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Introduction

A linear code with length n and dimension k defined over a finite field IF q is a k-dimensional subspace of IF n q . Cyclic codes over IF q form a class of linear codes who are invariant under a cyclic shift of coordinates. This cyclicity condition enables to describe a cyclic code as an ideal of IF q [X]/(X n -1). The monic generator g of this principal ideal divides X n -1 and is called the generator polynomial of the code. For n coprime with q, the polynomial g can be characterized by its defining set S, namely a subset of {0, . . . , n -1} such that g(X) = i∈S (X -α i ) where α is a primitive nth root of unity in an extension of IF q . For n odd number coprime with q, the class of duadic codes of length n is a sub-family of the family of cyclic codes of length n and dimension (n ± 1)/2. Their generators are divisors of (X n -1)/(X -1) with degree (n±1)/2 and with specific designing sets (see the corresponding chapter of [START_REF] Huffman | Fundamentals of error-correcting codes[END_REF] for an introduction to duadic codes). A self-orthogonal linear code is a code who is a subset of its dual (with respect to the scalar product). It is self-dual if it coincides with its dual. The class of duadic codes contains some good codes, for example the binary Golay code G 23 , which is a Quadratic Residue code. The dual of G 23 is self-orthogonal and G 23 can be extended to the famous self-dual binary Golay code G 24 .

For θ automorphism of a finite field IF q , the θ-cyclic codes (also called skew cyclic codes) of length n were defined in [START_REF] Boucher | Skew-cyclic codes[END_REF]. These codes are such that a right circular shift of each codeword gives another word who belongs to the code after application of θ to each of its n coordinates. If θ is the identity, the θ-cyclic codes are cyclic codes. Skew cyclic codes have an interpretation in the Ore ring R = IF q [X; θ] of skew polynomials where multiplication is defined by the rule X • a = θ(a)X for a in IF q . Like cyclic codes, they are described by their (skew) generator polynomials.

This text is about a sub-family of θ-cyclic codes, namely the θ-duadic codes. A first definition of θ-duadic codes is given and a construction is provided over IF p 2 . A link with the self-orthogonal θ-cyclic codes is also established and some examples of self-dual extended θ-cyclic codes are given. The text is organized as follows.

In Section 2, a new sub-family of θ-cyclic codes over IF q is defined. This family generalizes the family of duadic codes with multipliers -1 and -r (when q = r 2 ). These codes are called θ-duadic codes with multiplier -1 (Definition 3) and multiplier -r (Definition 4, when q = r 2 ). A property on the minimum odd weight of some θ-duadic codes is given (Proposition 1).

Section 3 is the most technical part of the text and is inspired from [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF]. The aim is to construct and to enumerate the θ-duadic codes of length 2k with multipliers -1 and -p over IF p 2 when θ is the Frobenius automorphism and k is an integer not divisible by p (Proposition 3 and Proposition 4).

In Section 4, a link is established between the θ-duadic codes (defined in Definition 3 and Definition 4) and the self-orthogonal θ-cyclic codes. In the particular case of IF p 2 , a complete description of the [2k, k -1] p 2 self-orthogonal θ-cyclic codes is given. Furthermore, some constructions of self-dual extended θ-cyclic codes are provided.

Lastly, in Annex A, an application of the techniques developed in Section 3 is given, namely a parametrization of irreducible skew polynomials over IF p 2 [X; θ] with the given degree and the given bound. Furthermore in Annex B, weight-enumerators of binary [72,36,[START_REF] Odoni | On additive polynomials over a finite field[END_REF] self-dual codes obtained from self-dual θ-cyclic and extended θ-duadic codes are given. Some of these weight enumerators are new.

A sub-family of θ-cyclic codes

Consider q a prime power, θ an automorphism over IF q and the ring R = IF q [X; θ] where addition is defined to be the usual addition of polynomials and where multiplication is defined by the rule : for a in IF q X • a = θ(a) X.

The ring R is called a skew polynomial ring or Ore ring (cf. [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]) and its elements are skew polynomials. When θ is not the identity, the ring R is not commutative, it is a left and right Euclidean ring whose left and right ideals are principal. Left and right gcd and lcm exist in R and can be computed using the left and right Euclidean algorithms. The center of R is the commutative polynomial ring Z(R) = IF θ q [X m ] where IF θ q is the fixed field of θ and m is the order of θ. The bound B(h) of a skew polynomial h with a nonzero constant term is the monic skew polynomial f with a nonzero constant term belonging to IF θ q [X m ] of minimal degree such that h divides f on the right in R ( [START_REF] Jacobson | The Theory of Rings[END_REF]).

Definition 2 ([4], Definition 2) Consider an integer d and h =

d i=0 h i X i in R of degree d. The skew reciprocal polynomial of h is h * = d i=0 X d-i • h i = d i=0 θ i (h d-i ) X i .
If the constant term of h does not cancel then the left monic skew reciprocal polynomial of h is h :

= 1 θ d (h 0 ) • h * . The skew polynomial h is self-reciprocal if h = h .
Definition 3 (θ-duadic codes given by the multiplier -1) Consider a prime power q, θ an automorphism over IF q of order m, R = IF q [X; θ] and an integer k coprime with q such that mk -m is even. A θ-cyclic code of length n = mk is an even-like (resp. odd-like) θ-duadic code given by the multiplier -1 if it is generated by (X m -1) • h (resp. h ) where h is a monic polynomial of R satisfying

(X m -1) • h • h = X n -1. (2) 
One says that the skew polynomials (X m -1) • h and h generate a pair of θ-duadic codes of length mk given by the multiplier -1.

Definition 4 (θ-duadic codes given by the multiplier -r) Consider q = r 2 an even power of an arbitrary prime number, θ an automorphism over IF q of order m, R = IF q [X; θ] and an integer k coprime with q such that mk -m is even. A θ-cyclic code of length n = mk is an even-like (resp. odd-like) θ-duadic code given by the multiplier -r if it is generated by (X m -1) • h (resp. h ) where h is a monic polynomial of R satisfying

(X m -1) • h • h = X n -1. ( 3 
)
One says that the skew polynomials (X m -1) • h and h generate a pair of θ-duadic codes of length mk given by the multiplier -r.

Remark 3 If θ = id, then equation ( 3) characterizes duadic codes given by the multiplier -r.

Namely consider an odd number n coprime with q and α a primitive n-th root of unity, consider the cyclic code C with generator g = h where h

∈ IF q [X] is such that (X -1)h h = X n -1.
Consider the subset S of {1, . . . , n -1} of cardinality (n -1)/2 such that g = i∈S (X -α i ) and the subset T of {1, . . . , n -1} of cardinality (n -1)/2 such that h = i∈T (X -α i ). As g = h , one gets S = -rT . Furthermore r 2 = q, so T = -rS and C is a duadic code given by the multiplier -r.

Example 1 Consider p an odd prime number and θ an automorphism over IF p 2 . Let us determine the θ-duadic codes of length 4 given by the multipliers -1 and -p over IF p 2 . If θ is the identity then m = 1 and there is no θ-duadic code of length 4 because 4 is even. Assume that θ is the Frobenius automorphism x → x p ; its order is m = 2.

• The θ-duadic codes of length 4 given by the multiplier -1 are defined by the skew equation

(X 2 -1) • h • h = X 4 -1 ⇔ h • h = X 2 + 1. Consider h = X + α in R with α = 0, then h = X + 1 θ(α) therefore h • h = X + 1 θ(α) • (X + α) = X 2 + 1 α p + α p X + 1 α p-1 and h • h = X 2 + 1 ⇔ α 2 + 1 = α p-1 -1 = 0.
Therefore there are 2 pairs of θ-duadic codes of length 4 given by the multiplier -1 over IF p 2 if p ≡ 1 (mod 4). They are generated by X + α and (X 2 -1) • (X + α) where α 2 = -1. If p ≡ 3 (mod 4), there is no θ-duadic codes of length 4 given by the multiplier -1 over IF p 2 .

• The θ-duadic codes of length 4 given by the multiplier -2 are defined by the equation

(X 2 -1) • h • h = X 4 -1 ⇔ h • h = X 2 + 1. Consider h = X + α in R with α = 0, then h • h = (X + 1/α) • (X + α) = X 2 + (1/α + α p )X + 1.
Therefore h • h = X 2 + 1 ⇔ α p+1 = -1 and there are p + 1 pairs of θ-duadic codes of length 4 given by the multiplier -2 over IF p 2 . They are generated by (X 2 -1)

• (X + 1 θ(α) ) and X + 1 θ(α) where α p+1 = -1.
The following proposition gives a bound on the minimum odd weight of odd-like θ-duadic codes. It is inspired from Theorem 6.5.2 of [START_REF] Huffman | Fundamentals of error-correcting codes[END_REF].

Theorem 1 Consider a prime power q, θ an automorphism over IF q of order m, R = IF q [X; θ] and an integer k coprime with q such that mk -m is even. Consider C an odd-like θ-duadic code with length mk over IF q . For each odd-like word in C with weight d, k ≤ d 2 .

Proof. Consider g the skew generator polynomial of an odd-like θ-duadic code C with length mk given by the multiplier -1, then g = h and (X m -1)

• h • h = X mk -1. Consider c an odd-like word in C, then X m -1 does not divide c(X) and g = h divides c(X). There exists u(X) in IF q [X; θ] such that c(X) = u(X)•h * (X). Consider the morphism Θ : a i X i → θ(a i )X i . Using the two properties (f • g) * = Θ deg(f ) (g * ) • f * and (f * ) * = Θ deg(f ) (f ), one gets Θ -deg(c) (c * ) = h • Θ -deg(c) (u * ) and c • Θ -deg(c) (c * ) is a multiple of X mk -1 X m -1 not divisible by X m -1. Consider e = c • Θ -deg(c) (c *
) mod X mk -1 and E the θ-cyclic code of length mk and generator polynomial k-1 i=0 X mi . As the minimum distance of the code E is k and as e is a nonzero codeword of E with weight less than or equal to d 2 , one gets k ≤ d 2 .

The same proof holds for odd-like θ-duadic codes given by the multiplier -r when q = r 2 .

