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Abstract

This text gives a first draft of the definition of 6-duadic codes where 6 is an au-
tomorphism of IF,. A link with the weakly self-dual 6-cyclic codes is established. A
construction and an enumeration is provided when ¢ is the square of a prime number
p. Lastly a parametrization of irreducible skew polynomials of IF)2[X; 6] is given as an
extension of this construction.

1 Introduction

A linear code with length n and dimension k defined over a finite field IF, is a k-dimensional
subspace of IFy. Cyclic codes over IF, form a class of linear codes who are invariant under
a cyclic shift of coordinates. This cyclicity condition enables to describe a cyclic code as
an ideal of IF,[X]/(X™ —1). The monic generator g of this principal ideal divides X" — 1
and is called the generator polynomial of the code. For n coprime with ¢, the polynomial
g can be characterized by its defining set S, namely a subset of {0,...,n — 1} such that
9(X) = [;es(X — o) where « is a primitive nth root of unity in an extension of Fy. For
n odd number coprime with ¢, the class of duadic codes of length n is a sub-family of the
family of cyclic codes of length n and dimension (n £ 1)/2. Their generators are divisors
of (X" —1)/(X — 1) with degree (n £ 1)/2 and with specific designing sets (see chapter of
[7] for an introduction to duadic codes). A weakly self-dual linear code is a code who is a
subset of its annihilator (with respect to the scalar product). It is self-dual if he coincides
with its annihilator. The class of duadic codes contains good codes, the most famous being
the binary Golay code Gas, which is a Quadratic Residue code. The dual of Gas is in fact
weakly self-dual and Go3 can be extended to the famous self-dual binary Golay code Gay.

For 6 automorphism of a finite field Iy, #-cyclic codes (also called skew cyclic codes) of
length n were defined in [I]. These codes are such that a right circular shift of each codeword
gives another word who belongs to the code after application of 6 to each of its n coordinates.
If 4 is the identity, 6-cyclic codes are cyclic codes. Skew cyclic codes have an interpretation
in the Ore ring R = IF,[X; 6] of skew polynomials where multiplication is defined by the rule
X -a=06(a)X for a in F,.

This text gives a first draft of the definition and of the construction of #-duadic codes. A
link with the weakly self-dual 6-cyclic codes is also established and some examples of self-dual
extended 6-cyclic codes are given. The text is organized as follows.

*IRMAR, CNRS, UMR 6625, Université de Rennes 1, Université européenne de Bretagne, Campus de
Beaulieu, F-35042 Rennes



In Section 2, a new sub-family of §-cyclic codes over I, is defined. This family generalizes
the family of duadic codes with multipliers —1 and —r (when ¢ = 72). These codes are
called #-duadic codes with multiplier —1 (Definition [3)) and multiplier —r (Definition [4] when
q =r?). A property on the minimum odd weight of some #-duadic codes is given (Proposition
).

Section 3 is the most technical part of the text and is inspired from [4]. The aim is to
construct and to enumerate the #-duadic codes of length 2k with multipliers —1 and —p over
IF,> when 6 is the Frobenius automorphism and k is an integer not divisible by p (Proposition
and Proposition .

In Section 4, a link is established between the §-duadic codes (defined in Definition (3| and
Definition {4f) and the weakly self-dual #-cyclic codes. In the particular case of IF 2, a complete
description of the [2k,k — 1],2 weakly self-dual -cyclic codes is given. Furthermore, some
constructions of self-dual extended 6-cyclic codes are provided.

Lastly, in Section 5, an application of the techniques developed in Section 3 is given (with-
out link with coding theory). It consists in a parametrization of irreducible skew polynomials
over IF 2 [X; 0] with given degree and given bound.

2 A sub-family of 6-cyclic codes.

Consider ¢ a prime power, # an automorphism over IF, and the ring R = IF,[X;6] where
addition is defined to be the usual addition of polynomials and where multiplication is defined
by the rule : for a in IF,

X -a=0(a) X. (1)

The ring R is called a skew polynomial ring or Ore ring (cf. [I0]) and its elements are
skew polynomials. When @ is not the identity, the ring R is not commutative, it is a left and
right Euclidean ring whose left and right ideals are principal. Left and right ged and lem
exist in R and can be computed using the left and right Fuclidean algorithms. The center of
R is the commutative polynomial ring Z(R) = ]Fg [X™] where ]FZ is the fixed field of 6 and m
is the order of #. The bound B(h) of a skew polynomial A with a nonzero constant term is
the monic skew polynomial f with a nonzero constant term belonging to ]FZ[X ] of minimal
degree such that h divides f on the right in R ([§]).

Definition 1 (definition 1 of [3]) Consider two integers n,k such that 0 < k < n. A
f-cyclic code or skew cyclic code C' of length n and dimension k is a left R-submodule
Rg/R(X"—1) C R/R(X™—1) in the basis 1, X, ..., X"~ where g is a monic skew polynomial
dividing X™ — 1 on the right in R with degree n — k. The skew polynomial g is called skew
generator polynomial of C.

If 6 is the identity then a #-cyclic code is cyclic.

If the skew generator g of a #-cyclic code is irreducible in R, then one calls the corre-
sponding #-cyclic code an irreducible 6-cyclic code. If g is reducible in R, the code is a
reducible #-cyclic code. An even-like code is a code who has only even-like codewords,
that means codewords whose sum of coordinates cancel. It is odd-like otherwise.



d
Definition 2 ([3], Definition 2) Consider an integer d and h = Zhi X" in R of degree
i= 0

d. The skew reciprocal polynomial of h is h* = ZXd thy = 29 hg_i) Xt If the

constant term of h does not cancel then the left monlc skew rec1procal polynomial of h
is ed(h ) - h*. The skew polynomial h is self-reciprocal if h = hi.

Definition 3 (#-duadic codes given by the multiplier —1) Consider a prime power q,
0 an automorphism over Iy of order m, R = [ X;0] and an integer k coprime with q such
that mk — m is even. A 0-cyclic code of length n = mk is an even-like (resp. odd-like)
-duadic code given by the multiplier —1 if it is generated by (X™ — 1) - h? (resp. h?)
where h is a monic polynomial of R satisfying

(X™—1)-hf-h=X"—1. (2)

One says that the skew polynomials (X™ —1) - h' and kY generate a pair of #-duadic codes
of length mk given by the multiplier —1.

Remark 1 The above skew polynomial h? is not divisible by X — 1 because it is coprime with
X™ — 1, which is the bound of X — 1, therefore the 0-cyclic code generated by b is odd-like.
Furthermore the codewords of the §-cyclic code generated by (X™ — 1) - h¥ are divisible by
X™ — 1 therefore they are divisible by X — 1 and are even-like.

Remark 2 If 0 = id, then equation @ becomes
(X —1)A*h = X" -1

This equation characterizes duadic codes given by the multiplier —1 (Theorem 6.1.5 of [7]).
Namely consider an odd number n coprime with q and a a primitive n-th root of unity.

Consider an odd-like duadic code given by the multiplier —1. According to Theorem 6.1.5 of
[7], it is generated by a polynomial g = [[;cg(X —a') where S is a subset of {1,...,n} such that
SN—=S=0and SU-S ={1,...n}. Consider h =[[;c_g(X —a'), then (X —1)gh=X"—1
and g = h.

Conversely, consider the cyclic code C with generator g = h® where h € IF,[X] is such that
(X —1)hBh = X™ — 1. Consider the subsets S and T of {1,...,n—1} of cardinality (n—1)/2
such that g = [[;eq(X — o) and h = [[;ep(X — o). As g and h belong to Fy[X], the sets
S and T are unions of q-cyclotomic cosets modulo n. Furthermore g and h are coprime and
their product is (X™ — 1)/(X — 1), therefore SNT =0 and SUT = {1,...n}. Lastly, as
he =g, T =—S (and S = —T). According to Theorem 6.1.5 of [7], C is an odd-like duadic
code given by the multiplier —1.

