
HAL Id: hal-01560052
https://hal.science/hal-01560052v1

Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Timing Attacks against the Secret
Permutation in the McEliece PKC

Dominic Bucerzan, Pierre-Louis Cayrel, Vlad Dragoi, Tania Richmond

To cite this version:
Dominic Bucerzan, Pierre-Louis Cayrel, Vlad Dragoi, Tania Richmond. Improved Timing Attacks
against the Secret Permutation in the McEliece PKC. International Journal of Computers, Commu-
nications and Control, 2017, 12 (1), pp.7. �10.15837/ijccc.2017.1.2780�. �hal-01560052�

https://hal.science/hal-01560052v1
https://hal.archives-ouvertes.fr

Improved Timing Attacks against the Secret Permutation in the
McEliece PKC

Dominic Bucerzan1, Pierre-Louis Cayrel2, Vlad Dragoi3, Tania Richmond4

1 Aurel Vlaicu University of Arad
Department of Mathematics and Computer Science

Romania, 310330 Arad, Elena Dragoi, 2
dominic@bbcomputer.ro

2 Laboratoire Hubert Curien, UMR CNRS 5516,
Université de Lyon, Saint-Etienne, France

pierre.louis.cayrel@univ-st-etienne.fr
3 Laboratoire LITIS - EA 4108

Université de Rouen - UFR Sciences et Techniques,
76800 Saint Etienne du Rouvray, France

vlad.dragoi1@univ-rouen.fr
4 Laboratoire IMATH, EA 2134,
Avenue de l’Université , BP 20132,
83957 La Garde Cedex, France
tania.richmond@univ-tln.fr

Abstract. In this paper, we detail two side-channel attacks against the McEliece public-key cryp-
tosystem. They exploit timing differences on the Patterson algorithm used for binary Goppa codes
decoding in order to reveal one part of the private key: the support permutation. The first one is
improving two existing timing attacks and uses the correlation between two different steps of the
decoding algorithm. This improvement can be deployed on all error-vectors with Hamming weight
smaller than a quarter of the minimum distance of the code. The second attack targets the evaluation
of the error locator polynomial and succeeds on several different decoding algorithms. We also give an
appropriate countermeasure.

Keywords: code-based cryptography, McEliece PKC, side-channel attacks, timing attack, extended Eu-
clidean algorithm.

Introduction

One of the main threats in the modern cryptography is the arrival of quantum computers. It was shown that
cryptosystems based on large number factorisation could be compromised [10]. In reaction to this thread,
several solutions have been proposed, such as hash-based cryptography, code-based cryptography, lattice-based
cryptography, and multivariate cryptography. The new facts concerning the post-quantum cryptography are
well discussed in [3].

Code-based cryptosystems were introduced in 1978 by Robert J. McEliece [7]. Many variants were attacked
and partially or totally broken. Up to now, none of the proposed variants seemed as strong and secure as the
original McEliece public-key cryptosystem (PKC) using Goppa codes. Structural attacks managed to reveal
the secret key and totally break variants that used the generalized Reed-Solomon codes [12] or QC-LDPC
codes [8].

As the Goppa codes still resist to structural attacks, they present a real interest in our approach. So
we focus our attention on the cryptanalysis of the McEliece PKC using Goppa codes. More exactly on the
side-channel attacks using time differences between two executions of the same task. The interest of timing
attacks is both practical and theoretical: we avoid unsecured implementations and discover new attacks
succeeding in a polynomial time. The main purpose of these types of attacks is to reveal a part of the secret

key and a breaking point of an algorithm. The authors of such exploits usually end up by giving the necessary
countermeasures and the secure variant of the algorithms.

In the case of the McEliece PKC using Goppa codes, most of the timing attacks were discovered since 2008.
Falko Strenzke’s articles mention several weak points mostly situated in the decoding algorithm [16,11,13,15].
Some of these can be repaired by an intelligent and cautious way of the programming manner such as proposed
in [1,16,4].

All of the mentioned attacks were realised on a McEliece PKC implementation using the Patterson
algorithm (cf. Fig. 1) for decoding Goppa codes. The number of error corrections in the Patterson algorithm
is bounded: up to t errors can be corrected, where t is the degree of the Goppa polynomial.

Our contribution is to reveal a new timing attack against the error-locator polynomial (ELP) evaluation
and to improve two existing attacks. In our new version of the two combined existing attacks, we detail how
the relation between the two attacks is crucial in order to avoid eventual errors. The attacks are executed
on the extended Euclidean algorithm (EEA) and exploit the number of iterations. As authors mentioned in
[16,13,1], the initial attacks are limited and may not allow the total break of the permutation. This limit is
situated in the number of equations detected by their attack. We will use a new relation between the number
of iterations in the two steps in order to expand the system and to fully determine the secret permutation.
We will also give a single countermeasure, which is efficient to all types of attacks exploiting the EEA in this
particular manner.

The second contribution is in giving a new timing attack against the ELP evaluation. The importance of
this new attack is that it operates on the polynomial evaluation, applied in several decoding algorithms as
the Patterson algorithm, Berlekamp-Massey algorithm or any general decoder for alternant codes. We will
show that this attacks succeeds on several variants of the polynomial evaluation.

1 Background

1.1 Goppa codes

We will focus exclusively on binary Goppa codes in this paper, but it is easy to generalize our results to q-ary
codes.

• Goppa polynomial:
g(x) is a polynomial over F2m [x] with deg(g) = t.

• Goppa support:
L = {α0, α1, .., αn−1} subset of F2m s.t. g(αi) 6= 0.

• The syndrome polynomial associated to c ∈ Fn2 :
Sc(x) =

n∑
i=1

ci

x+αi

Definition: The Goppa code is:

Γ (L, g) = {c ∈ Fn2 | Sc(x) ≡ 0 mod g(x)}

The syndrome polynomial Sc(x) satisfies the following property:

Sc(x) = ω(x)
σ(x) mod g(x)

σ(x) is called the error locator polynomial (ELP): σ(x) =
t∏
i=1

(x+ ai), where ∀i ∈ {1, . . . , t}, ai ∈ L.

Properties: A Goppa code Γ (L, g) is a linear code over F2. Its length is given by n = |L|, its dimension is
k ≥ n−mt, where t = deg(g) and its minimun distance is d ≥ t+ 1.

