[
(Rj = min(d, Si + Sj))

∨
(
(Rj = +∞) ∧ (d < Si + Sj) ∧ (∀t ∈ {i, j}, St = rtH(lab−1H (t)))

)]}
.

Lemma 5.4. Let G = reni→j(H) be a k-labeled graph. For R,R′ ∈ {0, 1, . . . , d,+∞}k,
the table tabG[R,R′] represents DG[R,R′] assuming that tabH [S, S′] represents DH [S, S′],
for all S, S′ ∈ {0, 1, . . . , d,+∞}k.

18 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Proof. Notice that as in the proofs of Lemmas 4.1-4.3, it is enough to prove that
by substituting DH to tabH in the definition of A we have A = DG[R,R′] as
the operators preserve the representativity (and this is the case for the next two
lemmas).

First we prove that A ⊆ DG[R,R′]. Observe that in G no vertex is labeled by i,
and thus DG[R,R′] is empty if Ri 6= 0. Assume now that Ri = 0 and let S ∈ S. Let
(p0, p, w) ∈ DH [S, S′] and D its associated set from Definition 5. One can check
from the definition of S that rG(D) = R. Suppose that Rj = 0 or R′j = 0. We
claim that (p0, p, w) is a valid entry in DG[R,R′]. It is clear that p0 = {` ∈ [k] |
R` = 0 or R′` = 0} since either Rj = 0 and then Si = Sj = 0 or R′j = 0 and
then S′i = S′j = 0. Moreover, D ∪ V +(R′) (σ, ρ)-dominates V (G) in fR′(G) because
D ∪ V +(S′) (σ, ρ)-dominates V (G) = V (H) in fS′(H) and R′j = S′i = S′j . We can
easily check that (p0, p, w) satisfies all the other conditions to be in DG[R,R′]. Now
suppose that Rj 6= 0 and R′j 6= 0. Let {(p′0, p′, w)} be the result of

join({([k], ∅, 0)}, proj({i}, join({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)}))).

We claim that (p′0, p
′, w) is a valid entry of DG[R,R′] when associated with D.

First, observe that applying proj and join with respectively i and {([k], ∅, 0)} as
arguments guarantees that p′0 = p0 ∪ {i} whether i ∈ p0 or not. Thus p′0 =
{` ∈ [k] | R` = 0 or R′` = 0}. Moreover, it is easy to see that the neighborhood
of each vertex in V (G) does not change from fR′(G) to fS′(H), except for the
vertices in lab−1H (i). Furthermore, for all vertices v ∈ lab−1H (i), we have NfR′ (G)(v) =

(NfS′ (H)(v)\V +(S′i)) ∪ V +(R′j). Thus D∪V +(R′) (σ, ρ)-dominates V (G) in fR′(G)
since S′i = R′j . One can easily check that p′ is equal to p if Si = 0 or p′ is obtained
from p by merging the block containing i and the block containing j and by removing
i. From these observations, one can infer that p′ corresponds to ([k] \ p′0)/ ∼fR′ (G)

since, if Si 6= 0 then the vertices in lab−1H (j) are connected to the vertices in lab−1H (i)
in fR′(G) through the vertices in V +(R′j). Finally, all the connected components
of G[D] intersect V (lab−1G ([k] \ p0)) since V (lab−1H (p0)) = V (lab−1G (p′0)). We can
conclude that each weighted partition added to A is correct.

Assume now that (p0, p, w) belongs to DG[R,R′] and let D be its associated set
from Definition 5. Let S := rH(D) and p′0 := {` ∈ [k] | S` = 0 or S′` = 0}. By
definition of S, it is clear that S ∈ S. Moreover, with the same arguments evoked
above, one can can easily check that (p′0, ([k] \ p′0)/ ∼fS′ (H), w) ∈ DH [S, S′] and
that (p0, p, w) is added in A. Thus DG[R,R′] ⊆ A. �

Computing tabG for G = addi,j(H). We can suppose that H is k-labeled. Let
R ∈ {0, . . . , d,+∞}k and R′ ∈ {0, . . . , d}k. For t ∈ {i, j}, we let P be the following
predicate

P(t) :=
(
σ, ρ are co-finite

)
∨
(
ρ is co-finite ∧Rt = 0

)
∨
(
σ is co-finite ∧Rt = rtG(lab−1

G (t))
)
.

