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In this paper, we detail two side-channel attacks against the McEliece public-key cryptosystem. They exploit timing differences on the Patterson algorithm used for binary Goppa codes decoding in order to reveal one part of the private key: the support permutation. The first one is improving two existing timing attacks and uses the correlation between two different steps of the decoding algorithm. This improvement can be deployed on all error-vectors with Hamming weight smaller than a quarter of the minimum distance of the code. The second attack targets the evaluation of the error locator polynomial and succeeds on several different decoding algorithms. We also give an appropriate countermeasure.

Introduction

One of the main threats in the modern cryptography is the arrival of quantum computers. It was shown that cryptosystems based on large number factorisation could be compromised [START_REF] Shor | Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[END_REF]. In reaction to this thread, several solutions have been proposed, such as hash-based cryptography, code-based cryptography, lattice-based cryptography, and multivariate cryptography. The new facts concerning the post-quantum cryptography are well discussed in [START_REF] Daniel | Post-Quantum Cryptography[END_REF].

Code-based cryptosystems were introduced in 1978 by Robert J. McEliece [START_REF] Mceliece | A public-key cryptosystem based on algebraic coding theory[END_REF]. Many variants were attacked and partially or totally broken. Up to now, none of the proposed variants seemed as strong and secure as the original McEliece public-key cryptosystem (PKC) using Goppa codes. Structural attacks managed to reveal the secret key and totally break variants that used the generalized Reed-Solomon codes [START_REF] Sidelnikov | On the insecurity of cryptosystems based on generalized Reed-Solomon codes[END_REF] or QC-LDPC codes [START_REF] Otmani | Cryptanalysis of a McEliece cryptosystem based on quasicyclic LDPC codes[END_REF].

As the Goppa codes still resist to structural attacks, they present a real interest in our approach. So we focus our attention on the cryptanalysis of the McEliece PKC using Goppa codes. More exactly on the side-channel attacks using time differences between two executions of the same task. The interest of timing attacks is both practical and theoretical: we avoid unsecured implementations and discover new attacks succeeding in a polynomial time. The main purpose of these types of attacks is to reveal a part of the secret key and a breaking point of an algorithm. The authors of such exploits usually end up by giving the necessary countermeasures and the secure variant of the algorithms.

In the case of the McEliece PKC using Goppa codes, most of the timing attacks were discovered since 2008. Falko Strenzke's articles mention several weak points mostly situated in the decoding algorithm [START_REF] Strenzke | Side channels in the McEliece PKC[END_REF][START_REF] Shoufan | A Timing Attack against Patterson Algorithm in the McEliece PKC[END_REF][START_REF] Strenzke | A Timing Attack against the Secret Permutation in the McEliece PKC[END_REF][START_REF] Strenzke | Timing attacks against the syndrome inversion in code-based cryptosystems[END_REF]. Some of these can be repaired by an intelligent and cautious way of the programming manner such as proposed in [START_REF] Avanzi | Side-channel attacks on the McEliece and Niederreiter public-key cryptosystems[END_REF][START_REF] Strenzke | Side channels in the McEliece PKC[END_REF][START_REF] Daniel | McBits: fast constant-time code-based cryptography[END_REF].

All of the mentioned attacks were realised on a McEliece PKC implementation using the Patterson algorithm (cf. Fig. 1) for decoding Goppa codes. The number of error corrections in the Patterson algorithm is bounded: up to t errors can be corrected, where t is the degree of the Goppa polynomial.

Our contribution is to reveal a new timing attack against the error-locator polynomial (ELP) evaluation and to improve two existing attacks. In our new version of the two combined existing attacks, we detail how the relation between the two attacks is crucial in order to avoid eventual errors. The attacks are executed on the extended Euclidean algorithm (EEA) and exploit the number of iterations. As authors mentioned in [START_REF] Strenzke | Side channels in the McEliece PKC[END_REF][START_REF] Strenzke | A Timing Attack against the Secret Permutation in the McEliece PKC[END_REF][START_REF] Avanzi | Side-channel attacks on the McEliece and Niederreiter public-key cryptosystems[END_REF], the initial attacks are limited and may not allow the total break of the permutation. This limit is situated in the number of equations detected by their attack. We will use a new relation between the number of iterations in the two steps in order to expand the system and to fully determine the secret permutation. We will also give a single countermeasure, which is efficient to all types of attacks exploiting the EEA in this particular manner.

The second contribution is in giving a new timing attack against the ELP evaluation. The importance of this new attack is that it operates on the polynomial evaluation, applied in several decoding algorithms as the Patterson algorithm, Berlekamp-Massey algorithm or any general decoder for alternant codes. We will show that this attacks succeeds on several variants of the polynomial evaluation.

Background

Goppa codes

We will focus exclusively on binary Goppa codes in this paper, but it is easy to generalize our results to q-ary codes.