2

Irreducible binary Goppa codes are defined by an irreducible Goppa polynomial g and admit the
maximum length n = 2m. We use this type of codes in the rest of the paper. The following notations are in
correlation with these codes.

Notations: In this paper, we will use the following notations:

• For the permutation of the support elements:
Π(L) = L′ = (Π(0), Π(1), . . . ,Π(αi), . . . ,Π(αn−2)).

• Let P (x) be a monic polynomial of degree t over F2m with t roots denoted ai: P (x) = xt + Stt−1x
t−1 +

Stt−2x
t−2 + . . . + St2x

2 + St1x + St0, where the coefficients Si ∈ Fm2 are the usual symmetric functions:

Stt−1 =
t∑
i=1

ai, Stt−2 =
t∑
i=1

t∑
j=1
j 6=i

aiaj , . . ., St1 =
t∑

j=1

t∏
i=1
i6=j

ai and St0 =
t∏
i=1

ai. The relations between coefficients

will be exploited in Section 3.

1.2 The McEliece Cryptosystem

The McEliece PKC [7] is composed by the three following algorithms.

Key generation: The first step is to generate the support (the set of n = 2m elements) and the Goppa
polynomial g of degree t. Then, the parity check matrix can be built and brought to a systematic form:
[In−k|R] in order to recover a generator matrix G of the Goppa code. We randomly choose a non-singular
k×k matrix S and a n×n permutation matrix Π, and compute the public k×n generator matrix G = SGΠ.
The key generation procedure outputs sk = (Γ (L, g), S,Π) and pk = (n, t,G).

Message encryption:

• Inputs: message m ∈ Fk2 ,
public key pk = (n, t, RT).
• Output: ciphertext z ∈ Fn2 .

1. Randomly choose an n-bit error-vector with
weight wt(e) = t;

2. Encode z = mG ⊕ e;
3. Return z.

Message decryption:

• Inputs: ciphertext z ∈ Fn2 ,
secret key sk = (Γ (L, g), S,Π).

• Output: message m ∈ Fk2 .

1. Compute z′ = zΠ−1;
2. Find m′ = mS from z′ ⊕ e using Decode(z′) with

the secret code;
3. Compute m = m′S−1;
4. Return m.

Decode(.) is an alternant decoder.

Existing side-channel attacks: There are several papers on side-channel attacks against the McEliece
PKC and a quick review must be done in order to clear up the reader’s understanding. Most of the attacks
target the Patterson decoding algorithm and exploit several weaknesses as follow:
There are mainly two types of attacks classified by their goal:

1. Attacks recovering the secret message m [1,14,16];
2. Attacks recovering (fully or partially) the secret key sk [11,13,14,15].

The attacks on steps ¸ and º are able to determine some relations on the support elements by counting the
number of iterations in the EEA. We improve them in Section 2.
The attack on step ¼ reveals error positions using timing differences in the ELP evaluation. The attacker is
able to find the error-vector with a certain non negligible probability. The basic idea is that two different

3

Step Ref. Countermeasure
¶ z′ = zΠ−1

· Sz′(x) = H′z′(xt−1, . . . , x2, x, 1)T

¸ Sz′(x)−1 mod g(x) via EEA [15] control flow
¹ τ(x) =

√
x+ Sz′(x)−1

º b(x)τ(x) ≡ a(x) mod g(x) [11,13] in EEA make sure
deg(a) ≤ b t

2c ; deg(b) ≤ b t−1
2 c deg(ri) = deg(ri−1)− 1

via EEA and deg(τ) = t− 1
» σ(x) = a2(x) + xb2(x)
¼ e = (σ(α0), σ(α1), . . . , σ(αn−1))⊕ (1, . . . , 1) [1,14,16] the non-support or

make sure deg(σ) = t

½ e′ = eΠ

¾ z = z′ ⊕ e′

Fig. 1. Patterson algorithm: existing timing attacks and countermeasures

polynomials, with some different degrees, are not evaluated in the same time. So the timing difference gives
some information on the error-vector. We improve this attack in Section 3.
In the rest of this paper, we assume that an attacker chooses a weight 0 < r < t for the error-vector e and we
use the following notations:

deg(g) = t and wt(e) = r.

2 Timing attack against double using of the EEA

Goal: The attacker’s goal is to recover the secret permutation Π.

Identification of a leakage: The leakage is identified at steps ¸ and º of the Patterson algorithm. This type
of attack was already published in [13,15]. The two steps using the EEA are considered as independent parts.
In this section, we propose to show the relation existing between both steps and thus attack them. Indeed,
the main problem of previous attacks is the limited number of cases in which they can be exploited. They
just can be applied on wt(e) ∈ {2, 4} as shown in [13] or wt(e) ∈ {2, 4, 6} as presented in [15].
The problem comes from a simple fact: the number of iterations is given by two conditions. One of the
condition is that all quotients in the EEA must be polynomials of degree equal to one. So when this condition
is not fulfilled the number of iterations could not be any longer controlled by the attacker. We will use N¸

and Nº as notations for the number of iterations in the 3rd step (respectively 5th step) of the Patterson
algorithm.

Motivations of our attack: We show that using the relation between both steps allows us to completely control
the number of iterations. The other contribution is in finding the relation between both steps and in using it
for building a larger set of equations. We will show that we are able to extend the limited equation number of
the system up to wt(e) = deg(g)

2 . The main interest is that instead of finding only equations involving the
permutation of 2, 4 or maybe 6 elements, we can extend the search as much as necessary in order to discover
the secret permutation.
In terms of complexity, instead of enumerating all possible permutations, i.e. n! permutations, we reduce the
complexity to the following expression:

p∑
i=3

(
n

i

)
, where p ≤ deg(g)

2 − 1

So for small values of p, we have:
p∑
i=3

(
n

i

)
≤
(
n

p

)
× (p− 2) ≤

(
en

p

)p
× (p− 2)

4

(where e = 2.718281828 . . . is the basis of the natural logarithms).
In order to make clearer the difference between the original attack and ours, we propose to give a lower bound
for the complexity of the original attack: (

n

e

)n
≤ n!

Finally:
p∑
i=3

(
n

i

)
≤
(
en

p

)p
× (p− 2) <<

(n
e

)n
≤ n!

So the original attack is exponential in the length of the code as a timing attack would only have a complexity
in the maximum of the error-vector’s weight needed for the attack (often extremely small in comparison with
the code’s length).