When q is the square of a prime number p and θ is the Frobenius automorphism, equation ( 2) is equivalent to

(X 2 -1) • h • h = X 2k -1 (4) 
and equation ( 3) is equivalent to

(X 2 -1) • Θ(h ) • h = X 2k -1 (5) 
where Θ :

a i X i → θ(a i )X i = a i X i = a i X i
. Next section will be devoted to these two skew equations. Let us first introduce some notations. For F (

X 2 ) ∈ IF p [X 2 ] and b in {0, 1}, D F (X 2 ) := {f ∈ IF p [X 2 ] | f monic and divides F (X 2 ) in IF p [X 2 ]} F := {f = f (X 2 ) ∈ IF p [X 2 ] | f = f irreducible in IF p [X 2 ], deg X 2 f > 1} G := {f = f (X 2 ) ∈ IF p [X 2 ] | f = gg , g = g irreducible in IF p [X 2 ]} H (b) F (X 2 ) := {h ∈ R | h monic and Θ b (h ) • h = F (X 2 )}.
Note that the θ-duadic codes of length 2k given by the multiplier -1 are associated to the set H (0) (X 2k -1)/(X 2 -1) while the θ-duadic codes given by the multiplier -p are associated to the set H (1) (X 2k -1)/(X 2 -1) .

3 Construction and enumeration of θ-duadic codes over IF p 2 given by the multipliers -1 and -p

The aim of this section is to construct and count pairs of θ-duadic codes defined over IF p 2 and given by the multipliers -1 and -p. It amounts to construct the set

H (b) F (X 2 )
where b belongs to {0, 1} and F (X 2 ) is the polynomial X 2k -1 X 2 -1 . Most of the work consists of using the techniques developed in [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF] for the Euclidean scalar product and adapting them to Hermitian scalar product. Furthermore an application to the parametrization of the irreducible skew polynomials with given bound will be developed in Annex A.

The following proposition is inspired from Proposition 28 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF] and Proposition 2 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF].

Theorem 2 Consider IF q a finite field with q = p 2 elements where p is a prime number, θ : x → x p the Frobenius automorphism over

IF p 2 , R = IF q [X; θ]. Consider F (X 2 ) = f 1 (X 2 ) • • • f r (X 2 ) where f 1 (X 2 ), . . . , f r (X 2 ) are pairwise coprime polynomials of IF p [X 2 ] sat- isfying f i = f i . The application φ : H (b) f 1 (X 2 ) × • • • × H (b) fr(X 2 ) → H (b) F (X 2 ) (h 1 , . . . , h r ) → lcrm(h 1 , . . . , h r ) is bijective.
Proof.

• The application φ is well-defined.

Consider (h 1 , . . . , h r ) in H (b) f 1 (X 2 ) × • • • × H (b)
fr(X 2 ) and h = lcrm(h 1 , . . . , h r ). First of all, as h 1 , . . . , h r divide respectively f 1 (X 2 ), . . . , f r (X 2 ), and as f 1 (X 2 ), . . . , f r (X 2 ) are pairwise coprime central polynomials, the degree of lcrm(h 1 , . . . , h r ) is equal to

r i=1 deg(h i ). Furthermore, as Θ b (h i ) • h i = f i (X 2
), the degree of h i is equal to the degree of f i (X 2 ) in X 2 , therefore the degree of h is equal to the degree of

F (X 2 ) in X 2 . Consider, for i in {1, . . . , r}, Q i in R such that h = h i •Q i . One gets Θ b (h ) = Qi •Θ b (h i ) for some Qi ∈ R, therefore Θ b (h ) • h = Qi • Θ b (h i ) • h i • Q i = Qi • f i (X 2 ) • Q i . As f i (X 2 ) is central, it divides Θ b (h ) • h. The polynomials f i (X 2 ) are pairwise coprime in IF p [X 2 ],
therefore their least common right multiple is equal to their product F (X 2 ), and F (X 2 ) divides Θ b (h ) • h. Considerations on the degrees of the involved polynomials imply the equality Θ

b (h ) • h = F (X 2 ). The skew polynomial h belongs to H (b) F (X 2 ) therefore φ is well defined. • The application φ is bijective. Consider h in H (b)
F (X 2 ) , then h divides F (X 2 ), therefore, according to Theorem 4.1 of [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF], h = lcrm(h 1 , . . . , h r ) where h i = gcld(f i (X 2 ), h) and this lcrm-decomposition into skew polynomials dividing f 1 (X 2 ), . . . , f r (X 2 ) is unique. Let us prove that h i belongs to H (b)

f i (X 2 ) . As h i divides f i (X 2 ) on the left, Θ b (h i ) divides Θ b (f i )(X 2 ) on the right. As f i (X 2 ) is central, one gets that Θ b (h i ) • h i divides f i (X 2 ) 2 . In particular, ∀j ∈ {1, . . . , r} \ {i}, gcrd(Θ b (h i ) • h i , f j (X 2 )) = 1. (6) As h i divides h on the left, Θ b (h i ) divides Θ b (h ) on the right. Furthermore F (X 2 ) = Θ b (h ) • h is central, therefore Θ b (h i ) • h i divides F (X 2 ) = f 1 (X 2 ) • • • f i (X 2 ) • • • f r (X 2 ). According to (6), Θ b (h i ) • h i divides f i (X 2 ). Furthermore, 2 deg(h) = r i=1 2 deg(h i ) = r i=1 deg(f i (X 2 )), therefore ∀i ∈ {1, . . . , r}, deg(f i (X 2 )) = 2 deg(h i ) and Θ b (h i ) • h i = f i (X 2 ).

Irreducible case

The aim of this subsection is to construct and enumerate irreducible odd-like θ-duadic codes defined over IF p 2 of length 2k where k is coprime with p. One therefore assumes that

X 2k -1 = (X 2 -1)f (X 2 ) where f (X 2 ) is irreducible in IF p [X 2 ]. Necessarily f (X 2 ) is self-reciprocal.
If f (X 2 ) has degree 1 then f (X 2 ) = X 2 + 1, k = 2 and p is odd. According to Example 1, there are 2 irreducible odd-like θ-duadic codes of length 4 given by the multiplier -1 if p ≡ 1 (mod 4). If p ≡ 3 (mod 4), such codes do not exist. Furthermore, for any prime number p, there are p + 1 irreducible odd-like θ-duadic codes of length 4 given by the multiplier -p.

In what follows, one constructs the set

H (b)
f (X 2 ) when b belongs to {0, 1} and f = f (X 2 ) belongs to F. When b = 0, Lemma 5 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF] gives a construction based on Cauchy interpolation in IF p 2 (Z). We give here a slightly different presentation and a generalization to the case when b is equal to 1.

Lemma 1 Consider f in F with degree d = 2δ where δ is in IN * . The skew polynomial h(X) = Θ b (A)(X 2 ) + X • Θ b (B)(X 2 ) belongs to H (b) f (X 2 ) \ IF p 2 [X 2 ] if and only if the polynomial P (Z) of degree < d defined in IF p 2 [Z] by A B ≡ P (mod f )
satisfies the two following equations in IF p 2 [Z] :

P (Z)Θ(P )(Z) ≡ Z (mod f (Z)) Z 2δ-1 P (1/Z) + Z 2δ-2 Θ b+1 (P )(Z) ≡ 0 (mod f (Z)). ( 7 
)
Proof. Consider h = d i=0 h i X i in R, monic with degree d. Consider A and B defined by h(X) = Θ b (A)(X 2 ) + X • Θ b (B)(X 2 ), then h = Ã(X 2 ) + B(X 2 ) • X where Ã(Z) = λZ δ Θ b (A)(1/Z) and B(Z) = λZ δ-1 Θ b (B)(1/Z), λ = θ b (1/h 0 ). Therefore h belongs to H (b) f (X 2 ) if and only if the following polynomial relations in IF p 2 [Z] are satisfied : Ã(Z)A(Z) + Z B(Z)B(Z) = f (Z) Ã(Z)Θ(B)(Z) + B(Z)Θ(A)(Z) = 0. ( 8 
)
As B = 0 and deg(B) < deg(f )/2, B and f are coprime. Therefore, according to the first equation of ( 8), A and B are coprime. The relation ( 8) is equivalent to

A(Z)Θ(A)(Z) -ZB(Z)Θ(B)(Z) = f (Z) Z δ A(1/Z)Θ b+1 (B)(Z) + Z δ-1 B(1/Z)Θ b+1 (A)(Z) = 0. (9) 
Consider P in IF p 2 [Z] with degree less than d such that

A(Z) B(Z) ≡ P (Z) (mod f (Z)).
This polynomial exists because B and f are coprime. Furthermore the relation ( 9) is equivalent to [START_REF] Dougherty | Extremal binary self-dual codes[END_REF].

The following lemma will be also useful in subsection 3.2 and in annex A.

Lemma 2 Consider f in IF p [Z] irreducible in IF p [Z] with degree d and α in IF p d such that f (α) = 0. Consider P (Z) in IF p 2 [Z] with degree < d and y i = P (α p i ) for 0 ≤ i ≤ d -1. P (Z)Θ(P )(Z) ≡ Z (mod f (Z)) P (Z) ∈ IF p 2 [Z]            y i = y p i 0 if i ∈ {0, . . . , d -1} is even y i = α p i /y p i 0 if i ∈ {0, . . . , d -1} is odd y p d -1 0 = 1 if d is even y p d +1 0 = α if d is odd. (10) 
Proof. Consider P (Z) in IF p 2 [Z] with degree < d and y i = P (α p i ) for 0 ≤ i ≤ d -1.

• Assume that P (Z) is a polynomial of IF p 2 [Z] such that P (Z)Θ(P )(Z) ≡ Z (mod f (Z)).
As P (Z) belongs to IF p 2 [Z], Θ 2 (P )(Z) -P (Z) cancels at the points θ i (α) where i ∈ {0, . . . , d -1}, therefore

P (α p i ) = P (α) p i if i ∈ {0, . . . , d -1} is even P (α p i ) = P (α p ) p i-1 if i ∈ {0, . . . , d -1} is odd. Furthermore α p d = α therefore P (α) p d -1 = 1 if d is even P (α p ) p d-1 = P (α) if d is odd.
The condition y 1 = α p /y p 0 comes from the evaluation of P (Z)Θ(P )(Z) -Z at α and (10) follows from these relations.