• Goppa polynomial:

g(x) is a polynomial over F 2 m [x] with deg(g) = t. • Goppa support: L = {α 0 , α 1 , .., α n-1 } subset of F 2 m s.t. g(α i ) = 0. • The syndrome polynomial associated to c ∈ F n 2 : S c (x) = n i=1 ci x+αi

Definition:

The Goppa code is:

Γ (L, g) = {c ∈ F n 2 | S c (x) ≡ 0 mod g(x)}
The syndrome polynomial S c (x) satisfies the following property:

S c (x) = ω(x) σ(x) mod g(x) σ(x) is called the error locator polynomial (ELP): σ(x) = t i=1 (x + a i )
, where ∀i ∈ {1, . . . , t}, a i ∈ L.

Properties: A Goppa code Γ (L, g) is a linear code over F 2 . Its length is given by n = |L|, its dimension is k ≥ n -mt, where t = deg(g) and its minimun distance is d ≥ t + 1.

Irreducible binary Goppa codes are defined by an irreducible Goppa polynomial g and admit the maximum length n = 2 m . We use this type of codes in the rest of the paper. The following notations are in correlation with these codes.

Notations:

In this paper, we will use the following notations:

• For the permutation of the support elements:

Π(L) = L = (Π(0), Π(1), . . . , Π(α i ), . . . , Π(α n-2 )
). • Let P (x) be a monic polynomial of degree t over F 2 m with t roots denoted a i :

P (x) = x t + S t t-1 x t-1 + S t t-2 x t-2 + . . . + S t 2 x 2 + S t 1 x + S t 0 ,
where the coefficients S i ∈ F m 2 are the usual symmetric functions:

S t t-1 = t i=1 a i , S t t-2 = t i=1 t j=1 j =i a i a j , . . ., S t 1 = t j=1 t i=1 i =j a i and S t 0 = t i=1
a i . The relations between coefficients will be exploited in Section 3.

The McEliece Cryptosystem

The McEliece PKC [START_REF] Mceliece | A public-key cryptosystem based on algebraic coding theory[END_REF] is composed by the three following algorithms.

Key generation:

The first step is to generate the support (the set of n = 2 m elements) and the Goppa polynomial g of degree t. Then, the parity check matrix can be built and brought to a systematic form: [I n-k |R] in order to recover a generator matrix G of the Goppa code. We randomly choose a non-singular k × k matrix S and a n × n permutation matrix Π, and compute the public k × n generator matrix G = SGΠ.

The key generation procedure outputs sk = (Γ (L, g), S, Π) and pk = (n, t, G).

Message encryption:

• Inputs: message m ∈ F k 2 , public key pk = (n, t, R T ).

• Output: ciphertext z ∈ F n 2 .
1. Randomly choose an n-bit error-vector with weight wt(e) = t; 2. Encode z = mG ⊕ e; 3. Return z.

Message decryption:

• Inputs: ciphertext z ∈ F n 2 , secret key sk = (Γ (L, g), S, Π).

• Output: message m ∈ F k 2 .
1. Compute z = zΠ -1 ; 2. Find m = mS from z ⊕ e using Decode(z ) with the secret code; 3. Compute m = m S -1 ; 4. Return m. Decode(.) is an alternant decoder.

Existing side-channel attacks:

There are several papers on side-channel attacks against the McEliece PKC and a quick review must be done in order to clear up the reader's understanding. Most of the attacks target the Patterson decoding algorithm and exploit several weaknesses as follow:

There are mainly two types of attacks classified by their goal:

1. Attacks recovering the secret message m [1,14,16]; 2. Attacks recovering (fully or partially) the secret key sk [START_REF] Shoufan | A Timing Attack against Patterson Algorithm in the McEliece PKC[END_REF][START_REF] Strenzke | A Timing Attack against the Secret Permutation in the McEliece PKC[END_REF][START_REF] Strenzke | Fast and secure root-finding for code-based cryptosystems[END_REF][START_REF] Strenzke | Timing attacks against the syndrome inversion in code-based cryptosystems[END_REF]. The attacks on steps and are able to determine some relations on the support elements by counting the number of iterations in the EEA. We improve them in Section 2. The attack on step reveals error positions using timing differences in the ELP evaluation. The attacker is able to find the error-vector with a certain non negligible probability. The basic idea is that two different

Step Ref. Countermeasure z = zΠ -1 S z (x) = H z (x t-1 , . . . , x 2 , x, 1) T S z (x) -1 mod g(x)
via EEA [START_REF] Strenzke | Timing attacks against the syndrome inversion in code-based cryptosystems[END_REF] control flow τ (x) = x + S z (x) -1 b(x)τ (x) ≡ a(x) mod g(x) [START_REF] Shoufan | A Timing Attack against Patterson Algorithm in the McEliece PKC[END_REF][START_REF] Strenzke | A Timing Attack against the Secret Permutation in the McEliece PKC[END_REF] in EEA make sure deg(a)

