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FAST EXACT ALGORITHMS FOR SOME CONNECTIVITY
PROBLEMS PARAMETERIZED BY CLIQUE-WIDTH

BENJAMIN BERGOUGNOUX AND MAMADOU KANTÉ

Abstract. Given a clique-width k-expression of a graph G, we provide 2O(k) ·
n time algorithms for connectivity constraints on locally checkable properties
such as Node-Weighted Steiner Tree, Connected Dominating Set, or
Connected Vertex Cover. We also propose a 2O(k) · n time algorithm for
Feedback Vertex Set. The best running times for all the considered cases
were either 2O(k·log(k)) · nO(1) or worse.

1. Introduction

Tree-width [20] is probably the most well-studied graph parameter in the graph
algorithm community, and particularly by people working in Fixed Parameter Tract-
able (FPT for short) algorithms, due partly to its numerous structural and algo-
rithmic properties [5, 10]. For a while, people used to think that for many con-
nectivity constraints problems, e.g., Hamiltonian Cycle, Steiner Tree, the
naive kO(k) · nO(1) time algorithm, k the tree-width of the input graph, cannot be
improved. Indeed, it seems necessary to know the connected components of the
partial solutions in order to be able to extend them and also certify that the given
solution is really connected. But, quite surprisingly, Cygan et al showed in [8] that
some of these connectivity constraints problems admit randomized 2O(k) ·nO(1) time
algorithms. The first deterministic 2O(k) ·nO(1) time algorithms for these problems
was due to Bodlaender et al. in [2]. First, let us say that S ′ represents the set
of partial solutions S if whenever there is S ∈ S such that S can be completed
into an optimum solution, there is S′ ∈ S ′ that can be also completed into an
optimum solution. Most of the dynamic programming algorithms are based on
this notion of representativity, and proposing a fast algorithm is usually reduced
to defining the adequate set S ′. For instance, one can define, for each node u of a
tree-decomposition, a matrix Mu over the binary field where Mu[F, F ′] = 1 if and
only if the partial solutions F and F ′ can be “joined” into a valid solution of the
instance (F is usually intended to be a subset of a solution, subset included in the
already processed part of the graph, and F ′ the remaining part of the solution, that
is not yet known).

The main contribution of [2] was to show that, for some connectivity constraints
problems, for each node u of a tree-decomposition of width k, the rank of Mu is at
most 2O(k); moreover, a maximum weighted basis - such that the solutions indexing
its rows represent the solutions indexing the rows of Mu - can be computed in time
2O(k).
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Nevertheless, despite the broad interest on tree-width, only sparse graphs can
have bounded tree-width. But, on many dense graph classes, some NP-hard prob-
lems admit polynomial time algorithms, and many of these algorithms can be ex-
plained by the boundedness of their clique-width, a graph parameter introduced by
Courcelle and Olariu [7] and that emerges from the theory of graph grammars.

Clique-width is defined in terms of the following graph operations: (1) addition
of a single vertex labeled i ∈ N, (3) renaming label i into j (reni→j), (3) addition of
edges between vertices labeled i and those labeled j (addi,j), (4) disjoint union (⊕).
The clique-width of a graph is the minimum number of labels needed to construct
it, and the expression constructing it is called k-expression, k the number of used
labels. Clique-width generalizes tree-width in the sense that if a graph class has
bounded tree-width, then it has bounded clique-width [7], but the converse is false
as cliques have clique-width at most 2 and unbounded tree-width. Furthermore,
clique-width appears also to be of big importance in FPT algorithms [5]. While
it is still open whether there exists an FPT algorithm to compute an optimal k-
expression of a given graph, one can ask when clique-width behaves similarly as tree-
width. It is known that clique-width is far from behaving similarly as tree-width on
some well-studied and well-known difficult problems such as Hamiltonicity [11].
On the other hand, Bui-Xuan et al. [4], and Ganian et al. [13, 14] managed to
prove, after more substantial work than for tree-width, that for locally checkable
properties and some sparse problems, one can get 2k

O(1) · nO(1) time algorithms, k
the clique-width of the input graph. For some of these algorithms, the exponential
in their running times are proved to have a linear dependence on the clique-width,
while for others only a polynomial dependence is known.

However, nothing is known on connectivity constraints problems, except some
special cases such as Feedback Vertex Set which was proved to admit a kO(k) ·
nO(1) time algorithm in [3], provided the graph is given with a k-expression.

Our Contributions. We investigate connectivity constraints on locally check-
able properties, such as Connected Dominating Set, or Connected Ver-
tex Cover. All these problems are the connected variant of a problem in the
family of problems called (σ, ρ)-Dominating Set problems. The family of (σ, ρ)-
Dominating Set problems was introduced in [21] and studied in graphs of bounded
clique-width in [4, 18]. We recall its definition at the end of Section 2. It is not hard
to modify the dynamic programming algorithm from [4] that computes a minimum
(σ, ρ)-dominating set in order to compute a minimum connected (σ, ρ)-dominating
set in time kO(k) · nO(1), since it suffices to keep track, for each family of partial
solutions, the possible partitions of the label classes induced by them. We modify
slightly this naive algorithm and prove that one can define representative sets of
size 2O(k), yielding 2O(k) · n time algorithms resolving this family of problems.

We also consider the Feedback Vertex Set problem, which asks to compute a
minimum set of vertices to delete so that the resulting graph is acyclic, and propose
similarly a 2O(k) · n time algorithm. But, the algorithm, even in the same spirit as
the one for connected (σ, ρ)-dominating set, is less trivial since one has to check also
the acyclicity, a task that is not trivial when dealing with clique-width operations as
a bunch of edges can be added at the same time. Indeed, at each step of the dynamic
programming algorithm, when dealing with tree-width the number of vertices that
have a neighbor in the rest of the graph is bounded, but for clique-width they can
be only classified into a bounded number of equivalence classes (with respect to
having the same neighborhood in the rest of the graph); these equivalence classes
are the label classes of the given k-expression.

In both cases, we use the same rank-based approach as in [2], but we need to
adapt in the Feedback Vertex Set’s case the operations on partitions to fit with
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clique-width operations. The main difficulty is to deal with the acyclicity, which
the authors of [2] also encountered but solved by counting the number of edges.
In our case, counting the number of edges would yield an nO(k) time algorithm.
Let’s explain the ideas of the algorithms with two examples: (1) Connected
Dominating Set, asking to compute a minimum connected set D such that each
vertex in V (G) \D has a neighbor in D and (2) Maximum Induced Tree, that
consists in computing a maximum induced tree.

LetG be a graph, for which a k-expression is given, and let (X,Y ) be a bipartition
of its vertex set induced by a subexpression of the k-expression. Let us denote the
labels of vertices in X by {1, 2, . . . , k}. It is worth noticing that at the time we are
processing the set X, may be not all the edges between the vertices of X are known
(those edges may be added in the forthcoming addi,j operations). To facilitate
the steps of the dynamic programming algorithm, we first assume that either all
the edges between the vertices of X labeled i and the vertices of X labeled j are
already known, or none of them, for all distinct i, j. A k-expressions fulfilling this
constraint can be computed from any k-expression in linear time [7].

(1) Let D be a connected dominating set of G and let DX := D ∩ X. First,
D is not necessarily connected, neither a dominating set of G[X]. So, the
usual dynamic programming algorithm keeps, for each such DX , the pair
(R,R′) of sequences over {0, 1}k, where Ri := 1 if and only if DX contains
a vertex labeled i, and R′i := 1 if and only if X has a vertex labeled i
not dominated by DX . One first observes that if DX and D′X have the
same pair of sequences (R,R′), then DX ∪ DY is a dominating set of G
if and only if D′X ∪ DY is a dominating set. Therefore, it is sufficient to
keep for each pair (R,R′) of sequences in {0, 1}k the possible partitions of
{1, . . . , k} corresponding, informally, to the connected components of the
graphs induced by the DX ’s, and for each possible partition, the maximum
weight among all corresponding DX ’s. Notice that the graphs induced by
the DX ’s are not necessarily induced subgraphs of G. One easily checks
that these tables can be updated without difficulty following the clique-
width operations in time kO(k) · nO(1).

In order to obtain 2O(k) ·n time algorithms, we modify this algorithm so
that the partitions instead of corresponding to the connected components
of the graphs induced by the DX ’s, do correspond to the connected compo-
nents of the induced subgraphs G[DX ]. For doing so, we do not guess the
existence of vertices labeled i that are not dominated, but rather the exis-
tence of a vertex that will dominate the vertices labeled i (if not already
dominated). With this modification, the steps of our dynamic program-
ming algorithms can be described in terms of the operations on partitions
defined in [2]. We can therefore use the same notion of representativity in
order to reduce the time complexity.

(2) We consider this example because we reduce the computation of a minimum
feedback vertex set to that of a maximum tree. We first observe that we
cannot use the same trick as in [2] to ensure the acyclicity, that is counting
the number of edges induced by the partial solutions. Indeed, whenever
an addi,j operation is used, many edges can be added at the same time.
Hence, counting the edges induced by a partial solution would imply to
know, for each partial solution, the number of vertices labeled i, for each
i. But, this automatically leads to an nO(k) time algorithm. We overcome
this difficulty by first defining a binary relation acyclic on partitions where
acyclic(p, q) holds whenever there are forests E and F , on the same vertex
set, such that E∪F is a forest, and p and q correspond, respectively, to the
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connected components of E and F . In a second step, we redefine some of the
operations on partitions defined in [2] in order to deal with the acyclicity.
These operations are used to describe the steps of the algorithm. They
informally help updating the partitions after each clique-width operation
by detecting partial solutions that may contain cycles. We also define a new
notion of representativity, ac-representativity, where S ′ ac-represents S if,
whenever there is S ∈ S that can be completed into an acyclic connected
set, there is S′ ∈ S ′ that can be completed into a connected acyclic set.
We then prove that one can also compute an ac-representative set of size
2O(k), assuming the partitions are on {1, . . . , k}.

It remains now to describe the steps of the dynamic programming algo-
rithm in terms of the new operations on partitions. First, we are tempted to
keep for each forest F of X, the partition induced by the transitive closure
of ∼ where i ∼ j whenever there is a vertex x labeled i, connected in F , to
a vertex y labeled j. However, this is not sufficient because we may have in
a same connected component two vertices labeled i, and any forthcoming
addi,j operation will create a cycle in F if there is a vertex labeled j in F .
To overcome this difficulty we index our dynamic programming tables with
functions s that inform, for each i, whether there is a vertex labeled i in
the partial solutions, and if yes, in exactly 1 vertex, or in at least 2 vertices.
Indeed, knowing the existence of at least two vertices is sufficient to detect
some cycles when we encounter an addi,j operation. We need also to make
a difference when we have all the vertices labeled i in different connected
components, or when at least two are in a same connected component. This
will allow to detect all the partial solutions F that may contain triangles or
cycles on 4 vertices with a forthcoming addi,j operation. Such cycles cannot
be detected by the acyclic binary relation on partitions since this latter does
not keep track of the number of vertices in each label. However, the other
kinds of cycles are detected through the acyclic binary relation. We refer
the reader to Section 4 for a more detailed description of the algorithm.

One might notice that our algorithms are optimal under the well-know Expo-
nential Time Hypothesis (ETH) [16]. Indeed, from known Karp-reductions, there
are no 2o(n) time algorithms for the considered problems. Since the clique-width of
a graph is always smaller than its number of vertices, it follows that, unless ETH
fails, there are no 2o(k) · nO(1) time algorithms, for these problems.

The remainder of the paper is organised as follows. The next section is devoted
to the main notations, and for the definition of clique-width and of the considered
problems. The notion of ac-representativity and the modified operations on par-
titions are given in Section 3. We also propose the algorithm for computing an
ac-representative set of size 2O(|V |), for sets of weighted partitions on a finite set
V . The algorithms for computing a minimum feedback vertex set and connected
(σ, ρ)-dominating sets are given in, respectively, Sections 4 and 5.

2. Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We
write A \B for the set difference of A from B, and we write A ]B for the disjoint
union of A and B. We often write x to denote the singleton set {x}. For a mapping
f : A → B, we let f−1(b) := {a ∈ A : b = f(a)} for b ∈ B. We let min(∅) := +∞
and max(∅) := −∞. We let [k] := {1, . . . , k}. We denote by N the set of non-
negative integers and by F2 the binary field.
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Partitions. A partition p of a set V is a collection of non-empty subsets of V that
are pairwise non-intersecting and such that

⋃
pi∈p pi = V ; each set in p is called a

block of p. The set of partitions of a finite set V is denoted by Π(V ), and (Π(V ),v)
forms a lattice where p v q if for each block pi of p there is a block qj of q with
pi ⊆ qj . The join operation of this lattice is denoted by t. For example, we have

{{1, 2}, {3, 4}, {5}} t {{1}, {2, 3}, {4}, {5}} = {{1, 2, 3, 4}, {5}}.

Let ]block(p) denote the number of blocks of a partition p. Observe that ∅ is the
only partition of the empty set. A weighted partition is an element of Π(V )×N for
some finite set V .

For p ∈ Π(V ) andX ⊆ V , let p↓X ∈ Π(X) be the partition {pi∩X : pi ∈ p}\{∅},
and for Y ⊇ V , let p↑Y ∈ Π(Y ) be the partition p ∪

(⋃
y∈Y \V {{y}}

)
.

Graphs. Our graph terminology is standard, and we refer to [9]. The vertex set
of a graph G is denoted by V (G) and its edge set by E(G). An edge between two
vertices x and y is denoted by xy (or yx). The subgraph of G induced by a subset
X of its vertex set is denoted by G[X], and we write G \X to denote the induced
subgraph G[V (G) \ X]. The set of vertices that are adjacent to x is denoted by
NG(x), and for U ⊆ V (G), we let NG(U) := (∪v∈UNG(v)) \ U . For a graph G, we
denote by cc(G) the partition {V (C) : C is a connected component of G} of V (G).

Clique-Width. A k-labeled graph is a pair (G, labG) with G a graph and labG a
function from VG to [k], called the labeling function; each set lab−1

G (i) is called a
label class and vertices in lab−1

G (i) are called i-vertices. The notion of clique-width
is defined by Courcelle et al. [6] and is based on the following operations.

(1) Create a graph, denoted by 1(x), with a single vertex x labeled with 1.
(2) For a labeled graph G and distinct labels i, j ∈ [k], relabel the i-vertices of

G with j (denoted by reni→j(G)). Notice that there are no more i-vertices
in reni→j(G).

(3) For a labeled graph G and distinct labels i, j ∈ [k], add all the non-existent
edges between the i-vertices and the j-vertices (denoted by addi,j(G)).

(4) Take the disjoint union of two labeled graphs G and H, denoted by G⊕H,

with labG⊕H(v) :=

{
labG(v) if x ∈ V (G),

labH(v) otherwise.

A k-expression is a finite well-formed term built with the four operations above.
Each k-expression t evaluates into a k-labeled graph (val(t), lab(t). The clique-width
of a graph G, denoted by cwd(G), is the minimum k such that G is isomorphic to
val(t) for some k-expression t. We can assume without loss of generality that any
k-expression defining a graph G uses O(n) disjoint union operations and O(nk2)
unary operations [7].

It is worth noticing that from the recursive definition of k-expressions, one can
compute in time linear in |t| the labeling function lab(t) of val(t), and hence we
will always assume that it is given.

To simplify our algorithms, we will use irredundant k-expressions (see for in-
stance Section 4).

Definition 2.1 (Irredundant k-expressions [7]). A k-expression is irredundant if
whenever the operation addi,j is applied on a graph G, there is no edge between an
i-vertex and a j-vertex in G.