Scenario: The attacker proceeds in the three following steps:

1. He chooses a random message m and computes c = mG;
2. He randomly chooses an error-vector e of small weight wt(e) < t (where t is the correction capacity of the

code) and computes z = mG ⊕ e;
3. He sends z to an oracle (O), which outputs the message m and the number of iterations in steps ¸ and º

of the Patterson algorithm from Fig. 1.

Main idea: For wt(e) = 2p with p ∈ N, the attacker finds equations having the following form:
wt(e)∑
i=1

Π(αi) = 0. He will be able to build this type of equations with 0 < wt(e) < deg(g)
2 .

Conditions: The general assumption is that the attacker knows the public key pk, the order of all elements
in the support L (L is supposed to be public, for example in the lexicographic order) and has access to an
oracle O. These assumptions are the same as in previously mentionned works. We improve the attack in the
same context. The oracle O is also able to give some extra informations: the timing for the whole algorithm
or just for one particular step. We assume that the attacker can violate the procedure by adding wt(e) < t
errors. The attacker is able to choose the number and the positions of errors.

2.1 Step ¸ in the Patterson algorithm

It was shown in [15] that the syndrome inversion leaks some information. The attack is based on the number
of iterations used in the EEA, in order to compute the inverse of the syndrome polynomial S(x) modulo the
Goppa polynomial g(x). It uses the following properties:

N¸ ≤ deg(σ) + deg(σ′), for wt(e) < deg(g)
2 .

We will not detail here all conditions, as they are well explained in [15], but we only give some important
facts in order to make things clearer and to prepare the attack. Let us consider the ELP

σ(x) = xr + Srr−1x
r−1 + Srr−2x

r−2 + · · ·+ Sr2x
2 + Sr1x+ Sr0 ,

with r ≡ 0 mod 2. Then σ′(x) = Srr−1x
r−2 + · · ·+ Sr3x

2 + Sr1 .

In this case, the maximum number of iterations is given by the coefficient Srr−1 =
r∑
i=1

ai. So if Srr−1 6= 0, we

obtain N¸ = 2r − 2 and all quotients have a degree equal to 1. If Srr−1 = 0 and Srr−3 6= 0, then N¸ = 2r − 4
and all quotients have a degree equal to 1.

5

2.2 Step º in the Patterson algorithm

Locate the leakage: Two observations have to be done in order to understand and to locate the leakage
point. The first one is about the number of iterations. It was proven (in [11]) that this number is (with a
high probability):

Nº =
Nº∑
i=1

deg(qi) = deg(b).

In the following paragraph, we will give some relations between τ(x), b(x), a(x) and σ(x) (given in steps ¹,
º and » in Fig. 1). We will prove some new relations. The new relations between these polynomials allow
us to build the attack in such a manner that previous ambiguous cases are eliminated. These relations are
crucial for better understanding of the entire decryption algorithm as they influence each step of the process
and each particular form of the involved polynomials.

Properties: There are few properties useful for our approach:

1. If r ≡ 0 mod 2, then deg(a) = r
2 see [11].

2. If r ≡ 1 mod 2, then deg(b) = r−1
2 see [11].

3. If deg(τ) ≤ b r2c, then deg(a) = deg(τ) + deg(b).
4. If deg(τ) ≤ b r2c and deg(τ) 6= 0, then wt(e) ≡ 0 mod 2.

Proof. cf Appendix A.

When wt(e) is odd: Let deg(g) be equal to 2p+ 1, with p ∈ N. For an error-vector with Hamming weight
wt(e) = 2k+ 1, where k ≤ p− 1, we have the following relations: deg(b) = k, deg(a) ≤ k and deg(τ) ≥ 2p− k.
See examples in Appendix B.1.

When wt(e) is even: Let deg(g) be equal to 2p. For an error-vector with Hamming weight wt(e) = 2k,
where k ≤ p, we have the following relations: deg(a) = k, deg(b) ≤ k − 1 and deg(b) = 0⇔ deg(τ) = k. See
examples in Appendix B.2.

2.3 Number of iterations

We can see that the number of iterations in the EEA equals to deg(b), so we will focus on the form of the
polynomial b(x), more exactly when r is even. Let:

σ(x) = x2p + S2p
2p−1x

2p−1 + S2p
2p−2x

2p−2 + S2p
2p−3x

2p−3 + . . .+ S2p
2 x2 + S2p

1 x+ S2p
0 .

We separate odd powers from even ones and get:

σ(x) = (x2p + S2p
2p−2x

2p−2 + . . .+ S2p
2 x2 + S2p

0)
+(S2p

2p−1x
2p−1 + S2p

2p−3x
2p−3 + . . .+ S2p

1 x)

σ(x) = (xp +
√
S2p

2p−2x
p−1 + . . .+

√
S2p

2 x+
√
S2p

0)
2

+x(
√
S2p

2p−1x
p−1 + . . .+

√
S2p

1︸ ︷︷ ︸
b(x)

)
2

So deg(b) is given by the coefficients S2p
2i−1 with i ∈ {1, 2, . . . , p}. Therefore the number of iterations could be

given by the same coefficients under an extra condition: all quotients have a degree equals to one. So we can
distinguish p− 1 possible cases depending on the coefficients, if their degree is equal to 1 in each iteration.
Therefore:

6

Nº = p− 1 if S2p

2p−1 6= 0
Nº = p− 2 if S2p

2p−1 = 0 and S2p
2p−3 6= 0

Nº = p− 3 if S2p
2p−1 = 0 S2p

2p−3 = 0 and S2p
2p−5 6= 0

...

In all cases, the same assumption is made: the degree of the quotient is equal to 1 in each iteration. It means
that we might have the number of iterations without any condition on coefficients.

2.4 Attack against the pair (N¸, Nº)

How it works. In this paragraph, we will explain how our attack works. We start by presenting the general
relation for the pair (N¸, Nº). Using Subsections 2.1 and 2.2, we get the following property:

General property: Let wt(e) = 2p < t/2. N¸, Nº

(N¸, Nº) = (4p− 4, p− 2)⇒
2p∑
i=1

ai = 0

with probability Psuccess.
In Appendix C, a toy example is presented for a better understanding.

