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Abstract. Local patterns and other patch based features have been an
integral part of various computer vision applications as they encode local
structural and statistical information. In this paper, we propose an image
coding technique that utilizes Zeckendorf representation of pixel intensi-
ties and basic mathematical operators such as intersection, set difference,
maximum, summation etc. for summarization of image regions. The algo-
rithm produces a Z-coded image that tells about the homogeneity or the
contrast in image regions with all codes in a range of 0 to 255.

Keywords: Image descriptor · Generative model · Zeckendorf theorem ·
LBP

1 Introduction

Summarizing local image content is considered a fundamental step in all classi-
cal computer vision tasks such as object detection and recognition [3,8], texture
analysis [11], motion analysis [2,11], image restoration and reconstruction [6]
etc. This step usually involves extraction of low level features such as finding
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out where the edges are, detecting interest points and their region of inter-
ests by applying local neighborhood operations. Since imaging data are noisy,
locally-correlated and usually with too many data points per ‘unit’ of useful
information, these intermediate representations lead to an understanding of the
scene in an image without the noisy and meaningless influence of very many pix-
els that carry little inferable information. These representations usually encode
either structural information that is extraction of texture as a set of repeated
primitive textons or statistical information that how different pixel intensities
are distributed in a local neighborhood.

The amount of information extracted from different regions of an image usu-
ally depends on the size of the neighborhood, the reading order of the neighbors
and the mathematical function that is used to extract the relationship between
two neighboring pixels. Most of the descriptors that encode local structures i.e.
Local Binary Patterns (LBP) [4] and its variants [5] such as Census Transform
(CT) [9] etc. depend on the reading order as they compute the feature value as
the weighted sum of neighboring pixels {gp|p = 0, . . . , P − 1} w.r.t. their order
in the neighborhood.

There exists many variants of LBP (see [5, Chap. 2, p. 26] for a summary of
the variants) because basic LBP has many problems that need to be addressed.
For instance, LBP and CT both generates 8−bit string for a 3×3 neighborhood
by computing the Heaviside function t(·) of the difference between neighboring
pixels and the central pixel i.e. (gi − gc) which is shown in Fig. 1. The only
difference between these two descriptors is the reading order of neighboring pixels
and the sign of the difference which results in 2 different bit patterns. Given the
8 − bit string, the LBP and CT code is calculated as:

LP,R(rc) =

P−1
∑

p=0

2p · t(gp − gc), with t(x) =

{

1 if x ≥ 0

0 otherwise.
, (1)

where P is the number of pixels in the neighborhood considering the distance R

between central pixel and its neighbors.
Local Binary Pattern (LBP) is considered a computationally efficient struc-

tural descriptor and its applications have evolved into almost all fields of com-
puter vision, because of its robustness to monotonic gray-scale changes, illumina-
tion invariance and its computational simplicity. Invariance w.r.t. any monotonic

Fig. 1. Neighbors of center pixel gc participating in LBP or CT code generation in the
case of a 3×3 neighborhood (P = 8 and R = 1).
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transformation of the gray scale is achieved by considering in Eq. (1) the signs
of the differences t(gi − gc), i = 0, . . . , P − 1. But the independence of gc and
{|g0 − gc|, . . . , |gP−1 − gc|} is not warranted in practice. Moreover, under certain
circumstances the LBP misses the local structure as it does not consider the
central pixel. The binary data produced by them are sensitive to noise mostly
in uniform regions of an image.

To reduce this noise sensitivity, a 3-level operator has been proposed by Tan
and Trigg [7] which describes a pixel relationship with its neighbor by a ternary
code i.e. {−1, 0, 1} rather than a binary code. The size of this code is reduced by
splitting it into two LBP codes (Positive and Negative) which results into two
8 − bit strings thus needing 16 bit space for representation.

This paper discusses an encoding scheme that is independent of the size of
neighborhood and the reading order of neighboring pixels in Sect. 2. An algo-
rithm is also proposed for generating Z-codes of an image in Sect. 3, which could
be utilized in contour detection, image segmentation and adaptive image quan-
tization. In Sect. 4 we discuss the results and compare its characteristics with
the classic LBP.

2 Zeckendorf Encoding

The LBP operator generates an integer value in the range of 0 to 255. We propose
to represent each pixel intensity N as an ordered collection of positive integers
whose sum is N .

2.1 Zeckendorf’s Theorem

The Zeckendorf’s theorem [10] states that every positive integer N can be rep-
resented uniquely as the sum of distinct Fibonacci numbers such that the sum
does not include any two non-consecutive Fibonacci numbers.