It is proved in [7] that any k-expression can be transformed in linear time into
an irredundant k-expression.
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Considered Connectivity Problems. For all the problems in this article, we
consider the weight function to be on the vertices. Observe that putting weights
on the edges would make some of the considered problems such as Steiner Tree
NP-hard even on graphs of clique-width two (since cliques have clique-width two).

A subset X ⊆ V (G) of the vertex set of a graph G is a feedback vertex set if G\X
is a forest. The problem Feedback Vertex Set consists in finding a minimum
feedback vertex set. It is not hard to verify that X is a minimum feedback vertex
set of G if and only if G \X is a maximum induced forest.

The problem Node-weighted Steiner Tree asks, given a subset of vertices
K ⊆ V (G) called terminals, a subset T of minimum weight such that K ⊆ T ⊆
V (G) and G[T ] is connected.

Let σ and ρ be two (non-empty) finite or co-finite subsets of N. We say that a
subset D of V (G) (σ, ρ)-dominates a subset U ⊆ V (G) if for every vertex u ∈ U ,
|NG(u) ∩ D| ∈ σ if u ∈ D, otherwise |NG(u) ∩ D| ∈ ρ. We say that a set X is
a (σ, ρ)-dominating set (resp. co-(σ, ρ)-dominating set) of a graph G, if V (G) is
(σ, ρ)-dominated by X (resp. V (G)\X). In the connected version, we are moreover
asking X to be connected.

Examples of Connected (Co-)(σ, ρ)-Dominating Set problems are shown in
Table 1.

σ ρ Version Standard name
N N+ Normal Connected Dominating Set
N+ N+ Normal Connected Total Dominating Set
{d} N Normal Connected Induced d-Regular Subgraph
N {1} Normal Connected Perfect Dominating Set
{0} N Co Connected Vertex Cover

Figure 1. Examples of Connected (Co-)(σ, ρ)-Dominating
Set problems, N+ := N \ {0}.

3. Representing Sets of Acyclic Weighted Partitions by Matrices

We recall that a weighted partition is an element of Π(V )×N for some finite set
V . Our algorithms compute a set of weighted partitions A ⊆ Π(V ) × N, for each
labeled graph H used in the k-expression of the given graph G and for every subset
V ⊆ lab−1

H (V (H)). Each weighted partition (p, w) ∈ A ⊆ Π(V )× N is intended to
mean the following: there is a solution S ⊆ V (H) of weight w such that p is the
transitive closure of the following equivalence relation ∼ on V : i ∼ j if there exist
an i-vertex and a j-vertex in the same component of H[S]. Moreover, for every
label i in V , there is at least one i-vertex in S. For each label i in V , we expect
the i-vertices of S to have an additional neighbor in any extension of S into an
optimum solution. This way, for each label i ∈ V , we can consider the i-vertices of
S as one vertex in terms of connectivity, since they will have a common neighbor in
any extension of S. On the other hand, the labels j ∈ [k] \ V such that S contains
at least one j-vertex are expected to have no additional neighbor in any extension
of S into an optimum solution. Consequently, the vertices in S with a label in
[k] \ V do no longer play a role in the connectivity. These expectations allow us to
represent the connected components of H[S] by p. Our algorithms will guarantee
that the weighted partitions computed from (p, w) are computed accordingly to
these expectations.
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When considering the Feedback Vertex Set problem, as said in the intro-
duction, the trick used in [2] to deal with acyclicity and that consists in counting
the number of edges induced by the partial solutions would yield an nO(k) time
algorithm in the case of clique-width. Since the partial solutions for the Feedback
Vertex Set problem are represented by weighted partitions, we need to certify
that whenever we join two weighted partitions and keep it as a partial solution, it
does not correspond to a partial solution with cycles. We introduce in the following
a notion of acyclicity between two partitions so that we can identify the joins of
partitions which do not produce cycles.

Definition 3.1. Let V be a finite set. We let acyclic be the relation on Π(V )×Π(V )
where acyclic(p, q) holds exactly when |V |+]block(ptq)−(]block(p)+]block(q)) = 0.

Observe that, if Fp := (V,Ep) and Fq := (V,Eq) are forests with components
p = cc(Fp) and q = cc(Fq) respectively, then acyclic(p, q) holds if and only if
Ep∩Eq = ∅ and (V,Ep]Eq) is a forest. The following is then quite easy to deduce.

Fact 3.2. Let V be a finite set. For all partitions p, q, r ∈ Π(V ),

acyclic(p, q) ∧ acyclic(p t q, r)⇔ acyclic(q, r) ∧ acyclic(p, q t r).

Proof. For a partition p ∈ Π(V ), let f(p) := |V |− ]block(p). One easily checks that
acyclic(p, q) holds if and only if f(ptq) equals f(p)+f(q). One can therefore deduce,
by an easy calculation from this equivalence, that acyclic(p t q, r) ∧ acyclic(p, q) is
equivalent to saying that f(ptqtr) equals f(p)+f(q)+f(r). The same statement
holds for acyclic(q, r) ∧ acyclic(p, q t r). �

By definition of acyclic and of t, we can also observe the following.

Fact 3.3. Let V be a finite set. Let q ∈ Π(V ) and let X ⊆ V such that no subset
of X is a block of q. Then, for each p ∈ Π(V \ X), we can observe the following
equivalences

p↑X t q = {V } ⇐⇒ p t q↓(V \X) = {V \X} and(1)
acyclic(p↑X , q)⇐⇒ acyclic(p, q↓(V \X)).(2)

We modify in this section the operators on weighted partitions defined in [2] in
order to express our dynamic programming algorithms in terms of these operators,
and also to deal with acyclicity. Let V be a finite set. First, for A ⊆ Π(V )×N, let

rmc(A) := {(p, w) ∈ A : ∀(p, w′) ∈ A, w′ ≤ w)}.
This operator, defined in [2], is used to remove all the partial solutions whose
weights are not maximum w.r.t. to their partitions.

Ac-Join. Let V ′ be a finite set. For A ⊆ Π(V )×N and B ⊆ Π(V ′)×N, we define
acjoin(A,B) ⊆ Π(V ∪ V ′)× N as
acjoin(A,B) := {(p↑V ′ t q↑V , w1 + w2) : (p, w1) ∈ A, (q, w2) ∈ B and acyclic(p↑V ′ , q↑V )}.

This operator is more or less the same as the one in [2], except that we incorporate
the acyclicity condition. It is used to construct partial solutions while guaranteeing
the acyclicity.

Project. For X ⊆ V and A ⊆ Π(V )× N, let proj(A, X) ⊆ Π(V \X)× N be

proj(A, X) := {(p↓(V \X), w) : (p, w) ∈ A and ∀pi ∈ p, (pi \X) 6= ∅}.
This operator considers all the partitions such that no block is completely con-

tained in X, and then remove X from those partitions. We index our dynamic
programming tables with functions that informs on the label classes playing a role
in the connectivity of partial solutions, and this operator is used to remove from
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the partitions the label classes that are required to no longer play a role in the
connectivity of the partial solutions. If a partition has a block fully contained in X,
it means that this block will remain disconnected in the future steps of our dynamic
programming algorithm, and that is why we remove such partitions (besides those
with cycles).

One needs to perform the above operations efficiently, and this is guaranteed by
the following, which assumes that log(|A|) ≤ |V |O(1) for each A ⊆ Π(V )× N (this
can be established by applying the operator rmc).

Proposition 3.4 (Folklore). The operator acjoin can be performed in time |A|· |B| ·
|V ∪ V ′|O(1) and the size of its output is upper-bounded by |A| · |B|. The operators
rmc and proj can be performed in time |A| · |V |O(1), and the sizes of their outputs
are upper-bounded by |A|.

We now define the notion of representative sets of weighted partitions which
is the same as the one in [2], except that we need to incorporate the acyclicity
condition as for the acjoin operator above.

Definition 3.5. Let V be a finite set and let A ⊆ Π(V )× N. For q ∈ Π(V ), let

ac-opt(A, q) := max{w : (p, w) ∈ A, p t q = {V } and acyclic(p, q)}.

A set of weighted partitions A′ ⊆ Π(V )×N ac-represents A if for each q ∈ Π(V ),
it holds that ac-opt(A, q) = ac-opt(A′, q).

Let Z and V ′ be two finite sets. A function f : 2Π(V )×N × Z → 2Π(V ′)×N is said
to preserve ac-representation if for each A,A′ ⊆ Π(V )×N and z ∈ Z, it holds that
f(A′, z) ac-represents f(A, z) whenever A′ ac-represents A.

At each step of our algorithm, we will compute a small set S ′ that ac-represents
the set S containing all the partial solutions. In order to prove that we compute an
ac-representative set of S, we show that S = f(R1, . . . ,Rt) with f a composition
of functions that preserve ac-representation, and R1, . . . ,Rt the sets of partials
solutions associated with the previous steps of the algorithm. To compute S ′, it
is sufficient to compute f(R′1, . . . ,R′t), where each R′i is an ac-representative set
of Ri. The following lemma guarantees that the operators we use preserve ac-
representation.

Lemma 3.6. The union of two sets in 2Π(V )×N and the operators rmc, proj, and
acjoin preserve ac-representation.

Proof. Let V be a finite set and let A and A′ be two subsets of Π(V ) × N. The
proof for the union follows directly from the definition of ac-opt.

Rmc. Let q ∈ Π(V ). By the definition of rmc, whenever (p, w) ∈ A is such that pt
q = {V }, acyclic(p, q) and ac-opt(A, q) = w, then (p, w) ∈ rmc(A), otherwise there
would exist (p, w′) ∈ A with w′ > w which would contradict w = ac-opt(A, q).
Therefore, ac-opt(rmc(A), q) = ac-opt(A, q). We can then conclude that if A′
ac-represents A, it holds that rmc(A′) ac-represents rmc(A).

Projections. Because proj(A, X) = proj(proj(A, x), X \ {x}) for all X ⊆ V and
x ∈ X, we can assume that X = {x}. Let q ∈ Π(V \ {x}). For every (p, w) ∈
A, if {x} ∈ p, then p t q↑x 6= {V }, and (p↓V \x, w) /∈ proj(A, {x}). Otherwise,
(p↓V \x, w) ∈ proj(A, {x}), and by Fact 3.3 we have

p↓V \x t q = {V \ {x}} ⇐⇒ p t q↑x = {V } and
acyclic(p↓V \x, q)⇐⇒ acyclic(p, q↑x).
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Therefore, we have ac-opt(proj(A, {x}), q) = ac-opt(A, q↑x). From this equality,
we can conclude that proj(A′, {x}) ac-represents proj(A, {x}), for all A′ ⊆ A such
that A′ ac-represents A.

Ac-Join. Let V ′ be a finite set and let B ⊆ Π(V ′)× N. Let r ∈ Π(V ∪ V ′).
Observe that for all (q, w2) ∈ B, if a subset of V ′\V is a block of q↑V tr, then for

all p ∈ Π(V ), we have p↑V ′tq↑V tr 6= {V ∪V ′}. Therefore, ac-opt(acjoin(A,B), r) =
ac-opt(acjoin(A,B′), r) where B′ is the set of all (q, w) ∈ B such that no subset of
V ′ \ V is a block of q↑V t r.

By definition, ac-opt(acjoin(A,B′), r) equals

max{w1 + w2 : (p, w1) ∈ A ∧ (q, w2) ∈ B′ ∧ (p↑V ′ t q↑V t r) = {V ∪ V ′}
∧ acyclic(p↑V ′ , q↑V ) ∧ acyclic(p↑V ′ t q↑V , r)}.

By Fact 3.2, ac-opt(acjoin(A,B′), r) is then equal to

max{w1 + w2 : (p, w1) ∈ A ∧ (q, w2) ∈ B′ ∧ (p↑V ′ t q↑V t r) = {V ∪ V ′}
∧ acyclic(q↑V , r) ∧ acyclic(p↑V ′ , q↑V t r)}.

We deduce, by Fact 3.3 and the definition of B′, that ac-opt(acjoin(A,B′), r)
equals

max{w1 + w2 : (p, w1) ∈ A ∧ (q, w2) ∈ B′ ∧ (p t (q↑V t r)↓V ) = {V }
∧ acyclic(q↑V , r) ∧ acyclic(p, (q↑V t r)↓V )}.

Therefore, we can conclude that ac-opt(acjoin(A,B), r) equals

max{ac-opt(w2 +A, (q↑V t r)↓V ) : (q, w2) ∈ B′ ∧ acyclic(q↑V , r)}.

Therefore, if A′ ac-represents A, then we can conclude that ac-opt(acjoin(A,B), r)
equals ac-opt(acjoin(A′,B), r). As this statement is true for all r ∈ Π(V ∪ V ′), we
can conclude that acjoin(A′,B) ac-represents acjoin(A,B) wheneverA′ ac-represents
A. Symmetrically, we deduce that acjoin(A,B?) ac-represents acjoin(A,B) whenever
B? ac-represents B. �

In the remaining, we will prove that, for every set A ⊆ Π(V )×N, we can find, in
time |A| ·2O(|V |), a subset A′ ⊆ A of size at most |V | ·2|V | that ac-represents A. As
in [2], we will encode the ac-representativity by a matrix over F2 and show that this
one has rank at most the desired bound. Next, we show that an optimum basis of
this matrix ac-represents A and such a basis can be computed using the following
lemma from [2]. The constant ω denotes the matrix multiplication exponent.

Lemma 3.7 ([2]). Let M be an n × m-matrix over F2 with m ≤ n and let w :
{1, . . . , n} → N be a weight function. Then, one can find a basis of maximum
weight of the row space of M in time O(nmω−1).

Theorem 3.8. There exists an algorithm ac-reduce that, given a set of weighted
partitions A ⊆ Π(V )×N, outputs in time |A| · 2(ω−1)·|V | · |V |O(1) a subset A′ of A
that ac-represents A and such that |A′| ≤ |V | · 2|V |−1.

Proof. If V = ∅, then it is enough to return A′ := {(∅, w)}, where (∅, w) ∈ A and
w is maximum because ∅ is the only partition of the empty set.

Assume from now that |V | 6= ∅ (this will ensure that the following definitions
exist). Let us first define the matrix that encodes the property that the join of two
partitions corresponds to a partition arising from a connected solution.
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Let v0 be a fixed element of V and let cuts(V ) := {(V1, V2) : V1]V2 = V and v0 ∈
V1}. Let M and C be, respectively, a (Π(V ),Π(V ))-matrix and a (Π(V ), cuts(V ))-
matrix, both over F2, such that

M [p, q] :=

{
0 if p t q 6= {V },
1 otherwise.

C[p, (V1, V2)] :=

{
0 if p 6v (V1, V2),

1 otherwise.

As in [2, 8], we fix an element v0 to ensure that for all p ∈ Π(V ), the number of
cuts (V1, V2) such that ptq v (V1, V2) is odd if and only if ptq = {V }. In fact, this
number equals 2]block(p)−1. This property is used in [2] to prove that M = C · Ct.

Let A be a set of weighted partitions. In order to compute an ac-representative
set of A, we will decompose A into a small number of sets Ai. Then, for each set
Ai, we compute a set A′i ⊆ Ai of Ai such that the union of the sets A′i ac-represents
A. To compute A′i, we use Lemma 3.7 to find a maximum basis of the row space
of C restricted to Ai.

