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Abstract A confined drop flowing against a rectangular obstacle placed off-
center in a microfluidic conduct may break into two daughter droplets of dif-
ferent volumes when the capillary number at play C, the ratio between viscous
and capillary effects, exceeds a threshold Cb. We study the influence of the
viscosity ratio p between dispersed and continuous phases on that process by
discussing the experimental variations of the volume fraction of the daughter
droplets with C and p. A single free-parameter model that yields an analytical
formula for the volume of the daughter droplets as a function of the variables
at play is introduced. Using this model that well describes our experiments,
we accurately determine Cb for different p. Our findings underline the key role
of confinement on drop breakup showing that Cb is three orders of magnitude
smaller than the value found in bulk experiments under shear flow and that
Cb decreases with p in our study.
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1 Introduction

Emulsions, i.e., metastable dispersions of two immiscible liquids, are used in a
variety of industrial, engineering and biomedical applications (Leal-Calderon
et al. 2007). Examples include end products in the cosmetic and food indus-
tries, dynamical templates for the production of colloidal suspensions, cap-
sules or liposomes in material science and micro-reactors in high-throughput
biomicrofluidic assays. All of these applications require to control the drop
size distribution as the physical properties of these materials are highly size-
dependent. Hence, drop breakup is a central topic in emulsion science. For
any drop breakup experiment, the key issues are to identify the experimental
conditions for breaking a mother drop and to predict the size of the daughter
droplets as a function of the parameters at play.

Since the pioneering studies of the deformation and rupture of an isolated
drop in bulk by Taylor (Taylor 1932, 1934), the topic has been widely stud-
ied for many flow configurations such as linear two-dimensional flows (Bentley
and Leal 1986), simple shear flows (Janssen et al. 1993) and extensional flows
(Stone 1994). For low Reynold numbers and Newtonian fluids, it is known that
drop breakup is mainly controlled by two dimensionless parameters: the cap-
illary number C defined as the ratio between viscous and capillary forces and
p the viscosity ratio between dispersed and continuous phases. Drop breakup
usually occurs when the capillary number exceeds a threshold Cb that varies
with p and the nature of the flow (Grace 1982). Under shear flow, for in-
stance, an isolated droplet adopts an ellipsoidal shape when C < Cb. At Cb,
the droplet draw ratio, defined as the drop length needed for breakup over
the original droplet diameter, is a nonmonotonic function of p: it is either de-
creasing (p < 10−1) or increasing (p > 10−1) with p (Grace 1982). At either
very small (p < 10−5) or very large (p > 3) viscosity ratios, the droplet draw
ratio approaches one hundred, a breaking drop is then a very long thread that
breaks because of the growth of a capillary-wave instability (Rayleigh 1878),
or other processes, e.g., tip streaming (Torza et al. 1972; Grace 1982) or end
pinching (Stone and Leal 1989). In all cases, smaller droplets with a broad
size distribution are produced. Around p = 10−1, the droplet draw ratio is
minimum and the size of a drop at breakup is only a few times the original
one. This drop then breaks into smaller ones having a narrow size distribution
centered around a mean size ∼ C−1. When p > 4, the droplet deformation
remains small and breakup is never observed. These results strongly depend
on the rheological properties of the two-phase fluid. For instance, for fluids
having a viscoelastic component, breakup can occur in shear flows when p > 4
(Mighri and Huneault 2006). Also, when shearing alters the microstructure of
the two-phase fluid, the response of sheared drops may become non-stationary
and sustained droplet size oscillations can be observed (Courbin et al. 2004a).
For this class of fluids, the breakup of drops may even occur without elonga-
tion (Courbin et al. 2004b). In confined flows, Cb does not only depend on p
but also on the degree of confinement. This parameter tends to increase the
threshold for breakup at low viscosity ratios, whereas Cb decreases with the
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confinement at large p (Vanaroye et al. 2006, 2007). For sufficiently confined
sheared flows, Vanaroye et al. 2006 have even shown that breakup can occur
when p > 4. Also, Newtonian drops in viscoelastic matrix break at very small
values of Cb in confined conditions (Cardinaels and Moldenaers 2011; Guido
2011). By contrast, in the case of viscoelastic drops, Cb may either increase or
decrease depending on the drop viscoelasticity(Gupta et al. 2014).