2.5 Success probability

The success probability Psuccess is described by the following event: {All quotients have a degree equals to
one}. If we consider all elements of our support as uniformly distributed variables and the independence of
each step inside the EEA, under the initial assumptions, we have:

Psuccess = P({N¸ = 4p− 4} ∩ {Nº = p− 2})
= P({N¸ = 4p− 4})P({Nº = p− 2})
= (1− 1

n)N¸+Nº .

Experimental results show that for n = 2048 and wt(e) = 4, in order to find equations, have the following
form: Π(α1) +Π(α2) +Π(α3) +Π(α4) = 0 the probability is equal to 0.998. It means that less that 0.2% of
the cases are not exploitable among all possible cases under the condition: N¸ = 4 and Nº = 0. In other
words, each time that this combination is revealed, the probability of having a good equation for our attack
is equal to 0.998 for the given parameters.

2.6 Experimental work

In order to validate the relations that we present in the previous paragraph for (N¸, Nº), we used a Pari/GP
implementation of the McEliece cryptosystem (the code will be publicly available). We computed a keypair,
then encoded and decoded a given message multiple times, by checking the value of the couple (N¸, Nº),
searching for the valid combinations described above. We have also used different values for m, the extension
degree of the finite field. We ran the algorithm until we got the specific combination about hundred times.
Then, we obtained an average value for the necessary iterations required to get the searched combination.
The results are presented in the following table:
It means that for m = 7, we need to send to the oracle in average 127 different ciphertexts, in order to get
the wanted relation (Π(α1) +Π(α2) +Π(α3) +Π(α4) = 0). In the case of the previous equation, the density
equals in average to:

1
127 × Psuccess = 1

127 ×
(

1− 127
128

)4
.

Knowing one relation allows us, by fixing one of the positions, to reduce the number of ciphertexts that has
to be sent to the oracle, it means that wanted relations are revealed more often as we progress in the attack.
It also gives the first intuition on the structure of the permutation (see Appendix C).

7

Combination:
N¸ 4 8 12
Nº 0 1 2

Number of iterations for m = 7 127 138 142
Number of iterations for m = 8 235 270 273

Fig. 2. Number of necessary iterations to get the combination for error-vectors of Hamming weight 4, 6 and 8

Attack implementation: In order to practically test our attack, we used the same software implementation.
In order to reveal timings close to real values, we repeated the attack more than 106 times. We present the
obtained results in the following table:

wt(e) Timings for expected attack equation (in sec.) Timings for random type equation (in sec.)
4 30141892× 10−6 304856× 10−4

6 3072799× 10−5 310234× 10−4

8 31597171× 10−6 32242382× 10−6

10 3285724× 10−6 3345847× 10−5

Fig. 3. Timings (in sec.) for decryption in the case of n = 211 and t = 16

Observation: We didn’t give the timings for the odd values as they are constant and independant from the
linear combinations between the permutations of the error positions. From Figure 3, we observe that there’s a
slight difference between the attack on this type of combinations and on randomly distributed combinations.
As we mentioned before for the random combinations, those with the maximum number of iterations are
more likely to appear (the case when all coefficients are different from zero). So in this case, we have the
timing difference required for our attack to succeed. In Subsection 2.7, we explain how the patch will work
not only on this type of attacks but even on other types as the bit-flipping attacks.

2.7 Countermeasures

We have seen that it is possible to attack a system by knowing how many times the EEA is repeated.
The number of iterations can go from 0 to t − 1 in the syndrome inversion and from 0 to t/2 in the ELP
determination. In order to avoid a correlation-finding from the number of iterations, we propose to introduce
extra iterations into the EEA. The number of extra iterations should be chosen between 0 and a value that
we call extra. The extra value is either t/2 or t− 1, for the syndrome inversion ¸ or the ELP determination
º, respectively. The variable i contains the number of iterations realized in the first part of the secured EEA.
We chose to use integer values in the extra EEA steps, in order to avoid divisions by zero that may occur if
we keep the previous terms. The point is to keep computing things that are as computationally expensive
as the original EEA, so that an attacker can’t make the difference between true steps and extra steps. We
present the proposal of the secured EEA in Figure 4.

The new security parameters: We recall the fact that normal security parameters do not take in consideration
of timing attacks. Usually security parameters are given under the assumption of possible theorical attacks
such as ISD [2]. For example, for the McEliece PKC, the usual parameters are:

100-bit security n = 2048, t = 50,
128-bit security n = 2960, t = 56,
256-bit security n = 6624, t = 115.

8

Inputs: f(x), g(x), dbreak and t.
Outputs: a(x) and b(x) s.t. a(x) ≡ b(x)f(x) mod g(x)

1. d← dbreak

2. [b−1, b0]← [0, 1]
3. [r−1, r0]← [g(x), f(x)]
4. i← 0
5. While deg(ri) > d do

i ← i + 1
ri−2(x) = ri−1(x)qi(x) + ri(x)
bi(x) ← bi−2(x) + qi(x)bi−1(x)

end while
6. a(x)← ri(x)
7. b(x)← bi(x)
8. extra = f(t, dbreak)
9. While i < extra do

i ← i + 1
ri−2(x) = 3qi(x) + 5
bi(x) ← 5 + 6qi(x)

end while

Fig. 4. The secured extended Euclidean algorithm

For the first parameters, a timing attack with p = 6 would reveal a complexity less than 261 elementary
operations, that is way lower than the security level of the original proposal. So for timing attacks, larger
parameters have to be taken in consideration in order to maintain the same level of security. For example, in
order to reach a 100 bit security level against this type of timing attacks, one should propose n = 131072
without countermeasure.
The usual solution is not to increase values of parameters but to propose secure variant of the algorithm,
variant that is not vulnerable to the specified attack. Our proposal is slower that the original algorithm, it
operates (t − 1) × O(1) for the syndrome inversion and t

2 × O(1) for the key equation (where O(1) is the
usual complexity for a division).
Meanwhile, it is secure against timing attacks described below. The proof is very simple and it’s based on
the fact that this particular type of timing attacks are based on the number of iterations in the EEA. Since
our algorithm performs the same number of iterations, no matter which relations are hidden between the
polynomial coefficients, it can’t reveal any of such secret relations.
Once the countermeasure applied, we ran the same attack and got the following timings for selected Hamming
weights (the average timings are presented for more than 107 simulations in Fig. 5).

wt(e) Timings for attack type equations (in sec.) Timings for a random type combination (in sec.)
6 57.99 57.90
7 57.89
8 57.94 58.03
9 58.33
10 57.81 57.89

Fig. 5. Timings (in sec.) for decryption in the case of n = 211 and t = 10

Interpretation: We observe that the protected implementation is impossible to attack (using the same
techniques). We stress that the proposed countermeasure is also efficient in the case when an attacker wants
to use previous techniques, like in [13,15,11].

