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Christophe Leuridan
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Abstract

The notions of complementability and maximality were introduced in 1974 by

Ornstein and Weiss in the context of the automorphisms of a probability space, in

2008 by Brossard and Leuridan in the context of the Brownian �ltrations, and in

2017 by Leuridan in the context of the poly-adic �ltrations indexed by the non-

positive integers. We present here some striking analogies and also some di�erences

existing between these three contexts.

Mathematics Subject Classi�cation : 37A05, 60J05.
Keywords : Automorphisms of Lebesgue spaces, factors, entropy, �ltrations indexed by
the non-positive integers, poly-adic �ltrations, Brownian �ltrations, immersed
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1 Introduction

1.1 General context

In the present paper, we will work with three types of objects: automorphisms of
Lebesgue spaces, Brownian �ltrations and �ltrations indexed by Z or Z−; the reason
for choosing Z or Z− and to rule out Z+ is that for discrete-time �ltrations, the inter-
esting phenomena occur near time −∞.

Among the invertible measure-preserving maps, Bernoulli shifts form a remarkable
class. Similarly, the product-type �ltrations (namely, generated modulo the null sets by
sequences of independent random variables) are considered as a well-understood class.
The Brownian �ltrations (generated modulo the null sets by Brownian motions) form a
natural and widely studied class of continuous-time �ltrations, although less simple.

Measure-preserving maps considered here will be taken on di�use Lebesgue spaces.
Various equivalent de�nitions of Lebesgue spaces are available. A simple de�nition of a
Lebesgue space is a probability space which is isomorphic modulo the null sets to the
union of some sub-interval of [0, 1], endowed with the Lebesgue σ-�eld and the Lebesgue
measure, and a countable set of atoms. Most of the time, the Lebsegue space considered
is non-atomic, so the sub-interval is [0, 1] itself. The class of Lebesgue spaces includes the
completion of every Polish space. See [14] to �nd the main properties of Lebesgue spaces
or [10] to get equivalent de�nitions. Working on Lebesgue spaces provides non-trivial
measurability results, existence of generators... We recall in section 7 the de�nitions and
the main properties of partitions, generators, entropy used in the present paper.
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Similarly, the �ltrations considered here will be de�ned on a standard Borel proba-
bility space (Ω,F ,P), namely (Ω,F) is the Borel space associated to some Polish space,
to ensure the existence of regular conditional probabilities. Given two sub-σ-�elds A
and B, the inclusion A ⊂ B mod P means that for every A ∈ A, there exists B ∈ B
such that P(A4B) = 0. We say that A and B are equal modulo the null sets (or modulo
P) when A ⊂ B mod P and B ⊂ A mod P. We do not systematically complete the
σ-�elds to avoid troubles when working with conditional probabilities.

1.2 Reminders on �ltrations indexed by Z or Z−

We now recall some classical but less known de�nitions and facts on �ltrations. Given
a �ltration (Fn)n indexed by Z or Z−, one says that (Fn)n is product-type if (Fn)n can
be generated modulo P by some sequence (In)n of (independent) random variables.

One says that (Fn)n has independent increments if there exists a sequence (In)n of
random variables such that for every n in Z or Z−,

Fn = Fn−1 ∨ σ(In) mod P and In is independent of Fn−1.

Such a sequence (In)n is called a sequence of innovations and is necessarily a sequence
of independent random variables.

One says that (Fn)n is (an)n-adic when is admits some sequence (In)n of innovations
such that each In is uniformly distributed on some �nite set with size an. One says that
(Fn)n is poly-adic when (Fn)n is (an)n-adic for some sequence (an)n of positive integers,
called adicity.

One says that (Fn)n is Kolmogorovian if the tail σ-�eld F−∞ :=
⋂
nFn is trivial

(namely, contains only events with probability 0 or 1).

By the de�nition and by Kolmogorov's zero-one law, any �ltration indexed by Z or
Z− must have independent increments and must be Kolmogorovian to be product-type.
But Vershik showed in [28] that the converse is not true. A simple counter-example
is given by Vershik's decimation process (example 2 in [28]). Actually Vershik worked
with decreasing sequences of measurable partitions indexed by Z+ and this frame was
translated into �ltrations indexed by Z− by M. Émery and W. Schachermayer [12].

1.3 K-automorphisms

The Kolmogorov property for �ltrations indexed by Z or Z− has an analogue for dy-
namical systems, although the de�nition is less simple in this frame: one says that an
automorphism T of a probability space (Z,Z, π) is a K-automorphism (or that T has
completely positive entropy) if for every A ∈ Z, one has h(T, {A,Ac}) > 0 whenever
0 < π(A) < 1. This condition is nothing but the triviality of the σ-�eld

Π(T ) := {A ∈ Z : h(T, {A,Ac}) = 0},

called Pinsker's factor. Actually, the `events' of Pinsker's factor can be seen as the
`asymptotic events'. Indeed, if γ is a countable generator of (Z,Z, π, T ), then

Π(T ) =
⋂
n≥0

∨
k≥n

T−kγ =
⋂
n≥0

∨
k≥n

T kγ,
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where the upper bar indicates completion with regard to π. To make the analogy clearer,
set γ = {Aλ, λ ∈ Λ}. For each x ∈ Z, let f(x) ∈ Λ the only index λ such that x ∈ Aλ.
For every k ∈ Z, the σ-�eld generated by T−kγ is the σ-�eld associated to f ◦T k viewed
as a Λ-valued random variable on (Z,Z, π). Therefore, Π(T ) is the asymptotic σ-�eld
generated by the sequence (f ◦ T k)k≥0.

1.4 Content of the paper

We have just viewed the analogy between the `Kolmogorovianity' of a �ltration indexed
by Z− and the K-property of an automorphism of a Lebesgue space.

The next section is devoted to a parallel presentation of analogue notions and results
in the three following contexts: automorphisms of Lebesgue spaces, �ltrations indexed
by Z− and Brownian �ltrations. We investigate two notions - complementability and
maximality - involving factors or poly-adic immersed �ltrations or Brownian immersed
�ltrations according to the context. The results presented are essentially due to Ornstein
and Weiss [22], Ornstein [21], and Thouvenot [26] for automorphisms of Lebesgue spaces;
They come from [19] for �ltrations indexed by Z−. They are due to Brossard, Émery
and Leuridan [6, 4, 5] for Brownian �ltrations.

Section 3 provides proofs of results on maximality which are not easy yo �nd in the
literature. With some restrictions on the nature of the complement, complementability
implies maximality. Section 4 is devoted to the proof of this implication. The converse
was already known to be false for factors of automorphisms of Lebesgue spaces and
for poly-adic immersed �ltrations. In section 5, we provide a counter-example in the
context of Brownian �ltrations. The construction relies on a counter-example for poly-
adic immersed �ltrations which is inspired by non-published notes of Tsirelson [27].

In spite of the similitude of the notions regardless the context, some di�erences exist.
In section 6, we provide a non-complementable �ltration (associated to a stationary pro-
cess) yielding a complementable factor. This example is inspired by Vershik's decimation
process (example 2 in [28]).

In section 7, we recall the de�nitions and the main properties of partitions, generators,
entropy used in the present paper.

2 Parallel notions and results

2.1 Factors and Immersed �ltrations

Given an invertible measure preserving map T of a Lebesgue space (Z,Z, π), we call
factor of T , or more rigorously a factor of the dynamical system (Z,Z, π, T ), any sub-
σ-�eld B of Z such that T−1B = B = TB mod π. Actually, the factor is the dynamical
system (Z,B, π|B, T ), which will be abbreviated in (T,B) in the present paper. This
de�nition of a factor is equivalent to the usual one. 1

1Actually, Rokhlin's theory ensures that if B is a factor of a Lebesgue space (Z,Z, π, T ), then there

exists a map f from Z to some Polish space E such that B is generated up to the negligible events by

the map Φ : x 7→ (f(T k(x)))k∈Z from Z to the product space EZ. Let ν = Φ(π). Then the completion

(EZ,B(EZ), ν) is a Lebesgue space, the shift operator S : (yk)k∈Z 7→ (yk+1)k∈Z is an automorphism of

EZ, and S ◦ Φ = Φ ◦ T .
Conversely, if (Y,Y, ν, S) is a dynamical system and Φ a measurable map from Z to Y such that

Φ(π) = ν and S ◦ Φ = Φ ◦ T , then the σ-�eld Φ−1(Y) is a factor of (Z,Z, π, T ).
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Given two �ltrations (Ut)t∈T and (Zt)t∈T on some probability space (Ω,A,P), indexed
by a same subset T of R, one says that (Ut)t∈T is immersed in (Zt)t∈T if every martingale
in (Ut)t∈T is still a martingale in (Zt)t∈T . The notion of immersion is stronger than the
the inclusion. Actually, (Ut)t∈T is immersed in (Zt)t∈T if and only if the two conditions
below hold:

1. for every t ∈ T , Ut ⊂ Zt.

2. for every s < t in T , Ut and Zs are independent conditionally on Us.

The additional condition means that the largest �ltration does not give information in
advance on the the smallest one. We also make the useful following observation.

Lemma 1. Assume that (Ut)t∈T is immersed in (Zt)t∈T . Then (Ut)t∈T is completely
determined (up to null sets) by its �nal σ-�eld

U∞ :=
∨
t∈T
Ut.

More precisely, Ut = U∞ ∩ Zt mod P for every t ∈ T . In particular, if U∞ = Z∞
mod P, then Ut = Zt mod P for every t ∈ T . 2

When one works with Brownian �ltrations, namely with �ltrations generated by
Brownian motions, then the immersion has many equivalent translations. The next
statements are very classical (close statements are proved in [1]) and they rely on the
stochastic calculus and the predictable representation property of Brownian �ltrations.

Proposition 2. Let (Bt)t≥0 be a �nite-dimensional Brownian motion adapted to some
�ltration (Zt)t≥0, and (Bt)t≥0 its natural �ltration. The following statements are equiv-
alent.

1. (Bt)t≥0 is a martingale in (Zt)t≥0.

2. (Bt)t≥0 is immersed in (Zt)t≥0.

3. For every t ≥ 0, the process Bt+· −Bt is independent of Zt.

4. (Bt)t≥0 is a Markov process in (Zt)t≥0.

De�nition 3. When these statements hold, we say that (Bt)t≥0 is a Brownian motion
in the �ltration (Zt)t≥0.

Note the analogy between the following two results.

Theorem 4 (Ornstein [20]). Every factor of a Bernoulli shift is equivalent to a Bernoulli
shift.

Theorem 5 (Vershik [28]). If (Zn)n≤0 is a product-type �ltration such that the �-
nal sigma-�eld Z0 is essentially separable, then every poly-adic �ltration immersed in
(Zn)n≤0 is product-type.

2The inclusion Ut = U∞ ∩Zt is immediate. To prove the converse, take A ∈ U∞ ∩Zt. Since U∞ and

Zt are independent conditionally on Ut, we get P[A|Ut] = P[A|Zt] = 1A a.s., so A ∈ Ut mod P.
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One-dimensional Brownian �ltrations can be viewed as continuous time versions of
dyadic product-type �ltrations. In this analogy, the predictable representation property
of the continuous-time �ltration corresponds to the diadicity of the discrete-time �ltra-
tion. Yet, the situation is much more involved when one works with Brownian �ltrations,
and the following question remains open.

If a �ltration (Ft)t≥0 is immersed in some (possibly in�nite-dimensional Brownian)
�ltration and has the predictable representation property with regard to some one-
dimensional Brownian motion β (namely, each martingale in (Ft)t≥0 can be obtained
as a stochastic integral with regard to β), then is (Ft)t≥0 necessarily a Brownian �ltra-
tion?

A partial answer was given by Émery (it follows from corollary 1 in [11]).

Theorem 6 (Émery [11]). Let d ∈ N ∪ {+∞}. Assume that the �ltration (Ft)t≥0

is d-Brownian after 0, namely, there exists a d-dimensional Brownian motion (Bt)t≥0

in (Ft)t≥0 such that for every t ≥ ε > 0, Ft is generated by Fε and the increments
(Bs−Bε)ε≤s≤t. If (Ft)t≥0 is immersed in some (possibly in�nite-dimensional) Brownian
�ltration, then (Ft)t≥0 is a d-dimensional Brownian �ltration.

In the statement, the role of the stronger hypothesis that (Ft)t≥0 is Brownian after
0 is to guarantee that the di�culties arise only at time 0+, so the situation gets closer
to �ltrations indexed by Z or Z−, for which the di�culties arise only at time −∞.

2.2 Complementability

By complementability, we will mean the existence of some independent complement,
although we will have to specify the nature of the complement.

The following de�nition is abridged from [22].

De�nition 7. Let (Z,Z, π, T ) be a Lebesgue dynamical system and B be a factor of
T . One says that B is complementable if B possesses an independent complement in
(Z,Z, π, T ), namely a factor C of T which is independent of B (with regard to π) such
that B ∨ C = Z mod π.

If (Z,Z, π, T ) is the direct product of two dynamical systems (Z1,Z1, π1, T1) and
(Z2,Z2, π2, T2), then Z1 ⊗ {∅, Z2} and {∅, Z1} ⊗ Z2 are factors of (Z,Z, π, T ) and each
of them is a complement of the other one.