Let, if it exists, S′ ∈ {0, . . . , d}k such that S′` = R′`, for all ` ∈ [k] \ {i, j} and

S′i :=

{
Rj +R′i if Rj +R′i ≤ d,
d if P(i),

and, S′j :=

{
Ri +R′j if Ri +R′j ≤ d,
d if P(j).

We set tabG[R,R′] := reduce(rmc(A)) with

A :=


{([k], ∅, w) | (p0, p, w) ∈ tabH [R,S′]} if R′ = {0}k,
tabH [R,S′] if Ri = 0 or Rj = 0,

join({([k], ∅, 0)}, proj({` ∈ {i, j} | R′` = 0}, A′)) otherwise,

FAST FOR CWD 19

where

A′ :=join(tabH [R,S′], {([k] \ {i, j}, {{i, j}}, 0)})

We essentially merge the connected components containing vertices labeled i
and those labeled j, and check at the same time whether the resulting set is still a
(σ, ρ)-dominating set (by the definition of S′i and S′j)

Lemma 5.5. Let G = addi,j(H) be a k-labeled graph. For R,R′ ∈ {0, 1, . . . , d}k,
the table tabG[R,R′] represents DG[R,R′] assuming that tabH [S, S′] represents DH [S, S′]
for all S, S′ ∈ {0, 1, . . . , d}k.

Proof. Recall that lab−1G (`) = lab−1H (`) for all ` ∈ [k]. First, we prove that all tuples
added to A belong to DG[R,R′], i.e., A ⊆ DG[R,R′]. Let (p0, p, w) ∈ tabH [R,S′]
with D, its associated set from Definition 5. Independently from the different cases,
we claim that D ∪ V +(R′) (σ, ρ)-dominates V (G) in fR′(G). In order to prove this
claim, observe that the neighborhood of a vertex in V (G) \ lab−1G ({i, j}) is the
same in fS′(H) and in fR′(G). Thus, it is sufficient to prove that lab−1G ({i, j}) is
(σ, ρ)-dominated by D ∪ V +(R′). It is easy to see that for all v ∈ lab−1G (i)

|NfR′ (G)(v) ∩ (D ∪ V +(R′))| = |NH(v) ∩D|+ |lab−1G (j) ∩D|+R′i.

As D∪V +(S′) (σ, ρ)-dominates lab−1G (i) in fS′(H), we can conclude that, if P(i) is
true, then for all vertices v ∈ lab−1G (i) and for all k ∈ N, |NfS′ (H)(v) ∩D|+ S′i + k
belongs respectively to σ if v ∈ D and to ρ if v /∈ D. Moreover, if S′i = R′i + Rj ,
then, for all v ∈ lab−1G (i), |NfS′ (H)(v) ∩ D| + S′i = |NfR′ (G)(v) ∩ D| + R′i. In both
cases, lab−1G (i) is (σ, ρ)-dominated by D ∪ V +(R′). Symmetrically, we can prove
that lab−1G (j) is also (σ, ρ)-dominated. Thus, we can conclude that D ∪ V +(R′)
(σ, ρ)-dominates V (G) in fR′(G).

If R′ = {0}k then one can easily check that, by definition of S′, the two cases
p0 = [k] \ {i} or [k] \ {j} are impossible. Thus, we have either p0 = [k] or p0 =
[k]\{i, j}. Since (p0, p, w) ∈ DH [S, S′], if p0 = [k] then S′ = {0}k and H[D] = G[D]
is connected. Otherwise, if p0 = [k] \ {i, j}, every connected component of H[D]
contains a vertex in lab−1G ({i, j}) and both labels are intersected by D, thus G[D] =
addi,j(H[D]) is connected. In both cases, G[D] is connected and thus ([k], ∅, w) is
a valid entry of DG[R,R′].