• Conversely, assume that (10) is satisfied. Then

             P (α p i ) = P (α) p i if i ∈ {0, . . . , d -1} is even P (α p i ) = P (α p ) p i-1 if i ∈ {0, . . . , d -1} is odd P (α) p d = P (α) if d is even P (α p ) p d-1 = P (α) if d is odd P (α p )P (α) p = α p . Let us prove first that Θ 2 (P )(Z) -P (Z) = 0. As deg(P ) < d, Θ 2 (P )(Z) -P (Z) cancels at θ i (α) for i in {0, . . . , d -1}. Consider i ∈ {2, . . . , d -1}, then (Θ 2 (P ) -P )(θ i (α)) = θ 2 (y i-2 ) -y i = 0, furthermore (Θ 2 (P ) -P )(α) = Θ 2 (P )(α p d ) -P (α) = θ 2 (y d-2 ) -y 0 = y p d 0 -y 0 = 0 if d is even α p d /y p d 0 -y 0 = 0 if d is odd; (Θ 2 (P ) -P )(θ(α)) = θ 2 (y d-1 ) -y 1 = α p d+1 /y p d+1 0 -α p /y p 0 = 0 if d is even y p d+1 0 -α p /y p 0 = 0 if d is odd. Therefore Θ 2 (P )(Z) = P (Z) and P (Z)Θ(P )(Z) -Z is in IF p [Z].
The condition P (α p )P (α) p = α p implies that P (Z)Θ(P )(Z) -Z cancels at α and is therefore divisible by f (Z).

The following lemma describes the set

H (b) f (X 2 ) where f (X 2 ) ∈ F is an irreducible self- reciprocal polynomial of IF p [X 2
] with degree > 1 and b belongs to {0, 1}. It is a generalization of Lemma 5 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF] (where

H (0) f (X 2 ) is constructed). Lemma 3 Consider b in {0, 1}, f = f (X 2 ) in F of degree d = 2δ in X 2 where δ is in IN * . The set H (b) f (X 2 ) has 1 + p δ elements. Proof. Consider f (X 2 ) = f (X 2 )Θ( f )(X 2 ) the factorization of f (X 2 ) in IF p 2 [X 2 ]. One has H (b) f (X 2 ) ∩ IF p 2 [X 2 ] = ∅ if δ + b ≡ 0 (mod 2) { f (X 2 ), Θ( f )(X 2 )} if δ + b ≡ 1 (mod 2). ( 11 
) According to Lemma 1, h(X) = Θ b (A)(X 2 ) + X • Θ b (B)(X 2 ) belongs to H (b) f (X 2 ) \ IF p 2 [X 2
] if and only if (A, B) is the unique solution to the Cauchy interpolation problem :

A B ≡ P (mod f )
where the polynomial P (Z) in IF p 2 [Z] of degree < d is defined by the relations (7) :

P (Z)Θ(P )(Z) ≡ Z (mod f (Z)) Z 2δ-1 P (1/Z) + Z 2δ-2 Θ b+1 (P )(Z) ≡ 0 (mod f (Z)).
As there is a unique solution (A, B) (with deg(A) = δ, deg(B) ≤ δ -1 and A monic) to the above Cauchy interpolation problem for each P , the number of elements of

H (b) f (X 2 ) \ IF p 2 [X 2 ] is equal to the number of P in IF p 2 [Z] with degree < d satisfying (7). For 0 ≤ i ≤ d -1, denote y i = P (α p i ) ∈ IF p d . Let us prove that (7) is equivalent to y i = y p i 0 if i ∈ {0, . . . , d -1} is even y i = α p i /y p i 0 if i ∈ {0, . . . , d -1} is odd (12)
and

y p δ -1 0 = -1/α if δ + b ≡ 1 (mod 2) y p δ +1 0 = -1 if δ + b ≡ 0 (mod 2). ( 13 
)
Assume that ( 7) is satisfied. Then according to Lemma 2, ( 12) is satisfied. Furthermore, as Z 2δ-1 P (1/Z) + Z 2δ-2 Θ b+1 (P )(Z) cancels at α, also ( 13) is satisfied. Conversely, assume ( 12) and ( 13), then according to Lemma 2, P (Z)Θ(P )(Z) ≡ Z (mod f (Z)). Furthermore Z 2δ-1 P (1/Z) + Z 2δ-2 Θ b+1 (P )(Z) cancels at α and α p , therefore Z 2δ-1 P (1/Z) + Z 2δ-2 Θ b+1 (P )(Z) ≡ 0 (mod f (Z)). To conclude the proof, according to [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF], the set

H (b) f (X 2 ) \ IF p 2 [X 2 ] has p δ -1 elements if δ + b ≡ 1 (mod 2) and p δ + 1 elements if δ + b ≡ 0 (mod 2).
The relation [START_REF] Kaya | New extremal binary self-dual codes of length 68 from quadratic residue codes over IF 2 + uIF 2 + u 2 IF 2[END_REF] enables to conclude. Proof. Let us prove that there exists an irreducible θ-duadic codes of length 2k with given multiplier -p b over IF p 2 if and only if k is an odd prime and p generates Z Z/kZ Z * .

Assume that there exists an irreducible θ-duadic code of length 2k with given multiplier -p b over IF p 2 . Consider g its skew generator polynomial, necessarily g is irreducible therefore

g = h where Θ b (h ) • h = X 2k -1 X 2 -1 . The bound B(g) of g is an irreducible polynomial of IF p [X 2 ] with degree 2 deg(g) = 2k -2. Therefore X 2k -1 X 2 -1 = B(g) and X 2k -1 X 2 -1 is irreducible in IF p [X 2 ]
. Necessarily, k is and odd prime and p generates Z Z/kZ Z * .

Assume that k is and odd prime and p generates Z Z/kZ Z * , then

F (X 2 ) := X 2k -1 X 2 -1 is irre- ducible in IF p [X 2 ], therefore according to Lemma 3, H (b) F (X 2 ) is nonempty. Its elements have degree k -1 and divides F (X 2 ). As F (X 2 ) is an irreducible polynomial of IF p [X 2 ] of degree 2k -2, the elements of H (b)
F (X 2 ) are irreducible skew polynomials. To conclude, there exists an irreducible θ-duadic code of length 2k with given multiplier -p b over IF p 2 .

Lastly, the set 

H (b) F (X 2 ) has 1 + p (k-1)
h • h = X 22 -1 X 2 -1 = X 20 + X 18 + • • • + X 2 + 1.
For example h = X 10 + X 9 + aX 6 + a 2 X 4 + X + 1 is a solution and g = h = X 10 + X 9 + a 2 X 6 + a X 

Θ(h ) • h = X 22 -1 X 2 -1 = X 20 + X 18 + • • • + X 2 + 1.
One of these solutions is h = X 10 + X 9 + a 2 X 6 + X 5 + a 2 X 4 + X + 1 and g = Θ(h ) = X 10 + X 9 + a X 6 + X 5 + a X 4 + X + 1 generates a [22, 12, 6] 4 irreducible odd-like θ-duadic codes with multiplier -2.

Reducible case

The aim of this section is to construct and enumerate reducible odd-like θ-duadic codes over IF p 2 of length 2k where k is coprime with p (Proposition 4). One therefore assumes that

F (X 2 ) := X 2k -1 X 2 -1 is reducible in IF p [X 2 ]. If F (X 2 ) is the product of self-reciprocal polynomials f (X 2 ) irreducible in IF p [X 2 ],
then one can conclude thanks to Proposition 2 and Lemma 3.

Otherwise, as

F (X 2 ) is self-reciprocal, its irreducible factors in IF p [X 2 ] which are not self-reciprocal appear by pairs (g(X 2 ), g (X 2 )).
In what follows we construct

H (b) f (X 2 ) when f (X 2 ) ∈ G is the product of two irreducible polynomials of IF p [X 2 ]
which are a pair of reciprocal polynomials g(X 2 ) and g (X 2 ). The following Lemma is a generalization of Lemma 6 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF] (where

H (0) f (X 2 ) is constructed). Lemma 4 Consider b in {0, 1}, f = f (X 2 ) in G with degree 2δ in X 2 and g(X 2 ) such that f (X 2 ) = g(X 2 )g (X 2 ). The set H (b) f (X 2 ) has 3 + p δ elements. Proof. When δ is even, consider the factorization of g(X 2 ) in IF p 2 [X 2 ] : g(X 2 ) = g(X 2 ) × Θ(g)(X 2 ). Then H (b) f (X 2 ) ∩IF p 2 [X 2 ] = {g(X 2 ), g (X 2 ), g(X 2 )Θ 1+b g (X 2 ) , Θ b (g) (X 2 )Θ(g)(X 2 )}. If δ is odd, then g(X 2 ) is irreducible in IF p 2 [X 2 ] and H (b) f (X 2 ) ∩ IF p 2 [X 2 ] = {g(X 2 ), g (X 2 )}.
In what follows, one proves that the number of elements of

H (b) f (X 2 ) \ IF p 2 [X 2 ] is p δ -1 if δ is even and p δ + 1 if δ is odd. Consider β in IF p δ such that g(β) = 0. Consider h = d i=0 h i X i in R, monic with degree d. Consider A and B defined by h(X) = Θ b (A)(X 2 ) + X • Θ b (B)(X 2 ), then h = Ã(X 2 ) + B(X 2 ) • X where Ã(Z) = λZ δ Θ b (A)(1/Z) and B(Z) = λZ δ-1 Θ b (B)(1/Z), λ = θ b (1/h 0 ). Therefore h belongs to H (b) f (X 2 ) \ IF p 2 [X 2 ] if and only if the following polynomial relations in IF p 2 [Z] are satisfied : Ã(Z)A(Z) + Z B(Z)B(Z) = f (Z) Ã(Z)Θ(B)(Z) + B(Z)Θ(A)(Z) = 0. ( 14 
)
Necessarily, as B = 0, B and f are coprime, therefore A, B and f are pairwise coprime.