For each 0 ≤ i ≤ |V |−1, letAi be the set {p : (p, w) ∈ A and |V |−]block(p) = i},
and let CiA be the restriction of C to rows in Ai. Let Bi be a basis of the row space
of CiA of maximum weight, where the weights are the weights1 of the considered
weighted partitions in A. Observe that |Bi| ≤ 2|V |−1 because the rank of CiA is
bounded by |cuts(V )| = 2|V |−1. For p ∈ Ai, let Bi(p) be the subset of Bi such
that C[p, (V1, V2)] =

∑
q∈Bi(p)

C[q, (V1, V2)] for all (V1, V2) ∈ cuts(V ). Let A′i be
the subset of A corresponding to the rows in Bi, and let A′ := A′0 ] · · · ] A′|V |−1.
Notice that |A′| ≤ |V | · 2|V |−1.

Since CiA has |Ai| rows and 2|V |−1 columns, Ai is computable in time |Ai| ·
2|V |−1 · |V |O(1). By Lemma 3.7, we can compute Bi in time |Ai| ·2(ω−1)·|V | · |V |O(1).
Hence, we can compute A′ in time |A| ·2(ω−1)·|V | · |V |O(1) because {A0, . . . ,A|V |−1}
is a partition of {p : (p, w) ∈ A}.

Let us show that for all p ∈ Ai and r ∈ Π(V ), if M [p, r] = 1, then there is
q ∈ Bi(p) such that M [q, r] = 1. Now, from the equality M = C · Ct, we have

M [p, r] =
∑

(V1,V2)∈cuts(V )

C[p, (V1, V2)] · Ct[(V1, V2), r]

=
∑

(V1,V2)∈cuts(V )

 ∑
q∈Bi(p)

C[q, (V1, V2)]

 · Ct[(V1, V2), r]

=
∑

q∈Bi(p)

 ∑
(V1,V2)∈cuts(V )

C[q, (V1, V2)] · Ct[(V1, V2), r]


=

∑
q∈Bi(p)

M [q, r].

So, M [p, r] = 1 if and only if there is an odd number of q ∈ Bi(p) such that
M [q, r] = 1.

It remains now to show that A′ ac-represents A. Since by construction A′ ⊆ A,
for each q ∈ Π(V ), we have ac-opt(A, q) ≥ ac-opt(A′, q). Assume towards a
contradiction that A′ does not ac-represent A. Thus, there is q ∈ Π(V ) such
that ac-opt(A, q) > ac-opt(A′, q), and hence there is (p, w) ∈ A \ A′ such that
p t q = {V }, acyclic(p, q) holds and w > ac-opt(A′, q). Let i := |V | − ]block(p).

1We can assume w.l.o.g. that A = rmc(A), and thus for each p ∈ A, there is a unique w ∈ N
such that (p, w) ∈ A.
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Hence, p ∈ Ai and there exists p′ ∈ Bi(p) such thatM [p′, q] = 1 that is p′tq = {V }.
Let (p?, w?) ∈ A′i such that p? ∈ Bi(p), p? t q = {V } and w? is maximum.

Since (p?, w?) ∈ A′i, we have |V | − ]block(p?) = |V | − ]block(p) = i. We can
conclude that acyclic(p?, q) holds because acyclic(p, q) holds. Indeed, by definition,
acyclic(p, q) holds if and only if |V |+]block(ptq)−(]block(p)+]block(q)) = 0. Since
pt q = {V }, we deduce that acyclic(p, q) holds if and only if i = |V |+ 1− ]block(q).
Because p? t q = {V } and |V | − ]block(p?) = i, we can conclude that acyclic(p?, q)
holds.

Hence, we have ac-opt(A′, q) ≥ w?. Since w > ac-opt(A′, q), it must hold that
w > w?. But, (Bi \ {p?}) ∪ {p} is also a basis of CiA since the set of independent
row sets of a matrix forms a matroid. Since w > w?, the weight of (Bi \ {p?})∪{p}
is strictly greater than the weight of Bi, yielding a contradiction. �

4. Feedback Vertex Set

We will use the weighted partitions defined in the previous section to represent
the partial solutions. At each step of our algorithm, we will ensure that the stored
weighted partitions correspond to acyclic partial solutions. However, the framework
in the previous section deals only with connected acyclic solutions. So, instead of
computing a maximum induced forest (the complementary of a minimum feedback
vertex set), we will compute a maximum induced tree. As in [2], we introduce a
hypothetical new vertex, denoted by v0, that is universal and we compute a pair
(F,E0) so that F is a maximum induced forest of G, E0 is a subset of edges incident
to v0, and (V (F )∪{v0}, E(F )∪E0) is a tree. For a weight function w on the vertices
of G and a subset S ⊆ V (G), we denote by w(S) :=

∑
v∈S w(v). In order now to

reduce the sizes of the dynamic programming tables, we will express the steps of the
algorithm in terms of the operators on weighted partitions defined in the previous
section.

Let us explain the idea of the algorithm before defining the dynamic program-
ming tables and the steps. Let H be a k-labeled graph. We are interested in storing
ac-representative sets of all induced forests of H that may produce a solution. If F
is an induced forest of H, we would like to store the partition p corresponding to
the quotient set of the transitive closure of the relation ∼ on V (F ) where x ∼ y if
x and y have the same label or are in the same connected component. If J ⊆ [k]
is such that

⋃
x∈V (F ) labH(x) = J , then this is equivalent to storing the partition

p of J where i and j are in the same block if there are, respectively, an i-vertex x
and a j-vertex y in the same connected component of F .

Now, if H is used in a k-expression of a k-labeled graph G, then in the clique-
width operations defining G we may add edges between the i-vertices and the
j-vertices of H, for some i, j ∈ J . Now, this has no effect if there are exactly
one i-vertex and one j-vertex at distance one in H[F ], otherwise cycles may be
created, e.g., whenever an i-vertex and a j-vertex are non-adjacent and belong
to the same connected component, or the number of i-vertices and j-vertices are
both at least 2. Nevertheless, we are not able to handle all these cases with the
operators on weighted partitions. To resolve the situation where an i-vertex and a j-
vertex are already adjacent, we consider irredundant k-expressions, i.e., whenever
an operation addi,j is used there are no edges between i-vertices and j-vertices.
For the other cases, we index the dynamic programming tables with functions
s : [k]→ {γ0, γ1, γ2, γ−2} that tells, for each i ∈ [k], if the label class lab−1

H (i) does
not intersect F (s(i) = γ0), or if it does, in one vertex (s(i) = γ1), or in at least two
(s(i) ∈ {γ2, γ−2}) vertices. We have two possible values for label classes intersecting
V (F ) in at least two vertices because whenever two i-vertices belong to the same
connected component of F , F does not produce a valid solution once an operation
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addi,` is applied to H with s(`) 6= γ0. So, if a label class lab−1
H (i) intersects V (F ) in

at least two vertices, since we do not know whether a clique-width operation addi,`
with s(`) 6= γ0 will be applied to H, we guess it in the function s, and whenever s(i)
equals γ−2, we throw p when we encounter an addi,` operation (with s(`) 6= γ0),
and if s(i) = γ2, we force F to not having two i-vertices in the same connected
component.

Nonetheless, even though we are able to detect the partitions corresponding to
induced subgraphs with cycles, taking p as the transitive closure of the relation
∼ on [k] describe above may detect false cycles. Indeed, let xi, xj and x`, x

′
` be,

respectively, an i-vertex, a j-vertex and two `-vertices, such that xi and x` belong to
the same connected component in F , and similarly, xj and x′` in another connected
component of F . Now, if we apply an operation addi,j on H, we may detect a cycle
with p (through the acjoin operation), which may not exist when for instance there
are only one i and one j-vertex in F , both in different connected components. We
resolve this case with the functions s indexing the dynamic programming tables
by forcing each label i in s−1(γ2) to wait for exactly one clique-width operation
addi,t for some t ∈ [k]. We, therefore, translate all the acyclicity tests to the acjoin
operation. Indeed, the case explained will be no longer a false cycle as xi and
xj will be adjacent (with the addi,j operation), and we know that x` and x′` will
be connected to some other vertex in F , and since xi is connected to x` and xj
to x′`, we have a cycle. The following notion of certificate graph formalizes this
requirement.

Definition 4.1 (Certificate graph of a solution). Let G be a k-labeled graph, F an
induced forest of G, s : [k]→ {γ0, γ1, γ2, γ−2}, and E0 a subset of edges incident to
v0. Let β be a bijection from s−1(γ2) to a set V +

s disjoint from V (G) ∪ {v0}. The
certificate graph of (F,E0) with respect to s, denoted by CG(F,E0, s), is the graph
(V (F ) ∪ V +

s ∪ {v0}, E(F ) ∪ E0 ∪ E+
s ) with

E+
s :=

⋃
i∈s−1(γ2)

{{v, β(i)} : v ∈ (V (F ) ∩ lab−1
G (i))}.

In a certificate graph of (F,E0), the vertices in V +
s represent the expected future

neighbors of all the vertices in V (F ) ∩ lab−1
G (s−1(γ2)). For convenience, whenever

we refer to a vertex v+
i of V +

s , we mean the vertex of V +
s adjacent to the i-vertices

in CG(F,E0, s). See Figure 2 for an example of a certificate graph.

1

v+2 v+3

2 3 4

v0

5 6 7 8

Figure 2. Example of a certificate graph; here p =
{{v0, 1}, {2, 3}, {4}}, s−1(γ0) = {7, 8}, s−1(γ1) = {1, 4}, s−1(γ2) =
{2, 3} and s−1(γ−2) = {5, 6}. The set V +

s is {v+
2 , v

+
3 } with v+

2

mapped to 2 and v+
3 mapped to 3.

We are now ready to define the sets of weighted partitions which representatives
we manipulate in our dynamic programming tables.
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Definition 4.2 (Weighted partitions in AG[s]). Let G be a k-labeled graph and let
s : [k]→ {γ0, γ1, γ2, γ−2} be a total function. The entries of AG[s] are all weighted
partitions (p, w) ∈ Π(s−1({γ1, γ2}) ∪ {v0}) × N such that there exist an induced
forest F of G and E0 ⊆ {v0v : v ∈ V (F )} so that w(V (F )) = w, and

(1) The sets s−1(γ0) = {i ∈ [k] : |V (F ) ∩ lab−1
G (i)| = 0} and s−1(γ1) = {i ∈

[k] : |V (F ) ∩ lab−1
G (i)| = 1}.

(2) The certificate graph CG(F,E0, s) is a forest.
(3) Each connected component C of CG(F,E0, s) has at least one vertex in

lab−1
G (s−1({γ1, γ2})) ∪ {v0}.

(4) The partition p equals (s−1({γ1, γ2}) ∪ {v0})/ ∼ where i ∼ j if and only
if a vertex in lab−1

G (i) ∩ V (F ) is connected, in CG(F,E0, s), to a vertex in
lab−1

G (j) ∩ V (F ); we consider lab−1
G (v0) = {v0}.

Conditions (1) and (3) are as explained above, and automatically imply that,
for each i in s−1({γ2, γ−2}), we have |V (F ) ∩ lab−1

G (i)| ≥ 2. Conditions (2) and
(4) guarantee that (V (F ) ∪ {v0}, E(F ) ∪ E0) can be extended into a tree, if any.
They also guarantee that cycles detected through the acjoin operation correspond
to cycles, and each cycle can be detected with it.

In the sequel, we call any triplet (F,E0, (p,w(F ))) a candidate solution in AG[s]
if Condition (4) is satisfied, and if in addition Conditions (1)-(3) are satisfied, we
call it a solution in AG[s].

Given a k-labeled graph G, the size of a maximum induced tree of G corresponds
to the maximum, over all s : [k] → {γ0, γ1, γ2, γ−2} with s−1(γ2) = ∅, of max{w :
({s−1(γ1) ∪ {v0}}, w) ∈ AG[s]}. Indeed, by definition, if ({s−1(γ1) ∪ {v0}}, w)
belongs to AG[s], then there exist an induced forest F of G with w(F ) = w and a
set E0 of edges incident to v0 such that (V (F ) ∪ {v0}, E(F ) ∪ E0) is a tree. This
follows from the fact that if s−1(γ2) = ∅, then we have CG(F,E0, s) = (V (F ) ∪
{v0}, E(F ) ∪ E0).

Our algorithm will store, for each k-labeled graph G and each function s : [k]→
{γ0, γ1, γ2, γ−2}, an ac-representative set tabG[s] of AG[s]. We are now ready to
give the different steps of the algorithm, depending on the clique-width operations.

Computing tabG for G = 1(x). For s : {1} → {γ0, γ1, γ2, γ−2}, let

tabG[s] :=


{({{1, v0}},w(x)), ({{1}, {v0}},w(x))} if s(1) = γ1,

{({{v0}}, 0)} if s(1) = γ0,

∅ if s(1) ∈ {γ2, γ−2}.

Since |V (G)| = 1, there is no solution intersecting the label class lab−1
G (1) on

at least two vertices, and so the set of weighted partitions satisfying Definition 4.2
equals the empty set for s(1) ∈ {γ2, γ−2}. If s(1) = γ1, there are two possibilities,
depending on whether E0 = ∅ or E0 = {xv0}. We can thus conclude that tabG[s] =
AG[s] is correctly computed.

Computing tabG for G = addi,j(H). We can suppose that H is k-labeled. Let
s : [k]→ {γ0, γ1, γ2, γ−2}.
(a) If s(i) = γ0 or s(j) = γ0, then let tabG[s] := tabH [s]. We just copy all the

solutions not intersecting lab−1
H (i) or lab−1

H (j). In the following cases, we assume
that s(i) 6= γ0 and s(j) 6= γ0. In this case, we do not need to use the operators
ac-reduce and rmc since we update tabG[s] with one table from tabH .

(b) If s(i) = γ2 or s(j) = γ2, then we let tabG[s] = ∅. In this case AG[s] = ∅. In-
deed, for every setX ⊆ V (G) respecting Condition (1), the graphCG(X,E0, s)
contains a cycle, for all subsets E0 ⊆ {xv0 : x ∈ X}. For example, if s(i) = γ2
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and s(j) = γ1, then the two i-vertices in X are adjacent in CG(X, ∅, s) to v+
i

and to the j-vertex in X, thus CG(X, ∅, s) contains a cycle of length 4.
(c) If s(i) = s(j) = γ−2, then we let tabG[s] = ∅. Similarly to Case (b), we have
AG[s] = ∅ because every vertex set with two i-vertices and two j-vertices induce
a cycle of length 4 in G.

(d) Otherwise, we let tabG[s] := rmc(A)) with

A := proj(s−1(γ−2) ∩ {i, j}, acjoin(tabH [sH ], {({{i, j}}, 0)})

where sH(`) := s(`), for ` ∈ [k] \ {i, j}, and

(sH(i), sH(j)) :=


(γ1, γ1) if s(i) = s(j) = γ1,

(γ2, γ1) if (s(i), s(j)) = (γ−2, γ1),

(γ1, γ2) if (s(i), s(j)) = (γ1, γ−2).

Observe that this case corresponds to s(i), s(j) ∈ {γ1, γ−2} with s(i) = γ1 or
s(j) = γ1. Intuitively, we consider the weighted partitions (p, w) ∈ tabH [sH ]
such that i and j belong to different blocks of p, we merge the blocks containing
i and j, remove the elements in s−1(γ−2)∩ {i, j} from the resulting block, and
add the resulting weighted partition to A. Notice that it is not necessarily to
call the operator ac-reduce in this case since we update tabG[s] with only one
table from tabH .

Lemma 4.3. Let G = addi,j(H) be a k-labeled graph. For each function s : [k]→
{γ0, γ1, γ2, γ−2}, tabG[s] ac-represents AG[s] assuming that tabH [s′] ac-represents
AH [s′] for all s′ : [k]→ {γ0, γ1, γ2, γ−2}.