Assume now that R′ 6= {0}k. If Ri = 0 or Rj = 0, then we have H[D] = G[D].
Moreover, by the definition of S′, it is easy to check that p0 = {` | R` = 0 or R′` =

0}. Also, the last property of Definition 5, is satisfied since lab−1G (p0) = lab−1H (p0).
We can thus conclude that (p0, p, w) is a valid entry of DG[R,R′].

Now assume that Ri 6= 0 and Rj 6= 0 and let (p′0, p
′, w) be the tuple added to A

from (p0, p, w). Observe that the join and the proj, we successively apply onA′, guar-
antee that p′0 = p0∪{` ∈ {i, j} | R′` = 0} and then that p′0 = {` | R` = 0 or R′` = 0}.
Notice that p′ is the partition obtained from p by merging the blocks containing i
and j and by removing {` ∈ {i, j} | R′` = 0} from this new bloc. It is straightfor-
ward to check that p′ = ([k]\p′0)/ ∼fR′ (G) since G[D] = addi,j(H[D]). It remains to
prove the last condition of Definition 5. Assume towards a contradiction that G[D]
admits a connected component C fully included in lab−1G (p′0). As every connected
component of H[D] intersects lab−1G ([k]\p0) and p′0 \p0 ⊆ {i, j}, one can check that
p′0 = p0∪{i, j} and that C intersects both lab−1G (i) and lab−1G (j). Moreover, C must
be the only connected component of G[D] which intersects lab−1G ({i, j}), otherwise,
C would not be maximal. Hence, either {i, j} is a bloc of p or {i}, {j} are blocks
of p. In both cases, the proj with {` ∈ {i, j} | R′` = 0} = {i, j} as argument will

20 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

return the empty set. This contradicts the fact that (p′0, p
′, w) is added to A from

(p0, p, w). We can therefore conclude that all tuples added to A are in DG[R,R′].
Now, we prove that DG[R,R′] ⊆ A. Let (p0, p, w) ∈ DG[R,R′] and D its

associated set from Definition 5. Moreover, let p′0 = {` ∈ [k] | R` = 0 or S′` = 0}
and p′ = ([k] \ p′0)/ ∼fS′ (H). By definition of d and since D ∪ V +(R′) (σ, ρ)-
dominates V (G) in fR′(G), it is easy to see that Rj +R′i > d implies P(i) and that
Ri + R′j > d implies P(j). From this observation, one can check that D ∪ V +(R′)
(σ, ρ)-dominates V (H) in fS′(H). The last condition of Definition 5 is satisfied
since lab−1G (p′0) ⊆ lab−1H (p0). We can conclude that (p′0, p

′, w) ∈ DH [R,S′]. We
claim that (p0, p, w) is added to A from (p′0, p

′, w). This is trivial if R′ = {0}k or
(Ri = 0) ∧ (Rj = 0). Assume from now that R′ 6= {0}k and (Ri 6= 0) ∨ (Rj 6= 0).
We prove that the proj, with {` ∈ {i, j} | R′` = 0} as argument, does not return
an empty set. Assume towards, a contradiction, that it is the case. It means that
{` ∈ {i, j} | R′` = 0} = {i, j} and either {i, j} is a bloc of p′ or {i} and {j} are
blocks of p′. In both cases, it implies that the connected component containing
D ∩ lab−1G ({i, j}) is fully contained in lab−1G (p0). This is a contradiction with the
last condition of Definition 5. Hence, (p0, p, w) is added to A. �

Computing tabG for G = G1⊕G2. We can suppose that G1 and G2 are k-labeled.
For R,R′ ∈ {0, 1, . . . , d,=∞}k, we let tabG[R,R′] := reduce(rmc(A)) where

A :=

A1 ∪ A2 if R′ = {0}k,⋃
(S1,S2)∈S

join(tabG1 [S1, R′], tabG2 [S2, R′]) otherwise,

with

A1 :=

{
tabG1 [R, {0}k] if tabG2 [{0}k, {0}k] 6= ∅
∅ otherwise.