If ¢ = r? is an even power of an arbitrary prime number, one defines for a in F,, @ = a”

and for h =Y h;X"in R, h =Y h; X"

Definition 4 (f-duadic codes given by the multiplier —r) Consider ¢ = r% an even
power of an arbitrary prime number, 6 an automorphism over Fq of order m, R = IF4[X; 0]
and an integer k coprime with q such that mk—m is even. A 0-cyclic code of length n = mk is



an even-like (@p. odd—@e) f-duadic code given by the multiplier —r if it is generated
by (X™ —1) - h¥ (resp. h?%) where h is a monic polynomial of R satisfying

(X™—1)-hi-h=X"—1. (3)
One says that the skew polynomials (X™ — 1) -h% and hY generate a pair of f-duadic codes
of length mk given by the multiplier —r.

Remark 3 If0 = id, then equation (@ characterizes duadic codes given by the multiplier —r.
Namely consider an odd number n coprime with q and o a primitive n-th root of unity, consider
the cyclic code C with generator g = hi where h € F,[X] is such that (X — 1)hth = X™ — 1.
Consider the subset S of {1,...,n — 1} of cardinality (n —1)/2 such that g = [[;cq(X — a*)
and the subset T of {1,...,n — 1} of cardinality (n —1)/2 such that h = [[;cp(X —a'). As
g= hi, one gets S = —rT. Furthermore > = q, so T = —rS and C is a duadic code given
by the multiplier —r.

Example 1 Consider p an odd prime number and 6 an automorphism over 2. Let us
determine the 0-duadic codes of length 4 given by the multipliers —1 and —p over ¥ 2. If 0 is
the identity then m = 1 and there is no 0-duadic code of length 4 because 4 is even. Assume
that 0 is the Frobenius automorphism x v+ xP; his order is m = 2.

o The 0-duadic codes of length 4 given by the multiplier —1 are defined by the skew equation
(X2—-1)-h* h=X*—1eh h=X2+1.
Consider h = X + o in R with o # 0, then h? = X + ﬁ therefore

1
ab—1

1 1
B h=(X+— (X =X’4+(—+a” )X
< +0(a)> (X +a) —|—<ap—|—a> +
and h*-h=X?>+1&a’+1=af1-1=0.

Therefore there are 2 pairs of 0-duadic codes of length 4 given by the multiplier —1
over F 2 if p=1 (mod 4). They are generated by X + o and (X? —1) - (X + a) where
o = —1. Ifp =3 (mod 4), there is no O-duadic codes of length 4 given by the multiplier
—1 over 2.

e The 0-duadic codes of length 4 given by the multiplier —2 are defined by the equation
(X2-1)-hi-h=X*—-1ehn -h=X2+1.

Consider h = X + « in R with o # 0, then

R -h=(X+1/a) (X +a)=X?+(1/a+aP)X + 1.

Therefore hi-h=X2+1& ot = —1 and there are p+ 1 pairs of 0-duadic codes of
length 4 given by the multiplier —2 over 2. They are generated by (X2—1)- (X + @)

and X + ﬁ where oPt1 = —1.

The following proposition gives a bound on the minimum odd weight of odd-like #-duadic
codes. It is inspired from Theorem 6.5.2 of [7].



Proposition 1 Consider a prime power q, 0 an automorphism over Iy of order m, R =
IF,[X;0] and an integer k coprime with q such that mk —m is even. Consider C an odd-like
-duadic code with length mk over . For each odd-like word in C with weight d, k < d?.

Proof. Consider g the skew generator polynomial of an odd-like #-duadic code C' with
length mk given by the multiplier —1, then g = h? and (X™ —1)-h%-h = X™* — 1. Consider
¢ an odd-like word in C, then X™ — 1 does not divide ¢(X) and g = h? divides ¢(X).
There exists u(X) in IF,[X;6] such that ¢(X) = u(X) - h*(X). Using the two properties
(f-g9)* = 0%W)(g") - f* and (f*)* = ©%€U)(f), one gets @1l (c*) = h - © 18l (u)
and ¢ - © 99 (¢*) is a multiple of % not divisible by X™ — 1. Consider e = ¢ -
©~92(9)(¢*) mod X™* — 1 and E the f-cyclic code of length mk and generator polynomial
Zi':ol X™ As the minimum distance of the code E is k and as e is a nonzero codeword of
E with weight less than or equal to d?, one gets k < d2.

The same proof holds for odd-like #-duadic code given by the multiplier —r when g = 2.

When ¢ is the square of a prime number p and 6 is the Frobenius automorphism, equation
is equivalent to

(X2—1)-h% - h=Xx%_1 (4)
and equation is equivalent to

(X2-1)-0(h%) -h=Xx%_1 (5)
where © : Y a; X' > 0(a;) X' =Y @; X =Y a; X"
Next section will be devoted to these two skew equations. Let us first introduce some

notations.

For F(X?) € Fp[X?] and b in {0, 1},

Dp(x2) := {f € Fp[X?] | f monic and divides F(X?) inF,[X?]}
F = {f = f(X?) € Fy[X?] | f = f*irreducible in F,[X?],degy> f > 1}
G:={f=f(XY)eF,[X|f=gd, g#g"irreducible in F,[X?]}

b .
H;“zxz) := {h € R | hmonic and O°(h?) - h = F(X?)}.

Note that the #-duadic codes of length 2k given by the multiplier —1 are associated to
the set ’Hgg%_l) J(x2-1) while the 6-duadic codes given by the multiplier —p are associated

to the set ’H(l)

(X2k-1)/(X2-1)°
3 Construction and enumeration of f-duadic codes over |
given by the multipliers —1 and —p

The aim of this section is to construct and count pairs of f-duadic codes defined over I

and given by the multipliers —1 and —p. It amounts to construct the set ’H;éng) where b



belongs to {0,1} and F(X?) is the polynomial ))((2:__11. Most of the work consists of using the
techniques developped in [4] for the Euclidean scalar product and adapting them to Hermitian
scalar product. Furthermore an application to the parametrization of the irreducible skew
polynomials with given bound will be developped in Section 6.

The following proposition is inspired from Proposition 28 of [3] and Proposition 2 of [4].

Proposition 2 Consider Iy a finite field with q = p? elements where p is a prime num-
ber,  : x — xP the Frobenius automorphism over F2, R = Fy[X;6]. Consider F(X?) =
f1(X2) - £(X2) where f1(X?),..., fr(X?) are pairwise coprime polynomials of F,[X?] sat-
1sfying fih = f;. The application

(b) (b) (b)
6 Tnoen X X Hpey = Hpixe
(h1,...,hy) —  lerm(hy, ..., hy)

1s bijective.
Proof.

e The application ¢ is well-defined.
Consider (hy,...,h,) in HE};)(XQ) X e X H;l;)(Xg) and h = lerm(hy, ..., hy).

Firstofall as hy, ... h, divide respectively f1(X?),..., f-(X?), and as f1(X?),..., f-(X?)
are pairwise coprime central polynomials, the degree of lerm(hy,...,h,) is equal to
> iy deg(h;). Furthermore, as @b(hE) - h; = fi(X?), the degree of h; is equal to the
degree of f;(X?) in X2, therefore the degree of h is equal to the degree of F(X?) in X?2.
Consider for 4 in {1,...7}, Q; in R such that h = h; - Q;, then ©°(h?) = Q; - @b(hg)
where Q; € R therefore ©°(h%) - h = Q; - OP(h%) - h; - Qi = Qi - fi(X2) - Qi. As fi(X?2) is
central, it divides ©°(h%) - h. The polynomials f;(X?) are pairwise coprime in TF,[X?],
therefore their least common right multiple is equal to their product F(X?), and F(X?)

divides ©%(h?) - h. Considerations on the degrees of the involved polynomials imply the
equality ©P(RY) - h = F(X?).