Consider P = P (Z) in IF p 2 [Z] with degree less than d such that

A(Z) B(Z) ≡ P (Z) (mod f (Z)).
The polynomial P exists because B and f are coprime. The relation ( 14) is equivalent to

P (Z)Θ(P )(Z) ≡ Z (mod f (Z)) Z 2δ-1 P (1/Z) + Z 2δ-2 Θ b+1 (P )(Z) ≡ 0 (mod f (Z)). ( 15 
)
Consider

y i = P (β p i ) if 0 ≤ i ≤ δ -1 and y i+δ = P (1/β p i ) if 0 ≤ i ≤ δ -1.
Let us prove that ( 15) is equivalent to conditions ( 16), ( 17) and (18) defined below :

           y i = y p i 0 if i ∈ {0, . . . , δ -1} is even y i = β p i /y p i 0 if i ∈ {0, . . . , δ -1} is odd y p δ -1 0 = 1 if δ is even y p δ +1 0 = β if δ is odd ( 16 
)
y δ = -1/y 0 if b = 0 y δ = -y 0 /β if b = 1 (17) 
y i+δ = y p i δ if i ∈ {0, . . . , δ -1} is even y i+δ = 1/(β p i y p i δ ) if i ∈ {0, . . . , δ -1} is odd. ( 18 
)
Assume that (15) is satisfied. As P (Z)Θ(P )(Z) ≡ Z (mod f (Z)), one gets

P (Z)Θ(P )(Z) ≡ Z (mod g(Z))
therefore according to Lemma 2 applied to g, (16) is satisfied. The condition Z 2δ-1 P (1/Z) + Z 2δ-2 Θ b+1 (P )(Z) ≡ 0 (mod f (Z)) implies furthermore (17). Lastly P (Z)Θ(P )(Z) ≡ Z (mod g (Z)) therefore according to Lemma 2 applied to g , ( 18) is satisfied. Conversely, assume that (16), ( 17) and (18) are satisfied, then according to Lemma 2, P (Z)Θ(P )(Z) ≡ Z (mod g(Z)) and P (Z)Θ(P )(Z) ≡ Z (mod g (Z)). To prove that Z 2δ-1 P (1/Z) + Z 2δ-2 Θ b+1 (P )(Z) ≡ 0 (mod f (Z)), it suffices to prove that uP (1/u) + Θ b+1 (P )(u) cancels when u belongs to {β, β p , 1/β, 1/β p } :

βP ( 1 β ) + Θ b+1 (P )(β) = -β/y 0 + β/y 0 = 0 if b = 0 -y 0 + y 0 = 0 if b = 1 β p P ( 1 β p ) + Θ b+1 (P )(β p ) = -y p 0 + y p 0 = 0 if b = 0 -β p /y p 0 + β p /y p 0 = 0 if b = 1 1/β × P (β) + Θ b+1 (P )(1/β) = y 0 /β -y 0 /β = 0 1/β p × P (β p ) + Θ b+1 (P )(1/β p ) = 1/y p 0 -1/y p 0 = 0.
To conclude, according to the two last relations of ( 16), the number of elements of 

H (b) f (X 2 ) \ IF p 2 [X 2 ] is p δ -1 if δ is even and p δ + 1 if δ is odd.
IF p 2 is N × f ∈F (1 + p δ ) × f ∈G (3 + p δ )
where

N =        0 if b = 0, k ≡ 0 (mod 2), p ≡ 3 (mod 4) 2 if b = 0, k ≡ 0 (mod 2), p ≡ 1 (mod 4) p + 1 if b = 1, k ≡ 0 (mod 2) 1 if k ≡ 1 (mod 2).
Proof. The number of pairs of θ-duadic codes defined over IF p 2 of length 2k with given multipliers -p b is equal to the cardinality of

H (b) F (X 2 ) where F (X 2 ) := X 2k -1 X 2 -1 . If k is odd, F (X 2 ) = f ∈F ∩D F f f ∈G∩D F f
and if k is even then p is odd and

F (X 2 ) = (X 2 + 1) f ∈F ∩D F f f ∈G∩D F f. According to Proposition 2, #H (b) F (X 2 ) = N × f ∈F ∩D F #H (b) f (X 2 ) × f ∈G∩D F #H (b) f (X 2 )
where N = 1 if k is odd and

N = #H (b) X 2 +1
if k is even. The conclusion follows from Lemma 3, Lemma 4 and from the equality : #H (b) 

X 2 +1 =    {X + α | α 2 = -1} if b = 0 and p ≡ 1 (mod 4) {X + α | α p+1 = -1} if b = 1 ∅ if b = 0 and p ≡ 3 (mod 4).
h • h = X 34 -1 X 2 -1 = (X 16 + X 10 + X 8 + X 6 + 1)(X 16 + X 14 + X 12 + X 8 + X 4 + X 2 + 1).
Consider the skew polynomials 

h 1 = X 8 + a X 7 + a X 6 + a X 4 + a X 2 + X + a 2 and h 2 = X 8 + a 2 X 7 + X 6 + a 2 X 5 + X 4 + a X 3 + X 2 + a X + 1. They satisfy h 1 • h 1 = X 16 + X 10 + X 8 + X 6 + 1 and h 2 • h 2 = X 16 + X 14 + X 12 + X 8 + X 4 + X 2 + 1. Therefore the skew polynomial h = lcrm(h 1 , h 2 ) = X 16 + a 2 X 15 + X 14 + a X 11 + X 10 + a X 9 + X 7 + a 2 X 6 + X 5 + a 2 X 2 + a 2 X + a 2 satisfies h • h = X 34 -1 X 2 -1 . The skew polynomial G = h = X 16 + a 2 X 15 + a X 11 + X 10 + a X 9 + X 7 + a X 6 + X 5 + a X 2 + a 2 X
Θ(h ) • h = (X 32 -1)/(X 2 -1) = (X 2 + 1)(X 4 + 1) (X 4 + X 2 + 2)(X 4 + 2X 2 + 2) (X 8 + X 4 + 2)(X 8 + 2X 4 + 2)
There are 16128 = (3 + 1)(1 + 3 1 )(3 + 3 2 )(3 + 3 4 ) such codes. One of them is a [32, 17, 11] 9 code generated by h where h = X 15 + a 5 X 14 + a 6 X 13 + 2X 12 + 2X 11 + a 5 X 9 + a 3 X 8 + 2X 7 + 2X 6 + a 3 X 4 + a 5 X 3 + a 5 X 2 + a 6 X + a 7 .

Hermitian self-dual θ-cyclic codes

Lemmas 3 and 4 also give an answer to the question of the enumeration of Hermitian self-dual θ-cyclic codes whose dimension is coprime with p as shown below (see perspectives of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF]) :

Theorem 5 Consider p a prime number, θ the Frobenius automorphism over IF p 2 and k an integer coprime with p. If p is odd, there exist no Hermitian self-dual θ-cyclic codes of length 2k over IF p 2 . Over IF 4 , the number of Hermitian self-dual θ-cyclic codes of length 2k is

3 × f ∈F ∩D X 2k -1 (2 δ + 1) × f ∈G∩D X 2k -1 (2 δ + 3)
where 2δ is the degree of f in X 2 .

Proof. According to Proposition 2, the number of Hermitian self-dual θ-cyclic codes over IF p 2 with dimension k is #H

(1)

X 2k -1 = #H (1) X 2 -1 × f ∈F ∩D X 2k -1 #H (1) f × f ∈G∩D X 2k -1 #H (1) 
f .

The final result follows from Lemma 3, Lemma 4 and from the fact that the equation Θ(h )•h = X 2 -1 has no solution if p is odd, and 3 solutions if p = 2.

4 Self-orthognal θ-cyclic codes over IF p 2

The aim of this section is to construct [2k, k -1] self-orthogonal θ-cyclic codes over IF p 2 when k is coprime with p for both Euclidean and Hermitian scalar products. The (Euclidean) dual of a linear code C of length n over IF q is defined as C ⊥ = {x ∈ IF n q | ∀y ∈ C, < x, y >= 0} where for x, y in IF n q , < x, y >:= n i=1 x i y i is the (Euclidean) scalar product of x and y. The code

C is Euclidean self-dual if C is equal to C ⊥ . The code C is (Euclidean) self-orthogonal if C is a subset of C ⊥ .
Assume that q = r 2 is an even power of an arbitrary prime and denote for a in IF q , a = a r . The (Hermitian) dual of a linear code C of length n over IF q is defined as C ⊥ H = {x ∈ IF n q | ∀y ∈ C, < x, y > H = 0} where for x, y in IF n q , < x, y > H := n i=1 x i y i is the (Hermitian) scalar product of x and y.

The code C is Hermitian self-dual if C is equal to C ⊥ H . The code C is (Hermitian) self-orthogonal if C is a subset of C ⊥ H .
According to ([9], Theorem 6.4.1), a cyclic code of odd length n and dimension (n -1)/2 over IF q is Euclidean self-orthogonal if and only if it is an even-like duadic code given by the multiplier -1. According to ([9], Theorem 6.4.4), a cyclic code of odd length n and dimension (n -1)/2 over IF 4 is Hermitian self-orthogonal if and only if it is an even-like duadic code given by the multiplier -2.

Recall that the Euclidean dual of a θ-cyclic code of length 2k with skew generator polynomial g is the θ-cyclic code with skew generator polynomial h where h • g = X 2k -1 ([2], [START_REF] Boucher | A note on the dual codes of module skew codes, Cryptography and coding[END_REF], [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]). Euclidean self-dual θ-cyclic [2k, k] codes are constructed and enumerated for any k in [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF]. Consider q an even power of an arbitrary prime number. As the hermitian product of x, y ∈ IF n q is equal to < x, y >, the Hermitian dual of a code C is the Euclidean dual of C. In particular, if C is a θ-cyclic code of length n and skew generator polynomial g, then its Hermitian dual is the θ-cyclic code of length n with skew generator polynomial h (see [START_REF] Boucher | A note on the dual codes of module skew codes, Cryptography and coding[END_REF]) .

The following proposition gives a sufficient self-orthogonality condition for θ-cyclic codes of length mk and dimension (mk -m)/2. Theorem 6 Consider q a prime power, θ an automorphism of IF q of order m and an integer k coprime with q such that mk -m is even.

• The even-like θ-duadic codes of length mk given by the multiplier -1 are Euclidean self-orthogonal θ-cyclic codes.

• Assume that q = r 2 is an even power of an arbitrary prime number. The even-like θ-duadic codes of length mk given by the multiplier -r are Hermitian self-orthogonal θ-cyclic codes.