Example 8. Let us give a counterexample: Let T be the Bernoulli shift on Z = {−1, 1}Z
endowed with product σ-�eld Z and the uniform law. The map Φ : Z → Z de�ned
by Φ((xn)n∈Z) = (xn−1xn)n∈Z commutes with T , so Φ−1(Z) is a factor of T . One
checks that this factor is not complementable. Yet, if p0 : Z → {−1, 1} is the canonical
projection de�ned by p0((xn)n∈Z) = x0, the σ-�eld p

−1
0 (Z) is an independent complement

of Φ−1(Z), but this complement is not a factor.

We now de�ne the notion of complementability in the world of �ltrations.

De�nition 9. Consider two �ltrations (Ut)t∈T and (Zt)t∈T on some probability space
(Ω,A,P), indexed by a same subset T of R. One says that (Ut)t∈T is complementable
in (Zt)t∈T if there exists a �ltration (Vt)t∈T such that for every t ∈ T , Ut and Vt are
independent and Ut ∨ Vt = Zt mod P.
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Since independent enlargements of a �ltration always produce �ltrations in which
the initial �ltration is immersed, (Ut)t∈T needs to be immersed in (Zt)t≤T to possess an
independent complement.

We will use many times the next result, abridged from [19].

Proposition 10. Keep the notations of the last de�nition. Let U be a random vari-
able valued in some measurable space (E, E), such that σ(U) =

∨
t∈T Ut, and (Pu)u∈E

a regular version of the conditional probability P given U . Assume that (Ut)t∈T is com-
plementable in (Zt)t∈T by a �ltration (Vt)t∈T . Then for U(P)-almost every u ∈ E, the
�ltered probability space (Ω,A,Pu, (Zt)t≤T ) is isomorphic to the �ltered probability space
(Ω,A,P, (Vt)t≤T ).

Let us give applications of the last result, that will be used in the present paper.

Corollary 11. (Particular cases)

• If a �ltration (Un)n≤0 is complementable in (Zn)n≤0 by some product-type �ltration,
then (Zn)n≤0 is product-type under almost every Pu.

• If a �ltration (Ut)t≥0 is complementable in (Zt)t≥0 by some Brownian �ltration,
then (Zt)t≥0 is a Brownian �ltration under almost every Pu.

Determining whether a 1-dimensional Brownian �ltration immersed in a 2-dimen-
sional Brownian �ltration is complementable or not is often di�cult. Except trivial
cases, the only known cases are related to skew-product decomposition of the planar
Brownian motion, see [5].

2.3 Maximality

The de�nition of the maximality requires a tool to measure the quantity of information.
When one works with factors of an automorphism of a Lebesgue space, the quantity
of information is the entropy. When one works with poly-adic �ltrations, the quantity
of information is the sequence of positive integers giving the adicity. When one works
with Brownian �ltrations, the quantity of information is the dimension of any generating
Brownian motion. The classical statements below show hove these quantities vary when
one considers a factor, a poly-adic immersed �ltration, or a Brownian immersed �ltration.

Remark 12. (Quantity of information in subsystems)

1. If B is a factor of (Z,Z, π, T ), then h(T,B) ≤ h(T ).

2. If a (bn)n≤0-adic �ltration is immersed in an (rn)n≤0-adic �ltration, then bn divides
rn for every n.

3. If a m-dimensional Brownian �ltration is immersed in a n-dimensional Brownian
�ltration, then m ≤ n.

The �rst statement is very classical. The second one is proved in [19]. The last one
is classical and shows that the dimension of a Brownian �ltration makes sense; a proof
is given in the footnote. 3

3Let Z be a n-dimensional Brownian motion and B be a m-dimensional Brownian motion in FZ .
Then one can �nd an FZ-predictable process M taking values in the set of all p×n real matrices whose

lines form an orthonormal family, such that B =
∫ ·
0
MsdZs. In particular, the m lines of each matrix

Ms are independent and lie in a n-dimensional vector space, so m ≤ n.
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Let us give precise de�nitions, respectively abridged from [21], [19] and [6] or [4].

De�nition 13. Let (Z,Z, π, T ) be a Lebesgue dynamical system and B be a factor of T .
One says that B is maximal if (T,B) has a �nite entropy and if for any factor A, the
conditions A ⊃ B and h(T,A) = h(T,B) entail A = B modulo null sets.

De�nition 14. Let (Bn)n≤0 be a (bn)n≤0-adic �ltration immersed in some �ltration
(Zn)n≤0. One says that (Bn)n≤0 is maximal in (Zn)n≤0 if every (bn)n≤0-adic �ltration
immersed in (Zn)n≤0 and containing (Bn)n≤0 is equal to (Bn)n≤0 modulo null events.

De�nition 15. Let (Bt)t≥0 be a d-dimensional Brownian �ltration immersed in some
�ltration (Zt)t≥0. One says that (Bt)t≥0 is maximal in (Zt)t≥0 if every d-dimensional
Brownian �ltration immersed in (Zt)t≥0 and containing (Bt)t≤0 is equal to (Bt)t≥0 modulo
null events.

Let us come back to example 8 in which T be the Bernoulli shift on Z = {−1, 1}Z
endowed with product σ-�eld Z and the uniform law. Since the map Φ : Z → Z de�ned
by Φ((xn)n∈Z) = (xn−1xn)n∈Z commutes with T and preserves the uniform law on Z,
the factor (T,Φ−1(Z)) is a Bernoulli (1/2, 1/2) shift, like T itself. Hence (T,Φ−1(Z))
has the same (�nite) entropy as T , so the factor Φ−1(Z) is not maximal.

This example above can be abridged in the context of �ltrations indexed by the
relative integers : consider a sequence (ξn)n∈N of independent uniform random variables
taking values in {−1, 1}. Then the sequence (ηn)n∈N de�ned by ηn = ξn−1ξn has the
same law as (ξn)n∈N. One checks that the �ltration (Fηn)n∈N is immersed in (Fξn)n∈N,
that these �ltrations di�er although both of them have a trivial tail σ-�eld at −∞ and
(ηn)n∈N is an innovation sequence for (Fξn)n∈N as for (Fηn)n∈N. Actually, one bit of
information is lost when one transforms (ξn)n∈N into (ηn)n∈N: for each n0 ∈ Z, the
value ξn0 is independent of (ηn)n∈N, and the knowledge of ξn0 and (ηn)n∈N is su�cient
to recover (ξn)n∈N. The paradox is that this loss of information is asymptotic at time
−∞ but invisible when one looks at Fξ−∞ and Fη−∞.

The situation can be much more complex when one works with Brownian �ltrations.
For example, consider a linear Brownian motion W . Since W spends a null-time at 0,
the stochastic integral

W ′ =

∫ ·
0

sgn(Ws)dWs = |W | − L

(where L denotes the local time ofW at 0) is still a linear Brownian motion. The natural
�ltration FW ′ is immersed and strictly included in FW , therefore it is not maximal in
FW . Actually, W ′ generates the same �ltration as |W | up to null events, so the Lévy
transformation - which transforms the sample paths of W into the sample paths of W ′

- forgets the signs of all excursions of W , which are independent of |W |. Here, the loss
of information occurs at each beginning of excursion of W , and not at time 0+.

2.4 Necessary or su�cient conditions for maximality

Given a �nite-entropy factor, a poly-adic immersed �ltration or a Brownian immersed
�ltration, one wishes to enlarge it to get a maximal one having the same entropy, adicity
or dimension. This leads to the following constructions, abridged from [21, 19, 4]. In the
next three propositions, The bars above the σ-�elds indicate completions with regard to
π or P.
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De�nition 16. Let (Z,Z, π) be a probability space, T be an invertible measure-preserving
map on (Z,Z, π) and B be a factor with �nite entropy. The conditional Pinsker factor
associated to B is de�ned by

B′ := {A ∈ Z : h(T, {A,Ac}|B) = 0}.

where

h(T, {A,Ac}|B) = lim
n→+∞

1

n
H
( n−1∨
k=0

{T−kA, T−kAc}
∣∣∣B).

Proposition 17. The collection B′ thus de�ned is the largest factor containing B and
having the same entropy as B. In particular, B′ is maximal.

Proposition 18. Furthermore, assume (Z,Z, π, T ) is a Lebesgue dynamical space, that
T is aperiodic 4 and has �nite entropy. Then for every generator γ of T ,

B′ =
⋂
n≥0

(
B ∨

∨
k≥n

T−kγ
)
.

Proposition 19. Let (Bn)n≤0 be a (bn)n≤0-adic �ltration immersed in some �ltration
(Zn)n≤0. Then (Bn)n≤0 is immersed in the �ltration (B′n)n≤0 de�ned by

B′n :=
⋂
s≤0

(Bn ∨ Zs).

Moreover (B′n)n≤0 is the largest (bn)n≤0-adic �ltration containing (Bn)n≤0 and immersed
in (Zn)n≤0. In particular, (B′n)n≤0 is maximal in (Zn)n≤0.

Proposition 20. Let (Bt)t≥0 be a d-dimensional Brownian �ltration immersed in some
Brownian �ltration (Zt)t≥0. Then (Bt)t≥0 is immersed in the �ltration (B′t)t≥0 de�ned
by

B′t :=
⋂
s>0

(Bt ∨ Zs).

Moreover (B′t)t≥0 is a d-dimensional Brownian �ltration immersed in (Zt)t≥0.

Note the analogy between the formulas in propositions 18, 19, and 20. In these three
contexts, we must have B′ = B up to null sets for B to be maximal. Moreover, applying
the same procedure to B′ leads to B′′ = B′. Hence the condition B′ = B up to null
sets is also su�cient for B to be maximal in the �rst two cases (factors of �nite-entropy
aperiodic Lebesgue automorphisms and poly-adic �ltrations).

Once again, the situation is more complex when one works with Brownian �ltrations,
since the �ltration B′ may be non-maximal. Here is a counter-example (the proof will
be given in section 3).

Example 21. Let X be a linear Brownian motion in some �ltration Z. Set

B =

∫ ·
0

sgn(Xs)dXs,

and call X and B the natural �ltrations of X and B. If X is maximal in Z, then the
�ltration B′ de�ned by proposition 20 coincides with B up to null events. Therefore, the
�ltration B′ (included in X ) cannot be maximal in Z.

4Aperiodicity of T means that π{z ∈ Z : ∃n ≥ 1, Tn(z) = z} = 0. We make this assumption to

ensure the existence of generator.
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Actually, the maximality of Brownian �ltrations is not an asymptotic property at 0+,
unlike the almost sure equality B′ = B. To try to produce a maximal Brownian �ltration
containing a given Brownian �ltration, one should perform the in�nitesimal enlargement
above at every time, but we do not see how to do that.

Yet, proposition 27 in the next subsection shows that that equality B = B′ ensures
the maximality of B under the (strong) additional hypothesis that B is complementable
after 0.

The next su�cient condition for the maximality of a poly-adic immersed �ltration
comes from [19].

Proposition 22. Let (Bn)n≤0 be a (bn)n≤0-adic �ltration immersed in (Zn)n≤0. Let U
be a random variable valued in some measurable space (E, E), such that σ(U) = B0 and
(Pu)u∈E a regular version of the conditional probability P given U . If for U(P)-almost
every u ∈ E, the �ltered probability space (Ω,A,Pu, (Zn)n≤0) is Kolmogorovian, then the
�ltration (Bn)n≤0 is maximal in (Zn)n≤0.

The assumption that (Zn)n≤0 is Kolmogorovian under almost every conditional prob-
ability Pu echoes to the alternative terminology of conditional K-automorphisms used
by Thouvenot in [26].

2.5 Complementability and maximality

In the three contexts (factors of an automorphism of a Lebsgue space, poly-adic �ltrations
immersed in a �ltration indexed by Z−, Brownian �ltrations immersed in a Brownian
�ltration), we get very similar results.

The �rst one is stated by Ornstein in [21] as a direct consequence of a lemma stated
in [22].

Proposition 23. Let B be a factor of T with �nite entropy. If B is complementable by
some K-automorphism, then B is maximal.

The second one comes from [19].

Proposition 24. Let (Bn)n≤0 be a (bn)n≤0-adic �ltration immersed in (Zn)n≤0. If
(Bn)n≤0 can be complemented by some Kolmogorovian �ltration, then (Bn)n≤0 is maximal
in (Zn)n≤0.

A particular case of the third one (in which the dimension of the Brownian �ltrations
are 1 and 2) can be found in [6] or [4].

Proposition 25. Let (Bt)t≥0 be a Brownian �ltration immersed in a Brownian �ltra-
tion (Zt)t≥0 with larger dimension. If (Bt)t≥0 can be complemented by some Brownian
�ltration, then (Bt)t≥0 is maximal in (Zt)t≥0.

The proofs of these three statements are rather simple, and present some similarities,
although they are di�erent. In the next section, we provide two di�erent proofs of
proposition 23. The �rst one relies on Ornstein and Weiss' lemma (lemma 2 in [22]).
The second one is a bit simpler but requires that T has �nite entropy, and relies on Berg's
lemma (lemma 2.3 in [3]). We also provide a proof of proposition 25. Proposition 24
follows from proposition 22 and corollary 11.
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The converses of the three implications above are false, but providing counter-exam-
ples is di�cult. Ornstein gived in [21] an example of maximal but non-complementable
factor in [21], but the proof is di�cult to read. Two counter-examples of a maximal but
non-complementable poly-adic �ltration are given in [19]. In the present paper, we use
a third example to construct a maximal but non-complementable Brownian �ltration.