The skew polynomial h belongs to ”Hg? x2) therefore ¢ is well defined.

e The application ¢ is bijective.

Consider h in ’ng x2)) then h divides F(X?), therefore, according to Theorem 4.1 of
[6], h = lcrm(hq, ..., h,) where h; = gcld(f;(X?),h) and this lerm-decomposition into
skew polynomials dividing f1(X?),... f-(X?) is unique. Let us prove that h; belongs to
Mooy

As h; divides fi(X?2) on the left, ©(h%) divides ©(f?)(X2) on the right. As f;(X?) is
central, one gets that @b(hf) - h; divides f;(X?)2. In particular,

Vie{1,...,r}\ {i}, gerd(©°(h?) - hy, £;(X?) =1 (6)

As h; divides h on the left, @b(hf) divides ©°(hf) on the right. Furthermore F(X?) =
@°(h%) - h is central, therefore @b(hg) - hi divides F(X?) = f1(X?)--- fi(X?) - f.(X?).



According to @, @b(hg) - h; divides fi(X?). Furthermore, 2deg(h) = >_I_, 2deg(h;) =
i, deg(fi(X?)), therefore Vi € {1,...,7},deg(fi(X?)) = 2deg(h;) and @b(hf) ~h; =
fi(X?).

3.1 Irreducible case

The aim of this subsection is to construct and enumerate irreducible odd-like #-duadic codes
defined over IF)2 of length 2k where k is coprime with p. One therefore assumes that X 2k_1 =
(X2 —1)f(X?) where f(X?) is irreducible in IF,[X?]. Necessarily f(X?) is self-reciprocal.

If f(X?) has degree 1 then f(X?) = X?+1, k=2 and p is odd. According to Example
there are 2 irreducible odd-like #-duadic codes of length 4 given by the multiplier —1 if p=1
(mod 4). If p = 3 (mod 4), such codes do not exist. Furthermore, for any prime number p,
there are p + 1 irreducible odd-like #-duadic codes of length 4 given by the multiplier —p.

In what follows, one constructs the set H;b()xg) when b belongs to {0,1} and f = f(X?)
belongs to F. When b = 0, Lemma 5 of [4] gives a construction based on Cauchy interpolation
in IF 2(Z). We give here a slightly different presentation and a generalization to the case when
b is equal to 1.

Lemma 1 Consider f in F with degree d = 25 where § is in IN*. The skew polynomial
h(X) = ©°(A)(X?)+ X -0%B)(X?) belongs to H;b()Xz) \F,2[X?] if and only if the polynomial
P(Z) of degree < d defined in F2[Z] by

A
5= P (mod f)

satisfies the two following equations in IF2[Z] :

P(2)0(P)(Z) = Z  (mod f(Z)) (M)
Z¥71p(1/2) 4+ 22720 1(P)(Z) =0 (mod f(Z)).
Proof. Consider h = ch'lzo h;X® in R, monic with degree d. Consider A and B defined
by h(X) = ©°(A)(X?) + X - ©%(B)(X?), then h* = A(X?) + B(X?)- X where A(Z) =
MNZ00Y(A)(1/Z) and B(Z) = \Z°~10%B)(1/Z), A = 6°(1/hy).
Therefore h belongs to ”H;b()XQ) if and only if the following polynomial relations in IF,2[Z]
are satisfied :

{ A(2)A(2)+ ZB(2)B(Z) = f(2) (8)
A(Z)8(B)(Z) + B(Z)©(A)(Z) = 0.

As B # 0, and as deg(B) < deg(f)/2, B and f are coprime, therefore A and B are
coprime. The relation (8) is equivalent to

A(Z)O(A)(2) - ZB(2)0(B)(Z) = f(Z) )
Z°A(1/2)0" Y (B)(Z) + z°~'B(1/2)8" 1 (A)(Z) = 0.

Consider P in IF)2[Z] with degree less than d such that



A(2)

B(2)
This polynomial exists because B and f are coprime. Furthermore the relation @D is
equivalent to .

P(Z) (mod f(Z)).

The following lemma will be also useful in subsection [3.2] and in section

Lemma 2 Consider f in ¥y[Z] irreducible in ,[Z] with degree d and o in ¥ pa such that
f(e) =0. Consider P(Z) in T 2[Z] with degree < d and y; = P(a?") for 0 <i<d—1.

{ P(2)0(P)(Z) = Z  (mod f(Z))

P(Z) € Fp[2)
)

yi:ygi -~ ifi€{0,...,d—1} is even
yi:oapl/ygl if 1 €{0,...,d—1} is odd

pl1 T (10)
Yo = if d is even

d
vh t—a  ifdis odd.

Proof. Consider P(Z) in IF,2[Z] with degree < d and y; = P(aP) for 0 <i<d—1.

e Assume that P(Z) is a polynomial of IF 2 [Z] such that P(Z)O(P)(Z) = Z (mod f(Z)).
As P(Z) belongs to F2[Z], ©*(P)(Z) — P(Z) cancels at the points #’(a) where i €

pz _ pi ep - o .
{0,....d— 1} therefore P(o Z) P(a) . 1fz €{0,...,d—1} is even
P(a?") = P(aP)? ifi € {0,...,d— 1} is odd.
pd—l _ . .
Furthermore o’ = o therefore Pla) a1 1 ?f d %s event
P(aP)P" = P(«a) if dis odd.

The condition y; = o?/y} comes from the evaluation of P(Z)O(P)(Z) — Z at « and
follows from these relations.

e Conversely, assume that is satisfied. Then

P(a?') = P(a)?  ifi€{0,...,d—1} is even
P(a?') = P(aP)?"" ifi€{0,...,d— 1} is odd
P(a)?" = P(a if d is even

P(a?)?"" = P(a)  if dis odd

P(aP)P(a)P = aP.

Let us prove first that ©2(P)(Z) — P(Z) = 0. As deg(P) < d, ©*(P)(Z)— P(Z) cancels
at 0'(a) for i in {0,...,d — 1}. Consider i € {2,...,d — 1} then (©2(P) — P)(#'(a)) =
02 (yi—2) — y; = 0, furthermore

d . .
v — Yo =0 ifdiseven

(©%(P)—P)(a) = ©2(P)(a?")=P() = 6*(ya—2)—yo = { o o =0 it dis odd



2 _ a)) = 2 o dH/y *ap/yp =0 ifdiseven
(&7(P) = P)(6(a)) = 0°(ya-1) — 11 { A
Therefore ©2(P)(Z) = P(Z) and P(Z)O(P)(Z) — Z is in IF,[Z].

The condition P(a?)P(«)P = of implies that P(Z)O(P)(Z) — Z cancels at « and is
therefore divisible by f(Z).

The following lemma describes the set H;b()xg) where f(X?) € F is an irreducible self-
reciprocal polynomial of IF,[X?] with degree > 1 and b belongs to {0,1}. It is a generalization

of Lemma 5 of [4] (where ”H;O()XQ) is constructed).

Lemma 3 Consider b in {0,1}, f = f(X?) in F of degree d = 2§ where § is in N*. The set

chb()Xz) has 1+ p° elements.