≤ t 2 ; deg(b) ≤ t-1 2 deg(ri) = deg(ri-1) -1 via EEA and deg(τ ) = t -1 σ(x) = a 2 (x) + xb 2 (
x) e = (σ(α0), σ(α1), . . . , σ(αn-1)) ⊕ (1, . . . , 1) [START_REF] Avanzi | Side-channel attacks on the McEliece and Niederreiter public-key cryptosystems[END_REF][START_REF] Strenzke | Fast and secure root-finding for code-based cryptosystems[END_REF][START_REF] Strenzke | Side channels in the McEliece PKC[END_REF] polynomials, with some different degrees, are not evaluated in the same time. So the timing difference gives some information on the error-vector. We improve this attack in Section 3. In the rest of this paper, we assume that an attacker chooses a weight 0 < r < t for the error-vector e and we use the following notations: deg(g) = t and wt(e) = r.

2 Timing attack against double using of the EEA Goal: The attacker's goal is to recover the secret permutation Π.

Identification of a leakage:

The leakage is identified at steps and of the Patterson algorithm. This type of attack was already published in [START_REF] Strenzke | A Timing Attack against the Secret Permutation in the McEliece PKC[END_REF][START_REF] Strenzke | Timing attacks against the syndrome inversion in code-based cryptosystems[END_REF]. The two steps using the EEA are considered as independent parts. In this section, we propose to show the relation existing between both steps and thus attack them. Indeed, the main problem of previous attacks is the limited number of cases in which they can be exploited. They just can be applied on wt(e) ∈ {2, 4} as shown in [START_REF] Strenzke | A Timing Attack against the Secret Permutation in the McEliece PKC[END_REF] or wt(e) ∈ {2, 4, 6} as presented in [START_REF] Strenzke | Timing attacks against the syndrome inversion in code-based cryptosystems[END_REF]. The problem comes from a simple fact: the number of iterations is given by two conditions. One of the condition is that all quotients in the EEA must be polynomials of degree equal to one. So when this condition is not fulfilled the number of iterations could not be any longer controlled by the attacker. We will use N and N as notations for the number of iterations in the 3rd step (respectively 5th step) of the Patterson algorithm.

Motivations of our attack:

We show that using the relation between both steps allows us to completely control the number of iterations. The other contribution is in finding the relation between both steps and in using it for building a larger set of equations. We will show that we are able to extend the limited equation number of the system up to wt(e) = deg(g)

2 . The main interest is that instead of finding only equations involving the permutation of 2, 4 or maybe 6 elements, we can extend the search as much as necessary in order to discover the secret permutation. In terms of complexity, instead of enumerating all possible permutations, i.e. n! permutations, we reduce the complexity to the following expression:

p i=3 n i , where p ≤ deg(g) 2 -1
So for small values of p, we have:

p i=3 n i ≤ n p × (p -2) ≤ en p p × (p -2)
(where e = 2.718281828 . . . is the basis of the natural logarithms).

In order to make clearer the difference between the original attack and ours, we propose to give a lower bound for the complexity of the original attack:

n e n ≤ n! Finally: p i=3 n i ≤ en p p × (p -2) << n e n ≤ n!
So the original attack is exponential in the length of the code as a timing attack would only have a complexity in the maximum of the error-vector's weight needed for the attack (often extremely small in comparison with the code's length).

Scenario:

The attacker proceeds in the three following steps:

1. He chooses a random message m and computes c = mG; 2. He randomly chooses an error-vector e of small weight wt(e) < t (where t is the correction capacity of the code) and computes z = mG ⊕ e; 3. He sends z to an oracle (O), which outputs the message m and the number of iterations in steps and of the Patterson algorithm from Fig. 1.

Main idea: For wt(e) = 2p with p ∈ N, the attacker finds equations having the following form:

wt(e) i=1 Π(α i ) = 0. He will be able to build this type of equations with 0 < wt(e) < deg(g) 2 .

Conditions: The general assumption is that the attacker knows the public key pk, the order of all elements in the support L (L is supposed to be public, for example in the lexicographic order) and has access to an oracle O. These assumptions are the same as in previously mentionned works. We improve the attack in the same context. The oracle O is also able to give some extra informations: the timing for the whole algorithm or just for one particular step. We assume that the attacker can violate the procedure by adding wt(e) < t errors. The attacker is able to choose the number and the positions of errors.

Step in the Patterson algorithm

It was shown in [START_REF] Strenzke | Timing attacks against the syndrome inversion in code-based cryptosystems[END_REF] that the syndrome inversion leaks some information. The attack is based on the number of iterations used in the EEA, in order to compute the inverse of the syndrome polynomial S(x) modulo the Goppa polynomial g(x). It uses the following properties:

N ≤ deg(σ) + deg(σ ), for wt(e) < deg(g) 2 .
We will not detail here all conditions, as they are well explained in [START_REF] Strenzke | Timing attacks against the syndrome inversion in code-based cryptosystems[END_REF], but we only give some important facts in order to make things clearer and to prepare the attack. Let us consider the ELP

σ(x) = x r + S r r-1 x r-1 + S r r-2 x r-2 + • • • + S r 2 x 2 + S r 1 x + S r 0 , with r ≡ 0 mod 2. Then σ (x) = S r r-1 x r-2 + • • • + S r 3 x 2 + S r 1 .
In this case, the maximum number of iterations is given by the coefficient S r r-1 = r i=1 a i . So if S r r-1 = 0, we obtain N = 2r -2 and all quotients have a degree equal to 1. If S r r-1 = 0 and S r r-3 = 0, then N = 2r -4 and all quotients have a degree equal to 1.