Proof. We first recall that labG(x) = labH(x) for all x ∈ V (G) = V (H). If we are
in Cases (b)-(c), then we are done since we clearly have AG[s] = ∅. Since the used
operators preserve ac-representation, it is enough to prove that in Case (a), we have
AG[s] = AH [s], and in Case (d), we have AG[s] = A if we let tabH [sH ] = AH [sH ].
If we are in Case (a), then we are done because one easily checks that (F,E0, (p, w))
is a solution in AH [s] if and only if (F,E0, (p, w)) is a solution in AG[s], i.e., we
have AH [s] = AG[s].

Now, we assume that we are in Case (d), that is s(i), s(j) ∈ {γ1, γ−2} with
s(i) = γ1 or s(j) = γ1. We can assume w.l.o.g. that s(j) = γ1. Let (F,E0, (p, w))
be a solution in AG[s]. We prove that (p, w) ∈ A. Let {xj} := V (F ) ∩ lab−1

G (j)

(by assumption s(j) = γ1), Xi := V (F ) ∩ lab−1
G (i), Ei,j := {vxj : v ∈ Xi}, and

FH := (V (F ), E(F ) \ Ei,j). Because we consider only irredundant k-expressions,
we know that Ei,j ∩ E(H) = ∅, i.e., FH is an induced forest of H. Let p′ be the
partition on s−1

H ({γ1, γ2})∪ {v0} such that (FH , E0, (p
′, w)) is a candidate solution

in AH [sH ]. We claim that (FH , E0, sH) is a solution in AH [sH ]. By the definition
of sH , Condition (1) is trivially satisfied. If |Xi| = 1, then CG(FH , E0, sH) is a
subgraph of CG(F,E0, s) and so Condition (2) is satisfied. And if |Xi| ≥ 2 and
CG(FH , E0, sH) contains a cycle, then the cycle should contain the vertex v+

i ∈
V +
sH , but this vertex may be replaced by xj in CG(F,E0, s), contradicting the fact

this latter is acyclic. Condition (3) is also satisfied because sH(i), sH(j) ∈ {γ1, γ2}
and for every connected component C of CG(FH , E0, sH), either C is a connected
component of CG(F,E0, s) or C contains an `-vertex with ` ∈ {i, j}. Therefore,
(FH , E0, (p

′, w)) is a solution in AH [sH ].
It remains to prove that (p, w) is added inA. We claim that acyclic(p′, {{i, j}}↑V )

holds with V = s−1(γ1, γ2) ∪ {v0}. By definition of acyclic it is equivalent to prove
that i and j cannot belong to a same block of p′. Assume towards a contradiction
that i and j belong to a same block of p′. Then, there is a path, in CG(FH , E0, v0),
between an i-vertex xi and the j-vertex xj of F . Let us choose this path P to be the
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smallest one. One first notices that P cannot contain the vertex v+
i of V +

sH , if any,
because v+

i is only adjacent to i-vertices. Because V (CG(FH , E0, sH)) \ {v+
i } =

V (CG(F,E0, s)), we would conclude that CG(F,E0, s) contains a cycle as xixj ∈
E(F ) \ E(FH), contradicting that (F,E0, (p, w)) is a solution in AG[s]. Therefore,
acyclic(p′, {{i, j}}↑V ) holds. By assumption s(j) = γ1, thus s−1(γ−2)∩{i, j} ⊆ {i}.
Since i and j are in the same block of the partition pt{{i, j}}↑V , we conclude that
(p, w) ∈ proj(s−1(γ−2) ∩ {i, j}, acjoin({(p′, w)}, {({{i, j}}, 0)})).

It remains to prove that each weighted partition (p, w) ∈ A belongs to AG[s].
Let (FH , E

H
0 , (p

′, w)) be a solution in AH [sH ] so that

(p, w) ∈ proj(s−1(γ−2) ∩ {i, j}, acjoin({(p′, w)}, {({{i, j}}, 0)})).
Let F = G[V (FH)]. By assumption s(j) = γ1, and thus sH(j) = γ1. Let {xj} :=

V (FH) ∩ lab−1
H (j), Xi := V (FH) ∩ lab−1

H (i), and Ei,j := {xjv : v ∈ Xi}. Notice
that E(F ) \ E(FH) = Ei,j . We claim that (F,EH0 , (p, w)) is a solution in AG[s].

• First, Condition (1) is trivially satisfied by the definition of sH .
• Secondly, CG(F,EH0 , s) is a forest. Indeed, {i, j} cannot be a block of
p′, otherwise the acjoin operator would discard p′. If |Xi| = 1, then
CG(F,EH0 , s) = (V (CG(FH , E

H
0 , sH)), E(CG(FH , E

H
0 , sH)) ∪ Ei,j) and

it is clearly a forest. Otherwise, if |Xi| ≥ 2, then CG(F,EH0 , s) can be
obtained from CG(FH , E

H
0 , sH) by fusing the vertex v+

i and the vertex
xj . Clearly, this operation keeps the graph acyclic since xj and v+

i are not
connected in CG(FH , E

H
0 , sH). Thus (F,EH0 , (p, w)) satisfies Condition

(2).
• Each connected component of CG(FH , E

H
0 , sH) is contained in a connected

component of CG(F,EH0 , s), and the i-vertices are in the same connected
component, in CG(F,EH0 , s), as xj . Therefore, Condition (3) is satisfied
by (F,EH0 , (p, w)) as s(j) = γ1 and s(`) = sH(`) for all ` ∈ [k] \ {i, j}.

• Also, Condition (4) is satisfied as p is then obtained from p′ by merging the
blocks of p′ which contains i and j, and by removing i if s(i) = γ−2.

We can therefore conclude that (F,EH0 , (p, w)) is a solution in AG[s]. �

Computing tabG for G = reni→j(H). We can suppose that H is k-labeled. Let
s : [k] \ {i} → {γ0, γ1, γ2, γ−2}.
(a) Let A1 := tabH [s1] where s1(i) = γ0 and s1(`) = s(`) for all ` ∈ [k] \ {i}. This

set contains all weighted partitions corresponding to solutions not intersecting
lab−1

H (i). They are trivially solutions in AG[s].
(b) If s(j) = γ0, then let A2 = ∅, otherwise let s2 : [k]→ {γ0, γ1, γ2, γ−2} such that

s2(j) = γ0, s2(i) = s(j) and s2(`) = s(`) for all ` ∈ [k] \ {i, j} and let

A2 :=

{
tabH [s2] if s(j) = γ−2,

proj({i}, acjoin(tabH [s2], {({{i, j}}, 0)})) otherwise.

This set contains all weighted partitions corresponding to solutions not inter-
secting lab−1

H (j). They are solutions in AG[s] by replacing i by j with the acjoin
operator, if necessary, in the corresponding weighted partitions. Notice that if
s(j) = γ0, then s1 = s2, this is why we let A2 = ∅ in this case.

(c) If s(j) 6= γ−2, then let A3 := ∅, otherwise let

A3 :=
⋃

s3∈S3

proj({i, j}, tabH [s3]),

where S3 is the set of functions s3 with s3(i), s3(j) ∈ {γ1, γ−2}, and s3(`) = s(`)
for all ` ∈ [k] \ {i, j}. Intuitively, S3 is the set of functions coherent with s if
s(j) = γ−2. The set A3 corresponds to partial solutions intersecting lab−1

H (i)
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and lab−1
H (j) when s(j) = γ−2. In this case, we have to ensure that the partial

solutions in A3 respect Condition (3) of Definition 4.2. We do that by removing
all the partitions with a block included in {i, j}.

(d) We now define the last set considering the other cases. If s(j) 6= γ2, then let
A4 = ∅, otherwise let

A4 :=
⋃

s4∈S4

proj({i}, acjoin(tabH [s4], {({{i, j}}, 0)})),

where S4 is the set of functions s4 with s4(i), s4(j) ∈ {γ1, γ2} and s4(`) = s(`)
for all ` ∈ [k] \ {i, j}. Informally, S4 is the set of functions compatible with s if
s(j) = γ2. The set A4 corresponds to partial solutions intersecting lab−1

H (i) and
lab−1

H (j) when s(j) = γ2. We have to force that i-vertices and j-vertices belong
to different connected components. We check this with the function acyclic in
the operator acjoin.

We let tabG[s] := ac-reduce(rmc(A1 ∪ A2 ∪ A3 ∪ A4)).

Lemma 4.4. Let G = reni→j(H) with H a k-labeled graph. For each s : [k]\{i} →
{γ0, γ1, γ2, γ−2}, the table tabG[s] ac-represents AG[s] assuming that tabH [s′] ac-
represents AH [s′] for all s′ : [k]→ {γ0, γ1, γ2, γ−2}.

Proof. Since the used operators preserve ac-representation, it is enough to prove
that AG[s] = A1 ∪ A2 ∪ A3 ∪ A4 if we let tabH [s′] = AH [s′] for every s′ : [k] →
{γ0, γ1, γ2, γ−2}.

Let (F,E0, (p, w)) be a solution in AG[s]. We want to prove that (p, w) ∈ A1 ∪
A2 ∪A3 ∪A4. If V (F ) does not intersect lab−1

H (i), then (F,E0, (p, w)) is a solution
in AH [s1]. Assume now that V (F ) intersects lab−1

H (i). If V (F ) ∩ lab−1
H (j) = ∅ and

s(j) = γ−2, (F,E0, (p, w)) is a solution in AH [s2]. If V (F ) ∩ lab−1
H (j) = ∅ and

s(j) ∈ {γ1, γ2}, then it is easy to check that (F,E0, (p
′, w)) is a solution in AH [s2]

where p′ is obtained from p by replacing j by i.
We may assume now that V (F ) ∩ lab−1

H (i) 6= ∅, V (F ) ∩ lab−1
H (j) 6= ∅. Then, we

have s(j) ∈ {γ2, γ−2} as |lab−1
G (j) ∩ V (F )| ≥ 2. Let s? be a function from [k] such

that s?(`) := s(`) for all ` ∈ [k] \ {i, j}, and for t ∈ {i, j},

s?(t) :=

{
γ1 if |V (F ) ∩ lab−1

H (t)| = 1,

s(j) if |V (F ) ∩ lab−1
H (t)| ≥ 2.

By definition, if s(j) = γ−2, then s? belongs to S3 and if s(j) = γ2, then s? belongs
to S4. Let p′ be the partition on s−1

? ({γ1, γ2}) ∪ {v0} such that (F,E0, (p
′, w)) is a

candidate solution in AH [s?]. We claim that (F,E0, (p
′, w)) is a solution in AH [s?].

By Definition of s? and of (F,E0), Condition (1) is satisfied by (F,E0, (p
′, w)).

Suppose first that s(j) = γ−2. Observe that Condition (2) is satisfied because
the certificate graphs of (F,E0) with respect to s and s? are the same. Condition
(3) is also satisfied by definition of s? and because CG(F,E0, s) = CG(F,E0, s?).
So, (F,E0, (p

′, w)) is a solution in AH [s?].
Assume now that s(j) = γ2. Condition (2) is satisfied. Indeed, if s?(i) = γ1,

then CG(F,E0, s) is a subgraph of CG(F,E0, s?). Otherwise, if s?(i) = γ2, then
CG(F,E0, s) can be obtained from CG(F,E0, s?) by fusing v+

i with v+
j . In both

cases, it is easy to see that CG(F,E0, s?) is acyclic as CG(F,E0, s) is acyclic.
Condition (3) is satisfied because each connected component C of CG(F,E0, s)
contains at least a vertex in lab−1

G (s−1({γ1, γ2})) ∪ {v0}, and we have from the
definition of s?

lab−1
H (s−1

? ({γ1, γ2})) = lab−1
G (s−1({γ1, γ2})).
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In both cases, (F,E0, (p
′, w)) is a solution in AH [s?], and depending on s(j), we

can clearly conclude that (p, w) is obtained from (p′, w).

Let us now prove that for any weighted partition (p, w) ∈ A1 ∪ A2 ∪ A3 ∪ A4,
there is a pair (F,E0) such that (F,E0, (p, w)) is a solution in AG[s]. This is clear
if (p, w) ∈ A1 ∪ A2.

Assume that s(j) = γ−2 and let (p, w) ∈ A3. Let s3 ∈ S3 and (p′, w) be the
weighted partition from tabH [s3] from which (p, w) is obtained. Let (F,E0, (p

′, w))
be a solution in AH [s3]. We claim that (F,E0, (p, w)) is a solution in AG[s]. By
definition of S3, we clearly have |V (F ) ∩ lab−1

H ({i, j})| = |V (F ) ∩ lab−1
G (j)| ≥ 2.

We deduce that Condition (1) is satisfied. Condition (2) is also satisfied because
CG(F,E0, s3) is the same asCG(F,E0, s). We claim that Condition (3) is satisfied.
Notice that s−1({γ1, γ2}) = s−1

3 ({γ1, γ2}) \ {i, j}. Moreover, if i ∈ s−1
3 ({γ1, γ2}),

by definition of s3, we have s3(i) = γ1, that is F has exactly one i-vertex (the
same statement is true for j). Since we use the operator proj with {i, j}, there is
no block of p′ included in {i, j}. Hence, if F contains one i-vertex (one j-vertex),
then, by Condition (4), this vertex is connected in CG(F,E0, s3) to either v0 or an
`-vertex with ` ∈ s−1({γ1, γ2}). We can conclude that each connected component
of F must contain a vertex in lab−1

G (s−1({γ1, γ2})) ∪ {v0}, i.e. Condition (3) is
satisfied. Condition (4) is satisfied owing to the fact that p′ is obtained from p by
doing a projection on {i, j}.

Assume now that s(j) = γ2 and let (p, w) ∈ A4. Let s4 ∈ S4 and (p′, w)
be the weighted partition from tabH [s4] from which (p, w) is obtained, and let
(F,E0, (p

′, w)) be a solution in AH [s4]. By definition of S4, we deduce that Con-
dition (1) is satisfied (see the case s(j) = γ−2). If there is a cycle in CG(F,E0, s),
then it must be between an i-vertex and a j-vertex of H, but then we must have
a path between them in CG(F,E0, s4), i.e., i and j belong to a same block of
p′, contradicting that (p, w) is produced from (p′, w) (because the acjoin operator
would detect that acyclic(p, {{i, j}}↑[k]) does not hold). So, Condition (2) is sat-
isfied. We deduce that Condition (3) is satisfied from the fact that by definition
of s4, we have lab−1

G (s−1({γ1, γ2})) = lab−1
H (s−1

4 ({γ1, γ2})). Also, as p is obtained
from p′ by merging the blocks containing i and j, and by removing i, we deduce
that Condition (4) is satisfied.

In both cases, we can conclude that (F,E0, (p, w)) is a solution in AG[s]. �

Computing tabG for G = Ga ⊕Gb. We can suppose w.l.o.g. that Ga and Gb are
both k-labeled2. Let s : [k]→ {γ0, γ1, γ2, γ−2}.