Theorem 1 (Zeckendorf’s theorem). Every positive integer can be expressed
as a sum of distinct Fibonacci numbers. If N is any positive integer, there exist
positive integers ni ≥ 2, with ni+1 ≥ ni + 1, such that N =

∑k

i=0 Fni
, where Fj

is the j−th Fibonacci number.

The famous Fibonacci sequence < 1, 1, 2, 3, 5, 8, . . . > is a sequence of num-
bers, x(n), that satisfies the difference equation

x(n) = x(n − 1) + x(n − 2) for n ≥ 0 (2)

that is x(n) is the sum of the 2 previous values with initial conditions x(0) =
x(1) = 1.

Proof. For any positive integer n, there is always a positive integer m such that
x(m) ≤ n ≤ x(m + 1). If n �= x(m),

0 < n − x(m) < x(m + 1) − x(m) = x(m − 1). (3)
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Since n − x(m) is positive, there exists a positive integer p such that

x(p) ≤ n − x(m) < x(p + 1). (4)

Now x(p) ≤ n − x(m) < x(m − 1) implies p ≤ m − 2, i.e. x(p) and x(m) are
not consecutive Fibonacci numbers. If n − x(m) �= x(p), there exists a positive
integer q ≤ p − 2 such that

x(q) ≤ n − x(m) − x(p) < x(q + 1) (5)

and the process continues. Ultimately, we must reach the point where the partial
sum equals a Fibonacci number – say x(t) – and thereby obtain the desired
representation

n = x(m) + x(p) + x(q) + . . . + x(t). (6)

2.2 Z-Representation

An 8-bit gray scale image has the intensity values in the range of [0,255]. The
distinct Fibonacci numbers below 255 are {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233}.
Each pixel intensity of an image can be represented as a sum of distinct non-
consecutive Fibonacci numbers. For instance the only Zeckendorf representation
of pixel value 255 is (233, 21, 1)Zck. Since there are 12 different possibilities to
represent any 8-bit intensity value, therefore each number is represented using
12 bits no consecutive bits are ON i.e. 1 because of non-consecutive Fibonacci
numbers constraint. Table 1 shows some Zeckendorf representations and their bit
patterns.

Table 1. Zeckendorf’s representation of some numbers.

N Partition Bit pattern N Partition Bit pattern

1 1 1 0 0 0 0 0 0 0 0 0 0 0 50 34 + 13 + 3 0 0 1 0 0 1 0 1 0 0 0 0

2 2 0 1 0 0 0 0 0 0 0 0 0 0 51 34 + 13 + 3 + 1 1 0 1 0 0 1 0 1 0 0 0 0

3 3 0 0 1 0 0 0 0 0 0 0 0 0 131 89 + 34 + 8 0 0 0 0 1 0 0 1 0 1 0 0

4 3 + 1 1 0 1 0 0 0 0 0 0 0 0 0 132 89 + 34 + 8 + 1 1 0 0 0 1 0 0 1 0 1 0 0

5 5 0 0 0 1 0 0 0 0 0 0 0 0 154 144 + 8 + 2 0 1 0 0 1 0 0 0 0 0 1 0

6 5 + 1 1 0 0 1 0 0 0 0 0 0 0 0 159 144 + 13 + 2 0 1 0 0 0 1 0 0 0 0 1 0

7 5 + 2 0 1 0 1 0 0 0 0 0 0 0 0 174 144 + 21 + 8 + 1 1 0 0 0 1 0 1 0 0 0 1 0

8 8 0 0 0 0 1 0 0 0 0 0 0 0 190 143 + 34 + 8 + 3 0 0 1 0 1 0 0 1 0 0 1 0

9 8 + 1 1 0 0 0 1 0 0 0 0 0 0 0 222 144 + 55 + 21 + 2 0 1 0 0 0 0 1 0 1 0 1 0

10 8 + 2 0 1 0 0 1 0 0 0 0 0 0 0 254 233 + 21 0 0 0 0 0 0 1 0 0 0 0 1
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3 Proposed Algorithm for Z-Coding

Based on the proposed partition property of integers, we design an algorithm that
encodes pixel relationship with its local neighborhood of dimension m×n by an
integer value ranging from 0 to 255 we named Z −code. We apply different basic
mathematical functions and operators i.e. minimum, maximum, summation and
some set operators i.e. intersection, set difference etc. The sequence in which
operations and functions are applied results in images that could be directly
used in computer vision pipeline for object detection and recognition.

Example 1 (Z-coding). Consider a pixel, of intensity 183, surrounded by the
following gray-levels {210, 106, 231, 233, 79, 142, 209, 188}.