Proof. Consider f(X?) = f(X?)O(f)(X?) the factorization of f(X?) in F,2[X?].
Then
0 if 6+b=0 (mod2)

(b) _
H ﬂ]sz[XQ]—{ {f(Xz)’@(f)(XQ)} if 6+b=1 (mod 2) (11)

f(X?)
According to Lemma h(X) = ©°(A)(X?) + X -0%(B)(X?) belongs to H;b()Xz) \IF,2[X?]
if and only if (A, B) is the unique solution to the Cauchy interpolation problem :

%EP (mod f)

where the polynomial P(Z) in IF,2[Z] of degree < d is defined by the relations :

P(2)0(P)(Z) = Z  (mod f(Z))
{ Z¥71P(1/2) + z¥ 7201 (P)(Z) =0 (mod f(Z)).

As there is a unique solution (A, B) (with deg(A) = ¢, deg(B) < §—1 and A monic) to the
above Cauchy interpolation problem for each P, the number of elements of O £ X2 \IF2[X 2]
is equal to the number of P in IF2[Z] with degree < d satisfying (7 . For 0 <i<d-—1,
denote y; = P(api) € F,a. Let us prove that is equivalent to

yi=yl  ifi€{0,...,d—1}is even 12)
yi=a [yt ifie{0,...,d—1} is odd

and

13
yg§+1:—1 if +b=0 (mod 2). (13)

Assume that is satisfied. Then according to Lemma is satisfied. Further-
more, as Z2 71 P(1/Z) + Z*720"1(P)(Z) cancels at «, is also satisfied. Conversely,
assume (12) and (13), then according to Lemma 2, P(Z)O(P)(Z) = Z (mod f(Z)). Fur-
thermore Z2°~'P(1/Z) + Z*72@"*1(P)(Z) cancels at a and oP, therefore Z¥~1P(1/7) +

{yé’tl:—l/a if 0+b=1 (mod 2)



7272901 (P)(Z) =0 (mod f(Z)). To conclude the proof, according to || the set H;b()xz)\
IF,2[X?] has p° — 1 elements if § + b =1 (mod 2) and p° + 1 elements if 6 + b =0 (mod 2).

The relation enables to conclude.

Proposition 3 Consider p a prime number, 0 the Frobenius automorphism over F 2, b in
{0,1} and k an integer coprime with p. The number of irreducible 0-duadic codes of length
2k with given multiplier —p® over F. is

14 p®*=D/2 if k is an odd prime and p generates Z/k7L*;
0 ortherwise.

Proof. Let us prove that there exists an irreducible #-duadic codes of length 2k with
given multiplier —p® over IF,2 if and only if & is an odd prime and p generates 7 /k7Z*.
Assume that there exists an irreducible #-duadic code of length 2k with given multiplier

—p® over IF 2. Consider g its skew generator polynomial, necessarily g is irreducible therefore
g = h? where ©°(h%)-h = ))((2:__11. The bound B(g) of g is an irreducible polynomial of IF,[X?]

with degree 2deg(g) = 2k. Therefore )){(2::1 = B(g) and ))((2;:11 is irreducible in F,[X?].

Necessarily, k is and odd prime and p generates ZZ/k7Z*.

Assume that k is and odd prime and p generates Z/kZ*, then F(X?) := % is irre-

ducible in IF[X?], therefore according to Lemma ’ngg x2) is nonempty. Its elements have

degree k and divides F(X?). As F(X?) is an irreducible polynomial of IF,[X?] of degree

2k. the elements of Hg)zXQ
irreducible #-duadic code of length 2k with given multiplier —p® over IFpe.

Lastly, the set ng X2) has 1 4+ p*=1/2 elements according to Lemma

) are irreducible skew polynomials. To conclude, there exists an

Example 2 Consider 0 : x + x° the Frobenius automorphism over Fy = Fa(a). The

number of irreducible O-duadic codes of length 22 with given multiplier —1 over IFy is 14+2° =
33. They are generated by the skew polynomials h® in F4[X ;6] where h is a monic solution
to the kew eqquation

X221
20 18, . 241
X2 1—X + X4+ X+
For ezample h = X0 + X9 4+ aX% + a®>X* + X + 1 is a solution and g = b = X0 + X9 +

a? X% +a X*+ X +1 generates a [22,12, 6]4 irreducible odd-like 0-duadic codes with multiplier
—1.

A h =

Example 3 Consider 0 : x +— 22 the Frobenius automorphism over Fy. The number of
irreducible O-duadic codes of length 22 with given multiplier —2 over Fy is 14+ 2° = 33. They
are generated by the skew polynomials ©(h?) in F4[X; 0] where h is a monic solution to the
equation

St =XV X4 4 X241

1= e i

One of these solutions is h = X' + X% + a?X% + X° 4+ a’X* + X +1 and g = O(RY) =
X104 X9 4 a X0+ X%+ aX*+ X +1 generates a [22,12,6]4 irreducible odd-like 0-duadic
codes with multiplier —2

O(hf) - h =
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3.2 Reducible case

The aim of this section is to construct and to enumerate reducible odd-like #-duadic codes
over IF',2 of length 2k where k is coprime with p (Proposition . One therefore assumes that

F(X?) := X7=1 is reducible in F,[X?].

If F(X?) is the product of self-reciprocal polynomials f(X?) irreducible in F,[X?], then
one can conclude thanks to Proposition [2] and Lemma [3]

Otherwise, as F(X?) is self-reciprocal, its irreducible factors in IF,[X?] which are not
self-reciprocal appear by pairs (g(X?), g%(X?)).

In what follows we construct H;b()XQ) when f(X?) € G is the product of two irreducible
polynomials of IF,[X?] which are a pair of reciprocal polynomials g(X?2) and ¢*(X?). The

following Lemma is a generalization of Lemma 6 of [4] (where 7—[;1() is constructed).

X2)
Lemma 4 Consider b in {0,1}, f = f(X?) in G with degree 26 in X? and g(X?) such that
f(X?) = g(X?)g"(X?). The set H;b()XQ) has 3+ p° elements.

Proof.

When 6 is even, consider the factorization of g(X?) in F2[X?] : g(X?) = g(X?) x

O(g)(X2). Then Hyya NIF,2[X2] = {g(X?), g*(X2), §(X2)OM (3(X?)) , 0°(3)4(X2)O()(X?)}.

If 0 is odd, then g(X?) is irreducible in F,2[X?] and H\)\a) N F,2[X?] = {g(X?), g*(X?)}.

In what follows, one proves that the number of elements of H;b()XQ) \F,2[X?] is p® —1if § is
even and p° 4 1 if § is odd.
Consider 3 in IF,s such that g(8) = 0. Consider h = Z?:o h; X" in R, monic with degree
d. Consider A and B defined by h(X) = ©°(A)(X?) + X - ©%(B)(X?), then hf = A(X?) +
B(X?)- X where A(Z) = \Z°0%(A)(1/Z) and B(Z) = AZ°~10"(B)(1/Z), A = 6°(1/hy).
Therefore h belongs to H;Z)()Xz) \IF2[X 2] if and only if the following polynomial relations
in IF2[Z] are satisfied :

{ A(Z)A(Z) + ZB(Z)B(Z) = f(2Z) (14)

A(Z)O(B)(Z) + B(2)0(A)(Z) = 0.

Necessarily, as B # 0, B and f are coprime therefore A, B and f are pairwise coprime.
Consider P = P(Z) in IF2[Z] with degree less than d such that

AZ) _
M =P(Z) (mod f(Z)).

The polynomial P exists because B and f are coprime. The relation is equivalent to

{ P(Z)O(P)(Z)=Z (mod f(Z)) (15)

Z%71p(1/2) 4+ 22720 1(P)(Z) =0 (mod f(Z)).

Consider y; = P(B7') if 0 <i <6 —1 and 15 = P(1/BP)if0<i <6 — 1.
Let us prove that is equivalent to conditions , and defined below :

11



yi:ygi ~ifie{0,...,0 — 1} is even
yi =B Jyf itie{0,...,6 —1} is odd

16

yg_lzl if § is even (16)
=B if §is odd

ys=—1/yo if b=0

: 17

{y(s——yo/ﬁ i b—1 17)

yi+5:y§i - ifie€{0,...,6 — 1} is even (18)

yirs = 1/(B7y0) ifie{0,...,6 — 1} is odd.