In the present paper, we will also use a small re�nement of proposition 25, using the
notion of complementability after 0.

De�nition 26. Let (Bt)t≥0 be a Brownian �ltration immersed in a Brownian �ltration
(Zt)t≥0 with larger dimension. One says that (Bt)t≥0 is complementable after 0 in (Zt)t≥0

if there exists some Brownian �ltration C immersed in Z and independent of B such that,

∀t ≥ 0,Zt =
⋂
s>0

(Bt ∨ Ct ∨ Zs) mod π.

Proposition 27. Let (Bt)t≥0 be a d-dimensional Brownian �ltration immersed in a
Brownian �ltration (Zt)t≥0 with larger dimension. If (Bt)t≤0 is complementable after
0, then the �ltration provided by proposition 20 is the largest d-dimensional Brownian
�ltration immersed in (Zt)t≤0 and containing (Bt)t≤0. In particular, (B′t)t≤0 is maximal
in (Zt)t≤0.

3 Conditions for maximality: proofs

In this section, we provide proofs of the stement given in subsection 2.4, excepted propo-
sition 19 which is proved in [19].

3.1 Proof of proposition 17

By de�nition, B′ is closed under taking complements.

For every A and B in Z, the partition {A ∪ B, (A ∪ B)c} is less �ne that {A,Ac} ∨
{B,Bc}, hence the sub-additivity of entropy yields

h(T, {A ∪B, (A ∪B)c}|B) ≤ h(T, {A,Ac} ∨ {B,Bc}|B)

≤ h(T, {A,Ac}|B) + h(T, {B,Bc}|B).

One deduce that B′ is closed under �nite union.

But h(T, {A,Ac}|B) depends continuously on A when Z is endowed with the pseudo-
metric de�ned by δ(A,B) = π(A4B), so B′ is a closed subset. Hence, B′ is a complete
σ-�eld.

The equalities h(T, {A,Ac}|B) = h(T, {T−1A, T−1Ac}|B) = h(T, {TA, TAc}|B) for
every A ∈ Z show that B′ is a factor.

Moreover, B ⊂ B′ since for every B ∈ B, h(T, {B,Bc}|B) ≤ H({B,Bc}|B) = 0.

The sub-additivity of entropy shows that h(T, α|B) = 0 for every �nite partition
α ⊂ B′. Hence h(T,B′)− h(T,B) = h((T,B′)|B) = 0.

Last, let A be a factor containing B and having the same entropy as B. Then for
every A ∈ A,

h(T, {A,Ac}|B) ≤ h((T,A)|B) = h(T,A)− h(T,B) = 0,

so A ⊂ B′. The proof is complete.
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3.2 Proof of proposition 18

The proofs given here are inspired by the proofs of the similar results involving (non-
conditional) Pinsker factor given in [9].

For every countable measurable partition α of (Z,Z, π), we introduce the notations

αn−1
0 :=

n−1∨
k=0

T kα, α− =
∨
k≥1

T−kα, Bα :=
⋂
n≥0

(
B ∨

∨
k≥n

T−kα
)
.

We warn the reader that the inclusion

Bα ⊃ B ∨
⋂
n≥0

( ∨
k≥n

T−kα
)

can be strict. We note that the larger is n, the smaller is the partition

T−nα− =
∨

k≥n+1

T−kα,

so Bα is also the intersection of the non-increasing sequence (B ∨ T−nα−)n≥0.

We begin with the following lemma.

Lemma 28. Let α and γ be countable measurable partitions of (Z,Z, π), with �nite
entropy. Then H(α|α− ∨ Bγ) = H(α|α− ∨ B).

Proof. The addition formula for conditional entropy yields for every n ≥ 1,

H(αn−1
0 |α− ∨ B) =

n−1∑
k=0

H(T kα|T kα− ∨ B) = nH(α|α− ∨ B).

Replacing α with α ∨ γ gives

H(αn−1
0 ∨ γn−1

0 |α− ∨ B ∨ γ−) = nH(α ∨ γ|α− ∨ B ∨ γ−).

But we know that

lim
n
n−1H(αn−1

0 ∨ γn−1
0 |B) = h((T, α ∨ γ)|B) = H(α ∨ γ|α− ∨ B ∨ γ−).

Therefore, the inequalities

H(αn−1
0 ∨ γn−1

0 |α− ∨ B ∨ γ−) ≤ H(αn−1
0 ∨ γn−1

0 |α− ∨ B) ≤ H(αn−1
0 ∨ γn−1

0 |B)

yield

lim
n
n−1H(αn−1

0 ∨ γn−1
0 |α− ∨ B ∨ γ−) = lim

n
n−1H(αn−1

0 ∨ γn−1
0 |α− ∨ B).

But

H(αn−1
0 ∨ γn−1

0 |α− ∨B∨ γ−) = H(αn−1
0 |α− ∨B∨ γ−) +H(αn−1

0 ∨ γn−1
0 |Tnα− ∨B∨ γ−),

H(αn−1
0 ∨ γn−1

0 |α− ∨ B) = H(αn−1
0 |α− ∨ B) +H(αn−1

0 ∨ γn−1
0 |Tnα− ∨ B).
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Since H(β|A∨B) ≤ H(β|A) for every countable measurable partition β and every σ-�eld
A ⊂ Z, and since H(αn−1

0 |α− ∨ B) = nH(α|α− ∨ B) we derive that

lim
n
n−1H(αn−1

0 |α− ∨ B ∨ γ−) = H(α|α− ∨ B).

Furthermore, we note that

α− ∨ Bγ ⊂
⋂
n≥0

(
α− ∨ B ∨ T−nγ−

)
,

so, by Cesàro's lemma and addition formula for conditional entropy,

H(α|α− ∨ Bγ) ≥ lim
n
H(α|α− ∨ B ∨ T−nγ−)

= lim
n
H(Tnα|Tnα− ∨ B ∨ γ−)

= lim
n
n−1

n−1∑
k=0

H(T kα|T kα− ∨ B ∨ γ−)

= lim
n
n−1H(αn−1

0 |α− ∨ B ∨ γ−)

= H(α|α− ∨ B).

But the inclusion α− ∨B ⊂ α− ∨Bγ , yields H(α|α− ∨B) ≥ H(α|α− ∨Bγ). The equality
follows.

Lemma 28 yields one inclusion in the equality of proposition 18, thanks to the next
corollary.

Corollary 29. For every countable measurable partition γ of (Z,Z, π), with �nite en-
tropy, Bγ ⊂ B′.

Proof. Since B′ is complete, one only needs to check that Bγ ⊂ B′. Let A ∈ Bγ and
α = {A,Ac}. Lemma 28 yields h((T, α)|B) = H(α|α− ∨ B) = H(α|α− ∨ Bγ) = 0, so
A ∈ B′. The inclusion follows.

Lemma 28 will also help us to prove the next useful lemma.

Lemma 30. Let α and γ be countable measurable partitions of (Z,Z, π), with �nite
entropy. Let N ≥ 0 and η be a �nite partition less �ne that γN−N =

∨N
k=−N T

kγ. Then

H(η|(Bα)γ) = H(η|Bγ ∨ Bα) = H(η|Bγ).

Proof. For every n ≥ 0, (γn−n)− = Tnγ−, so H(γn−n|Tnγ− ∨Bα) = H(γn−n|Tnγ− ∨B) by
lemma 28. When n ≥ N , γn−n = η ∨ γn−n, so

H(γn−n|Tnγ− ∨ Bα) = H(η|Tnγ− ∨ Bα) +H(γn−n|Tnγ− ∨ Bα ∨ η),

H(γn−n|Tnγ− ∨ B) = H(η|Tnγ− ∨ B) +H(γn−n|Tnγ− ∨ B ∨ η).

Since H(β|A ∨ Bα) ≤ H(β|A ∨ B) for every countable measurable partition β and every
σ-�eld A ⊂ Z, we get H(η|Tnγ−∨Bα) = H(η|Tnγ−∨B). Letting n go to in�nity yields
H(η|(Bα)γ) = H(η|Bγ). Since Bγ ⊂ Bγ ∨ Bα ⊂ (Bα)γ , the result follows.

Corollary 31. Assume that T has �nite entropy and admits a generator γ. Then for
every countable measurable partition α , Bα ⊂ Bγ = (Bγ)γ mod π.
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Proof. The collection of all A ∈ Z such that

H({A,Ac}|Bγ) = H({A,Ac}|Bγ ∨ Bα) = H({A,Ac}|(Bγ)γ)

is a closed subset for the pseudo-metric de�ned by δ(A,B) = π(A4B), and contains the
algebra

⋃
N∈N σ(γN−N ) by lemma 30 applied once to (α, γ) and once to (γ, γ). Therefore,

these collection equals the whole σ-�eld Z itself. In particular, H({A,Ac}|Bγ) = 0
whenever A ∈ Bγ ∨ Bα or A ∈ (Bγ)γ . Hence Bγ ∨ Bα and (Bγ)γ are contained in Bγ
modulo the null sets. The result follows.

We can now achieve the proof of proposition 18. Assume that T has �nite entropy
and that γ is a generator of T . We have to prove that B′ ⊂ Bγ .

Let A ∈ B′ and α = {A,Ac}. For every n ≥ 0, set

Dn := σ
( ∨
k≥n

T−kα
)
.

Since, D1 = α−, the equality H(α|α−∨B) = h(T, α|B) = 0 yields α ⊂ D1∨B mod π, so
D0 = D1 ∨ B mod π. By applying T−n, we get more generally Dn = Dn+1 ∨ B mod π.
By induction, D0 = Dn ∨ B mod π for every n ≥ 0. Hence D0 = Bα ⊂ Bγ mod π,
thanks to the last corollary, so A ∈ Bγ . We are done.

3.3 Proof of proposition 20

Fix a d-dimensional Brownian motion B generating the �ltration B modulo the null sets.

Let t > ε > 0. Since B is immersed in Z, the Brownian motion B(ε) := Bε+· −Bε is
independent of Zε, which is the terminal σ-�eld of the �ltration (Bε∨Zs)s∈[0,ε]. Therefore

B′t =
⋂

s∈]0,ε]

(
σ((B(ε)

r )r∈[0,t−ε]) ∨ Bε ∨ Zs
)

= σ((B(ε)
r )r∈[0,t−ε]) ∨

⋂
s∈]0,ε]

(
Bε ∨ Zs

)
= σ((B(ε)

r )r∈[0,t−ε]) ∨ B′ε mod P.

Hence, the �ltration B′ has independent increments after ε, provided by the increments
of B after ε, so B′ is Brownian after 0.

Moreover, since B(ε) is independent of Zε, the equality modulo P above shows that
for every t > ε > 0, B′t and Zε are independent conditionally on B′ε. This conditional
independence still holds when ε = 0, since Z0 is trivial. Thus B′ is immersed in Z.
Hence, proposition 6 (or corollary 1 in [11]) applies, so B′ is a d-dimensional Brownian
�ltration.

For every t > 0, Bt ⊂ B′t ⊂ Bt ∨ Zt = Zt mod π. These inclusions modulo P still
hold when t = 0 since B0 and Z0+ =

⋂
s>0Zs are trivial. Since B is immersed in Z, we

deduce that B is immersed in B′.
Last, let t ≥ 0. For every n ≥ 1,

B′′t ⊂ B′t ∨ Z1/n ⊂ (Bt ∨ Z1/n) ∨ Z1/n = Bt ∨ Z1/n.

If A ∈ B′′t , then for each n ≥ 1, one can �nd Bn ∈ Bt ∨ Z1/n such that P(A4Bn) = 0;
hence A ∈ B′t since B := lim supnBn belongs to

⋂
n≥1(Bt∨Z1/n) and P(A4B) = 0. The

equality B′′t = B′t follows.
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3.4 Proof of the statements of example 21

Assume that X is maximal in Z. Since B is immersed B′, we have only to check the
inclusion B′∞ ⊂ B∞ mod P. The maximality of X in Z yields

B′∞ ⊂
⋂
s>0

(X∞ ∨ Zs) = X∞ mod P,

so one only needs to check that E[h(X)|B′∞] = E[h(X)|B∞] almost surely for every real
bounded measurable functional h de�ned on the space C(R+) of all continous functions
from R+ to R. Since the topology of uniform convergence on compact subsets on the
space C(R+) is metrizable, it is su�cient to check the equality when h is continuous. In
this case, the random variable h(X) is the limit in L1(P) of the sequence (h(X(n)))n≥1,

where Tn denotes the �rst zero of X after time 1/n, and X(n)
t = XTn+t for every t ≥ 0.

Since B generates the same �ltration as |X| up to null sets, B∞ ∨ZTn = σ(|X(n)|)∨ZTn
mod P. But X(n) is independent of ZTn since X is immersed in Z, so

E[h(X(n))|B∞ ∨ ZTn ] = E[h(X(n))|σ(|X(n)|) ∨ ZTn ] = E[h(X(n))|σ(|X(n)|)] a.s..