Step in the Patterson algorithm

Locate the leakage: Two observations have to be done in order to understand and to locate the leakage point. The first one is about the number of iterations. It was proven (in [START_REF] Shoufan | A Timing Attack against Patterson Algorithm in the McEliece PKC[END_REF]) that this number is (with a high probability):

N = N i=1 deg(q i ) = deg(b).
In the following paragraph, we will give some relations between τ (x), b(x), a(x) and σ(x) (given in steps , and in Fig. 1). We will prove some new relations. The new relations between these polynomials allow us to build the attack in such a manner that previous ambiguous cases are eliminated. These relations are crucial for better understanding of the entire decryption algorithm as they influence each step of the process and each particular form of the involved polynomials.

Properties: There are few properties useful for our approach: 

1. If r ≡ 0 mod 2, then deg(a) = r 2 see [11]. 2. If r ≡ 1 mod 2, then deg(b) = r-1 2 see [11]. 3. If deg(τ ) ≤ r 2 ,

Number of iterations

We can see that the number of iterations in the EEA equals to deg(b), so we will focus on the form of the polynomial b(x), more exactly when r is even. Let:

σ(x) = x 2p + S 2p 2p-1 x 2p-1 + S 2p 2p-2 x 2p-2 + S 2p 2p-3 x 2p-3 + . . . + S 2p 2 x 2 + S 2p 1 x + S 2p 0 .
We separate odd powers from even ones and get:

σ(x) = (x 2p + S 2p 2p-2 x 2p-2 + . . . + S 2p 2 x 2 + S 2p 0 ) +(S 2p 2p-1 x 2p-1 + S 2p 2p-3 x 2p-3 + . . . + S 2p 1 x) σ(x) = (x p + S 2p 2p-2 x p-1 + . . . + S 2p 2 x + S 2p 0 ) 2 +x( S 2p 2p-1 x p-1 + . . . + S 2p 1 b(x) ) 2
So deg(b) is given by the coefficients S 2p 2i-1 with i ∈ {1, 2, . . . , p}. Therefore the number of iterations could be given by the same coefficients under an extra condition: all quotients have a degree equals to one. So we can distinguish p -1 possible cases depending on the coefficients, if their degree is equal to 1 in each iteration. Therefore:

         N = p -1 if S 2p 2p-1 = 0 N = p -2 if S 2p 2p-1 = 0 and S 2p 2p-3 = 0 N = p -3 if S 2p
2p-1 = 0 S 2p 2p-3 = 0 and S 2p 2p-5 = 0 . . . In all cases, the same assumption is made: the degree of the quotient is equal to 1 in each iteration. It means that we might have the number of iterations without any condition on coefficients.

Attack against the pair (N , N )

How it works. In this paragraph, we will explain how our attack works. We start by presenting the general relation for the pair (N , N ). Using Subsections 2.1 and 2.2, we get the following property:

General property: Let wt(e) = 2p < t/2. N , N (N , N ) = (4p -4, p -2) ⇒ 2p i=1 a i = 0
with probability P success . In Appendix C, a toy example is presented for a better understanding.

Success probability

The success probability P success is described by the following event: {All quotients have a degree equals to one}. If we consider all elements of our support as uniformly distributed variables and the independence of each step inside the EEA, under the initial assumptions, we have:

P success = P({N = 4p -4} ∩ {N = p -2}) = P({N = 4p -4})P({N = p -2}) = (1 -1 n ) N +N .
Experimental results show that for n = 2048 and wt(e) = 4, in order to find equations, have the following form: Π(α 1 ) + Π(α 2 ) + Π(α 3 ) + Π(α 4 ) = 0 the probability is equal to 0.998. It means that less that 0.2% of the cases are not exploitable among all possible cases under the condition: N = 4 and N = 0. In other words, each time that this combination is revealed, the probability of having a good equation for our attack is equal to 0.998 for the given parameters.