Assume that is satisfied. As P(Z)O(P)(Z) = Z (mod f(Z)), P(Z)O(P)(Z) = Z (mod g(Z))
therefore according to Lemma [2| applied to g, is satisfied. The condition Z2~1P(1/Z) +
72072001 (P)(Z) =0 (mod f(Z)) implies furthermore . Lastly P(Z)O(P)(Z) = Z (mod ¢*(Z))
therefore according to Lemma [2 applied to ¢, is satisfied.

Conversely, assume that , and are satisfied, then according to Lemma
P(2)O(P)(Z) = Z (mod g(Z)) and P(Z)O(P)(Z) = Z (mod ¢*(Z)). To prove that
Z21p(1/7) + Z¥720TY(P)(Z) = 0 (mod f(Z)), it suffices to prove that uP(1/u) +
©%*1(P)(u) cancels when u belongs to {3, ?,1/83,1/8P} :

_ =0 ifb=
ﬂP(é)Jr@bH(P)(ﬁ):{ ggi);ﬁ/yo :8 ;fb:(;

PP :
pp( L b+1 »y— ) ~Y% T Y% =0 ifb=0
/6P<5P)+@ (P)(/B) {—ﬁp/y8+ﬁp/yg =0 ifb=1
1/8 x P(8) + 6" (P)(1/8) = yo/B — yo/B =0
1/BP x P(BP) +©"TH(P)(1/67) = 1/y5 — 1/yp = 0.
To conclude, according to the two last relations of , the number of elements of H;b()XQ)\
F,2[X?] is p® — 1if § is even and p? + 1 if § is odd.

Proposition 4 Consider p a prime number, 0 the Frobenius automorphism over 2, k an
integer coprime with p and b in {0,1}. The number of pairs of 6-duadic codes of length 2k
with given multiplier —p® over IF. is

Nox [T+9") x []B+1")

fer feg
where
0 if b=0,k=0 (mod2),p=3 (mod4)
2 if b=0,k=0 (mod2),p=1 (mod4)

No=9 01 if b=1,k=0 (mod 2)

1 i k=1 (mod?2).
Proof. The number of pairs of f-duadic codes defined over IF)2 of length 2k with given

multipliers —p® is equal to the cardinal of ’ng x2) where F(X?) := ))((2;:11. If k is odd,

Fex= [T r II ¢

feFNDr  feGNDp

—~
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and if k is even then p is odd and

Fx)=x*+1) [ r II *

feFNDr  feGNDE

. . b b b
According to Prop081t10n #/HE«“EXZ) = Np X er]—'ﬂDF #’H;()XQ) X erngF #7—[;())(2)
where N, = 1if k is odd and N = #HE?)Q +1 if k£ is even. The conclusion follows from Lemma
Lemma [4] and from the equality :

{(X+a|la?=-1} if b=0andp=1 (mod 4)
#HD = {X +ala?tl =1} if b=1
if b=0andp=3 (mod 4).

Example 4 Consider 8 the Frobenius automorphism over 4. The odd-like 6-duadic codes

of length 34 over F4 given by the multiplier —1 are characterized by the skew equation in
F4[X;0] :

X3 -1

Wi h =
X2 -1

:(X16+X10+X8+X6+1)(X16+X14+X12+X8+X4+X2+1).

Consider the skew polynomials hy = X® +a®> X" +a®> X0 +a X* + X2+ a®> X +a® and
hy = X84+a2 XS4a X5+a X3+a? X2+a. They satisfy h-hy = X0+ X104 X84 X641 and
hg'hg = X0 X1 X124 X84 X4+ X2 1. Therefore the skew polynomial h = lerm(hy, ho) =
X16+GX15+X14+X13+Q2X12+X11+GX9+X7+CLX5+X4+CLX3+G2X2—|-X—|-CL2

satisfies h? - h = ))((324:11. The skew polynomial

g=h =X paXP 4 XML XB4aX P4 XM 4 aX'4+ XT+aX+ X +aX?+aX?+ X +a

generates an odd-like 6-duadic code C over ¥4 given by the multiplier —1, which is a [34,18,9]4
code.

Example 5 Consider 6 the Frobenius automorphism over Fg. There is no odd-like 0-duadic
code of length 32 over Wy given by the multiplier —1.

Example 6 Consider 0 the Frobenius automorphism over IFg. The odd-like 0-duadic codes
of length 32 over Fg = F3(a) given by the multiplier —3 are generated by Rt where h is a
monic solution to the skew equation in Fo[X; 0] :

oY) -h = (X®-1)/(X%2-1)
= (X?+1)(X*+1)
(X*+ X2+ 2)(X*+2X% +2)) (X84 X* +2)(X® +2X1 +2))

There are 16128 = (3 + 1)(1 + 31)(3 + 3%)(3 + 31) such codes. One of them is a [32,17,11]9

code generated by h? where h = X +a® XM 4 a0 X1 4 2X12 42X 4 65 X9 + a3 X8 4+ 2X7 +
2X6 4+ a3 X4+ X3 +a®X? + a8 X +d'.
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4 Weakly self-dual 2k, k — 1] #-cyclic codes over F .

The aim of this section is to construct weakly self-dual [2k,k — 1] 6-cyclic codes over IF
when k is coprime with p for both Euclidean and Hermitian scalar products.

The (Euclidean) dual of a linear code C of length n over IF, is defined as C*+ = {z €
Iy | Vy € C,< z,y >= 0} where for z,y in Iy, < z,y >:= o, i is the (Euclidean)
scalar product of z and y. The code C is Euclidean self-dual if C is equal to C*+. The
code C' is (Euclidean) weakly self-dual or (Euclidean) self-orthogonal if C is a subset
of C. Assume that ¢ = r? is an even power of an arbitrary prime and denote for a in
IF,, @ = a". The (Hermitian) dual of a linear code C of length n over IF, is defined as
Cto ={rc Fy |Vy € C,< x,y >g= 0} where for z,y in Fy, < z,y >p:= " | 2;7; is the
(Hermitian) scalar product of z and y. The code C' is Hermitian self-dual if C is equal to
C+#. The code C is (Hermitian) weakly self-dual or (Hermitian) self-orthogonal if
C is a subset of C#.

According to ([7], theorems 6.4.1), a cyclic code of odd length n and dimension (n —1)/2
over IF; is Euclidean weakly self-dual if and only if it is an even-like duadic code given by the
multiplier —1. According to ([7], theorem 6.4.4), a cyclic code of odd length n and dimension
(n —1)/2 over IF4 is Hermitian weakly self-dual if and only if it is an even-like duadic code
given by the multiplier —2.

Recall that the Euclidean dual of a #-cyclic code of length 2k with skew generator poly-
nomial g is the #-cyclic code with skew generator polynomial h? where h- g = X2¢ — 1 ([2],
[3]). Euclidean self-dual 6-cyclic [2k, k] codes are constructed and enumerated for any & in
[4]. Consider ¢ an even power of an arbitrary prime number. As the hermitian product of
r,y € Iy is equal to < z,7 >, the Hermitian dual of a code is the Euclidean dual of C.
In particular, if C' is a f-cyclic code of length n and skew generator polynomial g, then its
Hermitian dual is the §-cyclic code of length n with skew generator polynomial h# (see [2]) .

The following proposition gives a sufficient weak self-duality condition for #-cyclic codes
of length mk and dimension (mk —m)/2.