Recent advances in microfluidics for material science (Chu et al. 2007;
Shah et al. 2008; Engl et al. 2008), biotechnology and chemistry (Teh et al.
2008; Trivedi et al. 2010; Seeman et al. 2012) have inspired investigations of the
breakup of confined drops in various microfluidic geometries. For instance, one
can actively break microfluidic drops using an electric field (Link et al. 2006) or
an optical approach (Baroud et al. 2007). However, most studies exploit passive
(geometry-based) methods that solely rely on the flow geometry. Examples
include cross-flow microchannels (Tan et al. 2008; Cubaud 2009; Che et al.
2011), T-junctions (Link et al. 2004; de Menech 2006; Leshansky and Pismen
2009; Afkhami et al. 2011; Bedram and Moosavi 2011; Samie et al. 2013;
Salkin et al 2013; Wang and Yu 2015), Y-junctions (Ménétrier-Deremble and
Tabeling 2006; Abate and Weitz 2011; Bedram et al. 2015; Zheng et al. 2016),
and micro-obstacles (Link et al. 2004; Protiere et al. 2010; Chung et al. 2010;
Salkin et al. 2012; Li et al. 2014). The earliest work by Link et al. 2004 has
shown that breaking a drop or a bubble into two daughter droplets or bubbles
of different sizes can be achieved by drop impact either against an off-centered
micro-obstacle in a channel or at a T-junction, i.e. the inlet node of a loop
having two arms of different lengths: other governing parameters being fixed,
the volume fraction ϕi (i = 1 or 2) of the two daughter droplets or bubbles
is either controlled by the distance between obstacle and axis of a channel
or by the ratio of the lengths of the two arms of a loop. Similar to bulk
experiments, for these two microfluidic configurations, breakup also occurs
when the capillary number is larger than a threshold Cb. Many of the works
cited above combine experiments and theory to understand how Cb and ϕi vary
with the geometrical, hydrodynamical and physicochemical variables at play.
In particular cases, ϕi solely depends on the geometry and can be explained
using simple physical arguments (Link et al. 2004; Salkin et al. 2013). In
most cases however, modeling experimental findings is a challenging task since
the number of governing parameters is large. For drop impact against micro-
obstacles, Salkin et al. 2012 have shown that the use of a rectangular obstacle
allows one to establish a theoretical framework that provides a full description
of the experiments. Notably, the model introduced by Salkin et al. 2012 has
been successfully employed to rationalize non-trivial experimental results such
as the either monotonic or nonmonotonic evolution of Cb with a drop size
depending on the sign of the viscosity contrast, that is, the difference between
the viscosities of dispersed and continuous phases divided by the latter one.
Salkin et al. 2013 have also used their theoretical framework to explain the
variations of ϕi with numerical simulations, ϕi being in this case a complex
function of the size and speed of a mother drop, p, the surface tension between
liquid phases, and the geometrical variables.



4 Akio Nishimura et al.

Here, we investigate the volume fraction ϕi of the daughter droplets formed
upon breakup of a mother drop against an off-centered rectangular obstacle as
a function of the viscosity ratio p and capillary number C. We present a model
that provides an analytical expression for ϕi as a function of these controlling
parameters and the geometrical variables. We find that the threshold in capil-
lary number Cb decreases monotonically with p = 0.2−2 and its value is three
orders of magnitude smaller than previous results for shear flows in bulk.

2 Experiments: Set-up, Materials and Methods

Our microchannels are made in poly-dimethylsiloxane (PDMS) using standard
soft lithography (McDonald et al. 2000). They have a rectangular cross-section
with height h = 50 µm and width w = 130 µm (see Fig. ??). We generate
a periodic train made of monodisperse drops using a flow focusing geometry
(Anna et al. 2003). Two syringe pumps (PHD 2000, Harvard Apparatus) inject
the dispersed (aqueous solution) and continuous (oil) phases at controlled flow
rates which are adjusted independently until a steady flow of monodisperse
drops with volume Ω=1140 pL is obtained. We herein refer to these flattened
drops that are larger than w as “slugs”. Details about the fluid system are
given further in the text.Typical flow rates of dispersed and continuous phases
are qw=5− 200 µL/h and qfo=5− 500 µL/h, respectively. The drops are then
directed towards a rectangular obstacle (length L = 500 µm and width 30 µm)
parallel to the walls of the channel and off-centered. As shown in Fig. ??,
the two gaps (1) and (2) on both sides of an obstacle have different widths
w1 = 70 µm and w2 = 30 µm. A dilution module (Prat et al. 2006, Sessoms
et al. 2010) allows for an additional injection of oil at constant flow rate qdo =
0− 1000 µL/h to vary the drop velocity v while Ω is unchanged. This module
is far upstream from the obstacle so that the flow is steady near the obstacle
(see Fig. ??) and the distance λ between two consecutive drops is large enough
to prevent drop-to-drop interactions that are known to affect drop breakup
(Belloul et al. 2011, Schmit et al. 2015).