Experimental work

In order to validate the relations that we present in the previous paragraph for (N , N ), we used a Pari/GP implementation of the McEliece cryptosystem (the code will be publicly available). We computed a keypair, then encoded and decoded a given message multiple times, by checking the value of the couple (N , N ), searching for the valid combinations described above. We have also used different values for m, the extension degree of the finite field. We ran the algorithm until we got the specific combination about hundred times. Then, we obtained an average value for the necessary iterations required to get the searched combination. The results are presented in the following table: It means that for m = 7, we need to send to the oracle in average 127 different ciphertexts, in order to get the wanted relation (Π(α 1 ) + Π(α 2 ) + Π(α 3 ) + Π(α 4 ) = 0). In the case of the previous equation, the density equals in average to:

1 127 × P success = 1 127 × 1 - 127 128 4 .
Knowing one relation allows us, by fixing one of the positions, to reduce the number of ciphertexts that has to be sent to the oracle, it means that wanted relations are revealed more often as we progress in the attack. It also gives the first intuition on the structure of the permutation (see Appendix C). Attack implementation: In order to practically test our attack, we used the same software implementation. In order to reveal timings close to real values, we repeated the attack more than 10 6 times. We present the obtained results in the following table :   wt(e) Timings for expected attack equation (in sec.) Timings for random type equation (in sec.) Observation: We didn't give the timings for the odd values as they are constant and independant from the linear combinations between the permutations of the error positions. From Figure 3, we observe that there's a slight difference between the attack on this type of combinations and on randomly distributed combinations.
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As we mentioned before for the random combinations, those with the maximum number of iterations are more likely to appear (the case when all coefficients are different from zero). So in this case, we have the timing difference required for our attack to succeed. In Subsection 2.7, we explain how the patch will work not only on this type of attacks but even on other types as the bit-flipping attacks.

Countermeasures

We have seen that it is possible to attack a system by knowing how many times the EEA is repeated. The number of iterations can go from 0 to t -1 in the syndrome inversion and from 0 to t/2 in the ELP determination. In order to avoid a correlation-finding from the number of iterations, we propose to introduce extra iterations into the EEA. The number of extra iterations should be chosen between 0 and a value that we call extra. The extra value is either t/2 or t -1, for the syndrome inversion or the ELP determination , respectively. The variable i contains the number of iterations realized in the first part of the secured EEA. We chose to use integer values in the extra EEA steps, in order to avoid divisions by zero that may occur if we keep the previous terms. The point is to keep computing things that are as computationally expensive as the original EEA, so that an attacker can't make the difference between true steps and extra steps. We present the proposal of the secured EEA in Figure 4.

The new security parameters: We recall the fact that normal security parameters do not take in consideration of timing attacks. Usually security parameters are given under the assumption of possible theorical attacks such as ISD [START_REF] Becker | Decoding random binary linear codes in 2 (n/20) : How 1+1=0 improves information set decoding[END_REF] 

1. d ← d break 2. [b-1, b0] ← [0, 1] 3. [r-1, r0] ← [g(x), f (x)] 4. i ← 0 5. While deg(ri) > d do i ← i + 1 ri-2(x) = ri-1(x)qi(x) + ri(x) bi(x) ← bi-2(x) + qi(x)bi-1(x) end while 6. a(x) ← ri(x) 7. b(x) ← bi(x) 8. extra = f (t, d break ) 9. While i < extra do i ← i + 1 ri-2(x) = 3qi(x) + 5 bi(x) ← 5 + 6qi(x)
end while

Fig. 4. The secured extended Euclidean algorithm

For the first parameters, a timing attack with p = 6 would reveal a complexity less than 2 61 elementary operations, that is way lower than the security level of the original proposal. So for timing attacks, larger parameters have to be taken in consideration in order to maintain the same level of security. For example, in order to reach a 100 bit security level against this type of timing attacks, one should propose n = 131072 without countermeasure. The usual solution is not to increase values of parameters but to propose secure variant of the algorithm, variant that is not vulnerable to the specified attack. Our proposal is slower that the original algorithm, it operates (t -1) × O(1) for the syndrome inversion and t 2 × O(1) for the key equation (where O( 1) is the usual complexity for a division). Meanwhile, it is secure against timing attacks described below. The proof is very simple and it's based on the fact that this particular type of timing attacks are based on the number of iterations in the EEA. Since our algorithm performs the same number of iterations, no matter which relations are hidden between the polynomial coefficients, it can't reveal any of such secret relations. Once the countermeasure applied, we ran the same attack and got the following timings for selected Hamming weights (the average timings are presented for more than 10 7 simulations in Fig. 5).

wt(e) Timings for attack type equations (in sec.) Timings for a random type combination (in sec.) Interpretation: We observe that the protected implementation is impossible to attack (using the same techniques). We stress that the proposed countermeasure is also efficient in the case when an attacker wants to use previous techniques, like in [START_REF] Strenzke | A Timing Attack against the Secret Permutation in the McEliece PKC[END_REF][START_REF] Strenzke | Timing attacks against the syndrome inversion in code-based cryptosystems[END_REF][START_REF] Shoufan | A Timing Attack against Patterson Algorithm in the McEliece PKC[END_REF].

Timing attack against the ELP evaluation

Goal: The attacker's goal is to find the private permutation Π.