Proposition 5 Consider q a prime power, 0 an automorphism of ¥, of order m and an
integer k coprime with q such that mk —m is even.

o The even-like 0-duadic codes of length mk given by the multiplier —1 are Fuclidean
weakly self-dual 0-cyclic codes.

o Assume that ¢ = 12 is an even power of an arbitrary prime number. The even-like

0-duadic codes of length mk given by the multiplier —r are Hermitian weakly self-dual
0-cyclic codes.

Proof. Consider an even-like 6-duadic code of length mk given by the multiplier —1. Its
skew generator polynomial is (X™ — 1) - h¥ where (X™ —1)-h%-h = X™* —1. The Euclidean
dual Ct of C is generated by hf, therefore C' c Ct.

Assume that ¢ = r2. Consider an even-like A-duadic code of length mk given by the
multiplier —r. Its skew generator polynomial is (X™ —1)-h% where (X —1)-hi-h = X™* 1.

The Hermitian dual C+# of C is generated by ht, therefore C C C+#.
u

Proposition [6] characterizes Euclidean weakly self-dual 6-cyclic codes with length 2k and
maximum dimension k — 1 over IF)2. Even-like f-duadic codes are a special case of weakly
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self-dual 6-cyclic codes.

Proposition 6 Consider p a prime number, 0 the Frobenius automorphism over IF 2. There
exists an Buclidean weakly self-dual [2k, k—1] 0-cyclic code over IF 2 for any integer k coprime
with p. The skew generator polynomial of such a code is P - h* where P and h satisfy one of
these conditions :

1. P=X2%2-1 and

X% —1
o= - 1
W h= S (19)
In this case the code is an even-like O-duadic code (given by the multiplier —1).
Furthermore p =2 or (k=0 (mod 2) and p=1 (mod 4)) or k=1 (mod 2).
2. P=X?*+1 and .
X" -1
hoh="p——. 20
X241 (20)

Furthermore k =0 (mod 2) and p =3 (mod 4).
8 P=(X-XN)-(X+1/N), WYe=1h=H - (X+N)orh=H-(X—1/\and

X2k 1
(XQ _ )\p+1)(X2 _ 1/)\p+1)'

H° H = (21)

Furthermore k=1 (mod 2), p=3 (mod 4) and ged(k,p — 1) # 1.

Proof. Consider a #-cyclic code C with length 2k and dimension k£ — 1. It is generated by
a skew polynomial g of degree k4 1 which divides X2¥ — 1. Its Euclidean dual is generated by
h? where the skew polynomial 4 is defined by g-h = X?* —1. The code C is Euclidean weakly
self-dual if and only if the skew polynomial g is a right multiple of the skew polynomial h’.
That means that there exists P in R with degree 2 such that g = P - hf. Therefore C is
weakly self-dual if and only if P - h%-h = X2k — 1.

1. If P = X? — 1 then one gets the equation . As k is coprime with p, X? — 1 does
mm&m@ﬁuvﬁz§§j.Hkmewnmﬁp:2¢mmxﬂ+hm%nmdwmeFmﬂx
therefore F(X?) = [erom, f(X?) x [iecrpy f(X?). According to Lemma [3| and
Lemma the set H;O) is not empty when f belongs to F U G, therefore, according to
Proposition [2| the set ?—[;9) is also not empty. If k is odd and p is odd then X? + 1
. 0
divides F(X2) and F(X?) = (X2 +1) % [1jernpp F(X2) % [ pegnp, S(X?). As H |
is nonempty if and only if p = 1 (mod 4), the set 7—[;9) is not empty if and only if p =1
(mod 4).

2. Assume that p is odd and that P = X241 then one gets the equation . Necessarily,
k must be even. As X? + 1 does not divide F(X?) = ))((2:;11 and as X2 — 1 divides
F(X?), one has F(X?) = (X2 -1) x [ierrp, f(X?) x [ecrpy f(X?). Furthermore
Hg?%_l is nonempty if and only if p = 3 (mod 4) therefore, there is a solution if and
only if p =3 (mod 4).
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3. Assume that p is odd and P # X2 + 1.

Let us show that P must be reducible. Assume that P is irreducible and consider his
bound f(X?). f(X?)is an irreducible polynomial in IF,[X?] and each factorization
of f(X?) into the product of irreducible skew polynomials contains two terms with
degree 2. The same property holds for f%(X?2) as f9(X?) is also irreducible in
F,[X?). As X%t — 1 is squarefree in IF,[X?], each factorization of X?¥ — 1 in R
contains exactly two irreducible factors bounded by f(X?) and two irreducible
factors bounded by f3(X?).

Let 7 (resp. s) denote the number of irreducible factors bounded by f(X?) (resp.
f%(X?)) in any factorization of h over R.

Necessarily f # f% otherwise there is an even number of factors bounded by f (X?)
in each factorization of @b(hu) - h in the product of irreducible skew polynomials,
which is impossible.

As f # f%, there are r + s+ 1 (resp. r + s) factors bounded by f(X?) (resp.
f%(X?)) in any factorization of P - hf - h, therefore, 7 + s +1 =2 = r 4 s, which is
a contradiction.

Therefore P = (X — X) - (X — p) where \, 1 € F2. Let X? — a € F,[X?] denote the
bound of X — A and X% — b € FF,[X?] denote the bound of X — u. Necessarily,
a?* =b* =1as X2 —a and X? — b divide X?¥ — 1.

Consider f1(X?) =lem(X? —a, X2 —b) and fo(X?) = (X% —1)/f1(X?).

Assume that @ = b, then (X — \) - (X — p) - A% - h = (X% — a)fo(X?), and h? - h is
coprime with X2 —a, furthermore X2 —a is central, therefore lclm(X? —a, hi. h) =
(X2 —a)h? - h. As X% —a and hf - h divide X! — 1, their lclm also divides
X2 — 1= (X? - a)fa(X?) therefore h? - h divides fo(X?). Considerations on the
degrees of these two skew polynomials enable to conclude that h? - h = f2(X?).
Furthermore fo(X?) must be self-reciprocal (as h - h is self-reciprocal), therefore
f1(X?) is also self-reciprocal and a? = 1. Lastly, (X —\)- (X —pu) = X2 —a = P.
One gets the first and second cases of the Proposition.

Assume that a # b, then (X —\)- (X —pu)-h%-h = (X2 —a)(X2%—b) fo(X?). Necessairly
p is here an odd prime number.

X2k _ 1 has two factors bounded by X2 — a and two factors with bound X2 — b.
Necessarily, h? - h contains two factors bounded by X2 — ¢ and X2 — b. Assume
that these two factors appear in h, then A% has two factors bounded by X2 — 1 /a
and X2 — 1/b. Necessarily 1/a # a,b and 1/b # b. (X — ) - (X — p) - % - h has
two factors bounded by X2 —1/a and X2 — 1/b, whereas X?* — 1 has four factors
bounded by X2 —1/a and X2 — 1/b. There is a contradiction, therefore h has one
factor bounded by X2 — a or X? — b.

Furthermore h = lerm(hy, hy) where hy = geld(h, f1(X?)) and he = geld(h, f2(X?)).
Consider Ho = X + u such that h = hy - Ho, then hg - hy divides X2¢ — 1. As
hg - hy is coprime with f1(X?), hg - hy divides fo(X?). Furthermore the degree
of Hy is one, and Hy and hy are coprime so deg(h) = deg(ha) + 1, therefore
deg(h% - hy) = deg(f2(X?)) and one gets hg hy = fo(X?). Furthermore fi(X?)
must be self-reciprocal, therefore b = 1/a.