We record videos of the flow nearby the obstacle with a high-speed camera
(Phantom V7) working at 1000 frames/s for a resolution of 64 × 512 pixels2.
The production rate f of the drops, Ω, v, their size Ld and the sizes L1 and
L2 of the two daughter droplets respectively flowing the gaps (1) and (2)
are obtained from image processing using a custom-written MATLAB soft-
ware. The volume of a mother drop, Ω= qw

f , is first determined by measuring
the droplet production rate f . One then computes the effective droplet size
Ld = 220 ± 20 µm according to Ld=

Ω
hw . The volumes Ω1 [gap (1)] and Ω2

[gap (2)] of the daughter drops are deducted from the measurements of their
surface areas by using the formulae predicting the volume of a confined droplet
(see Fig. ??). These formulae are valid provided that the capillary number at
play is sufficiently small so that the droplet shape is only set by its degree
of confinement. Note that we have neglected the thickness of the lubrication
films that always exist between a non wetting droplet and the microchannel
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Fig. 1 Middle panel: Image of the photomask of the microfluidic device used in our study;
defined are the flow rate of the dispersed phase qw and the oil flow rates in the production and

dilution modules, qfo and qdo , respectively. Top panel: Photographs showing the flow-focusing
geometry that produces periodic trains of monodisperse drops and the dilution module.
The bottom panel which consists of a photograph of the flow downstream of the dilution
module and a combination of a photograph and a schematic nearby the obstacle defines the
geometric, hydrodynamic, and physicochemical variables at play. Scale bar: 100 µm.

walls. Such lubrication films are expected to be much smaller than the charac-
teristic sizes of the channels we use (Huere2015). Once the volumes mentioned
above are obtained, the two daughter droplets effective lengths, L1 and L2 are
respectively determined using the two relationships L1 =

Ω1
w1h

and L2 =
Ω2
w2h

.
These effective lengths correspond to the lengths of cuboids having similar
volumes to those of the considered droplets. As we will see further in the text,
these quantities are useful parameters to model our experiments.

We use hexadecane (Sigma-Aldrich) for the continuous phase and solutions
of glucose (0 − 38 wt.%) in water for the dispersed phase. We add 15 g/L of
a surfactant (Sodium Dodecyl Sulfate (SDS), Sigma) in the aqueous solutions
to hinder droplet coalescence. In our experiments, the Reynolds and capillary
numbers are small and span the ranges 10−2 − 10−1 and 10−3 − 10−2, respec-
tively. The Reynolds number R and the capillary number C correspond to the
ratios between inertial and viscous forces and between viscous and capillary
forces, respectively. They are defined in our system as R=ρcvh

ηc
and C=ηcv

γ ,
ρc being the density of the continuous phase. We measure the viscosity of
each liquid with an Anton Paar MCR 301 rheometer. Table 1 describes the
properties of each water/SDS/glucose mixture with dynamic viscosity ηd, the
viscosity of hexadecane being ηc = 3mPa s. For the prepared mixtures, the
interfacial tension between continuous and dispersed phases determined with
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Fig. 2 This figure depicts the shape that a droplet seeks when it is confined in a microfluidic
channel having a rectangular cross section. In this qualitative picture, the capillary number
is sufficiently small so that the droplet shape only depends on its degree of confinement.
Three possible cases can be obtained depending on the ratio between a drop size and channel
geometry. The last column shows the surface, length and volume of a drop in these three
cases.

pendant drop tensiometry is γ = 5−6.5 mN/m. In what follows, we investigate
the variations of the volume fraction of the daughter droplet in the narrow gap
(2), ϕ2 = Ω2/Ω; the volume fraction of the drops in the large gap is simply
ϕ1 = Ω1/Ω = 1− ϕ2.