But σ(|X(n)|) ⊂ B∞ ⊂ B′∞ ⊂ B∞ ∨ Z1/n ⊂ B∞ ∨ ZTn , so

E[h(X(n))|B′∞] = E[h(X(n))|B∞].

The statements follow.

4 Complementability implies maximality: proofs

4.1 Key lemma for factors of a Lebesgue automorphism

Proposition 23 follows from the next lemma, which can derived from lemma in [22] or
from lemma 2.3 in [3].

Lemma 32. Let A,B, C be three factors of T . Assume that:

1. A ⊃ B;

2. h(T,A) = h(T,B) < +∞;

3. (T, C) has the property K.

4. B and C are independent.

Then A and C are independent.

First, we show how to deduce proposition 23 from lemma 32.

Proof. (Proof of proposition 23) Let C be an independent complement of B having the
property K. Let A be a factor of T such that A ⊃ B and h(T,A) = h(T,B). Then
lemma 32 yields that A and C are independent. But Z = B ∨ C ⊂ A ∨ C ⊂ Z, so
A ∨ C = B ∨ C. Hence A = B by the next lemma.

We have just used the follwing general statement, which will also help us in the
context of Brownian �ltrations.
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Lemma 33. Let A,B, C be three sub-σ-�elds of any probability space (Z,Z, π) such that

• A ⊃ B;

• A and C are independent;

• A ∨ C = B ∨ C.

Then A = B mod π.

Proof. Let A ∈ A. Then σ(A) ∨ B ⊂ A, so σ(A) ∨ B is independent of C, and

π[A|B] = π[A|B ∨ C] = π[A|A ∨ C] = 1A π−almost surely.

Hence A ∈ B mod π.

We now give two di�erent proofs of lemma 32. The second one is a bit simpler, but
it requires that (T, C) has a also �nite entropy.

4.2 Proof of lemma 32

The proof below is a reformulation of the proof given in [22].

Assume that the assumptions hold. Let α, β, γ be countable partitions generating
(T,A), (T,B), (T, C), respectively. Given n ≥ 1, set

Cn =
∨
q∈Z

T−qnγ and Dn =
∨
k≥n

T−kγ.

Then Cn is a factor of Tn and α∨· · ·∨T−n+1α∨γ is a generator of (Tn,A∨Cn) whereas
β ∨ · · · ∨ T−n+1β ∨ γ is a generator of (Tn,B ∨ Cn).

Therefore, on the one hand,

h(Tn,A ∨ Cn) = H
(
α ∨ · · · ∨ T−n+1α ∨ γ

∣∣∣ ∨
q≥1

T−qn(α ∨ · · · ∨ T−n+1α ∨ γ)
)

= H
(
α ∨ · · · ∨ T−n+1α ∨ γ

∣∣∣ ∨
k≥n

T−kα ∨
∨
q≥1

T−qnγ
)

= H
(
α ∨ · · · ∨ T−n+1α

∣∣∣ ∨
k≥n

T−kα ∨
∨
q≥1

T−qnγ
)

+ H
(
γ
∣∣∣ ∨
k≥0

T−kα ∨
∨
q≥1

T−qnγ
)

≤ H
(
α ∨ · · · ∨ T−n+1α

∣∣∣ ∨
k≥n

T−kα
)

+H(γ|α)

= h(Tn,A) +H(γ|α) = nh(T,A) +H(γ|α).
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On the other hand, by independence of B and C,

h(Tn,B ∨ Cn) = H
(
β ∨ · · · ∨ T−n+1β

∣∣∣ ∨
k≥n

T−kβ ∨
∨
q≥1

T−qnγ
)

+ H
(
γ
∣∣∣ ∨
k≥0

T−kβ ∨
∨
q≥1

T−qnγ
)

= H
(
β ∨ · · · ∨ T−n+1β

∣∣∣ ∨
k≥n

T−kβ
)

+H
(
γ|
∨
q≥1

T−qnγ
)

≥ h(Tn,B) +H(γ|Dn) = nh(T,B) +H(γ|Dn).

But h(Tn,B ∨ Cn) ≤ h(Tn,A ∨ Cn) since B ⊂ A. Putting things together and using the
assumption h(T,A) = h(T,B) < +∞ yields H(γ|Dn) ≤ H(γ|α).

But (Dn)n≥1 is a decreasing sequence of σ-�elds with trivial intersection since (T, C)
has the property K, so H(γ|Dn)→ H(γ) as n→ +∞. Hence, H(γ) ≤ H(γ|α), so α and
γ are independent. The same conclusion holds if one replaces the generators α and γ by
the supremum of T−kα and T−kγ over all k ∈ [[−n, n]]. Letting n go to in�nity yields
the independence of A and C.

4.3 Alternative proof of lemma 32

Here, we make the additional hypothesis that (T, C) has a �nite entropy. The inclusion
A ⊃ B and the independence of B and C yield

h(T,A) + h(T, C) ≥ h(T,A ∨ C) ≥ h(T,B ∨ C) ≤ h(T,B) + h(T, C).

But h(T,A) = h(T,B), hence h(T,A ∨ C) = h(T,A) + h(T, C). Since (T, C) is a K-
automorphism with �nite entropy, Berg's lemma below shows that A and C independent.

Lemma 34. (lemma 2.3 in [3]) Let A and C be two factors of the dynamical system
(Z,Z, π, T ), such that h(T,A ∨ C) = h(T,A) + h(T, C) < +∞ and (T, C) is a K-
automorphism. Then A and C independent.

Proof. Let α and γ be countable generating partitions of (T,A) and (T, C), respectively.
Set

α− =
∨
k≥1

T−kα and γ− =
∨
k≥1

T−kγ

Then h(T,A) = H(α|α−), h(T, C) = H(γ|γ−) and h(T,A∨C) = H(α∨γ|α−∨γ−). But
Pinsker's formula (proposition 70 in section 7 or theorem 6.3 in [23]) gives

H(α ∨ γ|α− ∨ γ−) = H(α|α−) +H(γ|A ∨ γ−).

So the assumption h(T,A∨C) = h(T,A)+h(T, C) < +∞ yields H(γ|γ−) = H(γ|A∨γ−).

For any partition δ ⊂ A with �nite entropy, we derive H(γ|δ ∨ γ−) = H(γ|γ−), so

H(δ ∨ γ|γ−) = H(δ|γ−) +H(γ|δ ∨ γ−) = H(δ|γ−) +H(γ|γ−).

But we have also
H(δ ∨ γ|γ−) = H(γ|γ−) +H(δ|γ ∨ γ−).

Hence H(δ|γ−) = H(δ|γ ∨ γ−)
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Let m ≥ 0 and n be integers. Applying the last equality to δ :=
∨
|k|≤m T

n−kα yields

H
( ∨
|k|≤m

Tn−kα
∣∣∣ ∨
k≥1

T−kγ
)

= H
( ∨
|k|≤m

Tn−kα
∣∣∣ ∨
k≥0

T−kγ
)
.

Since T preserves π, thais is equivalent to

H
( ∨
|k|≤m

T−kα
∣∣∣ ∨
k≥n+1

T−kγ
)

= H
( ∨
|k|≤m

T−kα
∣∣∣ ∨
k≥n

T−kγ
)
.

As a result, the entropy above does not depend on n. Letting n go to −∞ and to +∞,
and using the fact that (T, C) is a K-automorphism, we get at the limit

H
( ∨
|k|≤m

T−kα
∣∣∣C) = H

( ∨
|k|≤m

T−kα
)
,

so the partition
∨
|k|≤m T

−kα is independent of C. Letting m go to +∞ yields the
independence of A and C.

4.4 Proof in the context of Brownian �ltrations

The proof of proposition 25 below may look suspiciously simple, but actually, it relies
on non-trivial theorems of stochastic integration, namely the predictable representation
property and the bracket characterization of multi-dimensional Brownian motions among
local martingales. The immersion of a �ltration into another one is a strong property,
as shown for example by the characterizations for a Brownian �ltration recalled in the
introduction (proposition 2). The key step is very similar to lemma 32.

Lemma 35. Let A,B,C be three Brownian motions in some �ltration Z. Assume that:

1. σ(A) ⊃ σ(B);

2. A and B have the same �nite dimension;

3. B and C are independent.

Then A and C are independent.

Proof. Call p the dimension of A and B and q the (possibly in�nite) dimension of C.

Since B is a Brownian motion in Z and its own �ltration, it is also a Brownian motion
in the intermediate �ltration FA. Hence, one can �nd an FA-predictable process H with
values in Op(R) such that

B =

∫ ·
0
HsdAs.

Since H∗sHs = Ip for every s ≥ 0, we have also

A =

∫ ·
0
H∗sdBs.

Looking at the components, we get for every i ∈ [[1, p]],

A(i) =

p∑
j=1

∫ ·
0
Hs(j, i)dB

(j)
s .
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For every i ∈ [[1, p]] and k ∈ [[1, q]], we get

〈A(i), C(k)〉 =

p∑
j=1

∫ ·
0
Hs(j, i)d〈B(j), C(k)〉s = 0,

since 〈B(j), C(k)〉 = 0 by independence of B et C. We derive that (A,C) is a p + q-
dimensional Brownian motion in Z, so A and C are independent.

Deducing proposition 25 from the last lemma involves almost the same arguments as
deducing proposition 23 from lemma 32.

Proof. Proof of proposition 25. Let Z be a �nite Brownian �ltration, and A,B, C be
three Brownian �ltrations in Z such that At ⊃ Bt for every t ≥ 0, A and B have the
same dimension, and C is an independent complement of B in Z.

Let A,B,C be Brownian motions generating A,B, C modulo the null events. Then
lemma 35 applies, so A is independent of C. Then lemma 33 applies, so σ(A) = σ(B)
mod P.

But FB is immersed in FA. Since the �nal σ-�elds FA∞ = σ(A) and FB∞ = σ(B)
coincide almost surely, we get FAt = FBt mod P for every t ≥ 0 by lemma 1.

We now prove proposition 27.

Proof. Let C be a complement of B after 0, and A be a d-dimensional Brownian �ltration
immersed in Z and containing B. Let A, B, C be Brownian motions in Z generating A,
B, C respectively modulo the null events.

Since A and B′ are immersed in Z, it is su�cient to prove the inclusion A∞ ⊂ B′∞.
Hence, given s > 0, we have to check that A∞ ⊂ B∞ ∨ Zs mod P.

By lemma 35, we know that A and C are independent Brownian motions in FZ .
Thus Zs, As+· −As and Cs+· − Cs are independent.

Let
Ã := A∞ ∨ Zs = σ(As+· −As) ∨ Zs mod P,

B̃ := B∞ ∨ Zs = σ(Bs+· −Bs) ∨ Zs mod P,

C̃ := σ(Cs+· − Cs).

Then Ã ⊃ B̃, B̃ and C̃ are independent, and Ã ∨ C̃ = B̃ ∨ C̃ mod P, since

Z∞ ⊃ Ã ∨ C̃ ⊃ B̃ ∨ C̃ = B∞ ∨ C∞ ∨ Zs = Z∞ mod P.

Hence lemma 33 applies, so A∞ ⊂ Ã = B̃ = B∞ ∨ Zs mod P.

5 A maximal but not-complementable Brownian �ltration

5.1 A maximal but not-complementable �ltration in a dyadic product-

type �ltration

This subsection is devoted to the proof of the following lemma, which is the �rst step of
the construction of a maximal but not-complementable Brownian �ltration.
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Lemma 36. One can construct :

• a dyadic product-type �ltration (Zn)n≤0,

• a poly-adic �ltration (Un)n≤0 immersed in (Zn)n≤0,

• a random variable U with values in some Polish space (E, E) and generating U0,

such that for U(P)-almost every u ∈ E, (Zn) is Kolmogorovian but not product-type under
Pu = P[·|U = u]. Therefore, the �ltration (Un)n≤0 is maximal but non complementable
in (Zn).

Proof. We begin with a variant of an example given in [8], which was itself inspired from
an unpublished note of Tsirelson [27].

For every n ≤ 0, callKn the �nite �eld with qn = 22|n| elements. Start with a sequence
of independent random variables (Zn)n≤0 such that for every n ≤ 0, Z2n = (Xn, Yn) is
uniform on K4

n ×K4
n and Z2n−1 = Bn is uniform on K4

n. By construction, the �ltration
(FZn )n≤0 is product-type and (rn)n≤0-adic, with r2n−1 = q4

n and r2n = q8
n for every n ≤ 0.

Since |Kn−1| = 22|n|+1
= |Kn|2, one can �x a bijection between K4

n−1 × K4
n−1 and

the setM4(Kn) of all 4 × 4 matrices with entries in Kn. Call An the uniform random
variable onM4(Kn) corresponding to Z2n−2 through this bijection, and set U2n−1 = 0
and U2n = Yn −AnXn −Bn.

For every n ≤ 0, (Xn, Yn) is independent of FZ2n−1 and uniform on K4
n ×K4

n. Since
the random map (x, y) 7→ (x, y−Anx−Bn) from K4

n×K4
n to itself is FZ2n−1-measurable

and bijective, (Xn, U2n) is also independent of FZ2n−1 and uniform on K4
n × K4

n and is
still an innovation at time 2n of the �ltration FZ . Therefore, the �ltration (FUn )n≤0 is
immersed in (FZn )n≤0, product-type and (rn/q

4
n)n≤0-adic.