A2 :=

{
tabG2 [R, {0}k] if tabG1 [{0}k, {0}k] 6= ∅
∅ otherwise.

and, S is the set of all the pairs (S1, S2) ∈ {0, . . . , d,+∞} × {0, . . . , d,+∞}
such that, for each ` ∈ [k], either R` = min(S1

` + S2
` , d) or (R` = +∞ and, S1

` =

r`G1
(lab−1G1

(`)), S2
` = r`G2

(lab−1G2
(`))).

Lemma 5.6. Let G = G1⊕G2 be a k-labeled graph. For R,R′ ∈ {0, 1, . . . , d}k, the
table tabG[R,R′] represents DG[R,R′] assuming that tabG1 [S, S′] and tabG2 [S, S′]
represents DG1

[S, S′] and DG2
[S, S′], respectively, for all S, S′ ∈ {0, 1, . . . , d,+∞}k×

{0, 1, . . . , d}k.

Proof. Assume first that R′ = {0}k. Therefore, it is not possible to construct a
connected set with two connected sets from G1 and G2. It is clear by definition
that if (p0, p, w) is added to A, then there is D ⊆ V (G) so that all the conditions
of Definition 5 are satisfied by D. Now, if ([k], ∅, w) ∈ DG[R, {0}k] and D is its
associated set, then either D ⊆ V (G1) or D ⊆ V (G2). Suppose w.l.o.g. that
D ⊆ V (G1). Since no vertex in G1 has a neighbor in G2, for each vertex x in
V (G2), NG(x) ∩ D = ∅, i.e. tabG2 [{0}k, {0}k] 6= ∅ and by induction we should
have ([k], ∅, w) ∈ DG1 [R, {0}k]. By definition, (p0, p, w) is added to A. One can
conversely prove that any such set belonging to DG[R, {0}k] belongs to A1 ∪ A2.

Let us now suppose that R′ 6= {0}k. Let (p0, p, w) ∈ DG[R,R′] satisfying all the
conditions of Definition 5 and let D ⊆ V (G) its associated set. Let Di := D∩V (Gi)
for i ∈ {1, 2, } and let S1 := rG1(D1) and S2 := rG2(D2). It is easy to check that
(S1, S2) ∈ S. Because no vertex in G1 has a neighbor in G2, it is clear that
D ∪ V +(R′) (σ, ρ)-dominates V (G) if and only if Di ∪ V +(R′) (σ, ρ)-dominates

FAST FOR CWD 21

V (Gi) for i ∈ {1, 2}. Also, since each component of G is either a component of
G1 or a component of G2, for each component C of G1 (resp. G2) there is an
j-vertex x in C with R′j 6= 0. For t ∈ [2], let pt0 := {` ∈ [k] | Stj = 0 or R′` =

0} and pt := ([k] \ pt0)/∼fR′ (Gt). Therefore, (p10, p1,w(D1)) ∈ DG1 [S1, R′] and
(p20, p2,w(D2)) ∈ DG2

[S2, R′]. By definition, we have p = (p1)↑[k]\p0 t (p2)↑[k]\p0 ,
p0 = p10 ∩ p20 and w = w(D1) + w(D2). Therefore, (p0, p, w) is added to A.

In the other direction, let (S1, S2) ∈ S and let (p10, p1, w1) and (p20, p2, w2) in
tabG1

[S1, R′] and tabG2
[S2, R′], respectively, so that

{(p0, p, w)} = join({(p10, p1, w1)}, {(p20, p2, w2)}).

By definition, there are D1 ⊆ V (G1) and D2 ⊆ V (G2) associated with (p10, p1, w1)
and (p20, p2, w2) respectively. Let D := D1∪D2. By definition of S, r(D1∪D2) = R
and w(D) = w(D1) + w(D2) = w. One also checks that p0 = {` ∈ [k] | R` or R′` =
0} as p0 = p10 ∩ p20. Because E(G) ∩ (V (G1) × V (G2)) = ∅, each component of
G[D] is either a component of D1 or of D2, i.e., each component of G[D] contains
an j-vertex with R′j 6= 0. Also, D ∪ V +(R′) (σ, ρ)-dominates V (G) if and only
D1∪V +(R′) and D2∪V +(R′) (σ, ρ)-dominate V (G1) and V (G2) respectively. One
can easily check that p = (p1)↑[k]\p0 t (p2)↑[k]\p0 by definition of t and ∼fR′ (G). We
can therefore conclude that adding (p0, p, w) ∈ A is correct. �

Theorem 5.7. There is an algorithm that, given an n-vertex graph G and a clique-
width k-expression of G, computes an optimum connected (σ, ρ)-dominating set in
time (d+ 2)2k · (d+ 1)k · 2(1+ω)k · n · kO(1).