Proof. Consider an even-like θ-duadic code of length mk given by the multiplier -1. Its skew generator polynomial is (X m -1) • h where (X m -1)

• h • h = X mk -1. The Euclidean dual C ⊥ of C is generated by h , therefore C ⊂ C ⊥ .
Assume that q = r 2 . Consider an even-like θ-duadic code of length mk given by the multiplier -r. Its skew generator polynomial is (X m -1)•h where (

X m -1)•h •h = X mk -1. The Hermitian dual C ⊥ H of C is generated by h , therefore C ⊂ C ⊥ H .
Proposition 7 characterizes Euclidean self-orthogonal θ-cyclic codes with length 2k and maximum dimension k -1 over IF p 2 . Even-like θ-duadic codes are a special case of selforthogonal θ-cyclic codes.

Theorem 7 Consider p a prime number, θ the Frobenius automorphism over IF p 2 . There exists a [2k, k -1] Euclidean self-orthogonal θ-cyclic code over IF p 2 for any integer k coprime with p. The skew generator polynomial of such a code is P • h where P and h satisfy one of these conditions :

1. P = X 2 -1 and h • h = X 2k -1 X 2 -1 . ( 19 
)
In this case the code is an even-like θ-duadic code (given by the multiplier -1). Furthermore p = 2 or (k ≡ 0 (mod 2) and p ≡ 1 (mod 4)) or k ≡ 1 (mod 2).

2. P = X 2 + 1 and

h • h = X 2k -1 X 2 + 1 . ( 20 
)
Furthermore k ≡ 0 (mod 2) and p ≡ 3 (mod 4).

P

= (X -λ) • (X + 1/λ), (λ p+1 ) k = 1, h = H • (X + λ p ) or h = H • (X -1/λ)and H • H = X 2k -1 (X 2 -λ p+1 )(X 2 -1/λ p+1 ) . ( 21 
)
Furthermore k ≡ 1 (mod 2), p ≡ 3 (mod 4) and gcd(k, p -1) = 1.

Proof. Consider a θ-cyclic code C with length 2k and dimension k -1. It is generated by a skew polynomial g of degree k + 1 which divides X 2k -1. Its Euclidean dual is generated by h where the skew polynomial h is defined by g • h = X 2k -1. The code C is Euclidean self-orthogonal if and only if the skew polynomial g is a right multiple of the skew polynomial h . That means that there exists P in R with degree 2 such that g = P • h . Therefore C is self-orthogonal if and only if

P • h • h = X 2k -1. 1. If P = X 2 -1 then one gets the equation (19). As k is coprime with p, X 2 -1 does not divide F (X 2 ) = X 2k -1 X 2 -1 . If k is even or p = 2, then X 2 + 1 does not divide F (X 2 ), therefore F (X 2 ) = f ∈F ∩D F f (X 2 ) × f ∈G∩D F f (X 2
). According to Lemma 3 and Lemma 4, the set H (0) f is not empty when f belongs to F ∪ G, therefore, according to Proposition 2, the set

H (0) F is also not empty. If k is odd and p is odd then X 2 + 1 divides F (X 2 ) and F (X 2 ) = (X 2 + 1) × f ∈F ∩D F f (X 2 ) × f ∈G∩D F f (X 2 ). As H (0) X 2 +1
is nonempty if and only if p ≡ 1 (mod 4), the set H (0) F is not empty if and only if p ≡ 1 (mod 4).

2. Assume that p is odd and P = X 2 + 1 then one gets the equation (20). Necessarily, k must be even. As

X 2 + 1 does not divide F (X 2 ) = X 2k -1 X 2 +1 and as X 2 -1 divides F (X 2 ), one has F (X 2 ) = (X 2 -1) × f ∈F ∩D F f (X 2 ) × f ∈G∩D F f (X 2 ). Furthermore H (0) X 2 -1
is nonempty if and only if p ≡ 3 (mod 4) therefore, there is a solution if and only if p ≡ 3 (mod 4).

Assume that p is odd and P

= X 2 ± 1.
Let us show that P must be reducible. Assume that P is irreducible and consider his bound f (X 2 ). f (X 2 ) is an irreducible polynomial in IF p [X 2 ] and each factorization of f (X 2 ) into the product of irreducible skew polynomials contains two terms with degree 2. The same property holds for f (

X 2 ) as f (X 2 ) is also irreducible in IF p [X 2 ]. As X 2k -1 is squarefree in IF p [X 2 ]
, each factorization of X 2k -1 in R contains exactly two irreducible factors bounded by f (X 2 ) and two irreducible factors bounded by f (X 2 ).

Let r (resp. s) denote the number of irreducible factors bounded by f (X 2 ) (resp. f (X 2 )) in any factorization of h over R.

Necessarily f = f otherwise there is an even number of factors bounded by f (X 2 ) in each factorization of Θ b (h ) • h in the product of irreducible skew polynomials, which is impossible.

As f = f , there are r + s + 1 (resp. r + s) factors bounded by f (X 2 ) (resp. f (X 2 )) in any factorization of P • h • h, therefore, r + s + 1 = 2 = r + s, which is a contradiction.

Therefore P = (X -λ) • (X -µ) where λ, µ ∈ IF p 2 . Let X 2 -a ∈ IF p [X 2 ] denote the bound of X -λ and X 2 -b ∈ IF p [X 2 ] denote the bound of X -µ. Necessarily, a k = b k = 1 as X 2 -a and X 2 -b divide X 2k -1. Consider f 1 (X 2 ) = lcm(X 2 -a, X 2 -b) and f 2 (X 2 ) = (X 2k -1)/f 1 (X 2 ). Assume that a = b, then (X-λ)•(X-µ)•h •h = (X 2 -a)f 2 (X 2 ), and h •h is coprime with X 2 -a, furthermore X 2 -a is central, therefore lclm(X 2 -a, h • h) = (X 2 -a)h • h. As X 2 -a and h •h divide X 2k -1, their lclm also divides X 2k -1 = (X 2 -a)f 2 (X 2 ) therefore h • h divides f 2 (X 2 ).

Considerations on the degrees of these two skew polynomials enable to conclude that

h • h = f 2 (X 2 ). Furthermore f 2 (X 2 ) must be self-reciprocal (as h • h is self-reciprocal), therefore f 1 (X 2
) is also self-reciprocal and a 2 = 1. Lastly, (X -λ) • (X -µ) = X 2 -a = P . One gets the first and second cases of the Proposition.

Assume that a = b, then (X -λ)

• (X -µ) • h • h = (X 2 -a)(X 2 -b)f 2 (X 2
). Necessarily p is here an odd prime number.

X 2k -1 has two factors bounded by X 2 -a and two factors with bound X 2 -b. Necessarily, h • h contains two factors bounded by X 2 -a and X 2 -b. Assume that these two factors appear in h, then h has two factors bounded by X 2 -1/a and X 2 -1/b. Necessarily 1/a = a, b and 1/b = b. (X -λ) • (X -µ) • h • h has two factors bounded by X 2 -1/a and X 2 -1/b, whereas X 2k -1 has four factors bounded by X 2 -1/a and X 2 -1/b. There is a contradiction, therefore h has one factor bounded by X 2 -a or X 2 -b.

Furthermore h = lcrm(h 1 , h 2 ) where h 1 = gcld(h, f 1 (X 2 )) and h 2 = gcld(h, f 2 (X 2 )). Consider H 2 = X + u such that h = h 2 • H 2 , then h 2 • h 2 divides X 2k -1. As h 2 • h 2 is coprime with f 1 (X 2 ), h 2 • h 2 divides f 2 (X 2
). Furthermore the degree of H 2 is one, and H 2 and h 2 are coprime so deg

(h) = deg(h 2 ) + 1, therefore deg(h 2 • h 2 ) = deg(f 2 (X 2 )) and one gets h 2 • h 2 = f 2 (X 2 ). Furthermore f 1 (X 2 ) must be self-reciprocal, therefore b = 1/a. One has h = h 2 • (X + u) and h 2 • h 2 = f 2 (X 2 ) therefore h = (X -1 u ) • h 2 and the equality (X -λ) • (X -µ) • h • h = X 2k -1 leads to (X -λ) • (X -µ) • (X -1/u) • (X + u) = (X 2 -a)(X 2 -1/a).
A small computation gives µ = -1/λ and u = a λ = λ p or u = -1 λ .

Example 7 The [34, 16] 4 even-like θ-duadic code associated to the [34, 18, 9] 4 odd-like θduadic code C = (G) θ 34 of Example 4 is generated by (X 2 -1)G and is Euclidean self-orthogonal. Furthermore C can be extended to a [36, 18, 11] 4 self-dual code C (which is not equivalent to the previous [36, 18,[START_REF] Kaya | New extremal binary self-dual codes of length 68 from quadratic residue codes over IF 2 + uIF 2 + u 2 IF 2[END_REF] 4 self-dual θ-cyclic codes computed in [START_REF] Boucher | Coding with skew polynomial rings[END_REF]). A generator matrix of C is the block-matrix G = G M where G is a generator matrix of

C : G =        a a 2 a 0 0 1 a 1 0 a 1 a 0 0 1 a 2 1 0 • • • 0 0 a 2 a a 2 0 0 1 a 2 1 0 a 2 1 a 2 0 0 1 a 1 0 • • • 0 . . . 0 • • • 0 0 a 2 a a 2 0 0 1 a 2 1 0 a 2 1 a 2 0 0 1 a 1       
and M is the 18 × 2 matrix defined by t M =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a a 2 a a 2 a a 2 a a 2 a a 2 a a 2 a a 2 a a 2 a a 2 .
Note that the binary image of this code is a Type II [72, 36, 12] self-dual code whose weight enumerator is given in the last line of Table 5 (see annex B.2).