3 Timing attack against the ELP evaluation

Goal: The attacker’s goal is to find the private permutation Π.

9

Identification of a leakage: A leakage is identified at step ¼ of the Patterson algorithm: the ELP evaluation.
We recall that the ELP is denoted σ in Subsection 1.1. The attack is based on the fact that the form of
the polynomial differs depending on the word to decode. We will prove that the algorithm’s complexity is
strongly related to the coefficients of σ(x). We will then perform a timing attack on the ELP evaluation and
control the values of the coefficients of σ(x).

Motivations of our attack: One of the main motivations of our attack is that it can operate on all existing
implementations of a general alternant decoder. It operates on the ELP evaluation, step that has to be
computed in any decoding algorithm solving the so-called key-equation.
We will give two basic algorithms for the ELP evaluation with some improvements and show that even with
the published improvements our attack succeeds. We will choose the polynomial evaluation from right to left
(the straightforward algorithm) and from left to right (the Ruffini-Horner scheme). Let the σ polynomial
be of degree t. The first algorithm computes the result within 3t − 1 operations (t additions and 2t − 1
multiplications), whereas the second one does it within 2t operations (t additions and t multiplications). It
was proven by V. Pan in 1966 [9] that the Ruffini-Horner’s scheme [6] is optimal in terms of complexity.
We will see that our attack works in the case of the first algorithm. We will give an improvement for a faster
computation of this algorithm but still vulnerable to our attack. For the second algorithm, the attack is still
successful with an extra condition: the attacker has to be able to detect whether at each step the algorithm
computes the same number of operations or less. If this condition is fulfilled the attack works as well as in
the first case. In the next paragraph, we will give more details about improvements that we used in our
implementation.
The main idea of the improvement is to use the fact that some support elements have particular properties
(e.g. 0 and 1). Knowing the fact that one coefficient equals zero speeds up the algorithm for operations like
multiplication or sum has a fixed value if zero is taken as one of the input elements, the same thing happens
within the multiplication by one. So we will exploit these properties in order to improve our implementation.
Each time a coefficient equals one or zero it will be stored in a special table used afterwards by multiplication
or addition. The case where a coefficient equals zero is rare and its probability has been studied in [5].
Nevertheless, each time there’s a coefficient equal to zero we will no longer multiply it by the corresponding
element because of the zero product. So we will use the predefined tables to get rid of the useless operations.
We will proceed exactly the same way when the multiplication of an element has to be done when a coefficient
equals to one. So each time we have one coefficient equal to zero, using our predefined tables, we get rid of
two operations (one addition and one multiplication).

Scenario: The attack scenario is the same as in the previous attack except for the last step. Indeed, the
attacker gets the running time for the ELP evaluation in this section (step ¼ in Figure 1).

Idea: For wt(e) = 2, the attacker will find the positions of Π(0) and Π(1) (permutations of zero and one).
After enough iterations, he will fix those two positions and repeat this attack with wt(e) = 3, he will then
find the secret permutation Π (using exhaustive search for the remaining positions).

Conditions: The assumptions are the same as in the previous attack except that the attacker does not know
the order of the elements in the support L.

3.1 Success probability

As we said, in this attack we will only consider polynomials with a degree lower than three. For the case
r = 3, we will give the full table of probabilities. We will start with the following general problem:

Problem: Let P (x) be a monic polynomial of degree r with r distinct roots over F2m .What is the probability
that all its coefficients are different from zero?

10

This problem was treated in [5] and the results show that the probability can be bounded. For the classical
parameters of the McEliece PKC, i.e. n = 2048 and t ≤ 50, the authors obtain:

P ≥ 0.95.

The case r = 3:

Answer : Let P (x) be a monic polynomial of degree 3 with three distinct roots over F2m and m = 1 mod 2.
The probability Pr=3 that all its coefficients are different from zero satisfies:

Pr=3 = 1− 5
2m .

Proof. C.f. Appendix E.

3.2 Finding the permutation of the zero and one elements in the support

1. Consider the error-vectors ei with wt(ei) = 1.
In this case, the error locator polynomial has the following form:

σ(x) = x+ ai, with ai ∈ L = {0, 1, α, . . . , αn−2}.

If ai 6= 0, there is one addition (+) in the σ(x) evaluation.
2. Consider the error-vectors ei with wt(ei) = 2.

In this case, the error locator polynomial has the following form:

σ(x) = x2 + S2
1x+ S2

0 , with S2
1 = ai + aj and S2

0 = aiaj .

We distinguish two possible cases:
(a) σ(x) = x2 + S2

1x+ S2
0 if aiaj 6= 0

(b) σ(x) = x2 + S2
1x if aiaj = 0

The case (b) leads to a computation of the polynomial evaluation with one extra addition (+) and the
timings reveal all the couples (αi, 0). We can assume now that the position of Π(0) is known.

3. We fix this position and we seek for the position of Π(1). Since the polynomial σ(x) = x2 + S2
1x, the

fastest evaluation is obtained for the couple (Π(0), Π(1)) as there is only one addition (+) and one square
computation.

3.3 Attack scenario when r = 3

We will consider error-vectors with Hamming weight that equals 3. The corresponding σ(x) polynomial has
always one of the eight following representations:

1. σ(x) = x3 + S3
2x

2 + S3
1x+ S3

0 if S3
1S

3
2S

3
0 6= 0

2. σ(x) = x3 + S3
2x

2 + S3
1x if S3

0 = 0 and S3
2S

3
1 6= 0

3. σ(x) = x3 + S3
2x

2 + S3
0 if S3

1 = 0 and S3
2S

3
0 6= 0

4. σ(x) = x3 + S3
1x+ S3

0 if S3
2 = 0 and S3

1S
3
0 6= 0

5. σ(x) = x3 + S3
2x

2 if S3
2 6= 0 and S3

1 = 0 and S3
0 = 0

6. σ(x) = x3 + S3
1x if S3

1 6= 0 and S3
2 = 0 and S3

0 = 0
7. σ(x) = x3 + S3

0 if S3
0 6= 0 and S3

2 = 0 and S3
1 = 0

8. σ(x) = x3 if S3
0 = 0 and S3

2 = 0 and S3
1 = 0

11

From Fig. 6 presented in appendix E, we obtain the four following cases:

(a). σ(x) = x3 + S3
2x

2 + S3
1x+ S3

0 if S3
1S

3
2S

3
0 6= 0 and P = n−5

n
(b). σ(x) = x3 + S3

2x
2 + S3

1x if S3
0 = 0 and S3

1S
3
2 6= 0 and P = 3

n
(c). σ(x) = x3 + S3

2x
2 + S3

0 if S3
1 = 0 and S3

1S
3
0 6= 0 and P = 1

n
(d). σ(x) = x3 + S3

1x+ S3
0 if S3

2 = 0 and S3
1S

3
0 6= 0 and P = 1

n

Several cases can be eliminated by considering the fact that we accomplished the first step of the current attack,
that is why we know the position of Π(0). If we consider all error-vectors where ai 6= 0 ∀i ∈ {1, 2, . . . , n− 1}
(i.e. 0 is not a root of P (x)), we reduce the possibilities for σ(x). The new form of the system is the following:σ(x) = x3 + S3

2x
2 + S3

1x+ S3
0 if S3

1S
3
2S

3
0 6= 0

σ(x) = x3 + S3
2x

2 + S3
0 if S3

1 = 0 and S3
2S

3
0 6= 0

σ(x) = x3 + S3
1x+ S3

0 if S3
2 = 0 and S3

0S
3
1 6= 0

In all cases, x3 must be computed so we will not consider this part in the timing differences. In the structure
that computes the polynomial evaluation the fastest is the last one. But this case is performed only when
S3

2 = 0.

3.4 Finding the positions of two elements such that Π(αj)Π(αk) = 1

In order to increase the number of equations in our system, we exploit the fact that (F2m)∗ is cyclic.
Recall: we know the positions of Π(0), Π(1) and Π(α1) +Π(α2) +Π(α3) = 0. Without loss of generality, we
choose to fix "Π(0)" on the first position and choose two other positions such that the sum is different from 1.
We are able to do that because we know the position of "Π(1)" and the couples (α1, α2) such that 1+α1+α2 = 0.
We get two new positions b1 and b2 such that b1 + b2 6= 1. The error locator polynomial is:
σ(x) = x3 + S3

2x
2 + S3

1x. For b1b2 = 1, we get σ(x) = x3 + S3
2x

2 + x. This form is the fastest to be computed
as there is one less multiplication compare to the other case.

3.5 System resolution

Number of equations: We will give the number of linear and quadratic equations obtained by the attacker.
Finding the positions of Π(0) and Π(1) reduces the search set to (n− 2) elements.
• The first set of linear equations:

Equation type (1): Π(αj)Π(αk) = 1⇒]eq. = n−2
2

The last equation is determined by all other ones because for the last couple only one possible solution
remains available. For instance, if the attacker finds (n−2

2 − 1) different equations, then the last equation can
be directly determined.
• The second set of linear equations:

Equation type (2): Π(αj) +Π(αk) = 1⇒]eq. = n−2
2 .

As the first set, the last one can be determined by all others. This comes from the fact that for the three
positions, we fixed the position of Π(1) as the first one. So we have (n− 2) possibilities on the second position.
But there are two repetitions for each (Π(1), Π(αj), Π(αk))-vector.
• The third set of quadratic equations:

Equation type (3): Π(αi) +Π(αj) +Π(αk) = 0⇒]eq. = (n−2)(n−4)
6

The total number of equations for Π(αi)+Π(αj)+Π(αk) = 0 including the second set is equal to (n−1)(n−2),
as the third position is fixed and the two others are free and different. Here, the number of repetitions equals
six. So we obtain

(
(n−2)(n−1)

6 − n−2
2

)
equations.

To illustrate how this attack works, a toy example is given in Appendix D.

12

4 Conclusion

In this article, we focused our attention on the cryptanalysis of the McEliece PKC using the binary Goppa
codes. We showed the existing weak points in the Patterson decoding algorithm and determined the relations
between the number of iterations in two different steps of this algorithm and the secret permutation. Since
those relations were the main connection idea between the two extended Euclidean algorithm calls, we set up
a timing attack based on this fact. The advantage of this attack is that it increased the probability of success
by avoiding ambiguous cases, undetectable in previous attacks. The other advantage is that it allows higher
expansion of the number of equations determined by the attacker in order to find the secret permutation.

The second important contribution of our article is a new attack that can be performed on several different
decoding algorithms. It reveals that even intelligent variants of some polynomial evaluation algorithms might
leak information and need to be patched or replaced. The ideas of these attacks might be reused in any
further implementations (using the algorithms mentioned before), secure variants must be used in order to
avoid any leakage point.

References

1. Roberto Avanzi, Simon Hoerder, Dan Page, and Mike Tunstall. Side-channel attacks on the McEliece and
Niederreiter public-key cryptosystems. In Cryptology ePrint Archive, Report 2010/479, 2010.

2. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear codes in
2(n/20) : How 1+1=0 improves information set decoding. In Eurocrypt 2012, Lecture Notes Computer Science,
Springer-Verlag, 2012., 2012.

3. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-Quantum Cryptography,Springer. 2009.
4. Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: fast constant-time code-based cryptography.

2013.0616.
5. Vlad Dragoi, Pierre-Louis Cayrel, Brice Colombier, and Tania Richmond. Polynomial structures in code-based

cryptography . In Indocrypt 2013, 2013.
6. William G. Horner. A new method of solving numerical equations of all orders,by continuous approximation.

pages 308–335, 1819.
7. Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. In Jet Propulsion Laboratory

DSN Progress Report 42-44, pages 114–116, 1978.
8. Ayoub Otmani, Jean-Pierre Tillich, and Leonard Dallot. Cryptanalysis of a McEliece cryptosystem based on quasi-

cyclic LDPC codes. In Proceedings of First International Conference on Symbolic Computation and Cryptography
(SCC 2008), pages 69–81, 2008.

9. Victor Y. Pan. On Methods of Computing the Values of Polynomials. In UspeKhi Mathematicheskikh Nauk 21,
pages 103–134, 1966.

10. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
1994.