Proof. We do a bottom-up traversal of the clique-width expression and at each
step we update the tables as indicated above. The correctness of the algorithm
follows from Lemmas 5.4-5.6. Let us discuss the time complexity now. First,
notice that there are at most (d + 2)k · (d + 1)k pairs (R,R′) so that tabG[R,R′]
is well-defined. So, it is enough to show that each table tabG[R,R′] is computed
in at most (d + 2)k · 2(1+ω)k. If G = addi,j(H), we update tabG[R,R′] from one
entry tabH [R,S′] for some fixed S′ computable in O(k) time. Since the used join
operation runs in time 2k−1 · kO(1) and we use reduce on a set of size 2k−1, we are
done. Now, ifG = reni→j(H), then we update tabG[R,R′] from |S| = (d+2)2 tables
from tabH , each identified in O(k) time from (R,R′). Since each table contains at
most 2k−1 entries, we can thus update tabG[R,R′] in time (d+ 2)2 · 2(ω−1)k · kO(1).
If G = G1 ⊕ G2, the bottleneck is when R′ 6= {0}k, in this case, we compute
tabG[R,R′] from the union of |S| join. Observe that |S| ≤ (d + 2)k since for R
fixed and S1 ∈ {0, . . . , d,+∞}, there is at most one S2 ∈ {0, . . . , d,+∞} such that
(S1, S2) ∈ S. Each join is computed in 22k−2 · kO(1) time and adds at most 2k−2

element in A. Therefore, tabG[R,R′] is computed in time (d+ 2)k · 2(ω+1)·k.
Because the size of a clique-width expression is linear in n, we can conclude that

an optimum (σ, ρ)-dominating set can be computed in the given time. �

As a corollary, we can prove the following.

Theorem 5.8. There is an algorithm that, given an n-vertex graph G, a subset K ⊆
V (G) and a clique-width k-expression of G, computes a minimum node-weighted
steiner tree for (G,K) in time 32k · 2(2+ω)k · n · kO(1).

Proof. We can reduce the problem Node-weighted Steiner Tree to a variant
of Connected-(σ, ρ)-Dominating Set where σ = N+ and ρ = N. This variant
require K to be included in the (σ, ρ)-dominating set. We can add this constraint,
by modifying how we compute the table tabG, when G = 1(x) and x ∈ K. For

22 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

R ∈ {0, 1,+∞}k, R′ ∈ {0, 1}k, we set

tabG[R,R′] :=

{
∅ if R1 6= 1 or R′1 6= 1 or Ri 6= 0 for i 6= 1 ,

{ ([k] \ {1}, {{1}}, w(x)) } otherwise.

It is straightforward to check that this modification implements this constraint and
our algorithm with this modification computes a minimum node-weighted Steiner
Tree. �

For the case of out-connected (σ, ρ)-dominating sets, let us define the following
table entries.

Definition 6. For a k-labeled graphG and (R,R′) ∈ {0, 1, . . . , d,+∞}k×{0, 1, . . . , d},
let p0 = {` ∈ [k] | R` = r`G(lab−1G (`)) or R′` = 0},

DG[R,R′] :=
{

(p0, p, w) ∈ Π⊂([k] \ p0, p0) | ∃D ⊆ V (G), rG(D) = R,w(D) = w,

D ∪ V +(R′) (σ, ρ)-dominates V (G) in fR′(G),

p = ([k] \ p0) ∼fR′ (G), and G[V (G) \D] is connected if R′ = {0}k,
otherwise, ∀C ∈ CC(G[V (G) \D]), ∃x ∈ C with labG(x) = j and R′j 6= 0

}
.

Where ∼fR′ (G) is the same equivalence relation as the one defined in Definition 5.