We say that sa : [k] → {γ0, γ1, γ2, γ−2} and sb : [k] → {γ0, γ1, γ2, γ−2} u-agree
on s if,
(u1) for each i ∈ s−1

a (γ0), s(i) = sb(i). Similarly, for each i ∈ s−1
b (γ0), s(i) = sa(i),

(u2) for each i ∈ s−1(γ1), either sa(i) = γ0 or sb(i) = γ0,
(u3) for each i ∈ [k] \ (s−1

a (γ0) ∪ s−1
b (γ0)), if s(i) = γ2, then sa(i), sb(i) ∈ {γ1, γ2},

(u4) for each i ∈ [k]\(s−1
a (γ0)∪s−1

b (γ0)), if s(i) = γ−2, then sa(i), sb(i) ∈ {γ1, γ−2}.
The functions sa and sb inform about the indices to look at tabGa and tabGb

in
order to construct tabG[s]. Let (F,E0, (p, w)) be a solution in AG[s], and assume
that it is constructed from solutions (Fa, E

0
a, (pa, wa)) and (Fb, E

0
b , (pb, wb)), in

respectively, AGa
[sa] and AGb

[sb]. The first condition tells that if Fa (resp. Fb)
does not intersect lab−1

G (i), then the intersection of F with lab−1
G (i) depends only

on V (Fb) ∩ lab−1
G (i) (resp. V (Fa) ∩ lab−1

G (i)), and so if V (F ) does not intersect
lab−1

G (i), then Fa and Fb do not intersect lab−1
G (i). The second condition tells that

2If J ⊂ [k] is the set of labels Ga (or Gb), we can extend the domain of any function s′ : J →
{γ0, γ1, γ2, γ−2} to [k] by setting s′(i) = γ0 for all i ∈ [k] \ J .
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if |F ∩ lab−1
G (i)| = 1, then either F ∩ lab−1

G (i) = Fa ∩ lab−1
G (i) or F ∩ lab−1

G (i) =

Fb ∩ lab−1
G (i). The other two conditions tell when F intersects both lab−1

Ga
(i) and

lab−1
Gb

(i). Notice that we may have s(i) set to γ−2 (or γ2), while Fa and Fb each
intersects lab−1

G (i) in exactly one vertex.
We let tabG[s] := ac-reduce(rmc(A)) where,

A :=
⋃

sa,sb
u-agree on s

acjoin
(
proj(s−1 (γ−2), tabGa [sa]) , proj(s

−1 (γ−2), tabGb [sb])
)
.

The weighted partitions (p, w) added in tabG[s] are all the weighted partitions that
are joins of weighted partitions (pa, wa) and (pb, wb) from tabGa

[sa] and tabGb
[sb],

respectively. We need to do the projections before the join because we may have
sa(i) = sb(i) = γ1, s(i) = γ−2, and there is j such that s(j) = γ2 with j in the
same block as i in both partitions pa and pb. If we do the projection after the
acjoin operator, this latter will detect that acyclic(pa, pb) does not hold, and won’t
construct (p, w), which indeed corresponds to a solution in AG[s].

Lemma 4.5. Let G = Ga ⊕ Gb be a k-labeled graph. For each function s :
[k]→ {γ0, γ1, γ2, γ−2}, the table tabG[s]ac-represents AG[s] assuming that tabGa [s′]
and tabGb

[s′] ac-represent, respectively, AGa [s′] and AGb
[s′], for each s′ : [k] →

{γ0, γ1, γ2, γ−2}.

Proof. Since the used operators preserve ac-representation, it is enough to prove
that AG[s] = A if we let tabGt [s

′] = AGt [s
′], for every t ∈ {a, b} and s′ : [k] →

{γ0, γ1, γ2, γ−2}.
Let (F,E0, (p, w)) be a solution in AG[s]. We claim that (p, w) ∈ A. For t ∈

{a, b}, let Ft := Gt[V (F ) ∩ V (Gt)], Et0 := {v0v ∈ E0 : v ∈ V (Ft)}, and wt :=
w(V (Ft)), and let st : [k]→ {γ0, γ1, γ2, γ−2} such that

st(i) :=


γ0 if V (Ft) ∩ lab−1

Gt
(i) = ∅,

γ1 if |V (Ft) ∩ lab−1
Gt

(i)| = 1,

s(i) if |V (Ft) ∩ lab−1
Gt

(i)| ≥ 2.

It is straightforward to verify that sa and sb u-agree on s. Observe that, by
definition, s−1

t (γ−2) ⊆ s−1(γ−2) and s−1
t (γ2) ⊆ s−1(γ2), for each t ∈ {a, b}. Let

pa and pb be, respectively, partitions on s−1
a ({γ1, γ2}) ∪ {v0} and s−1

b ({γ1, γ2}) ∪
{v0} such that (Fa, E

a
0 , (pa, wa)) and (Fb, E

b
0, (pb, wb)) are, respectively, candidate

solutions in AGa
[sa] and AGb

[sb].
We claim that (Fa, E

a
0 , (pa, wa)) is a solution in AGa

[sa]. By definition of
pa, sa, and of (Fa, E

a
0 ), Conditions (1) and (4) are clearly satisfied. Because

s−1
a (γ2) ⊆ s−1(γ2), and F = Fa ⊕ Fb, we can conclude that CG(Fa, E

a
0 , sa) is

an induced subgraph of CG(F,E0, s), and because CG(F,E0, s) is acyclic, we can
conclude that CG(Fa, E

a
0 , sa) is acyclic, i.e., Condition (2) is satisfied. If a con-

nected component C of CG(Fa, E
a
0 , sa) does not intersect s−1

a ({γ1, γ2}) ∪ {v0},
then C is entirely contained in lab−1

Ga
(s−1
a (γ−2)). But, this yields a contradiction

with (F,E0, (p, w)) satisfying Condition (3) because C is a connected component of
CG(F,E0, s), and s−1

a (γ−2) ⊆ s−1(γ−2). Therefore Condition (3) is also satisfied.
We can thus conclude that (Fa, E

a
0 , (pa, wa)) is a solution in AGa [sa]. Similarly,

one can check that (Fb, E
b
0, (pb, wb)) is a solution in AGb

[sb].
It remains to prove that

(p, w) ∈ acjoin(proj(s−1(γ−2), {(pa, wa)}), proj(s−1(γ−2), {(pb, wb)})).

First, recall that each connected component of F is either a connected component
of Fa or of Fb. Then, because (F,E0, (p, w)) satisfies Condition (3), we have that
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proj(s−1(γ−2), {(pa, wa)})) 6= ∅, and similarly proj(s−1(γ−2), {(pb, wb)})) 6= ∅. We
deduce that

p′a := pa↓(s−1(γ−2)) ∈ proj(s−1(γ−2), {(pa, wa)}),
p′b := pb↓(s−1(γ−2)) ∈ proj(s−1(γ−2), {(pb, wb)}).

Let p′′a := p′a↑([k]\s−1({γ0,γ−2})) and p′′b := p′b↑([k]\s−1({γ0,γ−2})). We claim that
acyclic(p′′1 , p

′′
2) holds. Assume towards a contradiction that it is not the case. We

let ∼a (resp. ∼b) be an equivalence relation on [k] \ s−1({γ0, γ−2}) ∪ {v0} where
i ∼a j (resp. i ∼b j) if there is an i-vertex3 and a j-vertex that are connected
in CG(Fa, E

a
0 , sa) (resp. CG(Fb, E

b
0, sb)). By the graphical definition of acyclic,

we can easily see that if acyclic(p′′a, p
′′
b ) does not hold, then there is a sequence

i0, . . . , i2r−1 of s−1({γ1, γ2})∪{v0} such that4, for all 0 ≤ α < r−1, we have i2α ∼b
i2α+1 and i2α+1 ∼a i2α+2. We can thus construct a cycle in CG(F,E0, s) from
this sequence since V (Fa) ∩ V (Fb) = ∅, CG(Fa, E

a
0 , sa) and CG(Fb, E

b
0, sb) are

induced subgraphs of CG(F,E0, s), and all the vertices labeled with a label from
s−1(γ2) are at distance at most two in CG(F,E0, s). This yields a contradiction
as CG(F,E0, s) is acyclic by assumption. Therefore, acyclic(p′′1 , p

′′
2) holds.

Finally, p = p′′a t p′′b because one easily checks that there is an i-vertex x con-
nected to a j-vertex y in CG(F,E0, s) if and only if iRj where R is the tran-
sitive closure of (i ∼a j or i ∼b j). This follows from the fact that for every
i ∈ [k] \ s−1({γ0, γ−2}), either there is exactly one i-vertex in F or the i-vertices
of F are all adjacent to v+

i in CG(F,E0, s). In both cases, the i-vertices of F are
in the same connected component of CG(F,E0, s). Since, the equivalence classes
of R correspond to the blocks of p′′1 t p′′2 , and w = wa + wb, we can conclude that
(p, w) ∈ acjoin(proj(s−1(γ−2), {(pa, wa)}), proj(s−1(γ−2), {(pb, wb)})).

We now prove that if (p, w) is added to tabG[s] from (pa, wa) ∈ AGa [sa] and
(pb, wb) ∈ AGb

[sb], then there exists a pair (F,E0) such that (F,E0, (p, w)) is
a solution in AG[s]. Let (Fa, E

a
0 ) and (Fb, E

b
0) such that (Fa, E

a
0 , (pa, wa)) and

(Fb, E
b
0, (pb, wb)) are solutions in, respectively, AGa

[sa] and AGb
[sb] with sa and

sb u-agreeing on s. We claim that (F,E0, (p, w)) is a solution in AG[s] with
F := (V (F1) ∪ V (F2), E(F1) ∪ E(F2)) and E0 := Ea0 ∪ Eb0. Because sa and sb
u-agree on s, we clearly have that Condition (1) is satisfied.

Let ∼a and ∼b as defined above. Assume towards a contradiction that there ex-
ists a cycle C in CG(F,E0, s). Since both CG(Fa, E

a
0 , sa) and CG(Fb, E

b
0, sb) are

acyclic, C must be a cycle alternating between paths in CG(Fa, E
a
0 , sa) and paths

inCG(Fb, E
b
0, sb). One can easily check that this implies the existence of a sequence

i0, . . . , i2r−1 of s−1({γ1, γ2})∪{v0} such that4, for all 0 ≤ α < r−1, we have i2α ∼b
i2α+1 and i2α+1 ∼a i2α+2. Moreover, it is easy to infer, from this sequence and
the graphical definition of acyclic, that acyclic

(
p′a↑V , p

′
b↑V

)
does not hold with

p′a := pa↓(s−1(γ−2)), p′b := pb↓(s−1(γ−2)) and V = ([k] \ s−1({γ0, γ−2})), contradicting
the fact that (p, w) = acjoin(proj(s−1(γ−2), {(pa, wa)}), proj(s−1(γ−2), {(pb, wb)})).
Therefore, CG(F,E0, s) is acyclic and so Condition (2) is satisfied.

If we suppose that Condition (3) is not satisfied, then there is a connected com-
ponent C of CG(F,E0, s) that does not intersect s−1({γ1, γ2})∪{v0}, i.e., C is fully
contained in lab−1

G (s−1(γ−2)). Since F = Fa⊕Fb, C is either a connected component
of Fa or of Fb. Suppose w.l.o.g. that C is a connected component of Fa. Observe
that C intersects lab−1

Ga
(s−1
a ({γ1, γ2})) because (Fa, E

a
0 , (pa, wa)) is a solution in

3We consider v0 as a v0-vertex.
4 The indexes are modulo 2r.
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AGa
[sa]. Moreover, C does not intersect lab−1

Ga
(s−1
a (γ2)), otherwise C would inter-

sect lab−1
G (s−1(γ2)) since if sa(i) = γ2, then s(i) = γ2, for all i ∈ [k]. Thus C is a

connected component ofCG(Fa, E
a
0 , sa) and bC := {i ∈ s−1

a (γ1) : C∩lab−1
Ga

(i) 6= ∅}
is a block of pa because (Fa, E

a
0 , (pa, wa)) is a candidate solution in AGa

[sa]. Thus,
by definition of proj, we have proj(s−1(γ−2), {(pa, wa)}) = ∅, which contradicts the
fact that (p, w) = acjoin(proj(s−1(γ−2), {(pa, wa)}), proj(s−1(γ−2), {(pb, wb)})). So,
Condition (3) is also satisfied. We deduce that Condition (4) is satisfied by observ-
ing that, for i, j ∈ s−1({γ1, γ2})∪{v0}, there is an i-vertex connected to a j-vertex
in CG(F,E0, s) if and only if iRj where R is the transitive closure of (i ∼a j or
i ∼b j). This concludes the proof that (F,E0, (p, w)) is a solution in AG[s]. �

Theorem 4.6. There is an algorithm that, given an n-vertex graph G and an
irredundant k-expression of G, computes a minimum feedback vertex set in time
O(15k · 2(ω+1)·k · kO(1) · n).

Proof. We do a bottom-up traversal of the k-expression and at each step we update
the tables as indicated above. The correctness of the algorithm follows from Lem-
mas 4.3-4.5. From the definition of AG[s], we conclude that the size of a maximum
induced forest is the maximum over all s : [k]→ {γ0, γ1, γ2, γ−2} with s−1(γ2) = ∅,
of max{w : ({{v0} ∪ s−1(γ1)}}, w) ∈ tabG[s]} because tabG[s] ac-represents AG[s]
for all s : [k]→ {γ0, γ1, γ2, γ−2}.

Let us discuss the time complexity now. If G = addi,j(H) or G = reni→j(H),
and s : [k] → {γ0, γ1, γ2, γ−2}, then we update tabG[s] from a constant number of
tables from tabH , each identified in constant time from s. Since each table contains
at most 2k−1 · k entries, we call the function ac-reduce with a set of size at most
O(2k−1 ·k) as input. By Theorem 3.8, we can thus update tabG in time 2ω·k ·kO(1).
If G = Ga ⊕ Gb, then we claim that the tables from tabG are computable in time
O(15k · 2(ω+1)·k · kO(1)). For s : [k]→ {γ0, γ1, γ2, γ−2}, we let

A[s] :=
⋃

sa,sb
u-agree on s

acjoin
(
proj(s−1 (γ−2), tabGa [sa]) , proj(s

−1 (γ−2), tabGb [sb])
)
.

By Theorem 3.8, computing tabG[s] := ac-reduce(rmc(A[s])) can be done in time
|A[s]| · 2(ω−1)·k · kO(1). Therefore, we can compute the tables from tabG in time∑

s:[k]→{γ0,γ1,γ2,γ−2}

|A[s]| · 2(ω−1)·k · kO(1).

Now, observe that there are at most 15k functions s, sa, sb : [k]→ {γ0, γ1, γ2, γ−2}
such that sa and sb u-agree on s. Indeed, for all i ∈ [k], if sa and sb u-agree on s,
then the tuple (sa(i), sb(i), s(i)) can take up to 15 values. See Table 1 for all the
possible values.

sb(i) = γ0 sb(i) = γ1 sb(i) = γ2 sb(i) = γ−2

sa(i) = γ0 γ0 γ1 γ2 γ−2

sa(i) = γ1 γ1 γ2, γ−2 γ2 γ−2

sa(i) = γ2 γ2 γ2 γ2 forbidden

sa(i) = γ−2 γ−2 γ−2 forbidden γ−2

Table 1. Possibles values of s(i) depending on the value of sa(i)
and sb(i) when sa and sb u-agree on s, there are 15 possible values
for the tuple (sa(i), sb(i), s(i)).
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Because each table of tabGa
and tabGb

contains at most 2k−1 · k values, we
have |acjoin

(
proj(s−1 (γ−2), tabGa

[sa]) , proj(s−1 (γ−2), tabGb
[sb])

)
| ≤ 22k−2 · k2. It

follows that
∑
s:[k]→{γ0,γ1,γ2,γ−2} |A[s]| ≤ 15k · 22k · k2. Hence, we can conclude that

the tables from tabG can be computed in time O(15k · 2(ω+1)·k · kO(1)).
Because the size of a k-expression is O(n · k2), we can conclude that a minimum

feedback vertex set can be computed in the given time. �

5. Connected (Co-)(σ, ρ)-Dominating Sets

We will show here how to use the operators defined in [2] in order to obtain
a 2O(d·k) · n time algorithm for computing a minimum or a maximum connected
(σ, ρ)-dominating set, given a k-expression, with d a constant that depends only on
(σ, ρ). We deduce from this algorithm a 2O(k) ·nO(1) time algorithm for computing
a minimum node-weighted Steiner tree, and a 2O(d·k) · nO(1) time algorithm for
computing a maximum (or minimum) connected co-(σ, ρ)-dominating set.