Example 8 Example 5 shows that there is no even-like θ-duadic code of length 32 and dimension 15 over IF 9 given by the multiplier -1. However, there exist Euclidean self-orthogonal θ-cyclic codes of length 32 and dimension 15 over IF 9 . They are generated by (X 2 + 1) • h where h satisfies the following skew equation

h • h = (X 32 -1)/(X 2 + 1) = (X 2 -1)(X 4 + 1)(X 4 + X 2 + 2)(X 4 + 2X 2 + 2) (X 8 + X 4 + 2)(X 8 + 2X 4 + 2).
There are 8064 = 2(1+3 1 )(3+3 2 )(3+3 4 ) solutions. For h = X 15 +a 7 X 14 +a 3 X 13 +a 7 X 11 + a 5 X 10 + a 2 X 8 + 2 X 7 + a 5 X 5 + a 3 X 4 + a 7 X 2 + a 3 X + a 6 , the skew polynomial (X 2 + 1) • h generates an Euclidean self-orthogonal θ-cyclic code. Furthermore the corresponding odd-like θ-duadic code (generated by h ) C can be extended to a [34,17,[START_REF] Odoni | On additive polynomials over a finite field[END_REF] 

9 self-dual code C. A generator matrix of C is the block-matrix G = G M where G =      a 6 a 3 a 0 a 5 a 5 0 2 a 2 0 a 3 a 7 0 a 3 a 1 0 • • • 0 a 2 a a 3 0 a 7 a 7 0 2 a 6 0 a a 5 0 a a 3 1 • • • . . .      is a generator matrix of C and M is the 17 × 2 matrix defined by t M = 1 a 6 2 a 2 1 a 6 2 a 2 1 a 6 2 a 2 1 a 6 2 a 2 1 a 2 2 a 6 1 a 2 2 a 6 1 a 2 2 a 6 1 a 2 2 a 6 1 a 2 .
Proposition 8 characterizes Hermitian self-orthogonal θ-cyclic codes with length 2k and maximum dimension k -1 over IF p 2 . They are necessarily even-like θ-duadic codes.

Theorem 8 Consider p a prime number, θ the Frobenius automorphism over IF p 2 . There exist [2k, k -1] Hermitian self-orthogonal θ-cyclic codes over IF p 2 for any integer k coprime with p. Furthermore they are necessarily even-like θ-duadic codes (given by the multiplier -p).

Proof. Consider a θ-cyclic code C with length 2k and dimension k -1. It is generated by a skew polynomial g of degree k + 1 which divides X 2k -1. Its Hermitian dual is generated by Θ(h ) where the skew polynomial h is defined by g • h = X 2k -1. The code C is Hermitian self-orthogonal if and only if the skew polynomial g is a right multiple of the skew polynomial Θ(h ). That means that there exists P in R with degree 2 such that g = P • Θ(h ). Therefore C is Hermitian self-orthogonal if and only if

P • Θ(h ) • h = X 2k -1.
If P = X 2 -1, one gets an even-like θ-duadic code (given by the multiplier -p).

If P = X 2 + 1, one gets Θ(h ) • h = X 2k -1 X 2 +1
and this equation has no solution because X 2 -1 divides X 2k -1 X 2 +1 and H

(1)

X 2 -1 = ∅. If P = X 2 ± 1,
then like in proof of Proposition 7, one can prove that P is reducible and

that h = h 2 • H 2 where Θ(h 2 ) • h 2 = X 2k -1 (X 2 -a)(X 2 -1/a) and a ∈ IF p \ {±1}. As X 2 -1 divides X 2k -1 (X 2 -a)(X 2 -1/a)
, there is no solution.

Example 9

The even-like θ-duadic code associated to the odd-like θ-duadic codes of Examples 3 and 6 are Hermitian self-orthogonal.

Conclusion and perspectives

This text gives a first step to the construction of θ-duadic codes defined over a finite field IF q . Indeed a generalization of duadic codes given by the multiplier -1 (and the multiplier -√ q when q is a square) is obtained. One could generalize this definition to the θ-duadic codes given by more general multipliers such as ±p b where b belongs to {0, . . . , m -1} and where θ is the Frobenius automorphism of order m. However it seems that a deeper study is needed to extend the definition to much more general multipliers. In particular, the notion of idempotent is absent here. When q is the square of a prime number p, a more detailed study is achieved, namely the construction and enumeration of pairs of θ-duadic codes given by the multipliers -1 and -p (Proposition 3 and Proposition 4). Proposition 5 also gives an answer to the question of the enumeration of Hermitian self-dual θ-cyclic codes whose dimension is coprime with p. The case of the dimension multiple of p could be studied following ideas of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF] for Euclidean self-dual θ-cyclic codes.

Over IF p 2 , the class of the θ-cyclic codes who are self-orthogonal, of length 2k and of dimension k-1 is also explored (where k is coprime with p and θ is the Frobenius automorphism). A link with the θ-duadic codes is obtained. Some examples of self-dual extended θ-cyclic codes are given (a [36, 18, 11] 4 Euclidean self-dual code in Example 7 and a [34,17,[START_REF] Odoni | On additive polynomials over a finite field[END_REF] 9 Euclidean self-dual code in Example 8). This extension would deserve to be systemized. Furthermore an interesting remaining question is to find conditions for the existence of self-dual codes which are extended θ-cyclic. Lastly, as an application, self-dual binary [72,36,[START_REF] Odoni | On additive polynomials over a finite field[END_REF] codes with new weight enumerators were constructed (Appendix B). All the computations were made with the computer algebra system MAGMA.

A An application : parametrization of the irreducible skew polynomials of IF p 2 [X; θ] with given bound

In this first annex the techniques developed in IF p 2 [X; θ] for the enumeration of the θ-duadic codes (Lemma 2) can be generalized to obtain the parametrization of the monic irreducible skew polynomials with a given bound.

According to [START_REF] Odoni | On additive polynomials over a finite field[END_REF], the number of irreducible monic skew polynomials in IF The aim of this section is to give a parametrization of all irreducible monic skew polynomials of IF p 2 [X; θ] with a given bound. This construction is based on the previous Lemma 2 and Lemma 5 given below. 

Lemma 5 Consider f = f (X 2 ) an irreducible polynomial of IF p [X 2 ] with degree d greater than 1. If d is even, consider the irreducible factors f (Z) and Θ( f )(Z) of f (Z) in IF p 2 [Z]. 1. If d = 2δ, then the irreducible skew polynomials of IF p 2 [X; θ] with bound f (X 2 ) are the skew polynomials f (X 2 ), Θ( f )(X 2 ) and h = A(X 2 ) + X • B(X 2 ) where A is monic of degree δ, B is of degree ≤ δ -1 coprime with f , (A,
• h = f (X 2 ). ( 22 
)
1. Assume that d is even and consider f (Z) irreducible in end for 19: end if 20: return [START_REF] Von Zur Gathen | Modern computer algebra[END_REF] for the computation of (A, B)).

IF p 2 [Z] such that f (Z) = f (Z)Θ( f )(Z). Consider A(Z), Ã(Z) ∈ IF p 2 [Z] monic of degree δ and B(Z), B(Z) ∈ IF p 2 [Z] of degree ≤ δ -1 such that h = A(X 2 ) + X • B(X 2 ) and h = Ã(X 2 ) + B(X 2 ) • X. Then (
δ ← d/2 13: E ← { f (X 2 ), Θ( f )(X 2 )} where f (Z)Θ( f )(Z) = f (Z) is the factorization of f (Z) in IF p 2 [Z]
E u P (Z) ∈ IF 4 [Z] h(X) ∈ IF 4 [X; θ] γ Z 2 + a 2 Z + 1 X 3 + a X 2 + a X + a γ 8 Z 2 + a Z + 1 X 3 + a 2 X 2 + a 2 X + a 2 γ 15 a 2 Z 2 + a 2 Z X 3 + X + a 2 γ 22 a Z 2 + Z + a X 3 + a 2 X 2 + a X + a 2 γ 29 a Z 2 + a 2 Z + a X 3 + X 2 + a 2 X + 1 γ 36 Z 2 + Z X 3 + X + 1 γ 43 a 2 Z 2 + a Z + a 2 X 3 + X 2 + a X + 1 γ 50 a 2 Z 2 + Z + a 2 X 3 + a X 2 + a 2 X + a γ 57 a Z 2 + a Z X 3 + X + a
The polynomials P (Z) (second column of Table 1) are associated to the 9 parameters u in IF 2 6 = IF 2 (γ) satisfying u 9 = α where α 3 + α + 1 = 0 and γ 6 + γ 4 + γ 3 + γ + 1 = 0 (first column of Table 1).

Example 11

The irreducible monic skew polynomials of IF 4 [X; θ] bounded by X 8 + X 2 + 1 are X 4 + X 2 + a, X 4 + X 2 + a 2 and the 15 skew polynomials h = A(X 2 ) + X • B(X 2 ) listed in the third column of Table 2 where A(Z) B(Z) ≡ P (Z) (mod f (Z)), A monic, deg(A) = 2 and deg(B) < 2. The polynomials P (Z) (second column of Recall that in a binary self-dual code, all weights are congruent to 0 mod 2. A binary self-dual code with all weights congruent to 0 mod 4 is said to be a Type II code. A binary self-dual code with at least one weight not congruent to 0 mod 4 is said to be Type I.

According to [START_REF] Dougherty | Extremal binary self-dual codes[END_REF], the possible weight enumerators for Type II [72, 36, 12] 2 self-dual codes are :

1 + (4398 + α)y 12 + (197073 -12 α)y 16 + (18396972 + 66α)y 20 + • • • .

According to [START_REF] Kaya | New extremal binary self-dual codes of length 68 from quadratic residue codes over IF 2 + uIF 2 + u 2 IF 2[END_REF], the possible weight enumerators for Type I [72, 36, 12] 2 self-dual codes are : 3. The coefficients of the skew generator polynomials g of the [36, 18] 4 self-dual θ-cyclic codes are given in the first column and the coefficients α in the weight enumerators appear in the second column.