Observe that R` = r`G(lab−1G (`)) implies r`G(V (G) \D) = 0. It is straightforward
to check that the optimum value is the optimum over all R ∈ {0, 1, . . . , d,+∞}k of
opt{w | ([k], ∅, w) ∈ DG[R, {0}k]} for a k-labeled graph G. Definition 6 is similar to
Definition 5, except that p0 and p records the label classes intersected by the com-
plement of the (σ, ρ)-dominating set. It is now an exercise to modify the algorithm
for connected (σ, ρ)-dominating set so that we compute tables for DG.

6. Concluding Remarks

We combine the techniques introduced in [3] and the rank-based approach from
[1] to obtain 2O(k) ·nO(1) time algorithms for several connectivity constraints prob-
lems such as Connected Dominating Set, Connected Vertex Cover, Feed-
back Vertex Set, Connected Induced d-Regular Subgraph, etc. While
we did not consider connectivity constraints on locally vertex partitioning problems
[3], it seems clear that we can adapt the algorithms from the paper to consider
connectivity constraints such as, if the solution is {D1, . . . , Dq}, each block Di is
connected or a proper subset of the blocks form a connected graph. We did not
consider counting versions and it would be interesting to know whether we can
adapt the approach in [1] based on the determinant to the clique-width.

The main drawback of clique-width is that, for fixed k, there is no known FPT
polynomial time algorithm that produces a clique-width expression that even ap-
proximates within a constant factor the clique-width. We can avoid this major
open question, by using the equivalent notion of rank-width and its associated rank-
decomposition for which an FPT cubic time algorithm is known [12, 14, 16]. But,
if we use our approach with a rank-decomposition, the number of labels is bounded
by 2k, and so we will get a doubly exponential time algorithm. We can circle it and
obtain 2O(k2) · nO(1) as done for example in [10] for Feedback Vertex Set by
using Myhill-Nerode congruences, and it is not yet clear how we can combine this
with rank-based approach. Even though we overcome this difficulty, the case of
connected locally checkable properties will not be settled as the best upper-bound
on the number of neighbor-equivalences for rank-width is 2O(k·log(k)) [15] provided
through the notion of Q-rank-width [13, 15].

FAST FOR CWD 23

References

[1] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single
exponential time algorithms for connectivity problems parameterized by treewidth. Inform.
and Comput., 243:86–111, 2015.

[2] Binh-Minh Bui-Xuan, Ondřej Suchý, Jan Arne Telle, and Martin Vatshelle. Feedback vertex
set on graphs of low clique-width. European J. Combin., 34(3):666–679, 2013.

[3] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theoret. Comput. Sci.,
511:66–76, 2013.

[4] Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic, vol-
ume 138 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 2012. A language-theoretic approach, With a foreword by Maurice Nivat.

[5] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph
grammars. Journal of Computer and System Sciences, 46(2):218–270, 1993.

[6] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000.

[7] Reinhard Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics. Springer,
third edition, 2005.

[8] Rodney G. Downey and Michael R. Fellows. Fundamentals of parameterized complexity. Texts
in Computer Science. Springer, London, 2013.

[9] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–
1563, 2014.

[10] Robert Ganian and Petr Hliněný. On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discrete Appl. Math., 158(7):851–867, 2010.

[11] Robert Ganian, Petr Hliněný, and Jan Obdržálek. Clique-width: when hard does not mean
impossible. In 28th International Symposium on Theoretical Aspects of Computer Science,
volume 9 of LIPIcs. Leibniz Int. Proc. Inform., pages 404–415. Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, 2011.

[12] Petr Hliněný and Sang-il Oum. Finding branch-decompositions and rank-decompositions.
SIAM J. Comput., 38(3):1012–1032, 2008.

[13] Mamadou Moustapha Kanté and Michael Rao. The rank-width of edge-coloured graphs.
Theory Comput. Syst., 52(4):599–644, 2013.

[14] Sang-Il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,
5(1):Art. 10, 20, 2009.

[15] Sang-il Oum, Sigve Hortemo Sæther, and Martin Vatshelle. Faster algorithms for vertex
partitioning problems parameterized by clique-width. Theoret. Comput. Sci., 535:16–24, 2014.