We let opt ∈ {min,max}, i.e., we are interested in computing a connected (σ, ρ)-
dominating set of maximum (or minimum) weight if opt = max (or opt = min).
Let us first give some definitions. As defined in Section 3, rmc works only for the
case opt = max, we redefine it as follows in order to take into account minimization
problems.

rmc(A) := {(p, w) ∈ A : ∀(p, w′) ∈ A, opt(w,w′) = w}.
Join. Let V ′ be a finite set. For A ⊆ Π(V ) × N and B ⊆ Π(V ′) × N, we define
join(A,B) ⊆ Π(V ∪ V ′)× N as

join(A,B) := {(p↑V ′ t q↑V , w1 + w2) : (p, w1) ∈ A, (q, w2) ∈ B}.
This operator is the one from [2]. It is used mainly to construct partial solutions
of G⊕H from partial solutions of G and H.

The following proposition assumes that log(|A|) ≤ |V |O(1) for each A ⊆ Π(V )×N
(this can be established by applying the operator rmc).

Proposition 5.1 (Folklore). The operator join can be performed in time |A| · |B| ·
|V ∪ V ′|O(1) and the size of its output is upper-bounded by |A| · |B|.

The following is the same as Definition 3.5, but does not require acyclicity.

Definition 5.2 ([2]). For A ⊆ Π(V )× N, with V a finite set, and q ∈ Π(V ), let

opt(A, q) := opt{w : (p, w) ∈ A, p t q = {V }}.
A set of weighted partitions B ⊆ Π(V ) × N represents A if for each q ∈ Π(V ), it
holds that opt(A, q) = opt(B, q).

Let Z and V ′ be two finite sets. A function f : 2Π(V )×N × Z → 2Π(V ′)×N is said
to preserve representation if for each A,B ⊆ Π(V ) × N and z ∈ Z, it holds that
f(B, z) represents f(A, z) whenever B represents A.

Lemma 5.3 ([2]). The operators rmc, proj and join preserve representation.

Theorem 5.4 ([2]). There exists an algorithm reduce that, given a set of weighted
partitions A ⊆ Π(V ) × N, outputs in time |A| · 2(ω−1)|V | · |V |O(1) a subset B of A
that represents A, and such that |B| ≤ 2|V |−1.

We use the following function to upper bound the amount of information we need
to store in our dynamic programming tables concerning the (σ, ρ)-domination. For
every non-empty finite or co-finite subset µ ⊆ N, we define d(µ) such as

d(µ) :=

{
0 if µ = N,
1 + min(max(µ),max(N \ µ)) otherwise.
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For example, d(N+) = 1 and for every c ∈ N, we have d({0, . . . , c}) = c+ 1.
The definition of d is motivated by the following observation which is due to the

fact that, for all µ ⊆ N, if d(µ) ∈ µ, then µ is co-finite and contains N\{1, . . . , d(µ)}.
Fact 5.5. For every a, b ∈ N and µ a finite or co-finite subset of N, we have a+b ∈ µ
if and only if min(d, a+ b) ∈ µ.

Let us describe with a concrete example the information we need concerning the
(σ, ρ)-domination. We say that a set D ⊆ V (G) is a 2-dominating set if every vertex
in V (G) has at least 2 neighbors in D. It is worth noticing that a 2-dominating
set is an (N \ {0, 1},N \ {0, 1})-dominating set and d(N \ {0, 1}) = 2. Let H be
a k-labeled graph used in an irredundant k-expression of a graph G. Assuming
DH ⊆ V (H) is a subset of a 2-dominating set D of G, we would like to characterize
the sets Y ⊆ V (G) \ V (H) such that D ∪ Y is a 2-dominating set of G. One first
observes that DH is not necessarily a 2-dominating set of H, and D\DH also is not
necessarily a 2-dominating set of G[V (G) \ V (H)]. Since we want to 2-dominate
V (H), we need to know for each vertex x in V (H) how many neighbors it needs in
addition to be 2-dominated by DH . For doing so, we associate DH with a sequence
R′ = (r′1, . . . , r

′
k) over {0, 1, 2}k such that, for each i ∈ [k], every vertex in lab−1

H (i)
has at least 2− r′i neighbors in DH . For example, if r′i = 1, then every i-vertex has
at least one neighbor in DH . Notice that DH can be associated with several such
sequences. This sequence is enough to characterize what we need to 2-dominate
V (H) since the vertices with the same label in H have the same neighbors in the
graph (V (G), E(G) \ E(H)) and each vertex needs at most 2 additional neighbors
to be 2-dominated.

In order to update the sequence R′ = (r′1, . . . , r
′
k) associated with a set DH , we

associate with DH another sequence R = (r1, . . . , rk) over {0, 1, 2}k such that ri
corresponds to the minimum between 2 and the number of i-vertices in DH , for
each i ∈ [k]. This way, when we apply an operation addi,j on H, we know that
every i-vertex has at least 2 − r′i + rj neighbors in DH in the graph addi,j(H).
For example, if rj = 1 and every i-vertex has at least one neighbor in H that
belongs DH , then we know that every i-vertex is 2-dominated by DH in the graph
addi,j(H).

Let (σ, ρ) be a fixed pair of non-empty finite or co-finite subsets of N. Let’s first
show how to compute an optimum connected (σ, ρ)-dominating set. We consider
node-weighted Steiner tree and connected co-(σ, ρ)-dominating set at the end of the
section. Let d := max{d(σ), d(ρ)}.

The following definitions formalize the intuitions we give for 2-dominating set to
the (σ, ρ)-domination.

Definition 5.6 (Certificate graph of a solution). Let G be a k-labeled graph, and
R′ := (r′1, . . . , r

′
k) ∈ {0, . . . , d}k. Let V + := {v1

1 , . . . , v
1
d, v

2
1 , . . . , v

2
d, . . . , v

k
1 , . . . , v

k
d}

be a set disjoint from V (G) and of size d · k. Let V +(R′) := V +
1 (R′)∪ · · · ∪V +

k (R′)
with

V +
i (R′) :=

{
∅ if r′i = 0,

{vi1, . . . , vir′i} otherwise.

The certificate graph of G with respect to R′, denoted by CG(G,R′), is the graph
(V (G) ∪ V +(R′), E(G) ∪ E+

1 ∪ · · · ∪ E
+
k ) with

E+
i = {{v, vit} : vit ∈ V +

i (R′) ∧ v ∈ lab−1
G (i)}.

It is worth noticing that E+
i is empty if lab−1

G (i) = ∅ or V +
i (R′) = ∅.

Definition 5.7. Let G be a k-labeled graph. For each D ⊆ V (G) and i ∈ [k], let
rdi,G(D) := min(d, |lab−1

G (i) ∩D|) and let rdG(D) := (rd1,G(D), . . . , rdk,G(D)).
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The sequence rdG(D) describes how each label class is intersected by D up to d
vertices. Moreover, notice that |{rdG(D) : D ⊆ V (G)}| ≤ |{0, . . . , d}k| ≤ (d+ 1)k.

The motivation behind these two sequences is that for computing an optimum
(σ, ρ)-dominating set, it is enough to compute, for any k labeled graph H used in
an irredundant k-expression of a graph G and for each R,R′ ∈ {0, . . . , d}k, the
optimum weight of a set D ⊆ V (H) such that

• rH(D) = R,
• D ∪ V +(R′) (σ, ρ)-dominates V (H) in the graph CG(H,R′).

It is worth noticing that the sequences rdH(D) and R′ are similar to the notion of
d-neighbor equivalence introduced in [4].

We can assume w.l.o.g. that d 6= 0, that is σ 6= N or ρ 6= N. Indeed, if σ = ρ =
N, then the problem of finding a minimum (or maximum) (co-)connected (σ, ρ)-
dominating set is trivial. For computing an optimum connected (σ, ρ)-dominating
set, we will as in Section 4 keep partitions of a subset of labels corresponding
to the connected components of the sets D (that are candidates for the (σ, ρ)-
domination). As d 6= 0, we know through rH(D) the label classes intersected by
D. Moreover, we know through R′ = (r′1, . . . , r

′
k) whether the i-vertices in such a

D will have a neighbor in any extension D′ of D into a (σ, ρ)-dominating set. It
is enough to keep the partition of the labels i with ri,H(D) 6= 0 and r′i 6= 0 that
corresponds to the equivalence classes of the equivalence relation ∼ on {i ∈ [k]\ri 6=
0 and r′i 6= 0} where i ∼ j if and only if an i-vertex is connected to a j-vertex in
CG(G,R′)[D ∪ V +].

We use the following definition to simplify the notations.

Definition 5.8. For R = (r1, . . . , rk), R′ = (r′1, . . . , r
′
k) ∈ {0, . . . , d}k, we define

active(R,R′) = {i ∈ [k] : ri 6= 0 and r′i 6= 0}.

We are now ready to define the sets of weighted partitions which representative
sets we manipulate in our dynamic programming tables.

Definition 5.9 (Weighted partitions in DG[R,R′]). Let G be a k-labeled graph,
and R,R′ ∈ {0, . . . , d}k. The entries of DG[R,R′] are all the weighted partitions
(p, w) ∈ Π(active(R,R′))×N so that there exists a set D ⊆ V (G) such that w(D) =
w, and

(1) rdG(D) = R,
(2) D ∪ V +(R′) (σ, ρ)-dominates V (G) in CG(G,R′),
(3) if active(R,R′) = ∅, then G[D] is connected, otherwise for each connected

component C of G[D], we have C ∩ lab−1
G (active(R,R′)) 6= ∅,

(4) p = active(R,R′)/ ∼ where i ∼ j if and only if an i-vertex is connected to
a j-vertex in CG(G,R′)[D ∪ V +(R′)].

Conditions (1) and (2) guarantee that (p, w) corresponds to a set D that is
coherent with R and R′. Condition (3) guarantees that each partial solution can be
extended into a connected graph. Contrary to Section 4, the set of labels expected to
play a role in the connectivity (i.e. active(R,R′)) can be empty. In this case, we have
to make sure that the weighted partitions represent a connected solution. It is worth
mentioning that G[∅], i.e. the empty graph, is considered as a connected graph.
Observe that for each (p, w) ∈ DG[R,R′], the partition p has the same meaning
as in Section 4. It is worth noticing that ∼ is an equivalence relation because
if i ∈ active(R,R′), then all the vertices in lab−1

G (i) are connected in CG(G,R′)

through the vertex in V +
i (R′). In fact, the relation ∼ is equivalent to the transitive

closure of the relation � where i � j if there exists an i-vertex and a j-vertex in
the same connected component of G[D].
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In the sequel, we call a pair (D, (p,w(D))) a candidate solution in DG[R,R′] if
p = active(R,R′)/ ∼ where i ∼ j if and only if an i-vertex is connected to a j-vertex
in CG(G,R′)[D ∪ V +(R′)]. If in addition Conditions (1)-(3) are satisfied, we call
(D, (p,w(D))) a solution in DG[R,R′].

It is straightforward to check that the weight of an optimum solution is the
optimum over all R ∈ {0, . . . , d}k of opt{w : (∅, w) ∈ DG[R, {0}k]} for a k-labeled
graph G.

Analogously to Section 4 our dynamic programming algorithm will store a subset
of DG[R,R′] of size 2k−1 that represents DG[R,R′]. Recall that we suppose that
any graph is given with an irredundant k-expression.

Computing tabG for G = 1(x). For (r1) ∈ {0, . . . , d}, (r′1) ∈ {0, . . . , d}, let

tabG[(r1), (r
′
1)] :=


{(∅, 0)} if r1 = 0 and r′1 ∈ ρ,
{({{1}},w(x))} if r1 = 1 and r′1 ∈ σ,
∅ otherwise.

Since there is only one vertex in G labeled 1, DG[(r1), (r′1)] is empty whenever
r1 /∈ {0, 1}. Also, the possible solutions are either to put x in the solution (r1 = 1)
or to discard it (r1 = 0); in both cases we should check that x is (σ, ρ)-dominated
by V +

1 (R′). We deduce then that tabG[(r1), (r′1)] = DG[(r1), (r′1)].

Computing tabG for G = reni→j(H). We can suppose that H is k-labeled and
that i = k. Let R = (r1, . . . , rk−1), R′ = (r′1, . . . , r

′
k−1) ∈ {0, . . . , d}k−1.

To compute tabG[R,R′], we define S, the set of tuples coherent with respect to
R and Condition (1), as follows

S := {(s1, . . . , sk) ∈ {0, . . . , d}k : rj = min(d, sk + sj) and ∀` ∈ [k] \ {i, j}, s` = r`}.

It is worth noticing that we always have (r1, . . . , rk−1, 0) ∈ S. Moreover, if rj = 0,
then S = {(r1, . . . , rk−1, 0)}. We define also S′ = (s′1, . . . , s

′
k) ∈ {0, . . . , d}k with

s′k = r′j and s′` = r′` for all ` ∈ [k − 1]. Notice that S′ is the only tuple compatible
with R′ and Condition (2) since for every v ∈ lab−1

G (j), the number of vertices in
V +(R′) adjacent to v in CG(G,R′) is the same as the number of vertices in V +(S′)
adjacent to v in CG(H,S′).
(a) If rj = 0 or r′j = 0, then we let

tabG[R,R′] := reduce

(
rmc

(⋃
S∈S

tabH [S, S′]

))
.

In this case, the vertices in lab−1
G (j) are not expected to play a role in the

future as either we expect no neighbors for them in the future or they are not
intersected by the partial solutions.

(b) Otherwise, we let tabG[R,R′] := reduce(rmc(A)) with

A := proj

(
{k},

⋃
S∈S

join(tabH [S, S′], {({{j, k}}, 0)})

)
.

Intuitively, we put in tabG[R,R′] all the weighted partitions (p, w) from the
tables tabH [S, S′] with S ∈ S, after merging the blocks in p containing k and
j, and removing k from the resulting partition.

Lemma 5.10. Let G = renk→j(H) with H a k-labeled graph. For all R =
(r1, . . . , rk−1), R′ = (r′1, . . . , r

′
k−1) ∈ {0, . . . , d}k−1, the table tabG[R,R′] is a rep-

resentative set of DG[R,R′] assuming that tabH [S, S′] is a representative set of
DH [S, S′] for all S ∈ {0, . . . , d}k.
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Proof. Since the used operators preserve representation, it is enough to prove that
each weighted partition added to tabG[R,R′] belongs to DG[R,R′], and that

• in Case (a), we have DG[R,R′] ⊆
⋃
S∈S DH [S, S′], and

• in Case (b), we have DG[R,R′] ⊆ A if we let tabH [S, S′] = DH [S, S′] for
every S ∈ {0, . . . , d}k.

Let (D, (p, w)) be a solution in DG[R,R′]. We start by proving that we have
(p, w) ∈

⋃
S∈S DH [S, S′] if we are in Case (a), or (p, w) ∈ A if we are in Case (b).