Table 1 Composition and viscosities of the water/SDS/glucose mixtures used in our study.

amount of glucose (wt.%) viscosity ηd (mPa s) symbols used in the figures

0 1 circles
14 2.1 squares
22 2.7 up-pointing triangles
30 3.5 down-pointing triangles
34 4.1 diamonds
38 5.2 times sign

3 Experiments: Results

In our experiments, we vary v while maintaining all other variables fixed. In
agreement with foregoing results in the literature, when v becomes larger than
threshold velocity vb, a slug breaks in two daughter droplets when its rear edge
meets the obstacle (see Fig. ??). These drops then flow in gaps (1) and (2).
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By contrast, when v < vb, a slug does not break and flows in the larger gap.
As depicted in Fig. ??, the volume Ω2 of the droplet created in the narrow
gap is smaller that that of the drop formed in gap (1). Figure ?? shows that
Ω2 is an increasing function of v > vb and that it increases with ηd for a given
speed.

2
0

50

100

150

200

0 4 6 8 10 12

Ω
2
(p
L
)

v (mm/s)
vb

Fig. 3 Variations of the volume Ω2 of the daughter drops produced in gap (2) with the
velocity of the mother drop v for different viscosities of the dispersed phase: (circles) 1 mPa s,
(squares) 2.1 mPa s and (diamonds) 4.1 mPa s. The lines are guides for the eyes.

4 Discussion and model

We now discuss the variations of ϕ2 with the dimensionless parameters con-
trolling the problem, C=ηcv

γ and p = ηd

ηc
. We will rationalize our findings with

a theoretical framework recently introduced to describe the breakup dynam-
ics of drops impacting a micro-obstable (Salkin et al. 2012 and Schmit et al.
2015). We describe below the basic elements of this framework.

We assume that the speed v of a slug flowing in a channel of constant cross
section S = hw varies as q/S with q = qw + qfo + qdo the total flow rate. We
consider that the flows of the slug and the continuous phase satisfy Darcy’s
law, with an effective viscosity ηsd for the slug. ηsd is a free parameter that
accounts for viscous dissipation inside the slug, in the thin lubrication films of
oil between the slug and the channel walls and in the corners of the rectangular
geometry. Thus, the pressure drop ∆p over a portion ℓ of the slug reads

∆pvisc =
ηsdℓq

h3w
f
(w
h

)
, (1)
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with

f (x) =
π2

4x2

 ∞∑
j=1

∞∑
k=1

[1− (−1)j ]2[1− (−1)k]2

jk[j2 + k2x2]

−1

(2)

a dimensionless function which can be written f ≈ 12[1−0.63x−1]−1 for 1 < x
(Bruus 2008). We write an estimate of the pressure drop across the front edge
of the slug due to the curved two-fluid interface

∆pcurv =
2γ

w

(
1 +

w

h

)
. (3)

This contribution to the pressure accounts for the presence of curved in-
terfaces in our model. We next consider flat interfaces rather than curved
for simplicity’s sake. Using these assumptions, we are able to rationalize the
breakup dynamics starting at time t = 0 when the drop collides with the
obstacle. The time at which the rear edge of a slug of length Ld meets the
obstacle is tf = Ld/v. We next work with the dimensionless time T = t

tf
.

ℓ2(T )=X2(T )L

ℓ1(T )=X1(T )L

Ω2=X2(T=1)Lhw2

Ω1=X1(T=1)Lhw1

T=t/tf

Ω=Ldhw

Fig. 4 Top-view schematic of a drop colliding with an obstacle defining the variables used
in our model which describes the propagation of two-liquid interfaces in the two gaps.

Since we work at constant flow rates, a two-fluid interface always invades
gap (1) at t = 0. Then, it begins to move forward at a speed dℓ1/dt (see
Fig. ?? defining the variables used in our model). A two-fluid interface in-
vades the narrow gap (2) only when the pressure drop ∆p between the two
ends of the obstacles overcomes the Laplace pressure 2γ

w2

(
1 + w2

h

)
required to

accommodate a curved interface in this gap. Prior to the invasion of the nar-
rower gap (2) by a fluid-fluid interface, the position of the interface in the
large gap at T , ℓ1(T ) = X1(T )L, is obtained by conservation of the total flow

rate in Eq. (4): X1(T ) = αT with α =
Ldw

Lw1
. We now consider the situation

for which the interface which has entered gap (1) has not yet reached the
extremity of the obstacle, that is, X1(T ) < 1. Using Eq. (1), we write the
pressure drop over L in gap (1), ∆p = ηcLq

h3w1
f1[(1 + ∆ηsX1) +

2Z
C
(
1 + w1

h

)
],

where ∆ηs = (ηsd − ηc)/ηc and Z = (f1h
−2wL)−1 with f1 = f

(
w1

h

)
are two

dimensionless parameters. The condition for the invasion of the narrow gap
can be mathematically expressed as 1 + ∆ηsX1 > C⋆