[16] Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. J. Combin.
Theory Ser. B, 96(4):514–528, 2006.

[17] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322, 1986.

[18] Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. SIAM J. Discrete Math., 10(4):529–550, 1997.

Appendix A. Proof of Lemma 3.2

We start by giving some useful facts. The following is quite easy to observe if
we take the graphical definition of acyclic.

Fact 1. For all partitions p, q, r ∈ Π(V)

acyclic(p, q) ∧ acyclic(p t q, r)⇔ acyclic(q, r) ∧ acyclic(p, q t r).

Proof. For a partition p ∈ Π(V), let f(p) := |V |−]block(p). One easily checks that
acyclic(p, q) holds if and only if f(ptq) equals f(p)+f(q). One can therefore deduce,
by an easy calculation from this equivalence, that acyclic(p t q, r) ∧ acyclic(p, q) is
equivalent to saying that f(p t q t r) equals f(p) + f(p) + f(r). Similarly, for
acyclic(q, r) ∧ acyclic(p, q t r). �

By definition of acyclic and of t, we can also observe the following.

24 BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Fact 2. Let q ∈ Π(V) and let X ⊆ V such that no subset of X is a block of q.
Then, for each p ∈ Π(V \X), we can observe the following equivalences

p↑X t q = {V } ⇐⇒ p t q↓(V \X) = {V \X} and(1)
acyclic(p↑X , q)⇐⇒ acyclic(p, q↓(V \X)).(2)

The following is quite easy to prove since, for all A ⊆ Π⊂(V, S)× N and (q0, q) ∈
Π⊂(V, S), by definition of ac-opt, we have

ac-opt(A, (q0, q)) = ac-opt(A�q0 , (q0, q)).

Fact 3. Let A and A′ be subsets of Π⊂(V, S)×N. A′ ac-represents A if and only if
A′�X ac-represents A�X for all X ⊆ S.

Proof of Lemma 3.2. Let V and S be two disjoint finite sets and let A and A′ be
weighted partitions in Π⊂(V, S)× N.
Remove non-maximal copies. Let (q0, q) ∈ Π⊂(V, S). By the definition of rmc,
whenever (p0, p, w) ∈ A is such that p0 = q0, p t q = {V }, acyclic(p, q) and
ac-opt(A, (q0, q)) = w, then (p0, p, w) ∈ rmc(A), otherwise there would exist
(p0, p, w

′) ∈ A with w′ > w which would contradict w = ac-opt(A, (q0, q)). There-
fore, ac-opt(rmc(A), (q0, q)) = ac-opt(A, (q0, q)). We can then conclude that if A′
ac-represents A, it holds that rmc(A′) ac-represents rmc(A).

Project. Because proj(A, X) = proj(proj(A, x), X \ {x}) for all x ∈ X ⊆ V ∪ S,
we can assume that X = {x}. Let (q0, q) ∈ Π⊂(V \ x, S \ x). Let (p0, p, w) ∈
A such that (p0 \ x, p↓V \x, w) ∈ proj({(p0, p, w)}, X) with p0 \ x = q0. Since
proj({(p0, p, w)}, X) 6= ∅, {x} is not a block of p and by Fact 2, if x ∈ V then

p↓V \x t q = {V \ x} ⇐⇒ p t q↑x = {V }, and
acyclic(p↓V \x, q)⇐⇒ acyclic(p, q↑x).

Thus, if x ∈ V then ac-opt(proj(A, {x}), (q0, q)) = ac-opt(A, (q0, q↑x)). Other-
wise, if x ∈ S then p↓V \x = p and either p0 = q0 or p0 = q0 ∪ x. In this case,
ac-opt(proj(A, {x}), (q0, q)) is the maximum between ac-opt(A, (q0 ∪ x, q)) and
ac-opt(A, (q0, q)). In both case, we can then conclude that if A′ ac-represents A,
it holds that proj(A′, {x}) ac-represents proj(A, {x}).
Ac-Join. Let V ′ and S′ be two disjoint finite sets and let B ⊆ Π⊂(V ′, S′) × N.
By Fact 3, it is sufficient to prove that, for all X ⊆ (S \ V ′) ∪ (S′ \ V), we have
acjoin(A′,B)�X ac-represents acjoin(A,B)�X . LetX ⊆ (S\V ′)∪(S′\V) and (r0, r) ∈
π(V ∪ V ′, (S \ V ′) ∪ (S′ \ V)). If r0 6= X then ac-opt(acjoin(A,B)�X , (r0, r)) =