By the definition of S, we deduce that rH(D) ∈ S. Indeed, rj,G(D) = min(d, |D ∩
lab−1

G (j)|) equals min(d, rdj,H(D) + rdk,H(D)) because lab−1
G (j) = lab−1

H ({j, k}).
Let p′ ∈ Π(active(rdH(D), S′)) such that (D, (p′, w)) is a candidate solution in

DH [rdH(D), R′]. We claim that (D, (p′, w)) is a solution in DH [rdH(D), R′]. Condi-
tion (1) is trivially satisfied. We deduce from the definition of S′ that Condition (2)
is satisfied. We claim that Condition (3) is satisfied. If R′ = {0}k−1, then we have
S′ = {0}k and Condition (3) is satisfied because H[D] = G[D] must be connected
since (D, (p, w)) is a solution in DG[R,R′]. Otherwise, every connected component
C of G[D] = H[D] intersects lab−1

G (active(R,R′)). Let C be a connected component
of H[D]. If C contains a vertex labeled l in G with l ∈ active(R,R′) \ {j}, then by
definition of S′, we have ` ∈ active(rdH(D), S′). Suppose now, C contains a vertex v
in lab−1

G (j) and j ∈ active(R,R′). If v is labeled k inH, then rdk,H(D) 6= 0 and thus k
belongs to active(rdH(D), S′) because s′k = r′j 6= 0. Symmetrically, if v is labeled j in
H, then j ∈ active(rdH(D), S′). In both cases, C intersects lab−1

H (active(rdH(D), S′)).
We can conclude that Condition (3) is satisfied. Hence, (D, (p′, w)) is a solution in
DH [rdH(D), R′].

If rj = 0 or r′j = 0 (Case (a)), then it is easy to see that p = p′ from Equation
(3) and thus (p, w) ∈ tabH [S, S′].

Assume now that rj 6= 0 and r′j 6= 0 (Case (b)). Let Dk := D ∩ lab−1
H (k)

and Dj := D ∩ lab−1
H (j). Observe that the graph CG(G,R′)[D ∪ V +(R′)] can

be obtained from the graph CG(H,S′)[D ∪ V +(S′)] by removing the vertices in
V +
k (R′) and by adding the edges between V +

j (R′) and Dk. Hence, p is obtained
from p′ by merging the blocks containing j and k, and by removing k. Thus, we
can conclude that (p, w) ∈ A.

It remains to prove that each weighted partition (p, w) added to tabG[R,R′]
belongs to DG[R,R′]. Let (p, w) be a weighted partition added to tabG[R,R′] from
(p′, w) ∈ tabH [S, S′], and let D ⊆ V (H) such that (D, (p′, w)) is a solution in
DH [S, S′]. We want to prove that (D, (p, w)) is a solution in DG[R,R′]. From
the definitions of S and S′, we deduce that D satisfies Conditions (1) and (2).
We deduce that D satisfies also Condition (3) from Equation (3), the fact that
lab−1

G (j) = lab−1
H ({j, k}), and because G[D] = H[D].

If rj = 0 or r′j = 0, then it is easy to see from Equation (3) that p = p′

and that (D, (p, w)) satisfies Condition (4). Otherwise, we deduce from the previ-
ous observations concerning the differences between CG(G,R′)[D ∪ V +(R′)] and
CG(H,S′)[D ∪ V +(S′)], that (D, (p, w)) satisfies Condition (4). In both cases, we
can conclude that (D, (p, w)) is a solution in DG[R,R′]. �

Computing tabG for G = addi,j(H). We can suppose that H is k-labeled. Let
R = (r1, . . . , rk) ∈ {0, . . . , d}k, R′ = (r′1, . . . , r

′
k) ∈ {0, . . . , d}k.

Let S′ := (s′1, . . . , s
′
k) ∈ {0, . . . , d}k such that s′i := min(d, r′i + rj), s′j :=

min(d, r′j + ri), and s′` = r′` for all ` ∈ [k] \ {i, j}. It is easy to see that S′ is
the only tuple compatible with R′ and Condition (2).
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(a) If active(R,R′) = ∅, then we let

tabG[R,R′] := rmc ({(∅, w) : (p, w) ∈ tabH [R,S′]}) .

In this case, the partial solution in tabG[R,R′] are associated with connected
solutions by Condition (3). The partial solutions in tabH [R,S′] trivially satisfy
this condition in G. Notice that tabG[R,R′] represents DG[R,R′] because the
function f : 2Π(V )×N → 2{∅}×N with f(A) := {(∅, w) : (p, w) ∈ A} preserves
representation.

(b) If ri = 0 or rj = 0, we let tabG[R,R′] := tabH [R,S′]. We just copy all the
solutions not intersecting lab−1

G (i) or lab−1
G (j). In this case, the connectivity of

the solutions is not affected by the addi,j operation.
(c) Otherwise, we let tabG[R,R′] := rmc(A), where

A := proj({t ∈ {i, j} : r′t = 0}, join(tabH [R,S′], {({{i, j}}, 0)})).

In this last case, we have i, j ∈ active(R,S′). We put in tabG[R,R′], the
weighted partitions of tabH [R,S′] after merging the blocks containing i and
j, and removing i or j if, respectively, r′i = 0 and r′j = 0, i.e., if they don’t
belong, respectively, to active(R,R′).

It is worth noticing that if |tabH [R,S′]| ≤ 2k−1, then we have |tabG[R,S′]| ≤ 2k−1.
Thus, we do not have to use the function reduce to compute tabG.

Lemma 5.11. Let G = addi,j(H) be a k-labeled graph. For all tuples R =
(r1, . . . , rk), R′ = (r′1, . . . , r

′
k) ∈ {0, . . . , d}k, the table tabG[R,R′] is a representative

set of DG[R,R′] assuming that tabH [R,S′] is a representative set of DH [R,S′].

Proof. Since the used operators preserve representation, it is enough to prove that
every weighted partition added to tabG[R,R′] belongs to DG[R,R′], and that

• in Case (a), we have DG[R,R′] ⊆ {(∅, w) : (p, w) ∈ DH [R,S′]},
• in Case (b), we have DG[R,R′] ⊆ DH [R,S′], and
• in Case (c), we have DG[R,R′] ⊆ A if we let tabH [R,S′] = DH [R,S′].

Let (D, (p, w)) be a solution in DG[R,R′]. Let p′ ∈ Π(active(R,S′)) such that
(D, (p′, w)) is a candidate solution in DH [R,S′]. We claim that (D, (p′, w)) is a
solution in DH [R,S′]. Condition (1) is trivially satisfied because labG(v) = labH(v)
for all v ∈ V (G). We claim that Condition (2) is satisfied, that is D ∪ V +(S′)
(σ, ρ) dominates V (H) in CG(H,S′). It is quite easy to see that D ∪ V +(S′)
(σ, ρ) dominates V (H) \ lab−1

H ({i, j}). Let v ∈ lab−1
H (i). We claim that v is (σ, ρ)

dominated by D ∪ V +(S′). Because we consider only irredundant k-expressions,
there is no edge between an i-vertex and a j-vertex in H. Therefore, we have
|NG(v) ∩ D| = |NH(v) ∩ D| + |D ∩ lab−1

G (j)|. Since D ∪ V +(R′) (σ, ρ)-dominates
V (G), if v ∈ D, then |NG(v)∩D|+r′i ∈ σ, otherwise, |NG(v)∩D|+r′i ∈ ρ. By Fact
5.5, we conclude that min(d, |NH(v)∩D|+ |D∩lab−1

G (j)|+r′i) belongs to σ if v ∈ D,
otherwise it belongs to ρ. As min(d, r′i + |D ∩ lab−1

G (j)|) = min(d, r′i + rj) = s′i,
we deduce that D ∪ V +(S′) (σ, ρ) dominates v. Thus, every i-vertex is (σ, ρ)-
dominated by D ∪ V +(S′) in CG(H,S′). Symmetrically, we deduce that every
j-vertex is (σ, ρ)-dominated by D ∪ V +(S′) in CG(H,S′). Hence, Condition (2) is
satisfied.

In order to prove that Condition (3) is satisfied, we distinguish the following
cases. First, suppose that active(R,R′) = ∅. By Condition (3), G[D] is connected.
As G = addi,j(H), the graph H[D] is obtained from G[D] by removing all edges
between the i-vertices and the j-vertices. We deduce that either H[D] is connected
(if ri = 0 or rj = 0), or that every connected component of H[D] contains at least
one vertex whose label is i or j (otherwise G[D] would not be connected). In both
cases, Condition (3) is satisfied.
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Assume now that active(R,R′) 6= ∅. If ri = 0 (resp. rj = 0), then, by definition
of S′, we have s′j = r′j (resp. s′i = r′i). Therefore, if ri = 0 or rj = 0, then we have
active(R,R′) = active(R,S′), and Condition (3) is trivially satisfied. Otherwise,
if ri 6= 0 and rj 6= 0, then, by definition of S′, we have s′i 6= 0, s′j 6= 0, and thus
i, j ∈ active(R,S′). In this case, we conclude that Condition (3) is satisfied because,
for every connected component C of H[D], either C is a connected component of
G[D], or C contains at least one vertex whose label is i or j.

Hence, (D, (p′, w)) is a solution in DH [R,S′]. If active(R,R′) = ∅, then p = ∅
and (p, w) is added in tabG[R,R′]. Else if ri = 0 or rj = 0, then p′ = p and (p, w)
is also added to tabG[R,R′]. Otherwise, it is easy to see that p is obtained from
p′ by merging the blocks of p′ containing i and j, and by removing them if they
belong to {` ∈ [k] : r′` 6= 0}. Thus, we can conclude that (p, w) ∈ {(∅, w) : (p, w) ∈
DH [R,S′]}) in Case (a), (p, w) ∈ DH [R,S′] in Case (b), and (p, w) ∈ A in Case (c).

It remains to prove that every weighted partition added to tabG[R,R′] belongs to
DG[R,R′]. Let (p, w) be a weighted partition added to tabG[R,R′] from (p′, w) ∈
tabH [R,S′] and let D ⊆ V (H) such that (D, (p′, w)) is a solution in DH [R,S′].
We claim that (D, (p, w)) is a solution in DG[R,R′]. Obviously, Condition (1) is
satisfied. We deduce that Condition (2) is satisfied from the definition of S′ and
the previous arguments. We claim that Condition (3) is satisfied. Suppose first
that R′ = {0}k. Then either S′ = {0}k or {i, j} = active(R,S′). Indeed, we have
active(R,S′) ⊆ {i, j}. Now, i ∈ active(R,S′) if and only if ri 6= 0 and s′i 6= 0, and
then, by definition of S′, s′j = ri 6= 0 and s′i = rj 6= 0. Thus, i ∈ active(R,S′) if and
only if j ∈ active(R,S′). Therefore, we conclude that either H[D] is connected or
every connected component C of H[D] contains at least a vertex whose label is i
or j. As G[D] is obtained from H[D] by adding all the edges between the i-vertices
and the j-vertices, we conclude that, in both cases, G[D] is connected.

Otherwise, if R′ 6= {0}k, then every connected component of H[D] contains
at least one vertex whose label is in active(R,S′). If ri = 0 or rj = 0, then
we are done because active(R,R′) = active(R,S′) by definition of S′. Suppose
now that ri 6= 0 and rj 6= 0. In this case, we have i, j ∈ active(R,S′) from the
definition of S′. Assume towards a contradiction that there exists a connected
component C in G[D] such that C does not intersect lab−1

G (active(R,R′)). Notice
that C intersects lab−1

G (active(R,S′)) because C is a union of connected components
of H[D]. As active(R,S′) \ active(R,R′) ⊆ {i, j}, we deduce that C contains at
least one vertex whose label is i or j. Since the i-vertices and the j-vertices of
D are in the same connected component of G[D], we have lab−1

G ({i, j}) ∩D ⊆ C.
Therefore, we conclude that active(R,S′)\active(R,R′) = {i, j}. It follows, that all
the connected components of H[D] that intersect lab−1

G ({i, j}) does not intersect
lab−1

G (active(R,S′) \ {i, j}) because they are contained in C. We can conclude that
{i, j} is a block of p′′ := p′ t {{i, j}}↑active(R,S′). Hence, we have proj({t ∈ {i, j} :
r′t = 0}, {(p′′, w)}) = ∅ because {t ∈ {i, j} : r′t = 0} = {i, j}. This contradicts the
fact that (p, w) is obtained from (p′, w′). Thus, Condition (3) is satisfied.

We deduce from the previous observations concerning Condition (4) that this
condition is also satisfied. Thus, every solution (p, w) added to tabG[R,R′] belongs
to DG[R,R′]. �

Computing tabG for G = Ga ⊕Gb. We can suppose w.l.o.g. that Ga and Gb are
k-labeled5. Let R = (r1, . . . , rk), R′ = (r′1, . . . , r

′
k) ∈ {0, . . . , d}k.

5For example, if the set of labels of Ga (or Gb) is [k] \ 1, then we can extend any tuples
R = (r2, . . . , rk), R

′ = (r′2, . . . , r
′
k) ∈ {0, . . . , d}

k−1, to {0, . . . , d}k by adding r1 = 0 to R and
r′1 = ∗ to R′ with ∗ a special value considered as equal to all the integers in {0, . . . , d}.
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Let A = (a1, . . . , ak), B = (b1, . . . , bk) ∈ {0, . . . , d}k. The following notion char-
acterizes the pairs (A,B) compatible with R with respect to Condition (1). We say
that (A,B) is R-compatible if and only if for all i ∈ [k], we have ri = min(d, ai+bi).
(a) If R′ = {0}k, then we let tabG[R,R′] := reduce(rmc(tabGa

[R,R′]∪tabGb
[R,R′]))

if 0 ∈ ρ, otherwise we let tabG[R,R′] = ∅. Condition (3) implies that the partial
solutions in DG[R,R′] are either fully contained in V (Ga) or in V (Gb) since
there are no edges between these vertex sets in G. Moreover, in order to satisfy
Condition (2), we must have 0 ∈ σ.

(b) Otherwise, we let tabG[R,R′] := reduce(rmc(A)) where

A :=
⋃

(A,B) is R-compatible

join(tabGa
[A,R′], tabGb

[B,R′]).

Lemma 5.12. Let G = Ga⊕Gb be a k-labeled graph. For all R = (r1, . . . , rk), R′ =
(r′1, . . . , r

′
k) ∈ {0, . . . , d}k, the table tabG[R,R′] is a representative set of DG[R,R′]

assuming that tabGa
[A,R′] and tabGa

[B,R′] are representative sets of DGa
[A,R′]

and DGb
[B,R′], respectively, for all A,B ∈ {0, . . . , d}k.

Proof. Since the used operators preserve representation, it is easy to see that if
R′ = {0}k, then we are done as DG[R,R′] = DGa [R,R′] ∪ DGb

[R,R′] if 0 ∈ ρ,
otherwise DG[R,R′] = ∅. Indeed, by Condition (3), for all solutions (D, (p, w)) in
DG[R,R′], the graph G[D] must be connected. Since G = Ga ⊕ Gb, there are no
edges between V (Ga) and V (Gb) in G[D]. Thus, D is either included in V (Ga) or
in V (Gb). Since V (Ga) 6= ∅ and V (Gb) 6= ∅, we have V (G) \D 6= ∅. This implies
that 0 ∈ ρ, otherwise the vertices in V (G) \ D will not be (σ, ρ)-dominated by
D ∪ V +(R′) = D in CG(G,R′) as V +(R′) = ∅.

In the following, we assume that R′ 6= {0}k. Since the used operators preserve
representation, it is enough to prove that DG[R,R′] = A if we let tabGt

[S,R′] =
DGt

[S,R′] for all S ∈ {0, . . . , d}k and t ∈ {a, b}.
Let (D, (p, w)) be a solution in DG[R,R′]. We start by proving that (p, w) ∈

A. Let Da = D ∩ V (Ga) and Db = D ∩ V (Gb). From the definition of R-
compatibility, we deduce that rdGa

(Da) and rdGb
(Db) are R-compatible. Indeed,

we have min(d, |lab−1
G (i) ∩D|) = min(d, rdGa

(Da) + rdGb
(Db)) for all i ∈ [k].