C , where C⋆ = 2Z 1−W
W ,

which provides insights into the importance of the sign of ∆ηs. Indeed, when
∆ηs < 0, the term on the left hand side of the inequality, 1+∆ηsX1, decreases
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with T , so that the time Tp at which an interface begins to propagate in gap
(2) is Tp = 0 whenever C > C⋆. By contrast, when ∆ηs > 0, this term increases
with T so that Tp = 1

α∆ηs

(C⋆
C − 1

)
≥ 0. Using the two conditions to be ful-

filled to allow propagation in gap (2), Tp < 1 and X1(Tp) ≤ 1, one finds that
invasion occurs when C > C⋆

1+α∆ηs (α ≤ 1) or C > C⋆
1+∆ηs (α ≥ 1). Note that

the extra condition to fulfill, Tp ≥ 0, gives Tp = 0 whenever C > C⋆. For both
positive and negative ∆ηs, if those conditions are not fulfilled when the two-
fluid interface exits gap (1), the pressure drop in this gap suddenly decreases
and remains constant over time, ∆p = ηcLq

h3w1
f1[(1 +∆ηs). Then, the pressure

drop can no longer become larger that the Laplace pressure mentioned above
and the invasion of the narrow gap never occurs.

When T ≥ Tp, the dynamics of the interfaces present in both gaps are con-
trolled by a set of two coupled first-order ordinary equations whose solutions
are X1 and X2 = ℓ2(T )/L. The conservation of the total flow rate gives

dX1

dT
+W

dX2

dT
= α. (4)

The second one is obtained by the equality of pressure drops over both gaps

(1 +∆ηsX1)
dX1

dT
− FW (1 +∆ηsX2)

dX2

dT
= α

C⋆
C

(5)

for X1 ≤ 1 and X2 ≤ 1 and where W = w2

w1
and F = f

(
w2

h

)
/
[
Wf

(
w2

Wh

)]
.

As we work with a slug size Ld = 220 ± 20 µm that is constant within

experimental errors, we consider that α =
Ldw

Lw1
= 0.82± 0.07 < 1 is constant.

Assuming that ∆ηs > 0, we now discuss the two cases C > C⋆ and C ≤ C⋆.

• The case C > C⋆: We have previously shown that this situation corresponds
to Tp = 0. By integrating Eqs. (4) and (5) between T = 0 and T = 1 with
the initial conditions X1(0) = X2(0) = 0, one easily shows that X2(1) is
the positive solution of the quadratic equation

X2(1)
2W (W−F )

∆ηs

2
−X2(1)W (1+F+α∆ηs)+α

(
1 +

α∆ηs

2
− C⋆

C

)
= 0.

(6)

• The case C ≤ C⋆: We integrate Eqs. (4) and (5) between Tp = 1
α∆ηs

(C⋆
C − 1

)
and T = 1 with X1(Tp) = αTp and X2(Tp)=0 as initial conditions. One
readily finds that X2(1) is the positive solution of the following equation

X2(1)
2W (W − F )

∆ηs

2
−X2(1)W (1 + F + α∆ηs)+

1

2∆ηs

(
1 + α∆ηs − C⋆

C

)2

= 0.

(7)

Since we consider that the slugs have flat interfaces in our modeling work,

we estimate Ω = Ldwh and Ω2 = L2w2h = X2(1)Lw2h so that X2(1) =
αϕ2
W .
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Fig. 5 Variations of the volume fraction ϕ2 of the daughter drops formed in gap (2) with
the capillary number C for different aqueous solutions; the symbols are identical to those of
Fig. ??. The lines correspond to the prediction of ϕ2 given by Eq. (9) with the following
values of the free parameter ζ = α∆ηs: (circles) 2.04, (squares) 3.68 and (diamonds) 7.35.