As the integers (rn)n≤0 and (rn/q
4
n)n≤0 are powers of 2, one can interpolate the

�ltrations (FZn )n≤0 and (FUn )n≤0 to get two �ltrations Z = (Zn)n≤0 and U = (Un)n≤0

such that

• Z is a dyadic product-type �ltration,

• U is poly-adic and immersed in Z,

• (FZn )n≤0 = (Ztn)n≤0 and (FUn )n≤0 = (Utn)n≤0 for some sequence 0 = t0 > t−1 >
t−2 > . . . of integers.

To get such �ltrations, it su�ces to split the random variables (Bn)n≤0, (Xn)n≤0 and
(U2n)n≤0 into independent random bits. The bits coming from the Bn and the Xn

provide innovations of the �ltration Z at the times when the �ltration Z only increases.
The bits coming from the U2n provide innovations of the two �ltrations Z and U at the
times when both of them increase.

The random variable U = (Un)n≤0 generates U0 = FU0 . Let us check that for U(P)-
almost every u ∈ E, (Zn) is Kolmogorovian but not product-type under Pu = P[·|U = u].
By corollary 11 and proposition 22 of the present paper (propositions 3,4 and corollary
9 of [19]), the last two statements will follow.

First, we note that for every n ≤ 0, FZ2n = FU2n ∨ F
B,X
n , where FU2n and FB,Xn are

independent. Therefore, for U(P)-almost every u ∈ E, the �ltration (FZ2n)n≤0 seen under
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Pu is isomorphic to the �ltration (FB,Xn )n≤0 seen under P, which is product-type. Thus,
Z−∞ = FZ−∞ is trivial under Pu.

To show that (Zn) is not product-type under Pu, it su�ces to show that the extracted
�ltration (FZn )n≤0 is not product-type under Pu. To do this, we check that the random
variable Z0 does not satisfy the I-cosiness criterion.

Let Z ′ = (X ′, Y ′) and Z ′′ = (X ′′, Y ′′) be two copies of the process Z under Pu,
de�ned on some probability space (Ω̄, Ā, P̄u), such that both natural �ltrations FZ′ and
FZ′′ are immersed in some �ltration G.

For every n ≤ 0, de�ne the copies A′n, A
′′
n and B′n, B

′′
n of the random variables An

and Bn by the obvious way, and set Sn = {x ∈ K4
n : A′nx+B′n = A′′nx+B′′n}.

For U(P)-almost every u ∈ E, and for every n ≤ 0, the equalities Y ′n = A′nX
′
n+B′n+

u2n and Y ′′n = A′′nX
′′
n +B′′n + u2n hold P̄u-almost surely. Therefore,

1[Z′2n=Z′′2n] = 1[X′n=X′′n∈Sn] ≤ 1[X′n∈Sn] P̄u-almost surely.

But the random variable Sn is G2n−1-measurable whereas X ′n is uniform on K4
n condi-

tionally on G2n−1 since FZ′ is immersed in G. Thus

P̄u[Z ′2n = Z ′′2n|G2n−1] ≤ |Sn|
q4
n

≤ 1[A′n=A′′n] +
1

qn
1[A′n 6=A′′n] P̄u-almost surely,

since Sn contains at most q3
n points when A′n 6= A′′n. Passing to the complements and

taking the expectations yields

P̄u[Z ′2n 6= Z ′′2n] ≥
(

1− 1

qn

)
P̄u[A′n 6= A′′n] =

(
1− 1

qn

)
P̄u[Z ′2n−2 6= Z ′′2n−2].

By induction, one gets that for every n ≤ 0

P̄u[Z ′0 6= Z ′′0 ] ≥
0∏

k=n+1

(
1− 1

qk

)
× P̄u[Z ′2n 6= Z ′′2n].

If, for some N > −∞, the σ-�elds FZ′N and FZ′′N are independent, then P̄u[Z ′2n 6= Z ′′2n]→
1 as n→ −∞, so

P̄u[Z ′0 6= Z ′′0 ] ≥
∏
k≤0

(
1− 1

qk

)
> 0.

The proof is complete.

5.2 Embedding dyadic �ltrations in Brownian �ltrations

We start with the two �ltrations provided by lemma 36. By construction, the �ltration
(Zn)n≤0 can be generated by some i.i.d. sequence (εn)n≤0 of uniform random variables
with values in {−1, 1}.

The �ltration (Un)n≤0 is (an)n≤0-adic for some sequence (an)n≤0 taking values 1 and
2 only. Call D ⊂ Z− the set of all n ≤ 0 such that an = 2. Since (Un)n≤0 is poly-adic
and immersed in a product-type �ltration, (Un)n≤0 is also product-type. Therefore, the
�ltration (Un)n≤0 can be generated by some sequence (ηn)n≤0 of independent random
variables with ηn uniform on {−1, 1} if n ∈ D, ηn = 0 if n /∈ D.
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By immersion of (Un)n≤0 in (Zn)n≤0, each ηn is Zn-measurable and independent of
Zn−1. So when n ∈ D, ηn can be written ηn = Hnεn, where Hn is some Zn−1-random
variable taking values in {−1, 1}.

Fix an increasing sequence (tn)n≤0 of positive real numbers such that t0 = 1 and
tn → 0 as n → −∞ (e.g. tn = 2n for every n ≤ 0). By symmetry and independence
of Brownian increments, one may construct a Brownian motion B such that for every
n ≤ 0, εn = sign(Btn −Btn−1). Let C be another Brownian motion, independent of B.

Since Zn−1 ⊂ FX,Ytn−1
for every n ≤ 0, one gets a predictable process (At)0<t≤1 with

values in O2(R) by setting for every t ∈]tn−1, tn],

At =

(
Hn 0
0 1

)
if n ∈ D, At =

(
0 1
1 0

)
if n /∈ D.

So one gets two independent Brownian motions B and C in FX,Y on the time-interval
[0, 1] by setting (

dBt
dCt

)
= At

(
dXt

dYt

)
.

Theorem 37. The �ltration generated by the Brownian motion B thus de�ned is com-
plementable after 0, maximal, but not complementable in FX,Y .

Proof. Complementability after 0

Let us check that C is a complement after 0 of B, namely

∀s ∈]0, 1], FB,C1 ∨ FX,Ys = FX,Y1 .

Since t0 = 0 and tm → 0+ as m→ −∞, it is su�cient to consider instants s which are
some subdvision time tm with m ≤ 0. Since for every n ≥ m, the process A coincides on
each time-interval ]tn, tn+1] with an FX,Ytn -measurable random variable, the formula(

dXt

dYt

)
= A−1

t

(
dBt
dCt

)
enables us to recover (X,Y ) from the knowledge of ((Xs, Ys))0≤s≤tm and (B,C).

Maximality

By proposition 27 or by the su�cient condition given in [4], the maximality of B can
be deduced from its complementability after 0 and from the equality

FB1 =
⋂

s∈]0,1]

(FB1 ∨ FX,Ys ).

The intersection above, over all s ∈]0, 1] can be restricted to the instants tm with m ≤ 0.

It is now convenient to introduce the notations

∆Xn = (Xt −Xtn−1)tn−1≤t≤tn and εn∆Xn = (εn(Xt −Xtn−1))tn−1≤t≤tn .

Recall that εn = sign(Xtn−Xtn−1). Therefore, σ(∆Xn) = σ(εn)∨σ(εn∆Xn), with σ(εn)
and σ(εn∆Xn) independent by symmetry of Brownian increments.

We de�ne by the same way the processes ∆Yn, ∆Bn, ∆Cn and ηn∆Bn. By de�nition
of B and C,

∆Bn = Hn∆Xn = ηnεn∆Xn and ∆Cn = ∆Yn if n ∈ D,
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∆Bn = ∆Yn and ∆Cn = ∆Xn if n ∈ Dc.

Moreover, when n ∈ D, ηn = sign(Btn −Btn−1) is independent of ηn∆Bn = εn∆Xn.

Therefore, FB1 = A ∨ B, with

A = σ((ηn)n∈D), B = σ((εn∆Xn)n∈D) ∨ σ((∆Yn)n∈Dc).

For m ∈ Z−, set Dm = D∩]−∞,m], Dc
m =]−∞,m] \D, and

Cm = Fεm, Dm = σ((εn∆Xn)n∈Dcm) ∨ σ((∆Yn)n∈Dm).

Then Fεm ∨ FCtm = Cm ∨ Dm.
The maximality of Fη in Fε yields the equality

A =
⋂
m≤0

(A ∨ Cm).

By independence of B and C, the σ-�elds B and D0 are independent, so the following
exchange property (see [29]) holds

B = B ∨ D−∞ =
⋂
m≤0

(B ∨ Dm).

Since the three sequences (εn)n≤0, (εn∆Xn)n≤0 and (∆Yn)n≤0 are independent, the
σ-�elds A ∨ C0 = Fε0 and B ∨ D0 = Fε∆X,Y0 are independent. Therefore, by lemma 38
below, one has

FB1 = A ∨ B =
⋂
m≤0

(A ∨ B ∨ Cm ∨ Dm) =
⋂
m≤0

(FB1 ∨ Fεm ∨ FCtm) =
⋂
m≤0

(FB1 ∨ F
X,Y
tm ).

This proves the maximality of B.

Non-complementability

Keep the notations introduced in the proof of the maximality and set ε := (εn)n≤0,
η := (ηn)n≤0. Remind that ε, (εn∆Xn)n≤0 and (∆Yn)n≤0 are independent families of
independent random variables and that FB1 is the σ-�eld generated by η, (εn∆Xn)n∈D
and (∆Yn)n∈Dc .

The �ltration (FX,Ytm )m≤0 can be splitted into three independent parts, namely

FX,Ytn = Fεn ∨ σ((εn∆Xn)n∈Dm ∪ (∆Yn)n∈Dcm) ∨ σ((∆Yn)n∈Dm ∪ (εn∆Xn)n∈Dcm).

The second part is a function of B whereas the third part is independent of (ε,B).
By independent enlargement, we get that for B(P)-almost every b ∈ C([0, 1],R), the
�ltration (Fεn)n≤0 is immersed in (FX,Ytn )n≤0 under P[·|B = b].

But η is some measurable function Φ of B and is also a function of ε. Since ε,
(εn∆Xn)n∈D and (∆Yn)n∈Dc are independent, the law of ε under P[·|B = b] coincides
with the law of ε under P[·|η = Φ(b)].

Since η generates the same σ-�eld as the random variable U of lemma 36, we derive
that for B(P)-almost every b ∈ C([0, 1],R), the �ltration (Fεn)n≤0 is (2/an)-adic but
not product-type under P[·|B = b]. But this �ltration is immersed in (FX,Ytn )n≤0 under

P[·|B = b], hence by Vershik's theorem (theorem 5 in the present paper), (FX,Ytn )n≤0

cannot be product-type so FX,Y cannot be Brownian under P[·|B = b]. Thus, the
Brownian �ltration FB is not complementable in FX,Y .
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Lemma 38. Let A, B be two σ-�elds and (Cn)n≤0, (Dn)n≤0 be two �ltrations of the
probability space (Ω, T ,P). If

A =
⋂
m≤0

(A ∨ Cm) mod P, B =
⋂
m≤0

(B ∨ Dm) mod P,

and if A ∨ C0 and B ∨ D0 are independent, then

A ∨ B =
⋂
m≤0

(A ∨ B ∨ Cm ∨ Dm) mod P.

Proof. Since both sides of the equality to be proved are sub-σ-�elds of A∨ B ∨ C0 ∨D0,
it is su�cient to prove that for every Z ∈ L1(A ∨ C0 ∨ B ∨ D0), one has

E[Z|A ∨ B] = E
[
Z
∣∣∣ ⋂
m≤0

(A ∨ B ∨ Cm ∨ Dm)
]
.

Considering only random variables Z = XY with X ∈ L1(A ∨ C0) and Y ∈ L1(B ∨ D0)
is su�cient since these random variables span a dense subspace in L1(A∨ C0 ∨ B ∨D0).

Given Z as above, one has E[Z|A ∨ C0 ∨ B] = XE[Y |B], so

E[Z|A ∨ B] = E[X|A ∨ B]E[Y |B] = E[X|A]E[Y |B],

since σ(X) ∨ A is independent of B. By the same way, one gets that for every n ≤ 0,

E[Z|A ∨ B ∨ Cm ∨ Dm] = E[X|A ∨ Cm]E[Y |B ∨ Dm].

Thus, taking the limit as n → −∞ yields the result by the martingale convergence
theorem and the assumption.

6 A complementable factor arising from a non-complementable

�ltration

6.1 De�nition of a uniform randomised decimation process

We denote by {a, b}∞ the set of all in�nite words on the alphabet {a, b}, namely the set
of all maps fromN = {1, 2, . . .} to {a, b}. We endow this set with the uniform probability
measure µ: a random in�nite word X is chosen according to µ if the successive letters
X(1), X(2), . . . form a sequence of independent and uniform random variables taking
values in {a, b}.