Identification of a leakage:

A leakage is identified at step of the Patterson algorithm: the ELP evaluation. We recall that the ELP is denoted σ in Subsection 1.1. The attack is based on the fact that the form of the polynomial differs depending on the word to decode. We will prove that the algorithm's complexity is strongly related to the coefficients of σ(x). We will then perform a timing attack on the ELP evaluation and control the values of the coefficients of σ(x).

Motivations of our attack: One of the main motivations of our attack is that it can operate on all existing implementations of a general alternant decoder. It operates on the ELP evaluation, step that has to be computed in any decoding algorithm solving the so-called key-equation. We will give two basic algorithms for the ELP evaluation with some improvements and show that even with the published improvements our attack succeeds. We will choose the polynomial evaluation from right to left (the straightforward algorithm) and from left to right (the Ruffini-Horner scheme). Let the σ polynomial be of degree t. The first algorithm computes the result within 3t -1 operations (t additions and 2t -1 multiplications), whereas the second one does it within 2t operations (t additions and t multiplications). It was proven by V. Pan in 1966 [START_REF] Victor | On Methods of Computing the Values of Polynomials[END_REF] that the Ruffini-Horner's scheme [START_REF] William | A new method of solving numerical equations of all orders,by continuous approximation[END_REF] is optimal in terms of complexity. We will see that our attack works in the case of the first algorithm. We will give an improvement for a faster computation of this algorithm but still vulnerable to our attack. For the second algorithm, the attack is still successful with an extra condition: the attacker has to be able to detect whether at each step the algorithm computes the same number of operations or less. If this condition is fulfilled the attack works as well as in the first case. In the next paragraph, we will give more details about improvements that we used in our implementation.

The main idea of the improvement is to use the fact that some support elements have particular properties (e.g. 0 and 1). Knowing the fact that one coefficient equals zero speeds up the algorithm for operations like multiplication or sum has a fixed value if zero is taken as one of the input elements, the same thing happens within the multiplication by one. So we will exploit these properties in order to improve our implementation. Each time a coefficient equals one or zero it will be stored in a special table used afterwards by multiplication or addition. The case where a coefficient equals zero is rare and its probability has been studied in [START_REF] Dragoi | Polynomial structures in code-based cryptography[END_REF]. Nevertheless, each time there's a coefficient equal to zero we will no longer multiply it by the corresponding element because of the zero product. So we will use the predefined tables to get rid of the useless operations. We will proceed exactly the same way when the multiplication of an element has to be done when a coefficient equals to one. So each time we have one coefficient equal to zero, using our predefined tables, we get rid of two operations (one addition and one multiplication).

Scenario:

The attack scenario is the same as in the previous attack except for the last step. Indeed, the attacker gets the running time for the ELP evaluation in this section (step in Figure 1).

Idea: For wt(e) = 2, the attacker will find the positions of Π(0) and Π(1) (permutations of zero and one). After enough iterations, he will fix those two positions and repeat this attack with wt(e) = 3, he will then find the secret permutation Π (using exhaustive search for the remaining positions).

Conditions:

The assumptions are the same as in the previous attack except that the attacker does not know the order of the elements in the support L.

Success probability

As we said, in this attack we will only consider polynomials with a degree lower than three. For the case r = 3, we will give the full table of probabilities. We will start with the following general problem:

Problem: Let P (x) be a monic polynomial of degree r with r distinct roots over F 2 m . What is the probability that all its coefficients are different from zero?

Conclusion

In this article, we focused our attention on the cryptanalysis of the McEliece PKC using the binary Goppa codes. We showed the existing weak points in the Patterson decoding algorithm and determined the relations between the number of iterations in two different steps of this algorithm and the secret permutation. Since those relations were the main connection idea between the two extended Euclidean algorithm calls, we set up a timing attack based on this fact. The advantage of this attack is that it increased the probability of success by avoiding ambiguous cases, undetectable in previous attacks. The other advantage is that it allows higher expansion of the number of equations determined by the attacker in order to find the secret permutation.

The second important contribution of our article is a new attack that can be performed on several different decoding algorithms. It reveals that even intelligent variants of some polynomial evaluation algorithms might leak information and need to be patched or replaced. The ideas of these attacks might be reused in any further implementations (using the algorithms mentioned before), secure variants must be used in order to avoid any leakage point.

A Proof of the general properties

1. As deg(b) ≤ r-1 2 ⇒ deg(bτ ) ≤ r -1.
So there is no division by g(x) when searching for a(x). There are particular cases where zero iteration is performed in the ELP determination. Interpretation: A special case is when the errors have an even Hamming weight. Before the computation of the EEA algorithm, we could exactly give the degree of both polynomials (a(x) and b(x)) if τ (x) has a degree equal to half of the error-vector's weight. For example, if we compute τ (x) and find out that it has a degree equal to 4, we know exactly that an error-vector of Hamming weight equal to 8 was involved in the process. We also know that a(x) equals τ (x) at a constant close (because deg(b) = 0).