Using this relationship between X2(1) and ϕ2 in Eqs. (6) and (7), one finds
that ϕ2 is the positive solution of the quadratic equation

ϕ2
2

(F −W )ζ

2W
+ ϕ2(1 + F + ζ)−A(ζ, C, C⋆) = 0 (8)

with ζ = α∆ηs and where

◦ A(ζ, C, C⋆) = 1 + ζ
2 − C⋆

C when C > C⋆;
◦ A(ζ, C, C⋆) = 1

2ζ

(
1 + ζ − C⋆

C
)2

when C ≤ C⋆.

One then easily shows that

ϕ2 =
W (1 + F + ζ)

(F −W )ζ

(
−1 +

√
1 +

2A(F −W )ζ

W (1 + F + ζ)2

)
. (9)

As discussed above, the outcome of our model is Eq. (9) that gives an
analytical expression for the variations of ϕ2 with C and other dimensionless
parameters describing the geometry; finding an expression of ϕ1 is then imme-
diate as ϕ1 = 1− ϕ2. As shown in Fig. ??, the theoretical prediction provided
by Eq. (9) describes remarkably well our experimental data considering there
is only one free parameter, ζ, in the model.

For the discussed case ∆ηs > 0 and α < 1, Salkin et al. 2012 have shown
that breakup occurs whenever an interface enters the narrow gap. In other
words, the threshold Cb corresponds to the capillary number C⋆

1+ζ above which

an interface propagates in the gap (2). In Fig. ??, we report the variations
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Fig. 7 Variations of ζ with p. The symbols are identical to those of Fig. ?? and the line is
a guide of the eyes.

of Cb = C⋆
1+ζ with p determined by using the best fits to our data shown in

Fig. ??. Figure ?? shows that that Cb takes values that are surprisingly much
smaller (∝ 10−3) than those required to break a drop under shear flow in bulk
(∝ 1). We also note that in our microfluidic experiments, Cb is a decreasing
function of p in the investigated range [0.2− 2].
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In Fig. ??, we report the values found for the free parameter ζ as a function
of p. Since α = 0.82 ± 0.07 is constant within experimental errors in our
study, our analysis allows us to estimate the free parameter ∆ηs characterizing
the effective viscosity introduced by the flow of slugs. We find that ∆ηs =
2.5− 6.5 > 0 for our experiments which validates the assumption made when
modeling ϕ2. We also note that, ∆ηs, thus ηsd, increases with p (Fig. ??). The
values we found for this system for ηsd=(1 + ∆ηs)ηc = 10.5 − 22.5 are larger
than ηc in agreement with previous results by Salkin et al. 2012 also conducted
with an aqueous solution in oil system.

5 Conclusion

We have studied the breakup of drops flowing against a rectangular obstacle
placed off-center in a microchannel. In agreement with earlier works, we have
shown that breakup requires that the capillary number C exceeds a threshold
Cb. We have characterized the role of the viscosity ratio p between dispersed
and continuous phases on drop breakup by investigating the experimental
variations of the volume fraction ϕ2 of the smaller daughter droplet formed
upon breakup of a mother drop with C and p. We have presented a single
free-parameter model that gives an analytical expression of ϕ2 which captures
these variations and allows us to determine Cb. We find a threshold for breakup
that is three orders of magnitude smaller than typical values found under shear
flow in bulk experiments. In addition, our results show that Cb is decreasing
with p in the that studied range of the viscosity ratio [0.2− 2].
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Européen de Développement Régional (FEDER). A. Nishimura thanks TUAT for granting
him a fellowship to work at IPR.

References

1. Abate A R, Weitz D A (2011) Faster multiple emulsification with drop splitting. Lab
Chip 11(11):1911-1915

2. Afkhami S, Leshansky A M, Renardy Y (2011) Numerical investigation of elongated
drops in a microfluidic T-junction. Phys Fluids 23(2): 022002

3. Anna S L, Bontoux N, Stone H A (2003) Formation of dispersions using flow focusing.
Appl Phys Lett 82(3): 364-366

4. Baroud C N, Robert de Saint Vincent M, Delville J P (2007) An optical toolbox for total
control of droplet microfluidics. Lab Chip 7(8):1029-1033