We denote by P(N) the power set of N, namely the set of all subsets of N. Given
p ∈]0, 1[, we de�ne the probability measure νp on P(N) as follows: the law of a random
subset I ofN is νp if 1I(1),1I(2), . . . form an i.i.d. sequence of Bernoulli random variables
with parameter p. Equivalently, this mean that P[F ⊂ I] = p|F | for every �nite subset
F of N. In this case, we note that almost surely, I is in�nite with in�nite complement.
The law ν := ν1/2 will be called the uniform law on P(N).

When A is an in�nite subset of N, we denote by ψA(1) < ψA(2) < . . . its elements.
This de�ne an increasing map ψA from N to N whose range is A. Conversely, for every
increasing map f from N to N, there is a unique in�nite subset A of N, namely the
range of f , such that f = ψA. These remarks leads to the following statement.
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Lemma 39. Let I and J be independent random in�nite subsets of N with respective
laws νp and νq, and R = ψI ◦ψJ(N) = ψI(J) be the range of ψI ◦ψJ . Then ψI ◦ψJ = ψR
and the law of R is νpq.

Proof. The equality ψI ◦ ψJ = ψR follows from the remarks above. Let F be a �nite
subset of N. By injectivity of ψI ,

[F ⊂ R] = [F ⊂ I ; ψ−1
I (F ) ⊂ J ]

and [F ⊂ I] = [|ψ−1
I (F )| = |F |], therefore by independence of I and J ,

P[F ⊂ R | σ(I)] = 1[F⊂I] P[ψ−1
I (F ) ⊂ J | σ(I)] = 1[F⊂I] q

|ψ−1
I (F )| = 1[F⊂I] q

|F |.

Thus P[F ⊂ R] = P[F ⊂ I]q|F | = (pq)|F |.

Here is another property that we will use to de�ne the uniform randomised decimation
process on {a, b}, and also later.

Lemma 40. Let X be a uniform random word on {a, b}∞. Let I be a random subset of
N with law νp, independent of X. Then

• I, X ◦ ψI , X ◦ ψIc are independent

• X ◦ ψI , X ◦ ψIc are uniform random words on {a, b}∞.

Proof. Almost surely, I is in�nite with in�nite complement, so the random maps ψI
and ψIc are well-de�ned. The integers ψI(1), ψIc(1), ψI(2), ψIc(2) . . . are distinct, so
conditionally on I, the random variables X(ψI(1)), X(ψIc(1)), X(ψI(2)), X(ψIc(2)), ...
are independent and uniform on {a, b}. The result follows.

De�nition 41. Call P ′(N) the set of all in�nite subsets of N. A uniform randomised
decimation process in the alphabet {a, b} is a stationary Markow chain de�ned (Xn, In)n∈Z
with values in {a, b}∞ × P ′(N) de�ned as follows: for every n ∈ Z,

1. the law of (Xn, In) is µ⊗ ν;

2. In is independent of (Xn−1, In−1) and uniform on P(N);

3. Xn = Xn−1 ◦ ψIn.

Such a process is well-de�ned and unique in law since the law µ ⊗ ν is invariant by
the transition kernel given by conditions 2 and 3 above, thanks to lemma 40. Moreover,
(In)n∈Z is a sequence of innovations for the �ltration FX,I . Therefore, the �ltration
FX,I has independent increments or is locally of product-type, according to Laurent's
terminology [17].

This process is a kind of randomisation of Vershik's decimation process given in
example 3 of [28]. Indeed, Vershik's decimation process is equivalent to the process that
we would get by chosing the random sets In uniformly among the set of all even positive
integers and the set of all odd positive integers. Although Vershik's decimation process
generates a non-standard �ltration, we will show that our randomised process generates
a standard one.

Theorem 42. The uniform randomised decimation process on the alphabet {a, b} gen-
erates a product-type �ltration.
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6.2 Proof of theorem 42

We have seen that the �ltration FX,I admits (In)n∈Z as a sequence of innovations. Each
innovation has di�use law. Therefore, to prove that the �ltration (FX,In )n≤0, or equiv-
alently, the �ltration (FX,In )n∈Z is product-type, it su�ces to check Vershik's �rst level
criterion (see reminders further and de�nition 2.6 and theorem 2.25 in [17]). Concretely,
we have to check any random variable in L1(FX,I0 ,R) can be approached in L1(FX,I0 ,R)
by measurable functions of �nitely many innovations of (FX,I)n≤0.

The innovations (In)n∈Z are inadequate to do this, since the random variable X0 is
independent of the whole sequence (In)n∈Z, so functions of the (In)n∈Z cannot approach
non-trivial functions of X0. Therefore, we will have to construct new innovations. The
next lemma gives us a general procedure to get some.

Lemma 43. Fix n ∈ Z. Let Φ be some FX,In−1-measurable map from N to N. If Φ is

almost surely bijective, then the random variable Jn = Φ(In) is independent of FX,In−1 and
uniform on P(N).

Proof. For every �nite subset F of N,

P [F ⊂ Jn|FX,In−1] = P [Φ−1(F ) ⊂ In|FX,In−1] = (1/2)|Φ
−1(F )| = (1/2)|F | almost surely.

The result follows.

Actually, the proof of theorem 42 is similar to the proof of the standardness of the
erased-words �ltration by S. Laurent [16] and uses the same tools, namely canonical
coupling and cascaded permutations.

De�nition 44. (Canonical word and canonical coupling)

The in�nite canonical word C on the alphabet {a, b} is the word abab · · · , namely the
map from N to {a, b} which sends the odd integers on a and the even integers on b.

If x is an in�nite word x on the alphabet {a, b}, namely a map from N to {a, b}, we
set for every i ∈ N,

φx(i) = 2q − 1 if x(i) is the q-th occurence of the letter a in x,

φx(i) = 2q if x(i) is the q-th occurence of the letter b in x.

Lemma 45. By de�nition, the map φx thus de�ned from N to N is injective and satis�es
the equality x = C ◦ φx. When each possible letter a or b appears in�nitely many times
in x, φx is a permutation of N, (called canonical coupling by S. Laurent).

Roughly speaking, if x is a typical word of {a, b}∞ endowed with the uniform law,
the asymptotic proportions of a and b are 1/2 are 1/2, so φx is asymptotically close to
the identity map.

De�nition 46. (New innovations and cascaded permutations)

Let Ω′ be the almost sure event on which

• each possible letter a or b appears in�nitely many times in the in�nite word X0;

• each subset In is in�nite.
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On Ω′, we de�ne by recursion a sequence (Φn)n≥0 of random permutations of N and a
sequence (Jn)n≥1 of random in�nite subsets of N by setting Φ0 = φX0 and, for every
n ≥ 1,

Jn = Φn−1(In) and Φn−1 ◦ ψIn = ψJn ◦ Φn. (1)

Let us check that the inductive construction above actually works Ω′.

On Ω′, the map Φ0 = φX0 is bijective by lemma 45.

Once we know that Φn−1 is a random permutations of N, the map Φn−1 ◦ ψIn is a
random injective map from N to N with range Φn−1(In) = Jn. Therefore, Jn is in�nite
and the map Φn is well de�ned by equation 1: for every k ∈ N, Φn(k) is the rank of the
integer Φn−1(ψIn(k)) in the set Jn. Moreover, Φn is a permutation of N.

Informally, the cascaded permutations (Φn)n≥0 are induced by Φ0 = φX0 and the
successive extractions. More precisely, equation 1 is represented by a commutative dia-
gramm which gives the correspondance between the positions of a same letter in di�erent
words.

position in X0

Φ0

��

position in X1

ψI1oo

Φ1

��

position in X2

ψI2oo

Φ2

��

· · ·

position in C position in C ◦ ψJ1
ψJ1oo position in C ◦ ψJ1 ◦ ψJ2

ψJ2oo · · ·

Here is a realisation of the �rst three steps. The boldface numbers form the subsets
I1, J1, I2, J2, .... Among the arrows representing φX0 , the plain arrows (from elements in
I1 to elements in J1) provide the permutation φX0,I1 by renumbering of the elements.

X0 b b a b a a a a a b b b · · ·

I1 1

��

2

��

3

��

4

��

5

��

6

��

7

��

8

��

9

!!

10

~~

11

��

12

��

· · ·

Φ0

J1 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

C a b a b a b a b a b a b · · ·

X1 = X0 ◦ ψI1 b a a a b b · · ·

I2 1

��

2

��

3

��

4

��

5

��

6

��

· · ·

Φ1

J2 1 2 3 4 5 6 · · ·

C ◦ ψJ1 a b a b b a · · ·
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X2 = X1 ◦ ψI2 b a a b · · ·

I3 1

��

2

��

3

��

4

��

· · ·

Φ2

J3 1 2 3 4 · · ·

C ◦ ψJ1 ◦ ψJ2 a b b a · · ·

Lemma 47. On the almost sure event Ω′, the following properties hold for every n ≥ 1,

1. Jn is independent of FX,In−1 and is uniform on P(N).

2. σ(X0, J1, . . . , Jn) = σ(X0, I1, . . . , In).

3. the random map Φn is σ(X0, J1, . . . , Jn)-measurable.

4. φX0 ◦ ψI1 ◦ · · · ◦ ψIn = ψJ1 ◦ · · · ◦ ψJn ◦ Φn.

5. Xn = C ◦ ψJ1 ◦ · · · ◦ ψJn ◦ Φn.

Proof. Since Φ0 = φX0 , properties 2, 3, 4, 5 above hold with n replaced by 0.

Let n ≥ 1. Assume that properties 2, 3, 4, 5 hold with n replaced by n− 1.

Then by lemma 43, property 1 holds.

By de�nition and by the induction hypothesis, the random set Jn = Φn−1(In) is
σ(X0, I1, . . . , In)-measurable. Conversely, since In = Φ−1

n−1(Jn), the knowledge of Φn−1

and Jn is su�cient to recover In, so property 2 holds.

For every k ∈ N, Φn(k) is the rank of the integer Φn−1(ψIn(k)) in the set Φn−1(In).
Thus the random map Φn is a measurable for σ(X0, J1, . . . , Jn−1, In) = σ(X0, J1, . . . , Jn).
Therefore, property 3 holds.

By induction hypothesis and by formula 1,

φX0 ◦ ψI1 ◦ · · · ◦ ψIn = (φX0 ◦ ψI1 ◦ · · · ◦ ψIn−1) ◦ ψIn
= (ψJ1 ◦ · · · ◦ ψJn−1 ◦ Φn−1) ◦ ψIn
= (ψJ1 ◦ · · · ◦ ψJn−1) ◦ (Φn−1 ◦ ψIn)

= (ψJ1 ◦ · · · ◦ ψJn−1) ◦ (ψJn ◦ Φn)

= ψJ1 ◦ · · · ◦ ψJn ◦ Φn,

so

Xn = X0 ◦ ψI1 ◦ · · · ◦ ψIn
= C ◦ φX0 ◦ ψI1 ◦ · · · ◦ ψIn
= C ◦ ψJ1 ◦ · · · ◦ ψJn ◦ Φn,

which yields properties 4 and 5.

Lemma 46 follows by recursion.
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The next result shows that the innovations (Jn)n≥1 constructed above provide better
and better approximations of Xn as n→ +∞.

Lemma 48. Fix L ∈ N. Then P
[
Xn = C ◦ ψJ1 ◦ · · · ◦ ψJn on [[1, L]]

]
→ 1 as n→ +∞.

Proof. By equality 5, it su�ces to check that, P(En)→ 1 as n→ +∞, where En is the
event �Φn coincides on [[1, L]] with the identity map�.

By lemma 39, ψI1 ◦ · · · ◦ ψIn = ψAn and ψJ1 ◦ · · · ◦ ψJn = ψBn , where An and Bn are
random subsets of N with law νpn , where pn = 2−n.

Therefore, by property 4 of lemma 47, φX0 ◦ ψAn = ψBn ◦ Φn, so for each k ∈ N,
Φn(k) is the rank of the integer φX0(ψAn(k)) in the set φX0(An) = Bn.

Thus, the event En holds if and only if the L �rst elements of the set φX0(An) in
increasing order are φX0(ψAn(1)), . . . , φX0(ψAn(L)).

Set τn,k = ψAn(k) for every k ∈ N. Since the law of An is νpn , the random variables
τn,1, τn,2 − τn,1, τn,3 − τn,2, ... are independent and geometric with parameter pn.

We have noted that

En =
[
∀k ≥ L+ 1, φX0(τn,1) < . . . < φX0(τn,L) < φX0(τn,k)

]
Roughly speaking, the probability of this event tends to 1 because φX0 is close to the
identity map and the set An gets sparser and sparser as n increases to in�nity. Let us
formalize this argument.

Since X0 is uniform on {a, b}∞, the random variables (ηi)i≥1 = (1[X0(i)=b])i≥1 form
an i.i.d. sequence of Bernoulli random variables with parameter 1/2. For every t ∈ N,
the random variable St = η1 + · · ·+ ηt counts the number of b in the subword X0([[1, t]]),
whereas t−St counts the number of a in the subword X0([[1, t]]), so by de�nition of φX0 ,

φX0(t) = 2(t− St)− 1 if X0(t) = a,

φX0(t) = 2St if X0(t) = b.

Given t1 < t2 in N, the inequality max(St1 , t1 − St1) < min(St2 , t2 − St2) implies
φX0(t1) < φX0(t) for every integer t ≥ t2. Therefore,

En ⊃
[
∀k ∈ [[1, L]],max(Sτn,k , τn,k − Sτn,k) < min(Sτn,k+1

, τn,k+1 − Sτn,k+1
)
]
.