11. Abdulhadi Shoufan, Falko Strenzke, H. Gregor Molter, and Marc Stottinger. A Timing Attack against Patterson
Algorithm in the McEliece PKC. In ICISC 2009, pages 161–175, 2009.

12. V.M. Sidelnikov and S.O. Shestakov. On the insecurity of cryptosystems based on generalized Reed-Solomon
codes. In Discrete Math. Appl., pages 439–444, 1992.

13. Falko Strenzke. A Timing Attack against the Secret Permutation in the McEliece PKC. In Nicolas Sendrier,
editor, Post-Quantum Cryptography, Third international workshop, PQCrypto 2010, Lecture Notes Computer
Science, Springer, volume 6061, pages 95–107, 2010.

14. Falko Strenzke. Fast and secure root-finding for code-based cryptosystems. In Cryptology ePrint Archive, Report
2011/672, 2011.

15. Falko Strenzke. Timing attacks against the syndrome inversion in code-based cryptosystems. In Cryptology ePrint
Archive, Report 2011/683, 2011.

16. Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Abdulhadi Shoufan. Side channels in
the McEliece PKC. In Johannes Buchmann and Jintai Ding, editors, Post-Quantum Cryptography, Second
international workshop, PQCrypto 2008, Lecture Notes Computer Science, Springer., volume 5299, pages 216–229,
2008.

13

A Proof of the general properties

1. As deg(b) ≤ b r−1
2 c ⇒ deg(bτ) ≤ r − 1. So there is no division by g(x) when searching for a(x). There are

particular cases where zero iteration is performed in the ELP determination.
2. One knows that wt(e) ≡ 0 mod 2⇔ deg(a) ≥ deg(b) + 1. Suppose that deg(b) ≥ deg(a)⇒ deg(τ) = 0
⇒ deg(b) = deg(a)⇒ wt(e) ≡ 1 mod 2, what is in contradiction with assumption.

B Examples for deg(g) = 20

B.1 With wt(e) ≡ 1 mod 2

wt(e) deg(τ) deg(b) deg(a)
1 0 0 0
3 19 1 ≤ 1
5 ≥ 18 2 ≤ 2
7 ≥ 17 3 ≤ 3
9 ≥ 16 4 ≤ 4
11 ≥ 15 5 ≤ 5
13 ≥ 14 6 ≤ 6
15 ≥ 13 7 ≤ 7
17 ≥ 12 8 ≤ 8
19 ≥ 11 9 ≤ 9

B.2 With wt(e) ≡ 0 mod 2

wt(e) deg(τ) deg(b) deg(a)
2 1 0 1
4 2 ≥ 19 0 ≤ 1 2
6 3 ≥ 18 0 ≤ 2 3
8 4 ≥ 17 0 ≤ 3 4
10 5 ≥ 16 0 ≤ 4 5
12 6 ≥ 15 0 ≤ 5 6
14 7 ≥ 14 0 ≤ 6 7
16 8 ≥ 13 0 ≤ 7 8
18 9 ≥ 12 0 ≤ 8 9
20 10 ≥ 11 0 ≤ 9 10

Interpretation: A special case is when the errors have an even Hamming weight. Before the computation
of the EEA algorithm, we could exactly give the degree of both polynomials (a(x) and b(x)) if τ(x) has a
degree equal to half of the error-vector’s weight. For example, if we compute τ(x) and find out that it has a
degree equal to 4, we know exactly that an error-vector of Hamming weight equal to 8 was involved in the
process. We also know that a(x) equals τ(x) at a constant close (because deg(b) = 0).

C Toy example for the EEA attack

Consider F24 [x] = F2[x]
x4+x+1 . The generator matrix G of the Goppa code and the support L = {0, 1, α, α2, . . . , α14}

are public. Let m ∈ Fk2 be the message and O the decoding oracle. We notice that if L is public, one can find
G(x) such that L = F2[x]

G(x) . The other way is equaly true: if G(x) is public then one can easily find L. Suppose
that the secret permutation is:

Π(L) = L′ = {α, α2, α3, . . . , α14, 0, 1} = {`i |i ∈ (1 . . . 16)}

– 1st step:
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 1.
? N¸ and Nº reveals the position of Π(0): `15.
◦ This is mainly due to: σ(x) = x. (We have τ(x) = 0 and S−1(x) = x.)

– 2nd step:
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 4. (The positions (`i1 , `i2 , `i3) are the
three non-zero positions of e and `i4 = `15.)

? The couple (N¸, Nº) = (4, 0) reveals all (`i1 , `i2 , `i3) such that `i1 + `i2 + `i3 = 0.
Here (`i1 , `i2 , `i3) ∈ {(`1, `4, `16), (`3, `14, `16), . . . }.

◦ deg(σ) = 4 and deg(ω) =
{

2 if `i1 + `i2 + `i3 6= 0
0 if `i1 + `i2 + `i3 = 0

◦ deg(b) =
{

1 if `i1 + `i2 + `i3 6= 0
0 if `i1 + `i2 + `i3 = 0

14

– 3rd step:
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 4. (The positions (`i1 , `i2 , `i3 , `i4) are
the four non-zero positions of e.)

? The couple (N¸, Nº) = (4, 0) reveals all (`i1 , `i2 , `i3 , `i4) such that `i1 + `i2 + `i3 + `i4 = 0.
Here (`i1 , `i2 , `i3 , `i4) ∈ {(`1, `2, `10, `16), (`2, `3, `13, `16), . . . }.

◦ deg(σ) = 4 and deg(ω) =
{

2 if `i1 + `i2 + `i3 + `i4 6= 0
0 if `i1 + `i2 + `i3 + `i4 = 0

◦ deg(b) =
{

1 if `i1 + `i2 + `i3 + `i4 6= 0
0 if `i1 + `i2 + `i3 + `i4 = 0

– 4th step:
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 6. (The positions (`i1 , `i2 , `i3 , `i4 , `i5)
are the five non-zero positions of e and `i6 = `15.)

? The couple (N¸, Nº) = (8, 1) reveals all (`i1 , `i2 , `i3 , `i4 , `i5) such that `i1 + `i2 + · · ·+ `i5 = 0.
Here (`i1 , `i2 , `i3 , `i4 , `i5) ∈ {(`1, `2, `3, `12, `16), (`3, `4, `8, `12, `16), . . . }.