C Toy example for the EEA attack

Consider F 2 4 [x] = F2[x] x 4 +x+1 . The generator matrix G of the Goppa code and the support L = {0, 1, α, α 2 , . . . , α 14 } are public. Let m ∈ F k 2 be the message and O the decoding oracle. We notice that if L is public, one can find G(x) such that L = F2[x] G(x) . The other way is equaly true: if G(x) is public then one can easily find L. Suppose that the secret permutation is: 

Π(L) = L = {α,
+ i2 + i3 = 0 0 if i1 + i2 + i3 = 0 • deg(b) = 1 if i1 + i2 + i3 = 0 0 if i1 + i2 + i3 = 0

E Proof of Answer from page 11

We have: S 3 2 = a 1 + a 2 + a 3 , S 3 1 = a 1 a 2 + a 1 a 3 + a 2 a 3 and S 3 0 = a 1 a 2 a 3 . We notice that: (0, α k , α j ) / ∈ E = {(α 1 , α 2 , α 3 ) ∈ L 3 | 3 i=1 α i = 0}. So:

P(S 3 2 = 0 ∩ S 3 1 = 0 ∩ S 3 0 = 0) = A 2 n-1 A 3 n .
In order to establish the full table of probabilities we need to compute:

P 1 = P(S 3 2 = 0 ∩ S 3 1 = 0 ∩ S 3 0 = 0).
This leads to the system of equations:

   a 1 + a 2 + a 3 = 0 a 1 a 2 + a 1 a 3 + a 2 a 3 = 0 a 1 a 2 a 3 = 0 ⇔    a 1 + a 2 = a 3 a 1 a 2 = (a 1 + a 2 )a 3 a 1 a 2 a 3 = 0 ⇔    a 1 + a 2 = a 3 a 1 a 2 = (a 1 + a 2 ) 2 a 1 a 2 a 3 = 0 .
Without loss of generality, we can set a 1 = α i and a 2 = α i+c , then:

   a 1 + a 2 = a 3 a 1 a 2 = (a 1 + a 2 ) 2 a 1 a 2 a 3 = 0 ⇔    a 3 = α i + α i+c α 2i+c = α 2i (1 + α 2c ) a 1 = α i , a 2 = α i+c ⇔ α 2c + α c + 1 = 0.
If m and 2 are coprime, the polynomial x 2 + x + 1 has no root in F 2 m , then P 1 = 0. Finally we obtain: P(S 3 i = 0) = P(S 3 i = 0 ∩ S 3 j = 0), ∀i = j ∈ {1, 2, 3}. 
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  then deg(a) = deg(τ ) + deg(b). 4. If deg(τ ) ≤ r 2 and deg(τ ) = 0, then wt(e) ≡ 0 mod 2. Proof. cf Appendix A. When wt(e) is odd: Let deg(g) be equal to 2p + 1, with p ∈ N. For an error-vector with Hamming weight wt(e) = 2k + 1, where k ≤ p -1, we have the following relations: deg(b) = k, deg(a) ≤ k and deg(τ ) ≥ 2p -k. See examples in Appendix B.1. When wt(e) is even: Let deg(g) be equal to 2p. For an error-vector with Hamming weight wt(e) = 2k, where k ≤ p, we have the following relations: deg(a) = k, deg(b) ≤ k -1 and deg(b) = 0 ⇔ deg(τ ) = k. See examples in Appendix B.2.
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  . For example, for the McEliece PKC, the usual parameters are:

100-bit security n = 2048, t = 50, 128-bit security n = 2960, t = 56, 256-bit security n = 6624, t = 115. Inputs: f (x), g(x), d break and t. Outputs: a(x) and b(x) s.t. a(x) ≡ b(x)f (x) mod g(x)

-n-2 2 equations. To illustrate how this attack works, a toy example is given in Appendix D.

This problem was treated in [START_REF] Dragoi | Polynomial structures in code-based cryptography[END_REF] and the results show that the probability can be bounded. For the classical parameters of the McEliece PKC, i.e. n = 2048 and t ≤ 50, the authors obtain: P ≥ 0.95.

The case r = 3:

Answer : Let P (x) be a monic polynomial of degree 3 with three distinct roots over F 2 m and m = 1 mod 2. The probability P r=3 that all its coefficients are different from zero satisfies:

Proof. C.f. Appendix E.

Finding the permutation of the zero and one elements in the support

1. Consider the error-vectors e i with wt(e i ) = 1.

In this case, the error locator polynomial has the following form: σ(x) = x + a i , with a i ∈ L = {0, 1, α, . . . , α n-2 }.

If a i = 0, there is one addition (+) in the σ(x) evaluation. 2. Consider the error-vectors e i with wt(e i ) = 2.