Thus it su�ces to prove that for any �xed k ∈ N,

pn,k := P
[

max(Sτn,k , τn,k − Sτn,k) ≥ min(Sτn,k+1
, τn,k+1 − Sτn,k+1

)
]
→ 0 as n→ +∞.

Since X0 is independent of I1, . . . , In, the sequence (St)t≥1 is independent of the
sequence (τn,k)k≥1. Moreover, (St)t≥1 has the same law as (t−St)t≥1 and Sτn,k+1

−Sτn,k
has the same law as Sτn,1 . Therefore, for every integer x ≥ 1,

pn,k ≤ 2P
[
Sτn,k+1

≤ max(Sτn,k , τn,k − Sτn,k)
]

= 2P
[
Sτn,k+1

− Sτn,k ≤ max(0, τn,k − 2Sτn,k)
]

≤ 2P
[
Sτn,k+1

− Sτn,k ≤ x− 1
]

+ 2P
[
τn,k − 2Sτn,k ≥ x

]
= 2P

[
Sτn,1 ≤ x− 1

]
+ P

[
|2Sτn,k − τn,k| ≥ x

]
.
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On the one hand, the random Sτn,1 is binomial with parameters τn,1 and 1/2 condi-
tionally on τn,1, so its generating function is given by

E[zSτn,1 ] = E
[
E[zSτn,1 |σ(τn,1)]

]
= E

[(1 + z

2

)τn,1]
=

pn(1 + z)/2

1− (1− pn)(1 + z)/2

=
pn(1 + z)

1 + pn − (1− pn)z

=
pn(1 + z)

1 + pn

+∞∑
m=0

(1− pn
1 + pn

)m
zm

This yields the law of Sτn,1 , namely

P [Sτn,1 = 0] =
pn

1 + pn
,

P [Sτn,1 = s] =
pn

1 + pn

((1− pn
1 + pn

)s−1
+
(1− pn

1 + pn

)s)
= 2pn

(1− pn)s−1

(1 + pn)s+1 if s ≥ 1.

Therefore, P[Sτn,1 = s] ≤ 2pn for every s ≥ 0, so P
[
Sτn,1 ≤ x− 1

]
≤ 2pnx.

On the other hand, (2St−t)t≥0 is a simple symmetric random walk on Z, independent
of τn,k so

E[2Sτn,k − τn,k|σ(τn,k)] = 0 and Var(2Sτn,k − τn,k|σ(τn,k)) = τn,k.

Therefore,

E[2Sτn,k − τn,k] = 0 and Var(2Sτn,k − τn,k) = Var(0) + E[τn,k] = k/pn,

so Bienaymé-Tchebiche�'s inequality yields P
[
|2Sτn,k − τn,k| ≥ x

]
≤ (k/pn)x−2.

Hence, for every n and x in N, pn,k ≤ 4pnx + (k/pn)x−2. Choosing x = dp−2/3
n e

yields pn,k ≤ 4(p
1/3
n + pn) + kp

1/3
n . The result follows.

To �nish the proof of theorem 42, we need to remind some standard facts about
Vershik's �rst level criterion, namely de�nition 2.6, proposition 2.7 and proposition 2.17
of [17].

Let F = (Fn)n≤0 be a �ltration with independent increments (Laurent writes that
F is locally of product-type). Given a separable metric space (E, d), one says that a
random variable R ∈ L1(F0, E) satis�es Vershik's �rst level criterion (with respect to F)
if for every δ > 0, one can �nd an integer n0 ≤ 0, some innovations Vn0+1, . . . , V0 of F
at times n0 + 1, . . . , 0 and some random variable S ∈ L1(σ(Vn0+1, . . . , V0), E) such that
E[d(R,S)] < δ.

The subset of random variables in L1(F0, E) satisfying Vershik's �rst level criterion
(with respect to F) is closed in L1(F0, E). If R ∈ L1(F0, E) satis�es Vershik's �rst
level criterion, then any measurable real function of R also satis�es Vershik's �rst level
criterion.

The �rst step of the proof is to check that for every m ≤ 0, the random variable
(Xm(1), . . . , Xm(L)), taking values in {a, b}L endowed with the discrete metric, satis�es
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Vershik's �rst level criterion with respect to (FX,In )n≤0. Indeed, by stationarity, the
construction of lemma 46 can be started at any time n0 instead of time 0. Starting this
construction at time n0 yields innovations Jn0

n0+1, J
n0
n0+2, ... at times n0 +1, n0 +2, .... Fix

two integers m ≤ 0 and L ≥ 1. By stationarity, for every n0 ≤ m,

P
[
Xm = C ◦ψJn0n0+1

◦ · · · ◦ψJn0m on [[1, L]]
]

= P
[
Xm−n0 = C ◦ψJ1 ◦ · · · ◦ψJm−n0 on [[1, L]]

]
.

Lemma 48 ensures that this probability tends to 1 as n→ +∞.

We derive successively that the following random variables also satis�es Vershik's
�rst level criterion:

• Xm, valued in {a, b}∞ endowed with the metric given by

d(x, y) = 2− inf{i≥1:x(i)6=y(i)}.

• (Xm, Im+1, . . . , I0), valued in {a, b}∞ ×P(N)|m| endowed with the product of the
metrics de�ned as above on each factor {a, b}∞ or P(N) identi�ed with {0, 1}∞;

• any measurable real function of (Xm, Im+1, . . . , I0);

• any real random variable in FX,I0 .

The proof is complete.

6.3 A non complementable �ltration yielding a complementable factor

We still work with the �ltration generated by the uniform randomised decimation process
((Xn, In))n∈Z on the alphabet {a, b}. We call P ′′(N) the set of all in�nite subsets of N
with in�nite complement, and we set E = {a, b}∞ × P ′′(N). Since ν(P ′′(N)) = 1, we
may assume and we do assume that the Markov chain ((Xn, In))n∈Z takes values in E.

At each time n, we de�ne the random variable Yn = ψIcn(Xn−1) coding the portion of
the in�nite word Xn−1 rejected at time n to get the word Xn. Of course, the knowledge
of In, Xn and Yn enables us to recover Xn−1: for every i ∈ N, Xn−1(i) equals Xn(r) or
Yn(r) according that i is the rth element of In or of Icn. We can say more.

Proposition 49. (Properties of the sequences (Yn)n∈Z and (In)n∈Z)

1. The random variables Yn are independent and uniform on {a, b}∞.

2. The sequence (Yn)n∈Z is independent of the sequence (In)n∈Z .

3. Each Xn is almost surely a measurable function of In+1, Yn+1, In+2, Yn+2, ....

Note that proposition 49 provides a constructive method to get a uniform randomised
decimation process on {a, b}.

Proof. The �rst two statements follow from a repeated application of lemma 40. Since
the formulas involving the processes I,X, Y are invariant by time-translations, one needs
only to check the third statement when n = 0. For every i ∈ N, call

Ni = inf{n ≥ 1 : i /∈ ψI1 ◦ · · · ◦ ψIn(N)}.
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the �rst time n at which the letter X0(i) is rejected when forming the word Xn. For
every n ≥ 0, [Ni > n] = [i ∈ ψI1 ◦ · · · ◦ ψIn(N)]; but by lemma 39, the law of the range
of ψI1 ◦ · · · ◦ ψIn is ν2−n , so P[Ni > n] = 2−n. Therefore, Ni is a measurable function of
(In)n≥1 and is almost surely �nite. On the event [Ni < +∞], X0(i) = YNi(Ri), where
Ri is the rank of i in the set ψI1 ◦ · · · ◦ ψINi ◦ ψIcNi+1

(N). The proof is complete.

We split each random variable In into two independent random variables, namely
Un = {In, Icn} and Vn = 1[1∈In]. The random variable Un takes values in the set Π of
all partitions of N into two in�nite blocks. Given such a partition u ∈ Π, we denote by
u(1) the block containing 1 and by u(0) its complement. Then In = Un(Vn) and each
one of the random variables Un, Un(0) and Un(1) carries the same information.

Call C the cylindrical σ-�eld on EZ and π the law of ((Xn, In))n∈Z. By stationarity,
the shift opérator T is an automorphism of (EZ, C, π). The formulas de�ning Un, Vn, Yn
from In and Xn−1 are invariant by time-translations so the measurable maps Φ and Ψ
yielding (Un)n∈Z and ((Vn, Yn))n∈Z from ((Xn, In))n∈Z commute with T . Therefore, the
σ-�elds Φ−1(C) and Ψ−1(C) are factors of T .

Theorem 50. 1. The factor Φ−1(C) is complementable with complement Ψ−1(C).
Thus, if the Markov chain ((Yn, In))n∈Z is de�ned on the canonical space (EZ, C, π),
then FU∞ is a complementable factor of T with complement FV,Y∞ .

2. Yet, the �ltration FU is not complementable in the �ltration FX,I .

Proof. By proposition 49, FU∞ and FV,Y∞ are independent, and FU∞∨F
V,Y
∞ = FX,I∞ mod P.

Therefore, Φ−1(C) and Ψ−1(C) are independent in (EZ, C, π) and Φ−1(C) ∨Ψ−1(C) = C
mod π: the factor Φ−1(C) is complementable with complement Ψ−1(C).

Let U = (Un)n≤0. The random variable U takes values in ΠZ− . For every u =
(un)n≤0 ∈ ΠZ− and n ≤ 0, call W u

n the map from {0, 1}|n| to {a, b} de�ned by

W u
n (vn+1, . . . , v0) = Xn ◦ ψun+1(vn+1) ◦ · · · ◦ ψu0(v0)(1).

By ordering the elements of {0, 1}|n| in the lexicographic order, one identi�es W u
n with

an element of {a, b}|n|.
Since Xn = Xn−1 ◦ ψIn = Xn−1 ◦ ψun(Vn) Pu-almost surely, we have

W u
n (vn+1, . . . , v0) = W u

n−1(Vn, vn+1, . . . , v0) Pu-almost surely,

so W u
n is the left half or the right half of W u

n−1 according Vn equals 0 or 1. Moreover,

under Pu, the random variable Vn is independent of FW
u,V

n−1 and uniform on {0, 1}.
Hence, under Pu, the process (W u

n , Vn)n≤0 is a dyadic split-words process with inno-
vations (Vn)n≤0. The �ltration of this process is known to be non-standard (see [25]).
But one checks that (Vn)n≤0 is also a sequence of innovations of the larger �ltration
(FX,I)n≤0 seen under Pu, so (FW

u,V
n )n≤0 is immersed in (FX,I)n≤0 and (FX,I)n≤0 is

also non-standard under Pu.

If (FUn )n≤0 admitted an independent complement (Gn)n≤0 in (FX,In )n≤0, this com-
plement would be immersed in the product-type �ltration (FX,In )n≤0 thus standard.
Therefore, for U(P)-almost every u ∈ ΠZ− , the �ltration (FX,In )n≤0 would be standard
under the probability Pu = P[·|U = u], by proposition 0.1 of [19].
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7 Annex : reminders on partitions and entropy

We recall here classical de�nitions and results. Most of them can be found in [24]. See
also [23]. We �x a measure-preserving map T from a probability space (Z,Z, π) to itself.
In what follows, α, β, γ denote measurable countable partitions of Z (here, `measurable
partition' means `partition into measurable blocks'), and F ,G denote sub-σ-�elds of Z.
We introduce the non-negative, continuous and strictly concave function ϕ : [0, 1] → R
de�ned by ϕ(x) = −x log2(x), with the convention ϕ(0) = 0.

7.1 Partitions

De�ning the entropy requires discretizations of the ambient probability space, that is
why we introduce countable measurable partitions. Equivalently, we could use discrete
random variables. We need a few basic de�nitions.

De�nition 51. One says that β is �ner than α (and note α ≤ β) when each block of α
is the union of some collection of blocks of β.

De�nition 52. The (non-empty) intersections A ∩ B with A ∈ α and B ∈ β form a
partition; this partition is the coarsest re�nement of α and β and is denoted by α ∨ β.

De�nition 53. More generally, if (αk)k∈K is a countable family of countable measurable
partitions of Z, we denote by

∨
k∈K αk the partition whose blocks are the (non-empty)

intersections
⋂
k∈K Ak where Ak ∈ αk for every k ∈ K; this partition is the coarsest

re�nement of the (αk)k∈K ; it is still measurable but it can be uncountable.

De�nition 54. The partitions α and β are independent if and only if π(A ∩ B) =
π(A)π(B) for every A ∈ α and B ∈ β.

De�nition 55. We denote by T−1α the partition de�ned by

T−1α = {T−1(A) : A ∈ α}.

If T is invertible (namely bimeasurable), we denote by Tα the partition de�ned by

Tα = {T (A) : A ∈ α}.

7.2 Fischer information and entropy of a partition

Given A ∈ X , we view − log2 π(A) as the quantity of information provided by the event A
when A occurs, with the convention − log2 0 = +∞. 5 With this de�nition, the occurence
of a rare event provide much information; moreover, the information provided by two
independent events A and B occuring at the same time is the sum of the informations
provided by each of them separately. The entropy of a countable measurable partition
is the mean quantity of information provided by the blocks in it.