The Zeckendorf decomposition for the neighboring pixel is respectively
{144 + 55 + 8 + 3, 89 + 13 + 3 + 1, 144 + 55 + 21 + 8 + 3, 233, 55 + 21 +
3, 89 + 34 + 13 + 5 + 1, 144 + 55 + 8 + 2, 144 + 34 + 8 + 2} and for the
central pixel is {144, 34, 5}. Applying the Algorithm1, we find when consid-
ering the first neighboring pixel {144, 34, 5} ∩ {144, 55, 8, 3} = {144} Since
dummy �= ∅ therefore s(1) will be equal to 144. Similarly for the second pixel
{144, 34, 5} ∩ {89, 13, 3, 1} = ∅. Since dummy = ∅ therefore the s(2) will be
equal to J0 which is 183. After the vector s is populated with the values

Algorithm 1. Algorithmic principle behind the image Z-coding

Require: Image I of size J × K: texel of size O;N is number of pixels arround center
pixel J0

Ensure: Z-coded image Z of size J × K of input image I

1: Initialization Z ← ∅; j = 2, k = 2
2: for j = 2 to J − 1 do

3: for k = 2 to K − 1 do

4: J0 = I(j, k); ⊲ central pixel of the texel
5: texel ← Intensity Values of N neighbouring pixels arround J0

6: s ← 0

7: S0 ← zeckendorf (J0)
8: for i = 1 to N do

9: S ← zeckendorf (texel(i));
10: dummy ← S0 op S ⊲ op is intersection or set difference operator
11: if (dummy = ∅)) then

12: s(i) ← J0 ⊲ J0 for quantization and 0 for contours
13: else

14: s(i) ← max(dummy) ⊲ max for quantization and sum for contours
15: end if

16: end for

17: Z(j, k) ← max(s)
18: end for

19: end forreturn Z

20: Function zeckendorf(x)
21: Decomposes an integer x as a sequence of Fibonacci numbers
22: EndFunction
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s = 144, 183, 144, 183, 183, 34, 144, 144, the maximum value is computed of this
set which is treated as the Z-code for the given pixel i.e. 183 in this example.

4 Results and Discussion

The algorithm proposed in Sect. 2.1 results in two different kinds of images based
on the initial operator which is applied i.e. either set difference or intersection.
The intersection operator find the similarity among the pixel and its neighbor-
hood Zeckendorf representation and place a value which is common among them
thus results in an image that is quantized in terms of their representation as
shown in Table 2 2nd row. The set difference operator extracts ultrametric con-
tours of an image resulting in image segmentation [1] shown in 3rd and 4rth row
of Table 2.

Compared to other local descriptors (see Sect. 1), the Z-coding

Table 2. Z-coded images using Zeckendorff representation – 1st row shows original
images, 2nd row shows quantized images obtained by applying intersection operator,
3rd row contains ultrametric contours obtained by applying set-difference operator and
last row shows complemented results of 3rd row
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– can be extended to any neighborhood size or geometry – this is because in
Table 1, the Z-value is computed from a set of differences of stack values (set
difference operation). This stack contains the grayscale values of the pixels.
It is arbitrarily extendable. In addition, 2p weighting or any binary coding is
disregarded,

– is invariant to any shift in grayscale as there is no ranking in the set of
differences of grayscale values nor in the weights,

– is order-invariant (same argument as above)
– does not consider the central pixel effect as the central pixel value does

not enter in the set difference operation but since the pick values in a
finite and bounded set of integers, the algorithm guarantee that the z-value
zi ∈ {0, . . . , 255},

– is nonlinear because the set difference operation is nonlinear,
– follows an integer generating scheme as the stacked values are provided by the

recurrence Eq. (2),
– is less sensitive to any noise influence as the Z-coding acts as a quantizer. The

quantization error is considered an additive noise source, and it is assumed to
be uniformly distributed over the range of values of the quantization error ∆,1

– comes with a performance criterion. The criterion to maximize is, for each
pixel (i, j) of the image, the sum Sij =

∑

p(
gσ(p)

gσ(p+1)
− 2

1+
√

5
)2 over the neigh-

boring pixels ranked in increasing order.

5 Conclusion

In this paper we describe a new image coding algorithm Z-coding based on
integer generating function and Zeckendorf theorem of integer decomposition.
This image coding method is invariant to shift and rotation, could be extended
to any neighborhood size and is independent of the reading order of neighboring
pixels. It summarizes an image either by identifying the homogeneity in various
irregular regions of image or by extracting soft contours using local contrast
quantification which could be utilized in computer vision pipeline.
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