In this case, the error locator polynomial has the following form:

We distinguish two possible cases:

if a i a j = 0 The case (b) leads to a computation of the polynomial evaluation with one extra addition (+) and the timings reveal all the couples (α i , 0). We can assume now that the position of Π(0) is known. 3. We fix this position and we seek for the position of Π [START_REF] Avanzi | Side-channel attacks on the McEliece and Niederreiter public-key cryptosystems[END_REF]. Since the polynomial σ(x) = x 2 + S 2 1 x, the fastest evaluation is obtained for the couple (Π(0), Π(1)) as there is only one addition (+) and one square computation.

Attack scenario when r = 3

We will consider error-vectors with Hamming weight that equals 3. The corresponding σ(x) polynomial has always one of the eight following representations:

if S 3 2 = 0 and S 3 1 = 0 and S 3 0 = 0 6. σ(x) = x 3 + S 3 1 x if S 3 1 = 0 and S 3 2 = 0 and S 3 0 = 0 7. σ(x) = x 3 + S 3 0 if S 3 0 = 0 and S 3 2 = 0 and S 3 1 = 0 8. σ(x) = x 3 if S 3 0 = 0 and S 3 2 = 0 and S 3 1 = 0 11 From Fig. 6 presented in appendix E, we obtain the four following cases:

Several cases can be eliminated by considering the fact that we accomplished the first step of the current attack, that is why we know the position of Π(0). If we consider all error-vectors where a i = 0 ∀i ∈ {1, 2, . . . , n -1} (i.e. 0 is not a root of P (x)), we reduce the possibilities for σ(x). The new form of the system is the following:

In all cases, x 3 must be computed so we will not consider this part in the timing differences. In the structure that computes the polynomial evaluation the fastest is the last one. But this case is performed only when S 3 2 = 0.

Finding the positions of two elements such that Π(α j )Π(α k ) = 1

In order to increase the number of equations in our system, we exploit the fact that (F 2 m ) * is cyclic. Recall: we know the positions of Π(0), Π(1) and Π(α 1 ) + Π(α 2 ) + Π(α 3 ) = 0. Without loss of generality, we choose to fix "Π(0)" on the first position and choose two other positions such that the sum is different from 1. We are able to do that because we know the position of "Π(1)" and the couples (α 1 , α 2 ) such that 1+α 1 +α 2 = 0. We get two new positions b 1 and b 2 such that b 1 + b 2 = 1. The error locator polynomial is:

This form is the fastest to be computed as there is one less multiplication compare to the other case.

System resolution

Number of equations:

We will give the number of linear and quadratic equations obtained by the attacker. Finding the positions of Π(0) and Π(1) reduces the search set to (n -2) elements.

• The first set of linear equations:

Equation type (1):

The last equation is determined by all other ones because for the last couple only one possible solution remains available. For instance, if the attacker finds ( n-2 2 -1) different equations, then the last equation can be directly determined.

• The second set of linear equations:

As the first set, the last one can be determined by all others. This comes from the fact that for the three positions, we fixed the position of Π( 1) as the first one. So we have (n -2) possibilities on the second position. But there are two repetitions for each (Π(1), Π(α j ), Π(α k ))-vector.

• The third set of quadratic equations:

The total number of equations for Π(α i )+Π(α j )+Π(α k ) = 0 including the second set is equal to (n-1)(n-2), as the third position is fixed and the two others are free and different. Here, the number of repetitions equals six. So we obtain (n-2)(n-1) -3 rd step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 4. (The positions ( i1 , i2 , i3 , i4 ) are the four non-zero positions of e.)

The couple (N , N ) = (4, 0) reveals all ( i1 , i2 , i3 , i4 ) such that i1 + i2 + i3 + i4 = 0.

Here ( i1 , i2 , i3 , i4 ) ∈ {( 1 , 2 , 10 , 16 ), ( 2 , 3 , 13 , 16 ), . . . }.

• deg(σ) = 4 and deg(ω

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 6. (The positions ( i1 , i2 , i3 , i4 , i5 ) are the five non-zero positions of e and i6 = 15 .) The couple (N , N ) = (8, 1) reveals all

• The attacker asks O to decode all the z = mG ⊕e with wt(e) = 6. (The positions ( i1 , i2 , i3 , i4 , i5 , i6 ) are the six non-zero positions of e.)

The couple (N , N ) = (8, 1) reveals all ( i1 , i2 , i3 , . . . , i6 ) such that i1

-Last step: The attacker has to solve the following system of quadratic equations in order to find the secret permutation:

Solving the system will allow to fully determine the secret permutation 3 , α 4 , . . . , 0, 1}.

D Toy example for the ELP evaluation attack

x 3 +x+1 . The Goppa polynomial G and the support L = {0, 1, α, α 2 , α 3 , α 4 , α 5 , α 6 } are public. Let m ∈ F k 2 be the message and O the decoding oracle. We notice that if L is public one can find G(x) such that L = F2[x] G(x) . The other way is equaly true: if G(x) is public then one can easily discover L. Suppose that the secret permutation is: Solving the system will allow to fully determine the secret permutation Π(L) = {α, α 3 , 1, α 4 , α 5 , 0, α 2 , α 6 }.