De�nition 56. The Fischer information of the partition α is the random variable

Iα :=
∑
A∈α

(− log2 π(A))1A.

5Taking logarithms in base 2 is an arbitrary convention which associates one unity of information to

any uniform Bernoulli random variable.
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The entropy of the partition α is the quantity

H(α) = Eπ[Iα] =
∑
A∈α

ϕ(π(A)).

Note that null blocks in a do not give any contribution to the entropy of a partition.
Non-trivial partitions have positive entropy. Finite partitions have �nite entropy. In�nite
countable partition can have �nite or in�nite entropy.

The previous de�nition can be generalized as follows.

De�nition 57. The conditional Fischer information of the partition α with regard to F
is the random variable

Iα|F =
∑
A∈α

(− log2 π(A|F))1A.

The conditional entropy of the partition α with regard to F is the quantity

H(α|F) = Eπ[Iα|F ] =
∑
A∈α

Eπ[− log2 π(A|F)1A] = −
∑
A∈α

Eπ[− log2 π(A|F)π(A|F)].

Given any partition η into measurable blocs, we will use the following abbreviated
notations: H(α|η) := H(α|σ(η)), H(α|η ∨ F) := H(α|σ(η) ∨ F).

Note that when F is the trivial σ-�eld {∅, Z}, Iα|F and H(α|F) are equal to Iα and
H(α).

The following properties are very useful and are checked by direct computation, by
using the positivity of Fischer information and the strict concavity of ϕ.

Proposition 58. (First properties)

1. IT−1α|T−1F = Iα|F ◦ T so H(T−1α|T−1F) = H(α|F).

2. H(α|F) ≥ 0, with equality if and only if α ⊂ F mod π.

3. H(α|F) ≤ H(α). When H(α) < +∞, equality holds if and only if α is independent
of F .

4. If F ⊂ G, then E[Iα|F |F ] ≥ E[Iα|G |F ] so H(α|F) ≥ H(α|G).

5. If α ≤ β, then Iα|F ≤ Iβ|F so H(α|F) ≤ H(β|F).

6. H(α ∨ β|F) = H(α|F) +H(β|F ∨ σ(α)) ≤ H(α|F) +H(β|F).

We will also use the next result.

Proposition 59. (monotone sequence of σ-�elds). Assume that H(α) < +∞.

1. If (Fn)n≥0 is a non-decreasing sequence of σ-�elds, then

H(α|Fn)→ H(α|F∞) where F∞ =
∨
n≥0

Fn.

2. If (Dn)n≥0 is a non-increasing sequence of σ-�elds, then

H(α|Dn)→ H(α|D∞) where D∞ =
⋂
n≥0

Dn.

Actually, the almost sure convergences Iα|Fn → Iα|F∞ and Iα|Dn → Iα|D∞ follow
directly from martingale and backward martingale convergence theorems, but getting
convergence in L1(π) requires a technical lemma, at least in the case of in�nite partitions.
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7.3 Entropy of a measure-preserving map

First, we de�ne quantities h(T, α).

Proposition 60. (De�nition and formula for h(T, α))

1. The sequence (Hn(T, α))n≥0 de�ned by

Hn(T, α) = H(α ∨ T−1α ∨ · · · ∨ T−(n−1)α)

is concave, so the limit h(T, α) = limn→+∞Hn(T, α)/n exists in [0,+∞].

2. If H(α) < +∞, then h(T, α) = H(α|α−), where α− =
∨
k≥1 T

−kα denotes the

σ-�eld generated by the partitions (T−kα)k≥1.

Proof. The statements follow from the equality

Hn+1(T, α)−Hn(T, α) = H(α ∨ T−1α ∨ · · · ∨ T−nα)−H(T−1α ∨ · · · ∨ T−nα)

= H(α|T−1α ∨ · · · ∨ T−(n−1)α),

from proposition 58, Cesàro's lemma and proposition 59.

De�nition 61. The entropy of T is

h(T ) = sup{h(T, α) : α partition of Z with finite entropy}
= sup{h(T, α) : α finite measurable partition of Z}.

These two quantities coincide thanks to propositions 72 and 73.

Proposition 62. For every r ≥ 1, h(T r) = rh(T ). If T is also invertible, one has also
h(T−1) = h(T ).

Proof. For every n ≥ 1 and every partition α with �nite entropy,

Hn(T r, α) ≤ Hn(T r, α ∨ · · · ∨ T−(r−1)α) = Hrn(T, α).

Dividing by n and letting n go to in�nity yields

h(T r, α) ≤ h(T r, α ∨ · · · ∨ T−(r−1)α) = rh(T, α).

The inequalities h(T r) ≤ rh(T ) and rh(T ) ≤ h(T r) follow.

If T is invertible, the equalities α ∨ · · · ∨ T−(n−1)α = T−n−1(α ∨ · · · ∨ Tn−1α) yield
Hn(T, α) = Hn(T−1, α), so h(T−1) = h(T ).

7.4 Generators

Countable generating partitions help us to computing the entropy of invertible measure-
preserving maps.

De�nition 63. Assume that T is invertible. A countable measurable partition γ is
generating (with regard to T ) if the partitions (T kγ)k∈Z generate X modulo the null sets.

Theorem 64. (Kolmogorov - Sinai theorem) If T is invertible and γ is a countable
generator (with regard to T ), then h(T ) = h(T, γ).
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Here is the basic example of generator.

Example 65. Let Λ be a countable set, p0 : (yk)k∈Z 7→ y0 the 0-coordinate projection
from ΛZ to Λ, S : (yk)k∈Z 7→ (yk+1)k∈Z the shift operator on ΛZ, and µ any shift-
invariant probability measure on ΛZ. Then the partition {p−1

0 {λ} : λ ∈ Λ} is generating
with regard to S.

The interesting fact is that many situations can be reduced to this particular case.
The proof of next theorem is outlined in [14].

Theorem 66. (Rohlin's countable generator theorem) Assume that (Z,Z, π) is a Lebesgue
space. If T T is invertible and aperiodic, namely if π{z ∈ Z : ∃n ≥ 1 : Tn(z) = z} = 0,
then T admits a countable generating partition γ = {Cλ : λ ∈ Λ}. Moreover, the γ-name
map Φ from Z to ΛZ, de�ned by Φ(z)k = λ whenever T k(z) ∈ Cλ, is invertible modulo
the null sets, when ΛZ is endowed with the probability measure Φ(π). The measure Φ(π)
is shift-invariant, so T is isomorphic modulo the null sets to the shift operator on ΛZ.

Under the stronger assumption that T is invertible, ergodic and h(T ) < +∞, Krieger's
theorem provides the existence of a �nite generator with size at most b2h(T )c + 1. We
do not use this re�nement in the present paper.

Using the remark given in footnote in subsection 2.1, one checks that if T is invertible
and (Z,Z, π) is a Lebesgue space, then any factor of T admits a countable generating
partition.

7.5 Conditional entropy given a factor. Pinsker's formula

Assume that T is invertible and that B is a factor of T . One may de�ne the entropy of
T given B as follows.

Proposition 67. (De�nition and formula for h(T, α|B))

1. The sequence (Hn(T, α|B))n≥0 de�ned by

Hn(T, α|B) = H(α ∨ T−1α ∨ · · · ∨ T−(n−1)α|B)

is concave, so the limit h(T, α|B) = limn→+∞Hn(T, α|B)/n exists in [0,+∞].

2. If H(α) < +∞, then h(T, α|B) = H(α|α− ∨ B), where α− =
∨
k≥1 T

−kα denotes

the σ-�eld generated by the partitions (T−kα)k≥1.

Proof. Since T−1B = B, one has Hn(T, α|B) = H(T−1α ∨ · · · ∨ T−nα|B), so

Hn+1(T, α|B)−Hn(T, α|B) = H(α ∨ T−1α ∨ · · · ∨ T−nα|B)

−H(T−1α ∨ · · · ∨ T−nα|B)

= H(α|σ(T−1α ∨ · · · ∨ T−(n−1)α) ∨ B).

The statements follow, by proposition 58, Cesàro's lemma and proposition 59.

De�nition 68. The conditional entropy of T given B is the quantity

h(T |B) = sup{h(T, α|B) : α partition of Z with finite entropy}
= sup{h(T, α|B) : α finite measurable partition of Z}.

These two quantities coincide thanks to propositions 72 and 73.
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Kolmogorov - Sinai theorem admits the following generalization.

Theorem 69. If γ is a countable generator of T , then h(T |B) = h(γ, T |B).

Proposition 70. (Pinsker's formula) Assume that α and β have �nite entropy. Let A
and B be two factors generated by α and β. Set α− =

∨
k≥1 T

−kα. Then

h((T,A)|B) = h(T,A ∨ B)− h(T,B),

or equivalently,
H(α|α− ∨ B) = H(α ∨ β|α− ∨ β−)−H(β|β−).

Proof. For every integers p ≤ q, set

αqp =

q∨
k=p

T kα and βqp =

q∨
k=p

T kβ.

Then for every non-negative integer n,

Hn+1(T, α ∨ β)−Hn+1(T, β) = H(αn0 ∨ βn0 )−H(βn0 )

=
n∑
k=0

H(T kα|αk−1
0 ∨ βn0 )

=
n∑
k=0

H(α|α−1
−k ∨ β

n−k
−k ).

But H(α|α−1
−k ∨ β

`
−k) → H(α|α− ∨ B) as k → +∞ and ` → +∞. Since the quantities

H(α|α−1
−k ∨ β

n−k
−k ) belong to the �nite interval [0, H(α)], one deduces that

h(T, α ∨ β)− h(T, β) = lim
n→+∞

1

n+ 1

(
Hn+1(T, α ∨ β)−Hn+1(T, β)

)
= H(α|α− ∨ B).

The equalities follows from proposition 60, theorem 64, proposition 67 and theorem 69.

7.6 Continuity properties

Proposition 71. The formula

d(α, β) = H(α|β) +H(β|α) = 2H(α ∨ β)−H(α)−H(β)

de�nes a pseudo-metric on the set of all partitions of Z with �nite entropy. Moreover,
d(α, β) = 0 if and only if the non-null blocks of α and β are the same modulo π.

Proof. The triangle inequality follows from the inequality

H(α|γ) ≤ H(α ∨ β|γ) = H(β|γ) +H(α|β ∨ γ) ≤ H(β|γ) +H(α|β).

The other statements follow from proposition 58.

Proposition 72. For the pseudo-metric d thus de�ned, the set of all �nite measurable
partitions of Z is dense in the set of all partitions �nite on Z with �nite entropy.
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Proof. Let α = {An : n ≥ 1} be an in�nite partition of Z with �nite entropy. For every
n ≥ 1, set αn = {A1, · · · , An, (A1 ∪ · · · ∪An)c}. Since α is �ner than αn,

H(α) ≥ H(αn) ≥
n∑
k=1

ϕ(π(Ak)),

so d(α, αn) = H(α)−H(αn)→ 0 as n→ +∞.

Proposition 73. Assume that T is invertible and that B is a factor of T . For the
pseudo-metric d, the map α 7→ h(T, α|B) is 1-Lipschitz.

Proof. Let α and γ be two partitions of Z with �nite entropy. for every n ≥ 1,

Hn(T, α|B)−Hn(T, γ|B) ≤ H(αn−1
0 ∨ γn−1

0 |B)−H(γn−1
0 |B)

= H(αn−1
0 |B ∨ γn−1

0 )

≤
n−1∑
k=0

H(T−kα|B ∨ γn−1
0 )

≤
n−1∑
k=0

H(T−kα|T−kγ)

= nH(α|γ).

Dividing by n and letting n go to in�nity yields h(T, α|B) − h(T, γ|B) ≤ H(α|γ). The
result follows.

Proposition 74. For every A and B in Z, set δ(A,B) = π(A4B). Then the map
A 7→ {A,Ac} is uniformly continuous for the pseudo-metrics δ and d.

Proof. Let A and B in Z. Set α = {A,Ac} and β = {B,Bc}. Then

H(α|β) = π(B)
(
ϕ(π(A|B)) + ϕ(π(Ac|B))

)
+ π(Bc)

(
ϕ(π(A|Bc)) + ϕ(π(Ac|Bc))

)
.

One checks the inequalities −x lnx ≤ 1− x and −x lnx ≤ 2
√
x− 2x for every x ∈ [0, 1].

Applying the former to π(A|B) and π(Ac|Bc), and the latter to π(Ac|B) and π(A|Bc)
yields

H(α|β) ln 2 ≤ π(B)π(Ac|B) + π(B)
(
2
√
π(Ac|B)− 2π(Ac|B)

)
+π(Bc)

(
2
√
π(A|Bc)− 2π(A|Bc)

)
+ π(Bc)π(A|Bc)

≤ π(Ac ∩B) + 2
√
π(Ac ∩B)− 2π(Ac ∩B)

+2
√
π(A ∩Bc)− 2π(A ∩Bc) + π(A ∩Bc)

≤ 2
√
π(Ac ∩B) + 2

√
π(A ∩Bc)

≤ 2
√

2
√
π(A4B),

by concavity of the square root function. Hence d(α, β) ≤ (4
√

2/ ln 2)
√
δ(A,B).
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