Let pa ∈ Π(active(rdGa
(Da), R′)) such that (Da, (pa,w(Da))) is a candidate so-

lution in DGa
[rdGa

(Da), R′]. We claim that the pair (Da, (pa,w(Da))) is a solu-
tion in DGa [rdGa

(Da), R′]. Condition (1) is trivially satisfied. By assumption,
D ∪ V +(R′) (σ, ρ) dominates V (G) in CG(G,R′). Since there are no edges be-
tween the vertices in V (Ga) and those in V (Gb), we conclude that Da ∪ V +(R′)
(σ, ρ)-dominates V (Ga) in CG(Ga, R

′). That is Condition (2) is satisfied. Ob-
serve that every connected component of G[D] is either included in Da or in Db.
Therefore, every connected component of Ga[Da] contains a vertex v with a la-
bel j ∈ active(R,R′). Since v ∈ Da, we conclude that rdj,Ga

(Da) 6= 0, thus
j ∈ active(rdGa

(Da), R′). We can conclude that Condition (3) is satisfied. Thus,
(Da, (pa,w(Da))) is a solution in DGa

[rdGa
(Da), R′]. Symmetrically, we deduce that

there exits pb ∈ active(RdGb
(Db), R

′) such that (Db, (pb,w(Db))) is a solution in
DGb

[rdGb
(Db), R

′].
It remains to prove that p = pa↑V t pb↑V with V = active(R,R′). First, observe

that active(rdGa
(Da), R′) and active(rdGb

(Db, R
′)) are both subset of active(R,R′)

and thus pa↑V t pb↑V is a partition of active(R,R′). Let ∼a (resp. ∼b) be the
equivalence relation such that i ∼a j (resp. i ∼b j) if an i-vertex is connected to a
j-vertex in the graph CG(Ga, R

′)[Da ∪V +(R′)] (resp. CG(Gb, R
′)[Db ∪V +(R′)]).

By Condition (4), two labels i, j are in the same block of p if and only if an i-vertex
and a j-vertex are connected in CG(G,R′)[D∪V +(R′)]. On the other hand, i and
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j are in the same block of pa↑V t pb↑V if and only if iRj where R is the transitive
closure of the relation (i ∼a j or i ∼b j). By definition of CG(G,R′), for every
label i ∈ active(R,R′), the vertices in lab−1

G (i) ∩D are all adjacent to the vertices
in V +

i (R′). One can easily deduce from these observations that p = pa↑V t pb↑V .
Hence, (p, w) ∈ A.

We now prove that every weighted partition in A belongs to DG[R,R′]. Let
(p, w) be a weighted partition added to tabG[R,R′] from a solution (Da, (pa, wa))
in DGa

[A,R′] and a solution (Db, (pb, wb)) in DGb
[B,R′]. We claim that (Da ∪

Db, (pa↑V t pb↑V , wa + wb)) is a solution in DG[R,R′] with V = active(R,R′). We
deduce that Condition (1) is satisfied from the definition of R-compatibility and
because min(d, |lab−1

G (i) ∩ D|) = min(d, rdGa
(Da) + rdGb

(Db)) for all i ∈ [k]. With
the same arguments given previously, one easily deduces that Conditions (2)-(4)
are also satisfied. We conclude that (Da ∪Db, (pa↑V t pb↑V , wa +wb)) is a solution
in DG[R,R′]. �

Theorem 5.13. There is an algorithm that, given an n-vertex graph G and an
irredundant k-expression of G, computes a maximum (or a minimum) connected
(σ, ρ)-dominating set in time (d+ 1)3k · 2(ω+1)·k ·kO(1) ·n with d = max(d(σ), d(ρ)).

Proof. We do a bottom-up traversal of the k-expression and at each step we up-
date the tables as indicated above. The correctness of the algorithm follows from
Lemmas 5.10-5.12. From the definition of DG[R,R′], we deduce that the weight of
an optimum connected (σ, ρ)-dominating set corresponds to the optimum over all
R ∈ {0, . . . , d}k of opt{w : (∅, w) ∈ tabG[R, {0}k]} because tabG[R, {0}k] repre-
sents DG[R, {0}k].

Let us discuss the time complexity now. We claim that the tables of tabG can
be computed in time (d+ 1)3k · 2(ω+1)·k · kO(1). We distinguish the following cases:

• If G = 1(x), then it is easy to see that tabG is computable in time O(d).
• If G = addi,j(H), then we update tabG[R,R′] from one entry tabH [R,S′]

for some fixed S′ computable in constant time. The used join operation
runs in time 2k−1 · kO(1) (from Fact 3.3). Thus, tabG is computable in time
(d+ 1)2k · kO(1).

• Now, if G = reni→j(H), then we update tabG[R,R′] from at most |S| =
(d + 1)2 tables from tabH , each identified in constant time from (R,R′).
Since each table of tabH contains at most 2k−1 entries, computing the call
at the function reduce take (d + 1)2 · 2ω·k · kO(1). Thus, we can compute
tabG in time (d+ 1)2k+2 · 2ω·k · kO(1).

• If G = Ga ⊕ Gb, then the bottleneck is when R′ 6= {0}k. Indeed, if R′ =
{0}k, then tabG[R,R′] can be computed in time O(2ω·k) since tabG[R,R′]
is computed from two tables, each containing at most 2k−1 entries. Let
R′ 6= {0}k. By Theorem 5.4, we can compute the tables tabG[R,R′], for
every R ∈ {1, . . . , d}k in time

∑
R∈{0,...,d}k

 ∑
(A,B) is

R-comptatible

|join(tabGa [A,R
′], tabGb [B,R

′])| · 2(ω−1)·k · kO(1)

 .

Observe that for all A,B ∈ {0, . . . , d}k:
(1) There is only one R ∈ {0, . . . , d}k such that (A,B) is R-compatible.

This follows from the definition of R-compatibility. Hence, there are
at most (d+ 1)2k tuples (A,B,R) such that (A,B) is R-compatible.

(2) The size of join(tabGa
[A,R′], tabGb

[B,R′]) is bounded by 22(k−1) and
this set can be computed in time 22(k−1) · kO(1).
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Since 22(k−1) · 2(ω−1)·k ≤ 2(ω+1)·k, we conclude from Observations (1)-(2)
that we can compute the tables tabG[R,R′], for every R ∈ {1, . . . , d}k, in
time (d+ 1)2k · 2(ω+1)·k · kO(1).

Hence, we can update tabG in time (d+ 1)3k · 2(ω+1)·k · kO(1).
Hence, in the worst case, the tables of tabG takes (d + 1)3k · 2(ω+1)·k · kO(1) time
to be computed. Because the size of a k-expression is O(n · k2), we can conclude
that a maximum (or minimum) (σ, ρ)-dominating set can be computed in the given
time. �

As a consequence of Theorem 5.13, we have the following corollary.

Corollary 5.14. There is an algorithm that, given an n-vertex graph G, a subset
K ⊆ V (G) and an irredundant k-expression of G, computes a minimum node-
weighted Steiner tree for (G,K) in time 2(ω+4)·k · kO(1) · n.

Proof. We can assume w.l.o.g. that |K| ≥ 2. We can reduce the problem Node-
weighted Steiner Tree to a variant of (σ, ρ)-Dominating Set where σ = N+

and ρ = N. This variant requires K to be included in the (σ, ρ)-dominating set.
We can add this constraint, by modifying how we compute the table tabG, when
G = 1(x) and x ∈ K. For (r1), (r′1) ∈ {0, 1}, we let

tabG[R,R
′] :=

{
{({{1}},w(x))} if r1 = 1 and r′1 = 1,

∅ otherwise.

It is straightforward to check that this modification implements this constraint and
our algorithm with this modification computes a minimum node-weighted Steiner
tree. The running time follows from the running time of Theorem 5.13 with d =
1. �

More modifications are needed in order to compute a maximum (or minimum)
connected co-(σ, ρ)-dominating set.

Corollary 5.15. There is an algorithm that, given an n-vertex graph G and an irre-
dundant k-expression of G, computes a maximum (or minimum) co-(σ, ρ)-domina-
ting set in time (d+ 2)3k · 2(ω+1)·k · kO(1) · n.

Proof. First, we need to modify the definition of the tablesDG. LetH be a k-labeled
graph, R,R′ ∈ {0, . . . , d}k, and R,R′ ∈ {0, 1}k. The entries of DH [R,R′, R,R

′
] are

all the weighted partitions (p, w) ∈ Π(active(R,R
′
))×N such that there exists a set

X ⊆ V (G) so that w = w(X) and
(1) rdH(V (H) \X) = R and r1

H(X) = R,
(2) (V (H) \X) ∪ V +(R′) (σ, ρ)-dominates V (H) in CG(H,R′),
(3) if active(R,R

′
) = ∅, then H[X] is connected, otherwise every connected

component of H[X] intersects lab−1
H (active(R,R

′
)),

(4) p = active(R,R
′
)/ ∼ where i ∼ j if and only if an i-vertex is connected to

a j-vertex in CG(H,R
′
)[X ∪ V +(R

′
)].

As a solution is a set X such that V (G)\X is a (σ, ρ)-dominating set and G[X] is a
connected graph, we need information about X∩V (H) and (V (H)\X). Intuitively,
R,R′ are the information we need to guarantee the (σ, ρ)-domination, and R,R

′
are

the information we need to guarantee the connectedness. In particular, R specifies
which label classes are intersected and R

′
tells which label classes are expected to

have at least one neighbor in the future.
These modifications imply in particular to change the notion of R-compatibility.

For each t ∈ {a, b, c}, let Rt = (rt1, . . . , r
t
k) ∈ {0, . . . , d}k, and Rt = (rt1, . . . , r

t
k) ∈
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{0, 1}k, we say that (Ra, Ra, Rb, Rb) is (Rc, Rc)-compatible if for all i ∈ [k], we have
rci = min(d, rai + rbi ) and rci = min(1, rai + rbi ).

It is now an exercise to modify the algorithm of Theorem 5.13 in order to update
the tables tabH through the different clique-width operations. The weight of an
optimum solution corresponds to the optimum over all R ∈ {0, . . . , d}k, R ∈ {0, 1}k
of opt{w : (∅, w) ∈ tabG[R, {0}k, R, {0}k]}, since tabG[R, {0}k, R, {0}k] represents
DG[R, {0}k, R, {0}k].

Let us discuss the time complexity now. Let H be a k-labeled graph that is
used in the k-expression of G. First, observe that we do not need to compute
tabH [R,R′, R,R

′
] for all R,R′ ∈ {0, . . . , d}k, and R,R

′ ∈ {0, 1}k. Indeed, for all
X ⊆ V (H) and i ∈ [k], if we have rdi,H(V (H) \X) < d, then

r1
i,H(X) =

{
0 if |lab−1

H (i)| = rdi,H(V (H) \X),

1 otherwise.

Hence, we deduce that there are at most (d+2)k pairs (R,R) ∈ {0, . . . , d}k×{0, 1}k
such that R = rdH(V (H)\X) and R = r1

H(X). Indeed, whenever rdi,H(V (H)\X) <

d, there is only one possible value for r1
i,H(X), and when rdi,H(V (H)\X) = d, there

are at most 2 possible values for r1
i,H(X). With the same arguments used to prove

the running time of Theorem 5.13, one easily deduces that there are at most (d+2)2k

tuples (Ra, Ra, Rb, Rb, Rc, Rc) such that (Ra, Ra, Rb, Rb) is (Rc, Rc)-compatible.
Moreover, it is sufficient to consider (d + 2)k pairs (R′, R

′
) ∈ {0, . . . , d}k ×

{0, 1}k when we update tabH . For every i ∈ [k], we let ciH := |NG(lab−1
H (i)) \

NH(lab−1
H (i))|. Notice that for every vertex v ∈ lab−1

H (i), we have |NG(v)| =
|NH(v)|+ciH . Informally, we cannot expect more than ciH neighbors in the future for
the i-vertices of H. Hence, it is enough to consider the pairs (R′, R

′
) ∈ {0, . . . , d}k×

{0, 1}k, with R′ = (r′1, . . . , r
′
k) and R

′
= (r′1, . . . , r

′
k), such that for all i ∈ [k], if

r′i < d, then

r′i =

{
0 if r′i ≥ cHi ,
1 otherwise.

That is, for every i ∈ [k], if r′i < d, then there is one possible value for r′i because
if we expect r′i < d neighbors for the i-vertices in V (H) \X, then we must expect
min(0, ciH − r′i) neighbors for the i-vertices in X. If r′i = d, then there are no
restrictions on the value of r′i. Thus, the pairs (r′i, r

′
i) can take up to (d+ 2) values.

We conclude that there are at most (d + 2)k pairs (R′, R
′
) ∈ {0, . . . , d}k × {0, 1}k

worth to looking at. With these observations and the arguments used in the running
time proof of Theorem 5.13, we conclude that we can compute a maximum (or
minimum) co-(σ, ρ)-dominating set in the given time. �

6. Concluding Remarks

We combine the techniques introduced in [4] and the rank-based approach from
[2] to obtain 2O(k) ·n time algorithms for several connectivity constraints problems
such as Connected Dominating Set, Node-Weighted Steiner Tree, Feed-
back Vertex Set, Connected Vertex Cover, etc. While we did not consider
connectivity constraints on locally vertex partitioning problems [4], it seems clear
that we can adapt our algorithms from the paper to consider such connectivity
constraints: if the solution is {D1, . . . , Dq}, each block Di is connected or a proper
subset of the blocks form a connected graph. We did not consider counting versions
and it would be interesting to know if we can adapt the approach in [2] based on
the determinant to the clique-width.
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In [12] Fomin et al. use fast computation of representative sets in matroids to
provide deterministic 2O(k) ·nO(1) time algorithms parameterized by tree-width for
many connectivity problems. Is this approach also generalizable to clique-width ?

The main drawback of clique-width is that, for fixed k, there is no known FPT
polynomial time algorithm that produces a k-expression, that even approximates
within a constant factor the clique-width of the given graph. We can avoid this ma-
jor open question, by using other parameters as powerful as clique-width. Oum and
Seymour introduced the notion of rank-width and its associated rank-decomposition
[19] such that rank-width(G) ≤ clique-width(G) ≤ 2rank-width(G)+1 − 1. Furthermore
there is a 2O(k) ·n3 time algorithm for computing it [15, 17]. If we use our approach
with a rank-decomposition, the number of twin-classes is bounded by 2k, and so we
will get a 22O(k) · nO(1) time algorithm. We can circle it and obtain 2O(k2) · nO(1)

as done for example in [13] for Feedback Vertex Set by using Myhill-Nerode
congruences.

In [1], the authors adapted the rank-based approach to the notion of d-neighbor
equivalence from [4]. They deduce, in particular, 2O(k) · nO(1), 2O(k·log(k)) · nO(1),
and 2O(k2) · nO(1) time algorithms parameterized respectively by clique-width, Q-
rank-width (a variant of rank-width [18]), and rank-width for all the problems
considered in this paper. The results in [1] generalize, simplify, and unify several
results including [2, 13] and those from this paper. However, for each considered
problem in this article, the algorithms parameterized by clique-width from [1] have
a worse running time than the algorithms from this paper.

We recall that, it is still open whether we can obtain a 2O(k) ·nO(1) time algorithm
parameterized by rank-with (or Q-rank-width) to solve the problems considered in
this paper, or more basic problems such as Independent Set or Dominating
Set.
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