◦ deg(σ) = 4 and deg(ω) =
{

4 if `i1 + `i2 + `i3 + `i4 + `i5 6= 0
2 if `i1 + `i2 + `i3 + `i4 + `i5 = 0

◦ deg(b) =
{

2 if `i1 + `i2 + `i3 + `i4 + `i5 6= 0
1 if `i1 + `i2 + `i3 + `i4 + `i5 = 0

– 5th step:
• The attacker asks O to decode all the z = mG⊕e with wt(e) = 6. (The positions (`i1 , `i2 , `i3 , `i4 , `i5 , `i6)
are the six non-zero positions of e.)

? The couple (N¸, Nº) = (8, 1) reveals all (`i1 , `i2 , `i3 , . . . , `i6) such that `i1 + `i2 + · · ·+ `i6 = 0.
Here (`i1 , `i2 , `i3 , . . . , `i6) ∈ {(`1, `2, `3, `4, `6, `16), . . . }.

◦ deg(σ) = 4 and deg(ω) =
{

4 if `i1 + `i2 + `i3 + · · ·+ `i6 6= 0
2 if `i1 + `i2 + `i3 + · · ·+ `i6 = 0

◦ deg(b) =
{

2 if `i1 + `i2 + `i3 + · · ·+ `i6 6= 0
1 if `i1 + `i2 + `i3 + · · ·+ `i6 = 0

– . . .

– Last step: The attacker has to solve the following system of quadratic equations in order to find the secret
permutation:

`15 = Π(0) ; 1st step
`1 + `4 + `16 = `3 + `14 + `16 = · · · = 0 2nd step
`1 + `2 + `10 + `16 = `2 + `3 + `13 + `16 = · · · = 0 3rd step
`1 + `2 + `3 + `12 + `16 = `3 + `4 + `8 + `12 + `16 = · · · = 0 4th step
`1 + `2 + `3 + `4 + `6 + `16 = · · · = 0 5th step
. . .

Solving the system will allow to fully determine the secret permutation

Π(L) = L′ = {α, α2, α3, α4, . . . , 0, 1}.

15

D Toy example for the ELP evaluation attack

Consider F23 [x] = F2[x]
x3+x+1 . The Goppa polynomial G and the support L = {0, 1, α, α2, α3, α4, α5, α6} are

public. Let m ∈ Fk2 be the message and O the decoding oracle. We notice that if L is public one can find G(x)
such that L = F2[x]

G(x) . The other way is equaly true: if G(x) is public then one can easily discover L. Suppose
that the secret permutation is:

Π(L) = L′ = {α, α3, 1, α4, α5, 0, α2, α6} = {`i |i ∈ {1, . . . , 8}}

– 1st step:
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 2. (The positions (`j , `k) are the two
non-zero positions of e.)

? The faster step ¼ reveals the position of Π(0): `6.
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 2. (The positions (`6, `k) are the two
non-zero positions of e.)

? The faster step ¼ reveals the position of Π(1): `3.
– 2nd step:
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 3. (The positions (`3, `j , `k) are the
three non-zero positions of e.)

? The faster step ¼ reveals all the couples (`j , `k) such that `3 + `j + `k = 0.
Here (`j , `k) ∈ {(`1, `2), (`4, `5), (`7, `8)}.

– 3rd step:
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 3. (The positions (`6, `j , `k) are the

three non-zero positions of e.)
? The faster step ¼ reveals all the couples (`j , `k) such that `j`k = 1.

Here (`j , `k) ∈ {(`1, `8), (`2, `4), (`5, `7)}.
– 4th step:
• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 3. (The positions (`i, `j , `k) are the

three non-zero positions of e.)
? The faster step ¼ reveals all the triplets (`i, `j , `k) such that `i + `j + `k = 0.

Here (`i, `j , `k) ∈ {(`1, `4, `7), (`1, `5, `8), (`2, `4, `8), (`2, `5, `7)}.
• The attacker has to solve the following system of quadratic equations in order to find the secret

permutation:
`6 = Π(0) ; `3 = Π(1) 1st step
`1 + `2 = `4 + `5 = `7 + `8 = 1 2nd step
`1`8 = `2`4 = `5`7 = 1 3rd step
`1 + `4 + `7 = `1 + `5 + `8 = 0 4th step
`2 + `4 + `8 = `2 + `5 + `7 = 0 4th step

Solving the system will allow to fully determine the secret permutation Π(L) = {α, α3, 1, α4, α5, 0, α2, α6}.

16

E Proof of Answer from page 11

We have: S3
2 = a1 + a2 + a3, S3

1 = a1a2 + a1a3 + a2a3 and S3
0 = a1a2a3.

We notice that: (0, αk, αj) /∈ E = {(α1, α2, α3) ∈ L3|
3∑
i=1

αi = 0}. So:

P(S3
2 = 0 ∩ S3

1 6= 0 ∩ S3
0 6= 0) =

A2
n−1
A3
n

.

In order to establish the full table of probabilities we need to compute:

P1 = P(S3
2 = 0 ∩ S3

1 = 0 ∩ S3
0 6= 0).

This leads to the system of equations:a1 + a2 + a3 = 0
a1a2 + a1a3 + a2a3 = 0
a1a2a3 6= 0

⇔

a1 + a2 = a3
a1a2 = (a1 + a2)a3
a1a2a3 6= 0

⇔

a1 + a2 = a3
a1a2 = (a1 + a2)2

a1a2a3 6= 0
.

Without loss of generality, we can set a1 = αi and a2 = αi+c, then:a1 + a2 = a3
a1a2 = (a1 + a2)2

a1a2a3 6= 0
⇔

a3 = αi + αi+c

α2i+c = α2i(1 + α2c)
a1 = αi, a2 = αi+c

⇔ α2c + αc + 1 = 0.

If m and 2 are coprime, the polynomial x2 + x+ 1 has no root in F2m ,
then P1 = 0. Finally we obtain:

P(S3
i = 0) = P(S3

i = 0 ∩ S3
j 6= 0), ∀i 6= j ∈ {1, 2, 3}.

S3
2 S

3
1 S

3
0 Probability

0 0 0 0
6= 0 0 0
0 6= 0 0
0 0 6= 0 = P1

6= 6= 0 3
n

0 6= 6= 1
n

6= 0 6= 1
n

6= 6= 6= 1− 5
n

= n−5
n

Fig. 6. Probability for r = 3

17

	Improved Timing Attacks against the Secret Permutation in the McEliece PKC