5. Bedram A, Moosavi A (2011) Droplet breakup in an asymmetric microfluidic T junction.
Eur Phys J E 34(8):78

6. Bedram A, Moosavi A, Hannani S K (2015) Analytical relations for long-droplet breakup
in asymmetric T junctions. Phys Rev E: Stat Nonlinear Soft Matter Phys 91(5):053012

7. Belloul M, Courbin L, Panizza P (2011) Droplet traffic regulated by collisions in mi-
crofluidic networks. Soft Matter 7(9): 9453-9458

8. Bentley B, Leal L (1986) An experimental investigation of drop deformation and breakup
in steady, two-dimensional linear flows. J Fluid Mech 167:241283



Title Suppressed Due to Excessive Length 13

9. Bruus H (2008) Theoretical microfluidics. Oxford University Press New-York
10. Cardinaels R, Moldanaers P (2011) Critical conditions and breakup of non-squashed
microconfined droplets: effects of fluid viscoelasticity. Microfluid Nanofluid 10(6):1153-
1163

11. Che Z Z, Nguyen N T, Wong T N (2011) Hydrodynamically mediated breakup of
droplets in microchannels. App Phys Lett 98(5): 054102

12. Chu L Y, Utada A S, Shah R K, Kim JW,Weitz D A (2007) Controllable monodispersed
multiple emulsions. Angew Chem Int Ed 46(47): 8970-8974

13. Chung C, Lee M, Chan K, Ahn K H, Lee S J (2010) Droplet dynamics passing though
obstructions in confined microchannel flow. Microfluid Nanofluid 9(6):1151-1163

14. Courbin L, Panizza P, Salmon J B (2004a) Observations of droplet size oscillations in
a two phase fluid under shear flow. Phys Rev Lett 92(1):018305

15. Courbin L, Engl W, Panizza P (2004b) Can a droplet break up under flow without
elongating? Fragmentation of smectic monodisperse droplets. Phys Rev E 69(6):061508

16. Cubaud T (2009) Deformation and breakup of high-viscosity droplets with symmetric
microfluidic cross flows. Phys Rev E: Stat Nonlinear Soft Matter Phys 80(2): 026307

17. Engl W, Backov R, Panizza P (2008) Controlled production of emulsions and particles
by milli- and microfluidic techniques. Curr Opin Colloid Interface Sci 13(4): 206216

18. de Menech M (2006) Modeling of droplet breakup in a microfluidic T-shaped junction
with a phase-field model. Phys Rev E: Stat Nonlinear Soft Matter Phys 73(3): 031505

19. Grace H P (1982) Dispersion phenomena in high viscosity immiscible fluid systems and
aplication of static mixer as dipsersion devices in such systems. Chem Eng Commun 14:
225-277

20. Guido S (2011) Shear-induced droplet deformation: effects of confined geometry and
viscoelasticity. Curr Opin Colloid Interface Sci 16(1):61-70

21. Gupta A, Sbragaglia M (2014) Deformation and breakup of viscoelastic droplets in
confined shear flow. Phys Rev E: Stat Nonlinear Soft Matter Phys 90(2): 023305

22. Huere A, Theodoly O, Leshansky A M, Valignat M P, Cantat I, Jullien M C (2015)
Droplets in microchannels:dynamical properties of the lubrication film. Phys Rev Lett
115(6): 064501

23. Janssen J M H, Meijer H E M (1993) Droplet breakup mechanisms. J Rheol 37(4):597608
24. Leal-Calderon F, Schmitt V, Bibette J (2007) Emulsion Science: Basic
Principles,Springer-Verlag 2nd version

25. Leshansky A M, Pismen L M (2009) Breakup of drops in a microfluidic T junction.
Phys Fluids 21(2):023303

26. Li Q X, Chai Z H, Shi B C, Liang H (2014) Deformation and breakup of a liquid droplet
past a solid circular cylinder: a lattice Boltzmann study. Phys Rev E 90(4):043015

27. Link D R, Anna S L, Weitz D A, Stone H A (2004) Geometrically Mediated Breakup
of Drops in Microfluidic Devices. Phys Rev Lett 92(5): 054503

28. Link D R, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez
M, Weitz D A (2006) Electric Control of Droplets in Microfluidic Devices. Angew Chem
Int Ed 45(16): 2556-2560

29. McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H, Schueller O J, Whitesides
G M (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis
21(1): 27-40