W 72,1 = 1 + 2βy 12 + (8640 -64γ)y 14 + (124281 -24β + 384γ)y 16 + • • • and u P (Z) ∈ IF 4 [Z] h(X) ∈ IF 4 [X; θ] 1 Z 3 + a 2 Z + a 2 X 4 + a 2 X 3 + a 2 X 2 + a α Z 3 + a Z + a X 4 + a X 3 + a X 2 + a 2 α 2 a 2 Z 3 + a 2 Z 2 + a X 4 + a 2 X 3 + a X 2 + a 2 X + a α 3 a 2 Z 2 + a 2 X 4 + a 2 X + 1 α 4 a 2 Z 3 + a 2 Z 2 + 1 X 4 + a 2 X 3 + a 2 X 2 + a 2 X + a 2 α 5 a Z 3 + Z + 1 X 4 + X 3 + a 2 X 2 + a α 6 a Z 3 + a 2 Z + a 2 X 4 + a 2 X 3 + a X 2 + a 2 α 7 Z 3 + Z 2 + a 2 X 4 + X 3 + a X 2 + X + a α 8 Z 2 + 1 X 4 + X + 1 α 9 Z 3 + Z 2 + a X 4 + X 3 + a 2 X 2 + X + a 2 α 10 a 2 Z 3 + a Z + a X 4 + a X 3 + a 2 X 2 + a α 11 a 2 Z 3 + Z + 1 X 4 + X 3 + a X 2 + a 2 α 12 a Z 3 + a Z 2 + 1 X 4 + a X 3 + a X 2 + a X + a α 13 a Z 2 + a X 4 + a X + 1 α 14 a Z 3 + a Z 2 + a 2 X 4 + a X 3 + a 2 X 2 + a X + a 2
In Table 4 the Type I [72, 36, 12] 2 self-dual codes are given along with the corresponding skew generator polynomials g (represented by their coefficients) and the coefficients β, γ. All weight enumerators are W 72,1 = 1 + 2βy 

G =        g 0 g 1 g 2 g 14 g 15 1 0 • • • 0 g 2 0 g 2 1 g 2 2 g 2 14 g 2 15 1 • • • . . . 0 • • • g 0 g 1 g 2 g 14 g 15 1 0 • • • 0 g 2 0 g 2 1 g 2 2 g 2 14 0 g 2 15 1        . • Consider M ∈ M 18,2 such that G × G T + M × M T = 0.
Necessarily, M is a block matrix of the form :

M =        v 1 v 2 v 3 v 4 . . . . . . v 1 v 2 v 3 v 4       
.

The coefficients v 1 , v 2 , v 3 and v 4 are solutions of a polynomial system given by the relation G × G T + M × M T = 0.

• Consider the binary image of the self-dual code with generator matrix the block matrix (G|M ) : this code is a [72, 36] 2 self-dual code. in the first column, the coefficients of the above skew generator polynomial g are given; the second column contains the coefficients v = (v 1 , v 2 , v 3 , v 4 ) and in the third column the coefficient α of the weight enumerator is given. The code detailed in Example 4 and Example 7 appears at the last line of Table 5.

Table 6 contains only Type I [72, 36, 12] 2 self-dual codes. It is organized as follows : in the first column, the coefficients of the skew generator polynomial g are given; the second column contains the coefficients v = (v 1 , v 2 , v 3 , v 4 ); in the third and fourth columns the coefficients β and δ of the weight enumerators are given. All weight enumerators are W 72,2 = 1 + 2βy 12 + (7616 -64δ)y 14 + (134521 -24β + 384δ)y 16 + • • • .

When α, β and δ are written in bold, the weight enumerator is new (not given in [START_REF] Dougherty | Extremal binary self-dual codes[END_REF][START_REF] Kaya | New extremal binary self-dual codes of length 68 from quadratic residue codes over IF 2 + uIF 2 + u 2 IF 2[END_REF][START_REF] Alexandre | New self-dual codes of length 72[END_REF] and not present in Tables 3 and4).

Coefficients of g α a 2 , 0, a 2 , a 2 , 1, 1, a 2 , 1, a 2 , 0, 1, a 2 , 1, a 2 , a 2 , 1, 1, 0, 1 -2820

1, a, a, a, a 2 , a 2 , a, 0, 0, 0, 0, 0, a 2 , a, a, a 2 , a 2 , a 2 , 1 -3204

1, a 2 , a 2 , 1, 1, a 2 , 1, a, 0, 0, 0, a 2 , 1, a, 1, 1, a, a, 1 -3276 a 2 , 1, 1, 0, a, 1, 1, a 2 , 0, 0, 0, 1, a 2 , a 2 , a, 0, a 2 , a 2 , 1 -3312 a 2 , a 2 , 1, a, a 2 , 0, 0, 0, a, 0, a, 0, 0, 0, 1, a, a 2 , 1, 1 -3336 a 2 , a, a, 0, 1, a, a, a 2 , a 2 , 0, 1, 1, a, a, a 2 , 0, a, a, 1 -3372 a 2 , 0, 0, a 2 , 0, a, a, a 2 , a, a, a, 1, a, a, 0, 1, 0, 0, 1 -3408

1, 1, a, a 2 , 1, 1, 1, a, 0, 1, 0, a 2 , 1, 1, 1, a, a 2 , 1, 1 -3420 a, a, 1, a, a 2 , a 2 , 1, a 2 , a 2 , a 2 , a 2 , a 2 , a, a 2 , a 2 , 1, a, 1, 1 -3456 a, a 2 , 1, a, 0, a, 0, a 2 , a, a 2 , 1, a 2 , 0, 1, 0, 1, a, a 2 , 1 -3504

1, a, a 2 , a, a 2 , 1, 1, a, a, 0, a 2 , a 2 , 1, 1, a, a 2 , a, a 2 , 1 -3540 a, 1, a 2 , a 2 , a, 0, a, 0, 0, 0, 0, 0, 1, 0, 1, a 2 , a 2 , a, 1 -3564

1, 0, 0, a, 1, 1, a 2 , a, 0, 1, 0, a 2 , a, 1, 1, a 2 , 0, 0, 1 -3576

1, 1, a 2 , a 2 , 1, a 2 , a, a 2 , a, 0, a 2 , a, a 2 , a, 1, a, a, 1, 1 -3600 1, 0, 0, 0, 1, 1, 1, 0, a, 1, a 2 , 0, 1, 1, 1, 0, 0, 0, 1 -3612

1, 0, 0, 0, 1, a 2 , 0, 1, a 2 , 0, a, 1, 0, a, 1, 0, 0, 0, 1 -3636 a, a 2 , a 2 , a 2 , 1, 1, a 2 , 0, a, 0, 1, 0, a 2 , a, a, a 2 , a 2 , a 2 , 1 -3660 1, 0, 0, a, 0, a, a, 1, 1, 1, 1, 1, a 2 , a 2 , 0, a 2 , 0, 0, 1 -3696 a, 0, 0, a, a, 1, a 2 , a 2 , a, a 2 , 1, a 2 , a 2 , a, 1, 1, 0, 0, 1 -3732 a, 0, a, a, 1, a 2 , 0, a 2 , 0, 0, 0, a 2 , 0, a 2 , a, 1, 1, 0, 1 -3744 a 2 , a, 1, 1, a 2 , a 2 , 1, 0, a 2 , a, 1, 0, a 2 , 1, 1, a 2 , a 2 , a, 1 -3768

1, 1, a 2 , 0, a, 0, a, 1, 0, 1, 0, 1, a 2 , 0, a 2 , 0, a, 1, 1 -3816 1, a 2 , a 2 , a, 0, a 2 , a, a, a, 1, a 2 , a 2 , a 2 , a, 0, a 2 , a, a, 1 -3828 1, a, a, 1, 0, a 2 , 0, a 2 , 0, 0, 0, a, 0, a, 0, 1, a 2 , a 2 , 1 -3924 1, 0, 0, a, 0, a 2 , a, 0, a, 0, a 2 , 0, a 2 , a, 0, a 2 , 0, 0, 1 237 0 1, a 2 , a 2 , a 2 , a, 1, a 2 , a, a, 1, a 2 , a 2 , a, 1, a 2 , a, a, a, 1 249 0 1, 0, 1, a, a, 0, 1, 1, a 2 , 1, a, 1, 1, 0, a 2 , a 2 , 1, 0, 1 273 0 a, 1, 1, 1, a 2 , a, 1, a 2 , 1, a 2 , a, a 2 , a, 1, a 2 , a, a, a, 1 273 36 a 2 , a 2 , 1, 0, 1, 0, 0, a 2 , 1, 0, a 2 , 1, 0, 0, a 2 , 0, a 2 , 1, 1 309 0 1, 1, a, 1, a 2 , a 2 , a 2 , 0, a, 1, a 2 , 0, a, a, a, 1, a 2 , 1, 1 345 0 a 2 , a, 1, a 2 , 0, 0, 1, 0, a 2 , a, 1, 0, a 2 , 0, 0, 1, a 2 , a, 1 381 0 1, a, a, a 2 , 0, a, a, 1, 1, 1, 1, 1, a 2 , a 2 , 0, a, a 2 , a 2 , 1 393 36 a, a, a 2 , a, 1, a, 0, a, a 2 , 0, a 2 , 1, 0, 1, a, 1, a 2 , 1, 1 489 36 Coefficients of g v α a, a, 0, a, a 2 , a, a, 0, 0, 0, 1, 1, a 2 , 1, 0, 1, 1 1, a, 1, a 2 -3072 a, a 2 , 0, a 2 , a 2 , a 2 , 0, a 2 , 0, a 2 , 0, a 2 , a 2 , a 2 , 0, a 2 , 1 1, a, 1, a 2 -3276 a 2 , 1, a 2 , a 2 , 1, a 2 , 0, 1, 0, a 2 , 0, 1, a 2 , 1, 1, a 2 , 1 1, a 2 , 1, a -3480 a, 1, a, 1, 0, 0, a, a 2 , 0, a 2 , 1, 0, 0, a, 1, a, 1 1, a, 1, a 2 -3582 a, 0, a 2 , 0, 0, 1, 1, a 2 , 0, a 2 , a, a, 0, 0, a 2 , 0, 1 1, a, 1, a 2 -3684 a 2 , 1, 0, a, 0, 1, a 2 , a, a, a, 1, a 2 , 0, a, 0, a 2 , 1 1, a 2 , 1, a -3990 a, a 2 , a, 0, 0, 1, a, 1, 0, a, 1, a, 0, 0, 1, a 2 , 1 1, a, 1, a 2 -4092 1, 1, 0, 0, a, 0, a, 1, 1, 1, a 2 , 0, a 2 , 0, 0, 1, 1 [0, 1, 1, 0] 221 0 1, a 2 , 1, 1, a, a 2 , a 2 , a 2 , 0, a, a, a, a 2 , 1, 1, a, 1 [0, 1, 1, 0] 323 0 a, 1, a, 1, 0, 0, a, a 2 , 0, a 2 , 1, 0, 0, a, 1, a, 1 0, a 2 , a, 0 238 0 a, a, 0, a, a 2 , a, a, 0, 0, 0, 1, 1, a 2 , 1, 0, 1, 1 0, a 2 , a, 0 391 0 a, a, 0, 1, 0, 0, a, 0, a 2 , 0, 1, 0, 0, a, 0, 1, 1 0, a 2 , a, 0 289 0 a 2 , 1, 0, a, 0, 1, a 2 , a, a, a, 1, a 2 , 0, a, 0, a 2 , 1 0, a, a 2 , 0 102 0 a, 0, 1, a 2 , 0, a, 0, a 2 , 0, a 2 , 0, 1, 0, a 2 , a, 0, 1 0, a 2 , a, 0 255 0 a, a 2 , a, 0, 0, 1, a, 1, 0, a, 1, a, 0, 0, 1, a 2 , 1 0, a 2 , a, 0 153 0 

Theorem 3

 3 Consider p a prime number, θ the Frobenius automorphism over IF p 2 , b in {0, 1} and k an integer coprime with p. The number of irreducible θ-duadic codes of length 2k with given multiplier -p b over IF p 2 is 1 + p (k-1)/2 if k is an odd prime and p generates Z Z/kZ Z * ; 0 otherwise.