One has
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h = hg - (X +u) and hg ~ha = fo(X?) therefore h* = (X — 1) hg and the equality
(X =X\ - (X —p)-hi-h= X% —1leads to

(X = X) - (X = ) - (X = 1/u) - (X +u) = (X2 - a)(X2 — 1/a).
A small computation leads to = —1/A and u = § = AP or u = %1

Example 7 The even-like 0-duadic code associated to the [34,18,9]4 odd-like 0-duadic code
C of Example is FEuclidean weakly self-dual. Furthermore C' can be extended to a [36,18,11]4
self-dual code C which is not equivalent to the previous [36,18,11]4 self-dual 0-cyclic codes
(computed in [2]). A generator matriz of C is the block-matriz G = (G M) where

a 1 a a 1 a« 0 1 0 a 0 1 a 1 1 a 1 0 --- 0

00 a®> 1 a®> a2 1 > 01 0 a2 01 a2 114a¢1 0 -0
G=1 :

0O -+~ 0 ¢ 1 a a 1 a 0 1 0 a 0 1 a 1 1 a 1 O

0 - 0 0 a2 1 a® a> 1 a®> 0 10 a 01 a1 1 a® 1

s a generator matriz of C' and M 1is the 18 X 2 matriz defined by

tM_llllll 1 1 1
“\a a® a a® a da® a a® a a® a a® a a® a da® a a* )’

—_
—
—_
—
[
=
—
=
—_

Example 8 Example[] shows that there is no even-like 0-duadic code of length 32 and dimen-
sion 15 over Fyg given by the multiplier —1. However, there exists Fuclidean weakly self-dual
f-cyclic codes of length 32 and dimension 15 over Fg. They are generated by (X2 + 1) - R
where h satisfies the following skew equation

RE-h = (X3 -1)/(X%241)
= (X2-DX 4+ )X+ X2+ 2)(X1T+2X% 4+ 2) (X8 + X1 +2)(X8 +2X1 4 2).

There are 8064 = 2(1431)(3+3%)(3+3%) solutions. For h = X +a” X1 4+a3 X3 a7 X1+
X0+ a2 X842 XT+a® X0+ a3 X4+ a” X% +a® X 4 aP, the skew polynomial (X?41) - b
generates a Fuclidean weakly self-dual 0-cyclic code. Furthermore the corresponding odd-like
9-duadic code (generated by h?) C' can be extended to a self-dual [34,17,12]y code C. A
generator matriz of C is the block-matriz G = ( G M ) where

a8 @ a 0 @ a® 0 2 a2 0 @ 4 0 @ a 1 0
G:Oa2aa30a7a702a60aa50aa31

is a generator matriz of C and M is the 17 X 2 matriz defined by

o
o

tM_<1a62a2162a2162a21a62a21>
- 5 ,

a a
a? a® 1 a2 2 a% 1 a2 2 a5 1 a2 2 a5 1 a2

17



Proposition [7] characterizes Hermitian weakly self-dual -cyclic codes with length 2k and
maximum dimension k — 1 over IF)2.They are necessarily even-like f-duadic codes.

Proposition 7 Consider p a prime number, 0 the Frobenius automorphism over I 2. There
exists Hermitian weakly self-dual [2k, k — 1] 0-cyclic codes over 2 for any integer k coprime
with p. Furthermore they are necessarily even-like 0-duadic codes (given by the multiplier
—p)-

Proof. Consider a #-cyclic code C with length 2k and dimension k£ — 1. It is generated by
a skew polynomial g of degree k + 1 which divides X2¥ — 1. Its Hermitian dual is generated
by ©(h?) where the skew polynomial A is defined by g-h = X2* —1. The code C is Hermitian
weakly self-dual if and only if the skew polynomial g is a right multiple of the skew polynomial
O(hY). That means that there exists P in R with degree 2 such that g = P - ©(hf). Therefore
C is Hermitian weakly self-dual if and only if P - ©(h?) - h = X% — 1.

If P= X? —1, one gets an even-like §-duadic code (given by the multiplier —p).

If P= X241, one gets O(hf) - h = X1 and this equation has no solution because

X241
X2 — 1 divides ))((QQkJ:ll and ’Hgg_l = (.
If P # X? 41, then like in proof of Proposition @ one can prove that P is reducible and

that h = hg - Hy where @(hg) ~he = X1 and a € F, \ {£1}. As X? — 1 divides

(X7=a)(X?=1/a)
%, there is no solution.

Example 9 The even-like 0-duadic code associated to the odd-like 8-duadic codes of Examples
[3 and [0 are Hermitian weakly self-dual.

5 An application : parametrization of the irreducible skew
polynomials of F:[X; 6] with given bound

According to [9], the number of irreducible monic skew polynomials in IF,2[X; 6] of degree d
is equal to My x Ny where Ny is the number of irreducible polynomials in IF,[X?] of degree
din X2 and My = p? + 1 is the number of monic skew polynomials bounded by f(X?) where
f(X?) is irreducible in IF,[X?] of degree d in X2.

The aim of this section is to give a parametrization of all irreducible monic skew polyno-
mials of IF,2[X; 6] with a given bound. This construction is based on the previous Lemma
and the Lemma [5] given below.

Lemma 5 Consider f = f(X?) an irreducible polynomial of ]FPN[XQ] with degree d greater
than 1. If d is even, consider the irreducible factors f(Z) and ©(f)(Z) of f(Z) in F[Z].

1. If d = 20, then the irreducible skew polynomials of I¥,2[X; 6] with bound f(X?) are the
skew polynomials f(X2), O(f)(X?) and h = A(X?) + X - B(X2) where A is monic
of degree 6, B is of degree < § — 1 coprime with f, (A, B) is solution to the Cauchy
interpolation problem in I, [Z]

=P (mod f)
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and P(Z) is a polynomial in T2 [Z] of degree < d satisfying the relation
PO(P)=z (mod f).

2. If d =26 + 1, then the irreducible skew polynomials of F,2[X; 6] with bound f(X?) are
the skew polynomials h = A(X?) 4+ X - B(X?) where B is monic of degree & coprime
with f, A is of degree < §, (A, B) is solution to the Cauchy interpolation problem in
| A

P

% =P (mod f)
and P(Z) is a polynomial in I 2[Z] of degree < d satisfying the relation

PO(P) =2z (mod f).

Proof. A monic skew polynomial / is an irreducible skew polynomial bounded by f (X?)
if and only if, there exists h monic of degree d = deg(h) such that

h-h=f(X?). (22)

1. Assume that d is even and consider f(Z) irreducible in IF2[Z] such that f(Z) =
f(Z)O(f)(Z). Consider A(Z),A(Z) € IF,2[Z] monic of degree § and B(Z), B(Z) €
IF,2[Z] of degree < § —1 such that h = A(X?)+ X - B(X?) and h=A(X?)+B(X?)-X.

Then is equivalent to

{ AA(Z)A(Z) +ZB(Z)B(Z) = f(Zg (23)

A(2)0(B)(Z) + B(2)0(A)(2) =
If B =0 then h = A(X?)+ X - B(X?) = A(X?) is an irreducible skew polynomial with
bound f(X?) if and only if h = f(X?) or O(f)(X?).
If B # 0 then B and f are coprime because deg(B) < ¢ therefore A and B are coprime

and
A(z)=0(4)(2)
(23) © { B(2)=-6(B)2)
A(Z)0(A)(Z) - ZB(Z)O(B)(Z) = 0.

Consider P in IF)2[Z] with degree < d such that
A

5= P (mod f)
then h = A(X?) + X - B(X?) is an irreducible skew polynomial with bound f(X?) if
and only if

PxO(P)=Z (mod f).