30. Ménétrier-Deremble L, Tabeling P (2006) Droplet breakup in microfluidic junctions of
arbitrary angles. Phys Rev E: Stat Nonlinear Soft Matter Phys. 74(3): 035303R

31. Mighri F, Carreau P J, Ajji A (1998) Influence of elastic properties on drop deformation
and breakup in shear flow. J Rheology 42(6):1477-1490

32. Prat L, Sarrazin F, Tasseli J, Marty A (2006) Increasing and decreasing droplets velocity
in microchannels. Microfluid Nanofluid 2(3): 271-274

33. Protire S, Bazant M Z, Weitz D A, Stone H A (2010) Droplet breakup in flow past an
obstacle: a capillary instability due to permeability variations. Europhys Lett 92(5):54002

34. Rayleigh L (1878) On The Instability Of Jets. Proc London Math Soc 10: 4
35. Salkin L, Courbin L, Panizza P (2012) Microfluidic breakups of confined droplets against
a linear obstacle: The importance of the viscosity contrast. Phys Rev E: Stat Nonlinear
Soft Matter Phys 86(3): 036317



14 Akio Nishimura et al.

36. Salkin L, Schmit A, Courbin L, Panizza P (2013) Passive breakups of isolated drops and
one-dimensional assemblies of drops in microfluidic geometries: experiments and models.
Lab Chip 13(15): 3022-3032

37. Samie M, Salari A, Shafii M B (2013) Breakup of microdroplets in asymmetric T junc-
tions. Phys Rev E Stat Nonlinear Soft Matter Phys 87(5): 053003

38. Schmit A, Salkin L, Courbin L, Panizza P (2015) Cooperative breakups induced by
drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles. Soft
Matter 11(4): 2454-2460

39. Seeman R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics.
Rep Prog Phys 75(1): 016601

40. Sessoms D A, Amon A, Courbin L, Panizza P (2010) Complex Dynamics of Droplet
Traffic in a Bifurcating Microfluidic Channel: Periodicity, Multistability, and Selection
Rules. Phys Rev Lett 105(15): 154501

41. Shah R K, Shum H C, Rowat A C, Lee D, Agresti J J, Utada A S, Chu L Y, Kim J W,
Fernandez-Nieves A, Martinez J, Weitz D A (2008) Designer emulsions using microfluidics.
Materials Today 11(4): 18-27

42. Stone H A, Leal L G (1989)Relaxation and breakup of an initially extended drop in an
otherwise quiescent fluid. J Fluid Mech 198:399427

43. Stone H A (1994) Dynamics of drop deformation and breakup in viscous fluids. Annu
Rev Fluid Mech 26:65102

44. Tan J, Xu JH, Li, SW, Luo GS (2008) Drop dispenser in a cross-junction microfluidic
device: Scaling and mechanism of break-up. Chem Eng J 136(2-3):306-311

45. Taylor G I (1932) The Viscosity of a Fluid Containing Small Drops of Another Fluid.
Proc R Soc London A 138: 41-48

46. Taylor G I (1934) The Formation of Emulsions in Definable Fields of Flow. Proc R Soc
London A 146: 501-523

47. Teh S Y, Lin R, Hung L H, Lee A P (2008) Droplet microfluidics. Lab Chip 8(2): 198-220
48. Torza S, Cox R G, Mason S G (1972) Particle motions in sheared suspensions XXVII.
Transient and steady deformation and burst of liquid drops. J Colloid Interface Sci 38:
395-411

49. Trivedi V, Doshi A, Kurup G K, Ereifej E, Vandevord P J, Basu A S (2010) A modular
approach for the generation, storage, mixing, and detection of droplet libraries for high
throughput screening. Lab Chip 10(18): 2433-2442

50. Vananroye A, Van Puyvelde P, Moldanaers P (2006) Effect of confinement on droplet
breakup in sheared emulsions. Langmuir 22(9):3972-3974

51. Vananroye A, Van Puyvelde P, Moldanaers P (2007) Effect of confinement on the steady-
state behavior of single droplets during shear flow. J Rheology 51(1):139-153

52. Wang J, Yu D (2015) Asymmetry of flow fields and asymmetric breakup of a droplet.
Microfluid Nanofluid 18(4):709715

53. Zheng M M, Ma Y L,Jin T M, Wang J T (2016) Effects of topological changes in
microchannel geometries on the asymmetric breakup of a droplet. Microfluid Nanofluid
20(7): 107