ac-opt(acjoin(A′,B)�X , (r0, r)) = −∞.
Assume now that r0 = X, by definition, ac-opt(acjoin(A,B)�X , (X, r)) equals

max{w1 + w2 | (p0, p, w1) ∈ A ∧ (q0, q, w2) ∈ B ∧X = (p0 \ V ′) ∪ (q0 \ V) ∪ (p0 ∩ q0)

∧ acyclic(p↑V ′ , q↑V) ∧ acyclic(p↑V ′ t q↑V , r)
∧ p↑V ′ t q↑V t r = {V ∪ V ′}}.

By fact 1, ac-opt(acjoin(A,B)�X , (X, r)) equals

max{w1 + w2 | (p0, p, w1) ∈ A ∧ (q0, q, w2) ∈ B ∧X = (p0 \ V ′) ∪ (q0 \ V) ∪ (p0 ∩ q0)

∧ acyclic(q↑V , r) ∧ acyclic(p↑V ′ , q↑V t r)
∧ p↑V ′ t q↑V t r = {V ∪ V ′}}.

If for some (q0, q, w2) ∈ B there exists a subset Y of V ′ \V such that Y is a block
of q↑V tr then there is no (p0, p, w1) ∈ Π⊂(V, S) such that p↑V ′ tq↑V tr = {V ∪V ′},

FAST FOR CWD 25

i.e., ac-opt(acjoin(Π⊂(V, S), {(q0, q, w2)}), (r0, r))�X = −∞. Thus, we can suppose
that for all (q0, q, w2) ∈ B there is no subset Y of V ′ \ V such that Y is a block of
q↑V t r and we can apply the Fact 2, i.e., ac-opt(acjoin(A,B)�X , (X, r)) equals

max{w1 + w2 | (p0, p, w1) ∈ A ∧ (q0, q, w2) ∈ B ∧X = (p0 \ V ′) ∪ (q0 \ V) ∪ (p0 ∩ q0)

∧ acyclic(q↑V , r) ∧ acyclic(p, (q↑V t r)↓V)

∧ p t (q↑V t r)↓V = {V }}.

This is equal to
max{ac-opt(A, (Y, (q↑V t r)↓V)) + w2 | Y ⊆ S ∧ (q0, q, w2) ∈ B

∧X = (Y \ V ′) ∪ (q0 \ V) ∪ (Y ∩ q0)

∧ acyclic(q↑V , r)}.

If A′ ac-represents A then ac-opt(A, (Y, (q↑V t r)↓V)) = ac-opt(A′, (Y, (q↑V t
r)↓V)) for all Y ⊆ S and (q0, q, w2) ∈ B. Thus, we can conclude that

ac-opt(acjoin(A,B)�X , (X, r)) = ac-opt(acjoin(A′,B)�X , (X, r))

and then acjoin(A′,B) ac-represents acjoin(A,B) whenever A′ ac-represents A.
Union. It is quite trivial for the operator ∪ since, for all B ⊆ Π⊂(V, S) × N and
(q0, q) ∈ Π⊂(V, S)×N, we have ac-opt(A ∪B, (q0, q)) = max(ac-opt(A, (q0, q)),ac-opt(B, (q0, q))).

�

Université Clermont Auvergne, LIMOS, CNRS, Aubière, France.
E-mail address: {mamadou.kante,benjamin.bergougnoux}@uca.fr

	1. Introduction
	Our Contributions.

	2. Preliminaries
	3. Representing Sets of Weighted Partitions by Matrices
	4. Feedback Vertex Set
	5. (Out)-Connected (,)-Dominating Sets
	6. Concluding Remarks
	References
	Appendix A. Proof of Lemma 3.2