2. If d is odd, consider A(Z), A(Z) € F2[Z] of degree < 6 and B(Z),B(Z) € F2[Z]
monic of degree § such that h = A(X?)+ X - B(X?) and h = A(X?)+ B(X?)-X. Then
(22) is equivalent to (23)). Furthermore, f and B are necessarily coprime because f is
irreducible in IF)2[Z] and deg(B) < deg(f), therefore
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u P(Z) e F4[Z] h(X) € F4]X; 0]

v Z2+ad’Z +1 X3+aX?’+aX +a
~8 Z2+aZ+1 | X34+a?X?+a?>X +a?
15 a’?7Z%+a*Z X34+ X + a?

%2 aZ’+ 7 +a X3 +a’X?+aX+ad?
YO aZ?+ad*Z+a | X2+ X?’+ad’X+1
736 22+ 7 X3+ X+1

Y31 a? 22+ aZ + a? X34+ X2 4+aX+1
YO a®?Z?+ Z +a? X3+aX?+a’X +a
757 aZ’+aZ X3+ X +a

Table 1: Parametrization of the irreducible monic skew polynomials of IF4[X; 6] bounded by
X0+ X241

) =0(B)(Z)
Z) = —6(4)(2)
A(2)0(A)(Z) — ZB(2)0(B)(Z) = 0.

Consider P in IF2[Z] with degree < d such that

23) <

A
5= P (mod f)
then h = A(X?) + X - B(X?) is an irreducible skew polynomial with bound f(X?) if

and only if
PxO©(P)=Z (mod f).

Proposition 8 Algorithm 1 is correct.

Proof. LemmapP and Lemmafl =

Example 10 The irreducible monic skew polynomials of 4[X; 0] bounded by X6+ X241
are the 9 skew polynomials listed in the third column of table (where a*> +a +1 = 0).
Each irreducible monic skew polynomial writes as h(X) = A(X?) + X - B(X?) where (A, B)
is the unique solution to the Cauchy interpolation problem % = P(Z) (mod f(Z)) with B
monic, deg(A) <1 and deg(B) =1 (see Section 5.8 of [11] for the computation of (A, B)).
The polynomials P(Z) (second column of the table) are associated to the 9 parameters u in
Fys = Fa(y) satisfying u® = o where o® +a+1 =0 and 4% +* + 3 +~v+1 =0 (first
column of the table).

Example 11 The irreducible monic skew polynomials of F4[X ;0] bounded by X& + X2 + 1
are X* 4+ X2 +a, X* + X%+ a® and the 15 skew polynomials h = A(X?) + X - B(X?) listed
in the third column of table H where % = P(Z) (mod f(Z)), A monic, deg(A) = 2 and
deg(B) < 2. The polynomials P(Z) (second column of the table) are associated to the 15
nonzero parameters u belonging Faos = Fo(a) where o* +a+1 =0 (first column of the table).

20



Algorithm 1 Construction of irreducible skew polynomials over IF,2[X; 6] with given bound

Require: f € F,[X?] irreducible in IF,[X?]

Ensure: All irreducible skew polynomials with bound f(X?)
1: d < degx> f(XQ)
2: a ¢ root of f in IF),
3: if d is odd then

40 S+ (d-1)/2

5: F + (Z)

6:  for u € F 2q such that w1 = o do

7: P+ Interpolation Polynomial in IF,2[Z] at the d points [apgi,up%]ogig(g and
[ap2i+1 ’ ap2z‘+1 /Up2i+l]0<i<5—1

8: (A, B) <+ solution of the Cauchy interpolation problem % = P (mod f) with B
monic, deg(B) = 9§, deg(A) <6

9: add A(X?) + X - B(X?) to the set E

10:  end for

11: else

122 0« d/2

13 E « {f(X?),0(f)(X?)} where f(Z2)O(f)(Z) = f(Z) is the factorization of f(Z) in

F 2 [7Z]

14:  for u € IFja such that u # 0 do

15: P < Interpolation Polynomial in IF,2[Z] at the d points [ocpm,upm]ggg(;_l and
[ap2i+1 7 ap2i+1 /up21+1:|0<z<571

16: (A, B) < solution of the Cauchy interpolation problem % = P (mod f) with A
monic, deg(A) =9, deg(B) < §

17: add A(X?) + X - B(X?) to the set E

18:  end for

19: end if

20: return F
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u | P(Z) €47 h(X) € Fy[X;0]

1 Z34+a*> 7 + a? Xt +ra?X3+ad’X?%+a

a Z34+aZ+a X*+aX?+aX?+a?
o | a? 23 +ad?7%+a| X+’ X3+aX?’+ad’X +a
o’ a’? 7% + a? X*+a?X +1

o |23 4+a?2 72241 | X+ a2 X3 +a2 X2+ a2 X +a?
a® aZ3+7Z+1 X*+ X3 +a’X%2+a

b | aZP+a2Z+d? X*+a?2X3+aX2+a?
o’ 23+ 7%+ a? X4+ X3+aX?+X+a
a® Z2+1 X4+ X+1

a? 23+ 7%+a X4+ X3+ a2 X2+ X +ad?
o a?Z3+aZ+a Xt +raX?+a2X?+a
R Y AE A X4+ X3+ aX?+a?

a2 | aZ3+aZ?+1 X*+aX3+aX?’4+aX+a
al3 aZ?+a Xt*4+aX+1

ot | aZ3+aZ?+ a2 X*+aX3+a2X?2+aX +a?

Table 2: Parametrization of the irreducible monic skew polynomials of IF4[X; 8] bounded by
X8 + X2 41 and distinct of X* + X2+ a and X* + X2 + a2

6 Conclusion and perspectives

This text gives a first step to the construction of 6-duadic codes defined over a finite field
IF,. Indeed a generalization of duadic codes given by the multiplier —1 (and the multiplier
—,/q when ¢ is a square) is obtained. One could generalize this definition to the f-duadic
codes given by more general multipliers such as +p? where b belongs to {0,...,m — 1} and
where 6 is the Frobenius automorphism of order m. However it seems that a deeper study is
needed to extend the definition to much more general multipliers. In particular, the notion
of idempotent is absent here. When ¢ is the square of a prime number p, a more detailed
study is achieved, namely the construction and enumeration of pairs of -duadic codes given
by the multipliers —1 and —p (Proposition 3| and Proposition . The lemmas |3 and (4| also
give an answer to the question of the enumeration of Hermitian self-dual #-cyclic codes whose
dimension is coprime with p as shown below (see perspectives of [4]) :

Proposition 9 Consider p a prime number, 0 the Frobenius automorphism over I 2 and k
an integer coprime with p. If p is odd, there exists no Hermitian self-dual 0-cyclic codes of
length 2k over IF 2. Ouver IFy, the number of Hermitian self-dual 0-cyclic codes of length 2k is

3x [ @+npx ] @ +3)
JEFMDyor_, F€GND o,
where 28 is the degree of f in X2.
Proof. According to Proposition the number of Hermitian self-dual §-cyclic codes over 2
with dimension k is #H ) | = #HD | X [jermp o, #HY % egop.,,  #H. The

X2k 1 X2k 1
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final result follows from Lemma [3| Lemma [4] and from the fact that the equation ©(h%) - h =
X2 — 1 has no solution if p is odd, and 3 solutions if p=2. m

Over ¥z, the class of the 6-cyclic codes who are weakly self-dual, of length 2k and of
dimension k — 1 is also explored (where k is coprime with p and 6 is the Frobenius automor-
phism). A link with the 6-duadic codes is obtained. Some examples of self-dual extended
§-cyclic codes are given (a [36, 18, 11]; Euclidean self-dual code in Example[7]and a [34, 17, 12]9
Euclidean self-dual code in Example . This extension would deserve to be systemized. Fur-
thermore an interesting remaining question is to find conditions for the existence of self-dual
codes which are extended #-cyclic.

Lastly, the techniques developed in IF,2[X; 6] for the enumeration of the #-duadic codes
can be applied to obtain the parametrization of the monic irreducible skew polynomials with
a given bound.
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