Example 2

 2 /2 elements according to Lemma 3. Consider θ : x → x 2 the Frobenius automorphism over IF 4 = IF 2 (a). The number of irreducible θ-duadic codes of length 22 with given multiplier -1 over IF 4 is 1 + 2 5 = 33. They are generated by the skew polynomials h in IF 4 [X; θ] where h is a monic solution to the skew equation

Theorem 4

 4 Consider p a prime number, θ the Frobenius automorphism over IF p 2 , k an integer coprime with p and b in {0, 1}. The number of pairs of θ-duadic codes of length 2k with given multiplier -p b over

Example 4

 4 Consider θ the Frobenius automorphism over IF 4 , k = 17 and b = 0. The number of odd-like θ-duadic codes of length 2k = 34 with multiplier -2 b = -1 over IF 4 is 1 × (1 + 2 4 ) × (1 + 2 4 ) = 289. These codes are generated by the skew polynomials g = h where h is solution of the skew equation in IF 4 [X; θ] :

p 2 [

 2 X; θ] of degree d is equal to M d ×N d where N d is the number of irreducible polynomials in IF p [X 2 ] of degree d in X 2 and M d = p d + 1 is the number of monic skew polynomials bounded by any irreducible polynomial in IF p [X 2 ] of degree d in X 2 .

14 :

 14 for u ∈ IF p d such that u = 0 do 15:P ← Interpolation Polynomial in IF p 2 [Z] at the d points [α p 2i , u p 2i ] 0≤i≤δ-1 and [α p 2i+1 , α p 2i+1 /u p 2i+1 ] 0≤i≤δ-1 16: (A, B) ← solution of the Cauchy interpolation problem A B ≡ P (mod f ) with A monic, deg(A) = δ, deg(B) < δ 17:add A(X 2 ) + X • B(X 2 ) to the set E 18:

  Consider θ : x → x 2 the Frobenius automorphism over IF 4 = IF 2 (a). The number of irreducible θ-duadic codes of length 22 with given multiplier -2 over IF 4 is 1 + 2 5 = 33. They are generated by the skew polynomials Θ(h ) in IF 4 [X; θ] where h is a monic solution to the equation

4 

+ X + 1 generates a [22,

[START_REF] Odoni | On additive polynomials over a finite field[END_REF][START_REF] Caruso | A new faster algorithm for factoring skew polynomials over finite fields[END_REF] 

4 irreducible odd-like θ-duadic codes with multiplier -1.

Example 3

  + a generates an odd-like θ-duadic code C over IF 4 given by the multiplier -1, which is a [34, 18, 9] 4 code. Consider θ the Frobenius automorphism over IF 9 . There is no odd-like θ-duadic code of length 32 over IF 9 given by the multiplier -1. Consider θ the Frobenius automorphism over IF 9 . The odd-like θ-duadic codes of length 32 over IF 9 = IF 3 (a) given by the multiplier -3 are generated by h where h is a monic solution to the skew equation in IF 9 [X; θ] :

	Example 5 Example 6

  B) is solution to the Cauchy interpolation problem in IF p 2 [Z] then the irreducible skew polynomials of IF p 2 [X; θ] with bound f (X 2 ) are the skew polynomials h = A(X 2 ) + X • B(X 2 )where B is monic of degree δ coprime with f , A is of degree ≤ δ, (A, B) is solution to the Cauchy interpolation problem in

	A B	≡ P (mod f )
	and P (Z) is a polynomial in IF p 2 [Z] of degree < d satisfying the relation
	P Θ(P ) ≡ z (mod f ).
	2. If d = 2δ + 1, IF p 2 [Z]	
	A B	≡ P (mod f )
	and P (Z) is a polynomial in IF p 2 [Z] of degree < d satisfying the relation
	P Θ(P ) ≡ z (mod f ).
	Proof. A monic skew polynomial h is an irreducible skew polynomial bounded by f (X 2 )
	if and only if, there exists h monic of degree d = deg(h) such that
	h	

  22) is equivalent toAlgorithm 1 Irreducible skew polynomials of IF p 2 [X; θ] with a given boundRequire: f ∈ IF p [X 2 ] irreducible in IF p [X 2 ] Ensure: All irreducible skew polynomials with bound f (X 2 ) 1: d ← deg X 2 f (X 2 ) 2: α ← root of f in IF p 3: if d is odd then IF p 2d such that u p d +1 = α do Interpolation Polynomial in IF p 2 [Z] at the d points [α p 2i , u p 2i ] 0≤i≤δ and [α p 2i+1 , α p 2i+1 /u p 2i+1 ] 0≤i≤δ-1

	4:	δ ← (d -1)/2	
	5:	E ← ∅	
	6: for u ∈ 7: P ← 8: (A, B) ← solution of the Cauchy interpolation problem monic, deg(B) = δ, deg(A) ≤ δ	A B	≡ P (mod f ) with B
	9:	add A(X 2 ) + X • B(X 2 ) to the set E	
	10:	end for	
	11: else	
	12:		

Table 1 :

 1 Parametrization of the irreducible monic skew polynomials of IF 4 [X; θ] bounded by X 6 + X 2 + 1. monic, deg(A) ≤ 1 and deg(B) = 1 (see Section 5.8 of

Table 2 )

 2 are associated to the 15 nonzero parameters u belonging IF 2 4 = IF 2 (α) where α 4 + α + 1 = 0 (first column of Table 2). B Weight enumerators of the binary [72, 36, 12] self-dual codes obtained from self-dual θ-cyclic and extended θ-cyclic codes This annex is devoted to the classification of the binary [72, 36] self-dual codes whose minimum distance is equal to 12 and who are binary images of [36, 18] 4 self-dual θ-cyclic codes and selfdual extended θ-cyclic codes. The codes are classified according to their weight enumerators.

Table 2 :

 2 Parametrization of the irreducible monic skew polynomials of IF 4 [X; θ] bounded by X 8 + X 2 + 1 and distinct of X 4 + X 2 + a and X 4 + X 2 + a 2 .

W 72,2 = 1 + 2βy

12 

+ (7616 -64δ)y 14

+ (134521 -24β + 384δ)y 16 + • • • . B.1 Weight enumerators of the binary [72, 36, 12] self-dual codes obtained from self-dual θ-cyclic codes This part concerns the [72, 36] self-dual codes whose minimum distance is 12 and who are binary images of [36, 18] 4 self-dual θ-cyclic codes (constructed in [2]). The Type II [72, 36, 12] 2 self-dual codes are classified in Table

  12 + (8640 -64γ)y 14 + (124281 -24β + 384γ)y 16 + • • • . When α, β and γ are written in bold, the weight enumerator is new (not given in[START_REF] Dougherty | Extremal binary self-dual codes[END_REF][START_REF] Kaya | New extremal binary self-dual codes of length 68 from quadratic residue codes over IF 2 + uIF 2 + u 2 IF 2[END_REF][START_REF] Alexandre | New self-dual codes of length 72[END_REF]). Consider G ∈ M 18,34 (IF 4 ) the generator matrix of a [34, 18] 4 odd-like θ-duadic code C = (g) θ 34 containing its dual :

	B.2 Weight enumerators of the binary [72, 36, 12] self-dual codes obtained
	from self-dual extended θ-cyclic codes

This part concerns the

[72, 36] 

self-dual codes whose minimum distance is 12 and who are the binary images of [36, 18] 4 self-dual extended θ-cyclic codes. The following construction is adopted and relies on the odd-like θ-duadic codes (see Example 2 and Example 7 of this text) :

•

Table 5

 5 

contains only Type II [72, 36, 12] 2 self-dual codes. It is organized as follows :

Table 3 :

 3 Type II[72, 36,[START_REF] Odoni | On additive polynomials over a finite field[END_REF] self-dual codes who are binary images of [36, 18] 4 self-dual θ-cyclic codes , a, 1, 1, a 2 , a 2 , 1, 1, a, a, a, a 2 , a 2 , 1, 1, a 2 , a 2 , a, 1 201 0

	Coefficients of g	β	γ
	a 2		

Table 4 :

 4 Type I [72, 36,[START_REF] Odoni | On additive polynomials over a finite field[END_REF] self-dual codes who are binary images of[36, 18] 4 self-dual θ-cyclic codes.

Table 5 :

 5 Type II[72, 36,[START_REF] Odoni | On additive polynomials over a finite field[END_REF] self-dual codes who are binary images of[36, 18] 4 self-dual extended θ-cyclic codes

	Coefficients of g	v	β	δ

Table 6 :

 6 Type I [72, 36,[START_REF] Odoni | On additive polynomials over a finite field[END_REF] self-dual codes who are binary images of [36, 18] 4 self-dual extended θ-cyclic codes.
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If B = 0 then B and f are coprime because deg(B) < δ therefore A and B are coprime and 

) is an irreducible skew polynomial with bound f (X 2 ) if and only if P × Θ(P ) ≡ Z (mod f ).

Theorem 9 Algorithm 1 is correct.

Proof. Lemma 2 and Lemma 5.

Example 10

The irreducible monic skew polynomials of IF 4 [X; θ] bounded by X 6 + X 2 + 1 are the 9 skew polynomials listed in the third column of Table 1 (where a 2 + a + 1 = 0). Each irreducible monic skew polynomial writes as h(X) = A(X 2 ) + X • B(X 2 ) where (A, B) is the unique solution to the Cauchy interpolation problem A(Z) B(Z) ≡ P (Z) (mod f (Z)) with B